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We prove the existence of pairs of models of the same cardinality λ which are very equivalent according to
EF games, but not isomorphic. We continue the paper [4], but we do not rely on it.
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1 Introduction

There had been much study of equivalence relations between models. When we study such an equivalence
relation, the basic question is whether this relation is actually trivial, i. e., if equivalent models are isomorphic.
For example, countable models which are elementary equivalent in Lω1,ω are isomorphic. (Scott showed this
in [10] for countable vocabulary, and Chang generalized it in [1] for any vocabulary). For λ = cf(λ) > ℵ0,
Morely gave (without publishing) a counter example – a pair of L∞,λ equivalent models of size λ which are not
isomorphic. Shelah [9, Chapter II, § 7] gave such an example for almost every singular λ.

Those questions also relate to classification theory: The existence of “strongly” equivalent models which
are not isomorphic is a non-structure property for a class of models. On the other side, if a “not too strong”
equivalence relation is actually the isomorphism relation, this is a structure property (see [8] and [2]).

One of the equivalence relations studied in this context is equivalence under EF (Ehrenfeucht-Fraı̈ssé) games.
A detailed discussion of EF games and their history can be found in [3] and in [11]. The general structure
of an EF game on a pair of models is as follows: There are two players – isomorphism player, whom we
call ISO, and anti-isomorphism player, whom we call AIS. During the game, AIS chooses members of the
models, and ISO defines “interactively” a partial isomorphism between the models – in every move he has to
extend that partial isomorphism so that the elements chosen by AIS will be contained in the domain or in the
range. The isomorphism player loses the game if at some point he cannot find a legal move. If he does not
lose, he wins. We limit the length of the game and the number of elements that AIS may choose at each move.
(Because, if AIS can list all the members of one of the models, then the game is not interesting.) In [4], the games
were with fixed length. In this paper, we deal with EF games approximated by trees – the length of the game is
limited by adding the demand that in each move, AIS has to choose a node in some fixed tree T (with certain
properties) such that the sequence of nodes formed by his choices is strictly increasing in the order <T . If AIS
cannot choose such node, he loses.

We say that two models are equivalent with respect to some EF game � if ISO has a winning strategy in �
played on those models.

In [4] it was proved that if λ = cf(λ) = λℵ0 , then there are non-isomorphic models of size λ which are
EFα,λ equivalent for every α < λ, where EFα,λ equivalence means that they are equivalent under every EF game
with α stages such that AIS has to choose < λ members of the models at each stage. There was also a result for λ
singular, with a necessary change of the equivalence relation.
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112 C. Havlin and S. Shelah: Existence of EF-equivalent non-isomorphic models

Here we generalize the results in two ways: First, we move to EF games approximated by trees instead of
fixed-length games (see Hyttinen and Tuuri in [2] who investigated such games in the context of classification
theory). Second, we give results also for λ > �ω without the assumption λ = λℵ0 , where we use PCF theory to
have some “approximation” instead of λ = λℵ0 .

In Section 2 we prove that for regular λ = λℵ0 for some class of reasonably large trees (see detailed discussion
justifying the choice, in the beginning of Section 2) for every tree from that class there are non-isomorphic models
of size λ which are equivalent under EF games approximated by that tree such that in each move AIS is allowed
to choose < λ members of the models (see Definition 2.1).

In Section 3 we do the parallel for singular λ. But for singular λ, if we allow AIS to choose < λ elements in
each move, and the tree has a branch of length cf(λ), then the game is not interesting, because AIS can choose
all the members of the models during the game. So we have to be more careful – we allow AIS to choose only
one element in each move. This is still a generalization of the result for such λ in [4] – see the discussion at the
beginning of Section 3.

In Section 4 we prove that for regular λ > �ω , for every tree of size λ without a branch of length λ there are
non-isomorphic models of size λ which are equivalent under the EF game approximated by that tree such that in
each move AIS is allowed to choose < λ members of the models.

In Section 5 we prove a similar result for λ > cf(λ) > �ω . As we explained above, because of the singularity
of λ, we have to restrict the number of elements that AIS is allowed to choose at each move – in stage α, AIS has
to choose < 1 + α members of the models. For a further work in preparation of the second author on this subject
see F815 in his web site.

2 Games with trees for regular λ = λℵ0

In [2] there is a construction of non-isomorphic models of size λ which are equivalent under EF games approx-
imated by trees of size λ with no λ branch, when λ = λ<λ. In [4] there is such a construction under a weaker
assumption on λ: λ = cf(λ) = λℵ0 , but there the result is for games of any fixed length < λ, not for games which
are approximated by trees. We want to generalize this result to games approximated by trees.

Now, which trees should we consider? If we limit ourselves only to trees of size λ, it seems that the set of trees
will be “small”. Why? Assume for example that λ = cf(λ) = λℵ0 < λℵ1 . A tree of size λ must drop at least one
of the following conditions:

1. Above every node there is an antichain of size λ.

2. Every chain of size ≤ ℵ1 has an upper bound.
If λ � ℵ1, this kind of trees seems to be too degenerate. We could have demanded that the size of the tree will
be ≤ 2<λ. But it is possible that 2<λ = 2λ and it is reasonable to assume that the result is not true in this case.

We take the middle road: We do not limit explicitly the size of the tree, but we demand that the tree will be
“definable” enough – the cause of not having a branch of length λ is that the nodes of the tree are actually partial
functions from λ to λ which satisfy a certain local condition. By “local” we mean that a function f satisfies the
condition iff any restriction of f to a countable set satisfies it. The tree order is inclusion, and there is no function
from λ to λ which satisfies the condition. By Remark 2.4 this result is indeed a generalization of “for every tree
of size λ and without a λ branch”.

Definition 2.1 For a tree T , a cardinal µ, and models with common vocabulary M1,M2, we define the
game �T ,µ(M1,M2) between the players ISO and AIS as follows: After stage α in the game we have the
sequence 〈fβ : β ≤ α〉, which is an increasing continuous sequence of partial isomorphisms from M1 to M2,
and the sequence 〈zβ : β ≤ α〉 which is an increasing continuous sequence in T .

In stage α of the game, first AIS chooses zα of level α of T such that for every β < α, zα >T zβ . Then:
1. If α = 0, then fα = ∅.

2. If α is limit, then fα =
⋃

β<α fβ .

3. If α = β + 1, then AIS chooses A1 ⊆ M1 and A2 ⊆ M2 such that |A1 ∪ A2| < 1 + µ. Then ISO should
choose fα such that fα is a partial isomorphism from M1 to M2, fβ ⊆ fα, A1 ⊆ Dom(fα), A2 ⊆ Range(fα).

The first player who cannot find a legal move loses the game. If the isomorphism player ISO has a winning
strategy for �T ,µ(M1,M2), we say that M1,M2 are EFT ,µ equivalent.
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Definition 2.2 We say that �F,λ holds if
1. F is a set of partial functions from λ to λ;

2. if f is a partial function from λ to λ, then f ∈ F iff f � u ∈ F for every countable u ⊆ Dom(f);
3. there is no f ∈ F such that Dom(f) = λ.

Definition 2.3 If �F,λ holds, we define a tree TF in the following way:
The nodes are functions f such that f ∈ F and Dom(f) is an ordinal;

the order is inclusion.
Note that this tree TF does not have a branch of length ≥ λ.

Remark 2.4 If T is a tree of size λ with no λ branch, we can assume without loss of generality that T ⊆ λ.
Define F by f ∈ F if f is a partial function from λ to λ such that x < y implies f(x) <T f(y). We get that �F,λ

holds, and T can be embedded (as a partial order) in TF .

