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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 3. Sept. 2000 

WAS SIERPINSKI RIGHT? IV 

SAHARON SHELAH 

Abstract. We prove for any ji = -'t < 0 < A. A large enough (just strongly inaccessible Mahlo) the 

consistency of 2' - S. [0]3 and even 21' - i [0]?2 for a < u. The new point is that possibly 0 > pi'. 

Introduction. An important theme in modern set theory is to prove the consis- 
tency of "small cardinals" having "a large cardinal property". Probably the dom- 
inant interpretation concerns large ideals (with reflection properties or connected 
to generic embedding). But here we deal with another important interpretation: 
partition properties. We continue here [6, ?2], [8], [7], [9], [10] but generally do not 
rely on them except in the end (of the proof of 25) when it becomes like the proof 
of [6, ?2]. This work is continued in Rabus and Shelah [3]. 

We thank the participants in a logic seminar in The Hebrew University, Spring 
'94, and Mariusz Rabus and Heike Mildenberger for their comments. 

Preliminaries. 

1. Let be a well ordering of 

{ x: the transitive closure of x has cardinality < X } 
agreeing with the usual well ordering of the ordinals. P (and Q, R) will denote 
forcing notions, i.e., quasi orders with a minimal element 0 = Op. 

A forcing notion P is A-closed or A-complete if every increasing sequence of 
members of P, of length less than A, has an upper bound. 

2. If P E Z(x), then for a sequence ( P: i < y ) of members of P (not 
necessarily increasing) let 

a - a - sup{ j {pi: i < j } has an upper bound in P} 

and define the canonical upper bound of A, denoted by &j3 as follows: 

(a) the least upper bound of { pi: i < a - } in P if there exists such an element 
(b) the <*-first upper bound of p if (a) can't be applied but there is an upper 

bound of { Pi: i < ap }, 
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1032 SAHARON SHELAH 

(c) p0 if (a), (b) fail, y > 0, 
(d) 0p if y -_ 0. 
Let p0 & P1 be the canonical upper bound--of (pfe: i < 2). 
Take 

[a]" ={b C a: JbI - } and [a]< J U[a]0- 
()<K 

3. For sets of ordinals, A and B. define OPBA as the maximal order preserving 
one-to-one function between initial segments