Theorem 2.5 Suppose

cf(λ) = λ = λℵ0 ,

�F,λ holds,

T = TF .

Then there are non-isomorphic models M1,M2 of size λ which are EFT ,λ equivalent.

P r o o f. First, we shall define a tool for constructing models.

Definition 2.6 x is a structure parameter if it consists of the following objects:
a set I ,

a set Js for each s ∈ I such that if s1 �= s2, then Js1 ∩ Js2 = ∅ (denote J =
⋃

s∈I Js),

sets S, T such that S ⊆ I × I and T ⊆ J × J .

Definition 2.7 For a given structure parameter x we define a model M = Mx in the following way: First
for each s ∈ I let Gs be an abelian group generated freely by {xt : t ∈ Js} except of the relation ∀x(2x = 0).
(We could have also used a free group or a free abelian group, but our choice makes the proof a bit simpler.)
We demand also that if s1 �= s2, then Gs1 ∩ Gs2 = ∅. For (s1, s2) ∈ S, let Gs1,s2 be the subgroup of Gs1 × Gs2

generated by {(xt1 , xt2) : (t1, t2) ∈ T ∩ (Js1 × Js2)}. The universe of M is
⋃

s∈I Gs. The vocabulary of M
consists of

1. for each a ∈ M , a unary function symbol Fa;

2. for each s ∈ I , a unary relation symbol Ps;

3. for each (s1, s2) ∈ S, a binary relation symbol Qs1,s2 .
The interpretation of the symbols in M is as follows:

1. for each b ∈ M , s ∈ I , a ∈ Gs, if b ∈ Gs, then F M
a (b) = a + b, else F M

a (b) = b;

2. for each s ∈ I , P M
s = Gs;

3. for each (s1, s2) ∈ S, QM
s1,s2

= Gs1,s2 .

Lemma 2.8 Suppose I ′ ⊆ I and f is a function, f :
⋃

s∈I′ Gs −→ M . Then f is a partial automorphism
of M iff the following hold:

1. For each s ∈ I ′, f(0Gs
) ∈ Gs.

2. For each s ∈ I ′ and a ∈ Gs we have f(a) = f(0Gs
) + a.

3. For each s1, s2 ∈ I ′, if (s1, s2) ∈ S, then (f(0Gs1
), f(0Gs2

)) ∈ Gs1,s2 .

P r o o f. Suppose f is a partial automorphism. Then we have:
1. For each s ∈ I ′, 0Gs

∈ Gs = PM
s , which implies f(0Gs

) ∈ PM
s = Gs.

2. For each s ∈ I ′ and a ∈ Gs, f(a) = f(F M
a (0Gs

)) = FM
a (f(0Gs

)) = f(0Gs
) + a.

3. For each s1, s2 ∈ I ′, if (s1, s2) ∈ S, then (0Gs1
, 0Gs2

) ∈ Gs1,s2 (because it is a subgroup of Gs1 × Gs2)
but Gs1,s2 = QM

s1,s2
, therefore we have (f(0Gs1

), f(0Gs2
)) ∈ Gs1,s2 .

Similar arguments show the other direction.
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Now we shall define a structure parameter x and put M = Mx. Then we will choose elements a∗, b∗ ∈ M ,
define M1 = (M,a∗), M2 = (M, b∗), and show that M1,M2 are as required in Theorem 2.5.

Let x = xλ,F be the following structure parameter:

1. I = [λ]ℵ0 .

2. For u ∈ I , Ju consists of the quadruples t = (u, g, h, ζ), where

(a) g, h are functions from u into λ;

(b) ζ is a function from supRange(g) ∩ u into λ;

(c) ζ ∈ F ;

(d) g, h are weakly increasing;

(e) if g(x) = g(y), then h(x) = h(y);
(f) h(x) > x.

For t = (u, g, h, ζ) we will denote u = ut, g = gt, h = ht, ζ = ζt.

3. S = {(u1, u2) : u1, u2 ∈ I and u1 ⊆ u2}.

4. T = {(t1, t2) : t1, t2 ∈ J, ut1 ⊆ ut2 , gt1 ⊆ gt2 , ht1 ⊆ ht2 , ζt1 ⊆ ζt2}.

Let M = Mλ,F = Mx be the corresponding model. Note that |I| = λℵ0 = λ and for each u ∈ I , |Ju| = λℵ0 = λ,
therefore ‖M‖ = λ. Define a∗ = 0G∅ , b∗ = x(∅,∅,∅,∅), M1 = (M,a∗), M2 = (M, b∗).

Claim 2.9 M1, M2 are EFT ,λ equivalent.

P r o o f. We start with

Definition 2.10 We define a set of functions G = G(λ) with a partial order ≤G in the following way:

1. For an ordinal α < λ, Gα is the set of functions g which satisfy

(a) g : γ −→ α, γ < λ;

(b) g is weakly increasing.

2. G =
⋃

α<λ Gα.

3. For each g ∈ G such that Dom(g) = γ we define hg : γ −→ γ + 1 by

hg(x) = min({y : y < γ ∧ g(y) > g(x)} ∪ {γ}).

4. g1 ≤G g2 if g1 ⊆ g2 and hg1 ⊆ hg2 .

Claim 2.11

1. If g(x) = g(y), then hg(x) = hg(y).
2. hg(x) > x.

3. hg is weakly increasing.

4. For every g1, g2 ∈ G, g1 ≤G g2 iff

(a) Dom(g1) = γ1 ≤ γ2 = Dom(g2) and g1 ⊆ g2;

(b) if γ1 < γ2, then g2(γ1) > g2(x) for every x < γ1.

5. If g1 ∈ Gα and Dom(g1) < γ < λ, then there is g2 ∈ Gα+1 such that g1 ≤G g2 and Dom(g2) = γ.

6. If δ < λ and we have 〈gα : α < δ〉 such that gα ∈ Gα and β < α implies gβ ≤G gα, then g =
⋃

α<δ gα

satisfies g ∈ Gδ and gα ≤G g for each α < δ.

P r o o f.
1. – 3. Easy.
4. If there is x < γ1 such that g2(γ1) = g2(x), then hg2(x) = hg2(γ1) > γ1 ≥ hg1(x), so g1 ≮G g2. On the

other direction, if g1 ⊂ g2 and g2(γ1) > g2(x) for every x < γ1, then for every such x: If there is y < γ1 such
that g1(y) > g1(x), let y′ be the minimal y which satisfies this. We get hg1(x) = hg2(x) = y′. If there is no
such y, we get hg1(x) = hg2(x) = γ1. Therefore we have hg1 ⊂ hg2 .
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5. Define g2 : γ −→ α + 1 by

g2(x) =

{
g1(x) if x ∈ Dom(g1),
α if x ∈ γ \ Dom(g1).

By 4. we get that g1 ≤G g2.
6. Remember that λ is regular, therefore

⋃
α<δ Dom(gα) < λ.

This completes the proof of Claim 2.11.

Now we will describe a winning strategy for ISO in the game �T ,λ(M1,M2).
In stage α of the game, ISO will choose a function gα such that

1. gα ∈ Gα;

2. if β < α, then gβ ≤G gα;

3. if α = β + 1 is a successor ordinal and in stage α AIS chose the sets A1, A2, then for each u ∈ I such
that (A1 ∪ A2) ∩ Gu �= ∅ we have u ⊆ Dom(gα).

The choice of gα is done in the following way:

1. g0 = ∅.

2. If α is limit, then gα =
⋃

β<α gβ . By Claim 2.11, gα ∈ Gα and if β < α, then gβ ≤G gα.

3. If α = β + 1 and in stage α AIS chose the sets A1, A2, ISO will choose γ < λ such that Dom(gβ) < γ
and u ⊆ γ for each u ∈ I such that (A1 ∪ A2) ∩ u �= ∅ (such γ exists since |A1 ∪ A2| + ℵ0 < λ). By Claim 2.11
there is g ∈ Gα such that Dom(g) = γ and gβ ≤G g. ISO will choose such a function as gα.

Now remember that if α = β + 1, then in stage α AIS has to choose a node on level α, which is actually a
function ζα : α −→ λ, ζα ∈ F . Then he chooses A1 ⊂ M1 and A2 ⊂ M2. Then ISO has to choose a partial
isomorphism fα from M1 to M2 such that fβ ⊆ fα, A1 ⊆ Dom(fα), A2 ⊆ Range(fα) (see Definition 2.1).
So, ISO chooses gα, and then defines fα according to fβ , A1, A2, gα, ζα in the following way:

Dom(fα) = Dom(fβ) ∪
⋃
{Gu : u ∈ I, (A1 ∪ A2) ∩ Gu �= ∅}.

Then, for each u ∈ I we have Gu ⊆ Dom(fα) or Gu ∩ Dom(fα) = ∅.
If Gu ⊆ Dom(fα), we define fα(0Gu

) = xt, where t = (u, gα � u, hgα
� u, ζα � (u ∩ supRange(gα � u))).

(Note that because gα ∈ Gα, we have Range(gα) ⊆ α = Dom(ζα).)
Next, for every a ∈ Gu we define fα(a) = fα(0Gu

) + a. By the construction we get that if (u1, u2) ∈ S,
then (fα(0Gu1

), fα(0Gu2
)) ∈ Gu1,u2 (because the corresponding couple of t’s lies in T ). Therefore by Lem-

ma 2.8, fα is a partial automorphism of M . We also have:

1. If β < α, then gβ ⊆ gα, hgβ
⊆ hgα

and ζβ ⊆ ζα. Therefore fβ ⊆ fα.

2. For each α > 0,

fα(a∗) = fα(0G∅) = x(∅,∅,∅,∅) = b∗.

Therefore fα is a partial isomorphism from M1 = (M,a∗) into M2 = (M, b∗).
This completes the proof of Claim 2.9.

Claim 2.12 M1,M2 are not isomorphic.

P r o o f. It is enough to show that M is rigid (i. e. it does not have a non-trivial automorphism).
Assume towards contradiction that f �= id is an automorphism of M . For each u ∈ I we define cu = f(0Gu

).
By Lemma 2.8, for each u ⊆ w ∈ I we have (cu, cw) ∈ Gu,w.

For each u ⊂ w ∈ I and t = (w, g, h, ζ) ∈ Jw we define πw,u(t) ∈ Ju by

πw,u(t) = (u, g � u, h � u, ζ � supRange(g � u) ∩ u).
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By the definition of T we have that if t ∈ Jw and r ∈ Ju, then (r, t) ∈ T iff r = πw,u(t). We define a homomor-
phism π̂w,u : Gw −→ Gu by π̂w,u(xt) = xr, where r = πw,u(t). We get that Gu,w is the subgroup of Gu × Gw

generated by {(π̂w,u(xt), xt) : t ∈ Jw}. Since {xt : t ∈ Jw} generates Gw, we get that

Gu,w = {(π̂w,u(c), c) : c ∈ Gw}.

Now define n(u) to be the length of the reduced representation of cu as a sum of the generators {xt : t ∈ Ju}.
For u ⊆ w ∈ I we get n(u) ≤ n(w), since cu = π̂w,u(cw) and π̂w,u sends one generator to one generator. If for
every u ∈ I there is w ∈ I such that n(w) > n(u), we can find a sequence 〈un : n < ω〉 such that un ∈ I
and n(un) < n(un+1). Define w =

⋃
n<ω un, we get that n(w) is infinite – contradiction. Therefore, there

is u∗ ∈ I such that n(u∗) is maximal. Since we assumed f �= id, n(u∗) > 0.
Choose t∗ ∈ Ju∗ such that xt∗ appears in the reduced representation of cu∗ . For each u∗ ⊆ w ∈ I there is a

unique t(w) ∈ Jw such that πw,u∗(t(w)) = t∗ and xt(w) appears in the reduced representation of cw. Such t(w)
exists because cu∗ = π̂w,u∗(cw). It is unique because if there were two such t’s, t1, t2, then

π̂w,u∗(xt1) = π̂w,u∗(xt2) = xt∗ .

Since in Gu∗ , ∀x(2x = 0), it implies n(w) > n(u∗), which contradicts the maximality of n(u∗).
Note that if u ⊆ w ⊆ z ∈ I , then πz,u = πw,u ◦ πz,w. Therefore, by uniqueness of t(w), if u∗ ⊆ w ⊆ z ∈ I ,

then t(w) = πz,w(t(z)). For each u∗ ⊆ w ∈ I , define gw = gt(w), hw = ht(w), ζw = ζt(w). If u∗ ⊆ w1, w2 ∈ I ,
then the functions gw1 , hw1 , ζw1 and gw2 , hw2 , ζw2 are respectively compatible, since

t(w1) = πz,w1(t(z)) and t(w2) = πz,w2(t(z)),

where z = w1 ∪ w2. Define

g =
⋃
{gw : u∗ ⊆ w ∈ I}, h =

⋃
{hw : u∗ ⊆ w ∈ I}, ζ =

⋃
{ζw : u∗ ⊆ w ∈ I}.

We get:
1. Dom(g) = Dom(h) = λ.

2. g, h are weakly increasing.

3. h(x) > x.

4. If g(x) = g(y), then h(x) = h(y).
5. ζ ∈ F (this is by Definition 2.2, 2.).

6. supRange(g) ⊆ Dom(ζ).
By Definition 2.2, 3., Dom(ζ) �= λ. Therefore by 6., supRange(g) < λ. Since g is weakly increasing and λ is
regular, there is α0 < λ such that for every α0 < α < λ, g(α) = g(α0). By 4. we get that for every α0 < α < λ,
h(α) = h(α0). Choose α > h(α0) > α0 and get that h(α) < α, contradicting 3.

This completes the proof of Claim 2.12.

The proof of Theorem 2.5 is now finished.

3 Games with trees for singular λ = λℵ0

It is clear that for λ singular we cannot expect the same result as in the previous section, since the AIS player
would be able to list all the members of M1,M2. Thus, we prove a weaker result – we allow AIS to choose only
one element in each turn. We also remark in Remark 3.2 that this result generalizes the result in [4] for such λ.

Theorem 3.1 Suppose

cf(λ) < λ = λℵ0 ,

�F,λ holds,

T = TF .

Then there are non-isomorphic models M1,M2 of size λ which are EFT ,1 equivalent.
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Remark 3.2 We can show that Theorem 3.1 generalizes the result in [4] by choosing appropriate F . The result
there shows the existence of two non-isomorphic models of size λ which are equivalent under every EF game of
length < cf(λ), which consists of sub-games of length < λ, such that AIS chooses the length of each sub-game
before it starts, and in every sub-game he chooses one element in each move – see the definitions there. Now,
an appropriate F can be chosen by looking at the proof there, but we will take a shortcut – we will use the result
instead of the proof. Let us choose a pair of models M1,M2 as in the result in [4]. Without loss of generality
assume that the universe of M1 is λ × {1} and the universe of M2 is λ × {2}. We can take F to be the set of
functions f which satisfy the following conditions:

1. Dom(f) ⊆ λ, Range(f) ⊆ λ.

2. The partial function f ′ from M1 to M2 defined by

Dom(f ′) = Dom(f) × {1}, where for every α ∈ Dom(f), f ′((α, 1)) = (f(α), 2),

is a partial isomorphism.
Now, it is not hard to see that EFTF ,1 equivalence implies equivalence as in the result of [4].

P r o o f o f T h e o r e m 3.1. Denote κ = cf(λ). (κ > ℵ0 because λ = λℵ0 .) Let 〈µi : i < κ〉 be an increa-
sing and continuous sequence such that µ0 = 0, µi

+ < µi+1 = cf(µi+1), µi > ℵ0 for i > 0, and
⋃

i<κ µi = λ.
For every α < λ there is a unique i < κ such that α ∈ [µi, µi+1). We denote i = i(α).

We define a structure parameter x = xF,λ in the following way:
1. I = [λ]ℵ0 .

2. For u ∈ I , Ju is the collection of quadruples t = (u, g, h, ζ) such that
(a) g, h are functions from u into λ, ζ is a function from some subset of u into λ;

(b) ζ ∈ F ;

(c) for every x ∈ u, g(x) ∈ [µi(x), µ
+
i(x)], h(x) ∈ [µi(x), µi(x)+1];

(d) g, h are weakly increasing;

(e) if g(x) = g(y), then h(x) = h(y);
(f) h(x) > x;

(g) Dom(ζ) = u ∩
⋃
{µi(x) : x ∈ u and h(x) = µi(x)+1}.

For t = (u, g, h, ζ) we denote u = ut, g = gt, h = ht, ζ = ζt.

3. S = {(u1, u2) : u1, u2 ∈ I, u1 ⊆ u2}.

4. T = {(t1, t2) ∈ J : ut1 ⊆ ut2 , gt1 ⊆ gt2 , ht1 ⊆ ht2 , ζt1 ⊆ ζt2}.
Let M = MF,λ = Mx be the corresponding model. Define a∗ = 0G∅ , b∗ = x(∅,∅,∅,∅). Define M1 = (M,a∗)

and M2 = (M, b∗).
Claim 3.3 M1,M2 are EFT ,1 equivalent.

P r o o f. We start with

Definition 3.4 A partially ordered set of functions (W,≤W), which depends on the sequence 〈µi : i < κ〉,
is defined in the following way:

1. We define a set B such that β̄ ∈ B iff
(a) β̄ = 〈βi : i < κ〉, µi ≤ βi ≤ µi+1;

(b) there is j = j(β̄) < κ such that i < j(β̄) iff βi = µi+1.
2. For β̄ ∈ B we define Wβ̄ to be the set of functions g which satisfy

(a) Dom(g) =
⋃

i<κ[µi, βi);
(b) g is weakly increasing;

(c) for every i < κ, x ∈ [µi, βi), we have g(x) ∈ [µi, µ
+
i ], and if g(x) = µ+

i , then i < j(β̄).
3. For j < κ we define Wj =

⋃
{Wβ̄ : j(β̄) ≤ j}.

4. For g ∈ Wβ̄ we define a function hg as follows: Dom(hg) = Dom(g), where for i < κ and x ∈ [µi, βi)
we have hg(x) = min({y : µi ≤ y < βi ∧ g(y) > g(x)} ∪ {βi}).
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Claim 3.5

1. If g(x) = g(y), then hg(x) = hg(y).
2. hg(x) > x.

3. hg is weakly increasing.

4. If x ∈ [µi, µi+1), then hg(x) ∈ [µi, µi+1].
5. Suppose that g1 ∈ Wβ̄1 , g2 ∈ Wβ̄2 . Then g1 ≤W g2 iff

(a) g1 ⊆ g2 (therefore for every i < κ, β1
i ≤ β2

i );
(b) for every i < κ, if β1

i < β2
i , then for every x ∈ [µi, β

1
i ), g2(x) < g2(β1

i ).
6. If g1 ∈ Wj and β̄ ∈ B, j(β̄) ≤ j, then there is g2 ∈ Wj such that g1 ≤W g2 and

⋃
i<κ[µi, βi) ⊆ Dom(g2).

7. If δ < µ+
j and 〈gα : α < δ〉 is such that gα ∈ Wj and α < β implies gα ≤W gβ , then there exists g ∈ Wj

such that if α < δ, then gα ≤W g.

P r o o f.
1. – 4. Easy.
5. Like in the proof of Claim 2.11.
6. We may assume that Dom(g1) ⊆

⋃
i<κ[µi, βi). Define for i < κ,

γi = µi + sup{g1(x) : x ∈ Dom(g1) ∩ [µi, µi+1)}.

Since g1 ∈ Wj we have γi < µ+
i for i ≥ j. Define for i < κ,

γ∗
i =

{
µ+

i if i < j,

γi + 1 if i ≥ j.

Now define g2 with Dom(g2) =
⋃

i<κ[µi, βi), where for every i < κ and x ∈ [µi, βi),

g2(x) =

{
g1(x) if x ∈ Dom(g1),
γ∗

i if x /∈ Dom(g1).

Since j(β̄) ≤ j we have g2 ∈ Wj . By 5. we have g1 ≤W g2.
7. Define for every i < κ,

βi = sup(
⋃

α<δ Dom(gα) ∩ [µi, µi+1)) + µi, γi = sup(
⋃

α<δ Range(gα � [µi, µi+1)) + µi.

For every α < δ, gα ∈ Wj . Therefore for every i ≥ j,

sup(Dom(gα) ∩ [µi, µi+1)) < µi+1, supRange(gα � [µi, µi+1)) < µ+
i .

Therefore, since δ < µ+
j ≤ µ+

i < µi+1 = cf(µi+1), we get that for i ≥ j we have βi < µi+1 and γi < µ+
i .

Define for i < κ,

β∗
i =

{
µi+1 if i < j,

βi if i ≥ j,
γ∗

i =

{
µ+

i if i < j,

γi + 1 if i ≥ j.

Denote g′ =
⋃

α<δ gα. Define g ∈ Wj with Dom(g) =
⋃

i<κ[µi, β
∗
i ) for i < κ and x ∈ [µi, β

∗
i ) by

g(x) =

{
g′(x) if x ∈ Dom(g′),
γ∗

i if x /∈ Dom(g′).

By 5. we get that α < δ implies g ≥W gα.
This completes the proof of Claim 3.5.
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Now we will describe a winning strategy for ISO:
In every stage α in the game ISO will choose a function gα such that

1. gα ∈ Wi(α)+1;

2. if ε < α, then gε ≤W gα;

3. if in stage α AIS chose an element from Gu, then u ⊆ Dom(gα).
ISO can choose such gα in the following way:

1. For α = 0, g0 = ∅.

2. For α limit, since α < µi(α)+1 and for every ε < α, gε ∈ Wi(α)+1, we can use Claim 3.5, 7.

3. If α = ε + 1 and in stage α AIS chose an element from Gu, then we choose β̄ = 〈βi : i < κ〉 in the fol-
lowing way: If i < i(α) + 1, then βi = µi+1. Else µi+1 > α. We choose βi < µi+1 such that

u ∩ [µi, µi+1) ⊆ [µi, βi).

Now j(β̄) = i(α) + 1, so by Claim 3.5, 6. we can find g ∈ Wi(α)+1 such that

gε ≤W g and
⋃

i<κ[µi, βi) ⊆ Dom(g).

Define gα = g.

Now if α = ε + 1 and in stage α AIS chose an element from Gu and the node ζα ∈ T , ISO will define the
automorphism fα according to gα, ζα with Dom(fα) = Dom(fε) ∪ Gu. For every w such that Gw ⊆ Dom(fα),
fα(0Gw

) = xt, where

t = (w, gα � w, hgα
� w, ζα � (w ∩ {µi(x) : x ∈ w ∧ hgα

(x) = µi(x)+1})).

(Note that v ⊆ α = Dom(ζα), because gα ∈ Wi(α)+1.) As in Section 2 we get that fα is a partial isomorphism
and ε < α implies fε ⊆ fα. This completes the proof of Claim 3.3.

Claim 3.6 M1,M2 are not isomorphic.

P r o o f. We imitate the proof of Claim 2.12. It is enough to show that M is rigid. Assume towards contradic-
tion that f �= id is an automorphism of M . For each u ⊂ w ∈ I and t = (w, g, h, ζ) ∈ Jw we define πw,u(t) ∈ Ju

by πw,u(t) = (u, gt � u, ht � u, ζt � v), where v =
⋃
{µi(x) : x ∈ u ∧ ht(x) = µi(x)+1} ∩ u.

We proceed as in the proof of Claim 2.12, and we get that we can find functions g, h, ζ such that the following
hold:

1. Dom(g) = Dom(h) = λ, Dom(ζ) ⊆ λ.

2. If i(x) = i, then g(x) ∈ [µi, µ
+
i ], h(x) ∈ [µi, µi+1].

3. g, h are weakly increasing.

4. If g(x) = g(y), then h(x) = h(y).
5. h(x) > x.

6. If h(x) = µi(x)+1, then µi(x) ⊆ Dom(ζ).
7. ζ ∈ F .

By 7. we get that Dom(ζ) �= λ, therefore by 6. there exists i < κ such that if i(x) = i, then i(h(x)) = i.
By 2., i(x) = i implies g(x) ≤ µ+

i . By 3., g is weakly increasing. Since µi+1 = cf(µi+1) > µ+
i , we can find α0

such that if α0 ≤ x < µi+1, then g(x) = g(α0). By 5., h(α0) > α0. By the choice of i we get that h(α0) < µi+1.
Choose h(α0) < x < µi+1. We get h(x) > x > h(α0) but g(x) = g(α0). This contradicts 4. Therefore we
proved that M is rigid.

This completes the proof of Claim 3.6.

The proof of Theorem 3.1 is now also completed.
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4 λ regular and > �ω

In this section we show a result which holds for every λ being regular and > �ω. In the previous sections we used
the assumption λ = λℵ0 . Here we use instead of it the existence of a set P ⊂ [λ]ℵ0 of size λ which is “dense”.
By “dense” we mean that for every A ∈ [λ]�ω there is B ⊂ A, B ∈ P .

Remark 4.1

1. Looking at the proof, one can see that instead of λ > �ω it is enough to assume the following:

(a) λ > 2ℵ0 .

(b) There is P ⊂ [λ]ℵ0 such that

i. |P| = λ;

ii. for every A ∈ [λ]λ, there is B ∈ P such that B ⊂ A.

2. It is possible that it can be proved in ZFC that every λ > 2ℵ0 satisfies 1.(b) (it is a problem in cardinal
arithmetic).

Theorem 4.2 Suppose

λ = cf(λ) > �ω ,

T is a tree of size λ with no branch of length λ.

Then there are models M1, M2 of size λ which are EFT ,λ equivalent but not isomorphic.

P r o o f. Let χ be a large enough cardinal (for example χ = �7(λ)).

Claim 4.3 We can find M such that the following hold:

1. M is an elementary sub-model of H(χ).
2. λ + 1 ⊆ M.

3. ‖M‖ = λ.

4. For every 〈(xi, zi) : i < λ〉 such that xi ∈ M and zi ∈ T for every i < λ there exists an increasing se-
quence 〈in : n < ω〉 such that

(a) 〈(xin
, zin

) : n < ω〉 ∈ M;

(b) if in addition for i < j < λ the level of zi (in T ) is strictly less than the level of zj , then 〈zin
: n < ω〉

is an antichain in the order ≤T .

In the proof of Claim 4.3 we use a partial version of the RGCH Theorem (see Shelah [5]).

Theorem 4.4 (RGCH Theorem, partial version) If λ ≥ �ω , then there is regular κ < �ω and P ⊆ [λ]<�ω

such that

1. |P| = λ,

2. for every A ∈ [λ]�ω , we can find 〈Ai : i < ε〉 such that ε < κ, Ai ∈ P for every i < ε, and A =
⋃

i<ε Ai.

Corollary 4.5 If λ ≥ �ω , then we can find a set P∗ ⊆ [λ]ℵ0 such that |P∗| = λ and for every A ∈ [λ]�ω there
is B ∈ P∗ such that B ⊆ A.

P r o o f. Choose κ and P as in Theorem 4.4 and define P∗ =
⋃
{[A]ℵ0 : A ∈ P}.

P r o o f o f C l a i m 4.3. We construct Mn for every n < ω such that

1. M0 is an elementary sub-model of H(χ) such that ‖M0‖ = λ, λ + 1 ⊆ M0, and for every A ∈ [λ]�ω there
is B ∈ M0 ∩ [λ]ℵ0 such that B ⊂ A (this is possible by Corollary 4.5);

2. ‖Mn‖ = λ;

3. Mn is an elementary sub-model of H(χ);
4. if A ∈ Mn and |A| ≤ λ, then A ⊆ Mn+1;

5. Mn ∈ Mn+1 and Mn ⊂ Mn+1.
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Now, let M =
⋃

n<ω Mn. We will prove that M satisfies the conclusion of Claim 4.3.
Suppose that 〈(xi, zi) : i < λ〉 ⊆ M × T for every i < λ. We may assume without loss of generality that

there is n0 < ω such that {(i, xi, zi) : i < λ} ⊆ Mn0 . If the condition in Claim 4.3, 4.(b) is not satisfied, then
we are done, because we can find A ∈ [λ]ℵ0 such that {(i, xi, zi) : i ∈ A} ∈ Mn0+1 (because in Mn0+1 there
is a one to one correspondence between λ × Mn0 × T and λ, and every subset of λ of size �ω has an infinite
countable subset that is a member of M0).

If the condition in Claim 4.3, 4.(b) is satisfied, then we have two cases:
C a s e (1): We can find A ∈ [λ]�ω such that 〈zi : i ∈ A〉 is an antichain in ≤T .
C a s e (2): We cannot find such A.
If we are in Case (1), then we are done in the same way as before.
Suppose we are in Case (2).

Claim 4.6 For every j < λ, we can find j < i0 < i1 < i2 < λ such that zi0 <T zi1 , zi2 and zi1 , zi2 are not
comparable in ≤T .

P r o o f. Assume towards contradiction that there is j∗ < λ such that we cannot find j∗ < i0 < i1 < i2 < λ
which are as in the claim. Define C = {zi : j∗ < i < λ}. Then comparability in ≤T is an equivalence relation
on C. Since λ is regular, either there are λ equivalence classes or there is an equivalence class of size λ. In other
words, C contains an antichain or a chain of size λ. Both options are not possible, the first since we are in Case (2)
and the second since T does not have a λ branch. Contradiction.

By Claim 4.6 we can choose for every j < λ a triple i0(j), i1(j), i2(j) such that

1. i0(j) < i1(j) < i2(j) < λ;

2. j < j′ implies i2(j) < i0(j′);
3. zi0(j) <T zi1(j), zi2(j);

4. zi1(j) and zi1(j) are not comparable in ≤T .

We choose A ∈ [λ]ℵ0 such that {(j, i0(j), i1(j), i2(j), xj , zj) : j ∈ A} ∈ Mn0+1. Using the Ramsey Theorem
in Mn0+1, we can find an increasing sequence 〈jn : n < ω〉 such that

1. jn ∈ A for every n < ω;

2. 〈jn : n < ω〉 ∈ Mn0+1;

3. {zi1(jn) : n < ω} is a chain or an antichain in T ;

4. {zi2(jn) : n < ω} is a chain or an antichain in T .

Now we are done, since either {zi1(jn) : n < ω} or {zi2(jn) : n < ω} must be an antichain. Because if both are
chains, we get that zi1(j0) <T zi1(j1), zi2(j0) <T zi2(j1). Since zi0(j1) is on higher level than zi1(j0), zi2(j0) and it
is <T zi1(j1), zi2(j1) we get that zi1(j0), zi2(j0) <T zi0(j1) – contradiction, since by the construction they are not
comparable.

This completes the proof of Claim 4.3.

We choose M as in Claim 4.3 and we define a structure parameter x = x(M) in the following way:

Definition 4.7

1. I consists of the objects of the form (u,Λ), where

(a) u ∈ λ<ℵ0 ;

(b) Λ ∈ M, |Λ| ≤ ℵ0, Λ is a set of partial functions from λ to λ with finite domain.

For s = (u,Λ) we denote u = us and Λ = Λs. We define Γ(s) = us ∪
⋃
{Dom(f) : f ∈ Λs}. Note that this a

countable set.

2. For s = (u,Λ) ∈ I , Js consists of all the objects of the form t = (u,Λ, g, h, F, z), where

(a) g, h are functions from u to λ;

(b) F is a function from Λ2 to {0, 1};

(c) z ∈ T ;
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(d) the level α of z in the tree T is minimal under the condition α > y for every y such that y ∈ Range(g)
or there are f1, f2 ∈ Λ such that F (f1, f2) = 1 and y ∈ Range(f1);

(e) there is a witness (g,h) for t, which means that

i. Dom(g) = Dom(h) ⊆ λ, Range(g) ∪ Range(h) ⊆ λ,

ii. Γ(s) ⊆ Dom(g),
iii. g,h are weakly increasing,

iv. h(x) > x,

v. if g(x) = g(y), then h(x) = h(y),
vi. g ⊆ g, h ⊆ h,

vii. for every (f1, f2) ∈ Λ2, F (f1, f2) = 1 iff f1 ⊆ g and f2 ⊆ h.

3. S = I2.

4. T consists of the pairs (t1, t2) ∈ J2, where

(a) t1, t2 have a common witness;

(b) zt1 , zt2 are comparable in the order ≤T .

Fact 4.8 Suppose

s ∈ I , z ∈ T ,

g,h satisfy conditions i. – v. from Definition 4.7, 2.(e),

Dom(g) ⊂ α, where α is the level of z.

Then the following hold:

1. There is a unique t ∈ Js such that (g,h) is a witness for t and zt ≤T z. We denote t = t(s, g,h, z).
2. If

(a) g′,h′, z′ also satisfy the conditions in 1.,

(b) z, z′ are comparable in ≤T ,

(c) g′,h′ are compatible with g,h, respectively,

then t(s, g,h, z) = t(s, g′,h′, z′).
Let M = Mx be the corresponding model. We can check that ‖M‖ = λ. Let a∗ = 0G(∅,∅) , b∗ = x(∅,∅,∅,∅,∅,z∗),

where z∗ is the root of T (without loss of generality there is a root). Define M1 = (M,a∗), M2 = (M, b∗).
Claim 4.9 M1,M2 are EFT ,λ equivalent.

We describe a winning strategy for ISO – this is very similar to the proof of Claim 2.9, so we will omit the
details. We are using the definitions in Definition 2.10.

In every stage α of the game ISO will choose a function gα such that the following hold:

1. g0 = ∅.

2. gα ∈ Gα (see definition of Gα and ≤G in Definition 2.10).

3. β < α implies gβ ≤G gα.

4. If in stage α AIS chose the sets A1, A2, then for each s ∈ I , if Gs ∩ (A1 ∪ A2) �= ∅, then Γ(s) ⊆ Dom(gα).
Now if α = β + 1 and in stage α AIS chose the sets A1, A2 and the node zα, ISO will define hα = hgα

and
then define fα by

1. Dom(fα) =
⋃
{Gs : Γ(s) ⊆ Dom(gα)},

2. for each s such that Gs ⊆ Dom(fα), fα(0Gs
) = xt, where t = t(s, gα,hα, zα).

Claim 4.10 M1,M2 are not isomorphic.

P r o o f. It is enough to show that M is rigid. Assume towards contradiction that f �= id is an automor-
phism of M . Denote cs = f(0Gs

) for s ∈ I . Denote Ws = {t ∈ Js : xt is in the reduced representation of cs}.
Since f �= id there is s∗ = (u∗,Λ∗) such that Ws∗ �= ∅. Note also that if us∗ ⊆ us and Λ∗ ⊆ Λs, then there is
a natural projection πs,s∗ from Js into Js∗ such that Ws∗ ⊆ Range(πs,s∗ � Ws) (see the proof of Claim 2.12),
therefore Ws �= ∅.
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Choose si, ti, αi for i < λ such that the following hold:

1. si ∈ I , si = (u∗ ∪ {αi},Λ∗).
2. ti ∈ Wsi

.

3. αi < λ.

4. If i < j, then hti(αi) < αj .

C a s e (*1): sup{gti(αi) : i < λ} = λ. Then, since the level of zti in T must be greater than gti(αi),
we may assume that if i < j, then the level of zti is strictly less than the level of ztj .

C a s e (*2): sup{gti(αi) : i < λ} < λ. Then by regularity of λ, we may assume that for every i, j < λ,
gti(αi) = gtj (αj).

Now, no matter in which case we are, we proceed in the following way: By the properties of M (see Claim 4.3)
we can find a set A ⊂ λ such that

1. |A| = ℵ0;

2. {Wsi
: i ∈ A} ∈ M;

3. if we are in Case (*1), {zti : i ∈ A} is an antichain (we can have that because in Case (*1) the level of zti

is strictly increasing with i – see Claim 4.3).

We define s+ = (u∗, {gt, ht : t ∈ Wsi
, i ∈ A} ∪ Λ∗). (Note that

⋃
i∈A Wsi

∈ M, therefore s+ ∈ I .)

Claim 4.11 For every i ∈ A, if r ∈ Js+ , t ∈ Wsi
, (r, t) ∈ T , then we have:

1. If (g,h) is a witness for r, then gt ⊆ g, ht ⊆ h.

2. If t �= t′ ∈ Jsi
, then (r, t′) /∈ T .

P r o o f.
1. Let (g0,h0) be a common witness for r, t. Then we have gt ⊆ g0, ht ⊆ h0. Now gt, ht ∈ Λs+

, there-
fore (gt, ht) ∈ Dom(F r). Since (g0,h0) is a witness for r and gt ⊆ g0, ht ⊆ h0, then F r(gt, ht) = 1. There-
fore for any witness (g,h) of r, we have gt ⊆ g, ht ⊆ h.

2. There are three cases:

(a) gt �= gt′ or ht �= ht′ . Then, since all those functions have the same domain, we get that r, t′ cannot have
a common witness (g,h) because by 1. we must have gt ⊆ g, ht ⊆ h.

(b) F t �= F t′ . Then, since Dom(F t) = Λ∗ ⊆ Λs+
= Dom(F r) and (r, t) ∈ T we know that F t ⊆ F r.

Since F t �= F t′ and Dom(F t) = Dom(F t′), we get that F r and F t′ are not compatible (and therefore there
is no common witness).

(c) zt �= zt′ . By the previous cases we may assume that F t = F t′ , gt = gt′ , and ht = ht′ , therefore zt, zt′

are on the same level (see Definition 4.7, 2.(d)). We can also see that zr must be on a greater level (remem-
ber that F t ⊆ F r and F r(gt, ht) = 1). Since (r, t) ∈ T , zt, zr are comparable in ≤T . It follows that zt′ , zr

are not comparable, thus (r, t′) /∈ T .

Claim 4.12 For every i ∈ A there is r ∈ Ws+ such that (r, ti) ∈ T .

P r o o f. Since (cs, cs+) ∈ Gs,s+ and this group is generated by {(xt, xt′) : (t, t′) ∈ T ∩ (Js × Js+)}, there
are representations (not necessarily reduced) csi

= xw1 + · · · + xwn
, cs+ = xr1 + · · · + xrn

with (rn, wn) ∈ T .
We may assume that if 1 ≤ �1 < �2 ≤ n, then either r�1 �= r�2 or w�1 �= w�2 . (Otherwise, we can reduce both

representations – remember that in those groups 2x = 0.) Since xti
appears in the reduced representation of csi

,
ti must appear among the w’s. Let � be such that w� = ti. Now we show that if �1 �= �, then r�1 �= r�. Assume
towards contradiction that r�1 = r�. By our assumption, w�1 �= w�. Now, we have:

1. (r�1 , w�1), (r�, w�) ∈ T ;

2. w� ∈ Wsi
;

3. w� �= w�1 .

This contradicts Claim 4.11.
We got that for every �1 �= �, r�1 �= r�, which implies that xr�

does not cancel. Hence r� ∈ Ws+ and we are
done.
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Now choose ri ∈ Ws+ for each i ∈ A such that (ri, ti) ∈ T .

Claim 4.13 If i < j, then ri �= rj .

P r o o f.
If we are in Case (*1), then {zti : i ∈ A} is an antichain. So, zti , ztj are not comparable. Since zri ≥T zti

and zrj ≥T ztj (see the proof of Claim 4.11 – zri , zti are comparable and zri is on greater level), we must
have ri �= rj .

If we are in Case (*2), assume towards contradiction that r = ri = rj . Let (g,h) be a witness for r. Then
by Claim 4.11, gti , gtj ⊆ g, hti , htj ⊆ h. Since we are in Case (*2) we get that g(αi) = g(αj) but by the con-
struction h(αi) < αj < h(αj), which contradicts the definition of a witness (see Definition 4.7, 2.(e)).

We got that Ws+ is infinite – contradiction. Therefore M must be rigid, and hence the proof of Claim 4.10 is
finished.

With the proof of Claim 4.10 the proof of Theorem 4.2 is also completed.

5 λ > cf(λ) > �ω

Clearly, for λ being singular and > �ω we cannot prove the same result as for regular λ > �ω (since in such
game AIS will be able to list all the elements of the two models). Therefore, we define another type of game.

Definition 5.1 Let M1,M2 be models with common vocabulary. Let T be a tree. The game �∗
T (M1,M2) is

defined in the same way as the definition of �T ,µ (see Definition 2.1) except that in stage α we demand that the
sets A1, A2 chosen by AIS will satisfy |A1 ∪ A2| < 1 + α instead of |A1 ∪ A2| < 1 + µ. We say that M1,M2

are EF∗
T equivalent if ISO has a winning strategy for EF∗

T (M1,M2).
Remark 5.2 Note that in Theorem 3.1, if we replace EFT ,1 with EF∗

T , we do not get a stronger result,
because for every tree T which satisfies the conditions there, we can construct another tree T ′ which satisfies the
conditions, so that EFT ′,1 equivalence would imply EF∗

T equivalence.

Theorem 5.3 Suppose that

1. λ > cf(λ) = κ > �ω;

2. T is a tree of size λ without a λ branch.

Then there are non-isomorphic models M1,M2 of size λ which are EF∗
T equivalent.

P r o o f. Let χ be a large enough cardinal (for example χ = �7(λ)).
Claim 5.4 We can find M such that the following hold:

1. M is an elementary sub-model of H(χ).
2. λ + 1 ⊆ M.

3. For every 〈(xi, zi) : i < κ〉 such that xi ∈ M and zi ∈ T for every i < λ there exists an increasing se-
quence 〈in : n < ω〉 such that:

(a) 〈(xin
, zin

) : n < ω〉 ∈ M;

(b) if in addition for every α < λ there is i < κ such that the level of zi is greater than α, then we can also
have that 〈zin

: n < ω〉 is an antichain in ≤T .

P r o o f. The same proof as the proof of Claim 4.3 (we are using the fact that κ is regular and κ > �ω).

Let M be as in Claim 5.4. Let 〈µi : i < κ〉 be an increasing and continuous sequence such that µ0 = 0,
µ+

i + ℵ0 < µi+1 = cf(µi+1), and
⋃

i<κ µi = λ.
For every α < λ there is a unique i < κ such that α ∈ [µi, µi+1). We denote this i by i(α).
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We define a structure parameter x in the following way:

Definition 5.5

1. I consists of the objects of the form (u,Λ), where

(a) u ∈ λ<ℵ0 ;

(b) Λ ∈ M, |Λ| ≤ ℵ0, Λ is a set of partial functions from λ to λ with finite domain.

For s = (u,Λ) we denote u = us, Λ = Λs. We define Γ(s) = us ∪
⋃
{Dom(f) : f ∈ Λs}. Note that this a

countable set.

2. For s = (u,Λ) ∈ I , Js consists of the objects of the form t = (u,Λ, g, h, F, z), where

(a) g, h are functions from u to λ;

(b) F is a function from Λ2 to {0, 1};

(c) z ∈ T ;

(d) the level α of z in the tree T is minimal with regard to the condition that α ≥ µi(x) for every x such
that h(x) = µi(x)+1 or there are f1, f2 ∈ Λ such that F (f1, f2) = 1 and f2(x) = µi(x)+1;

(e) there is a witness (g,h) for t, which means that

i. Dom(g) = Dom(h) ⊆ λ, Range(g) ∪ Range(h) ⊆ λ,

ii. Γ(s) ⊆ Dom(g),
iii. g ⊆ g, h ⊆ h,

iv. for every (f1, f2) ∈ Λ2, F (f1, f2) = 1 iff f1 ⊆ g and f2 ⊆ h,

v. g,h are weakly increasing,

vi. h(x) > x,

vii. if g(x) = g(y), then h(x) = h(y),
viii. g(x) ∈ [µi(x), µ

+
i(x)],

ix. h(x) ∈ [µi(x), µi(x)+1].
3. S = I2.

4. T consists of the pairs (t1, t2) ∈ J2, where

(a) t1, t2 have a common witness;

(b) zt1 , zt2 are comparable in the order ≤T .

Fact 5.6 Suppose

s ∈ I , z ∈ T ,

g, h, and s satisfy i. – ii. and v. – ix. from Definition 5.5, 2.(e),⋃
{µi(x) : h(x) = µi(x)+1} ⊂ α, where α is the level of z.

Then the following hold:

1. There is a unique t ∈ Js such that (g,h) is a witness for t and zt ≤T z. We denote t = t(s, g,h, z).
2. If

(a) g′,h′, z′ satisfy the conditions in 1.,

(b) z, z′ are comparable in ≤T ,

(c) g′,h′ are compatible with g,h, respectively,

then t(s, g,h, z) = t(s, g′,h′, z′).
Let M = Mx be the corresponding model. We can check that ‖M‖ = λ. Let a∗ = 0G(∅,∅) , b∗ = x(∅,∅,∅,∅,∅,z∗),

where z∗ is the root of T (without loss of generality there is a root). Define M1 = (M,a∗), M2 = (M, b∗).
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Claim 5.7 M1,M2 are EF∗
T equivalent.

We describe a winning strategy for ISO – this is very similar to the proof of Claim 3.3, so we omit the details.
We use the definitions in Definition 3.4. In every stage α of the game ISO will choose a function gα such that:

1. g0 = ∅.

2. gα ∈ Wi(α)+1.

3. β < α implies gβ ≤W gα.

4. If in stage α AIS chose the sets A1, A2, then for each s ∈ I , if Gs ∩ (A1 ∪ A2) �= ∅, Γ(s) ⊆ Dom(gα).
Now if α = β + 1 and in stage α AIS chose the sets A1, A2 and the node zα, ISO will define hα = hgα

and
then define fα by

1. Dom(fα) =
⋃
{Gs : Γ(s) ⊆ Dom(gα)},

2. for each s such that Gs ⊆ Dom(fα), fα(0Gs
) = xt, where t = t(s, gα,hα, zα).

Claim 5.8 M1,M2 are not isomorphic.

P r o o f. It is enough to show that M is rigid. The proof is very similar to the proof of Claim 4.10. Assume
towards contradiction that f �= id is an automorphism of M . Denote

Ws = {t ∈ Js : xt is in the reduced representation of cs}.

Since f �= id there is s∗ = (u∗,Λ∗) such that Ws∗ �= ∅.
C a s e (*1): We can find 〈sθ, tθ, αθ : θ < κ〉 such that
1. sθ ∈ J , sθ = (u∗ ∪ {αθ},Λ∗);
2. tθ ∈ Wsθ

;

3. htθ (αθ) = µi(αθ)+1;

4. if θ < ε < κ, then i(αθ) < i(αε).
In this case, note that the level of ztθ must be ≥ µi(αθ).

C a s e (*2): We cannot find such a sequence. Therefore, for every large enough i < κ, for every α such
that i(α) = i, for s(α) = (u∗ ∪ {α},Λ∗), for every t ∈ Ws(α) we have ht(α) < µi+1. Choose i∗ which satisfies
this and µi∗ > κ. We can find 〈tθ, sθ, αθ : θ < µi∗+1〉 such that

1. sθ ∈ I , tθ ∈ Wsθ
;

2. i(αθ) = i∗;

3. if θ < ε, then htθ (αθ) < αε (< htε(αε)).
Since µi∗+1 = cf(µi∗+1) > µ+

i∗ and for every θ we have gt
θ(x) ≤ µ+

i∗ (this is by Definition 5.5, 2.(e)viii.), we may
assume that gtθ (αθ) is constant.

Now, in both cases, we proceed in a similar way to the proof of Claim 4.10. Using Claim 5.4, we choose A ⊂ κ
such that

1. |A| = ℵ0;

2. 〈Wsθ
: θ ∈ A〉 ∈ M;

3. if we are in Case (*1), then 〈ztθ : θ ∈ A〉 is an antichain in ≤T (we can demand this because in Case (*1)
the levels of the ztθ ’s are not bounded in λ – see Claim 5.4).

Define s+ ∈ I by s+ = (∅,Λ∗ ∪ {gt, ht : t ∈ Wsθ
, θ ∈ A}).

Claim 5.9 For every θ ∈ A the following holds: If r ∈ Js+ , t ∈ Wsθ
, (r, t) ∈ T , then

1. if (g,h) is a witness for r, then gt ⊆ g and ht ⊆ h;

2. if t �= t′ ∈ Jsθ
, then (r, t′) /∈ T .

P r o o f. See the proof of Claim 4.11.

Claim 5.10 For every θ ∈ A there is r ∈ Ws+ such that (r, tθ) ∈ T .

P r o o f. See the proof of Claim 4.12.
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Now, using Claim 5.10, we choose for each θ ∈ A an rθ ∈ Ws+ such that (tθ, rθ) ∈ T .

Claim 5.11 If θ < ε, then rθ �= rε.

P r o o f.
If we are in Case (*1): ztθ , ztε are not comparable. But zrθ ≥T ztθ because they are comparable and zrθ

is on greater level, since that level is determined by Definition 5.5, 2.(d). By the same argument, zrε ≥T ztε .
Therefore, zrε , zrθ are not comparable, so rθ �= rε.

If we are in Case (*2): Assume towards contradiction that r = rθ = rε. Let (g,h) be a witness for r. Then
by Claim 5.9, gtθ , gtε ⊆ g and htθ , htε ⊆ h. Since we are in Case (*2) we obtain that

g(αθ) = g(αε) and h(αθ) < αε < h(αε),

which contradicts the definition of a witness (see Definition 5.5, 2.(e)).

We got that Ws+ is infinite – contradiction. Therefore, M must be rigid, which proves Claim 5.8.

The proof of Theorem 5.3 is now complete.

Acknowledgements We would like to thank the Israel Science Foundation for partial support of this research (Grant
No. 242/03). This paper is publication 866 of the second author.

References

[1] C. C. Chang, Some remarks on the model theory of infinitary languages. In: The Syntax and Semantics of Infinitary
Languages (J. Barwise, ed.). Lecture Notes in Mathematics 72, pp. 36 – 63 (Springer, 1968).

[2] T. Hyttinen and H. Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories. Annals Pure
Applied Logic 52, 203 – 248 (1991).

[3] W. Hodges, Model Theory. Encyclopedia of Mathematics and Its Applications 42 (Cambridge University Press, 1993).
[4] S. Shelah, A long EF equivalence non isomorphic models. To appear (SH 836 in Shelah archive).
[5] S. Shelah, The generalized continuum hypothesis revisited. Israel J. Math. 116, 285 – 321 (2000).
[6] S. Shelah, Existence of many L∞,λ non isomorphic models of power λ for λ singular with λω = λ. Notre Dame

J. Formal Logic 25, 97 – 104 (1984).
[7] S. Shelah, Existence of many L∞,λ non isomorphic models of T of power λ. Annals Pure Applied Logic 34, 291 – 310

(1987).
[8] S. Shelah, Classification Theory, 2nd revised edition. Stud. Logic Found. Math. 92 (North Holland, 1990).
[9] S. Shelah, Cardinal Arithmetic. Oxford Logic Guide 29 (Oxford University Press, 1994).

[10] D. S. Scott, Logic with denumerably long formulas and finite strings of quantifiers. In: The Theory of Models
(J. W. Adisson, L. Henkin, and A. Tarski, eds.), pp. 329 – 341 (North Holland, 1965).

[11] J. Väänänen, Games and trees in infinitary logic: A survey. In: Quantifiers (M. Krynicki, M. Mostowski, and
L. Szczerba, eds.), pp. 105 – 138 (Kluwer, 1995).

www.mlq-journal.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Sh:866


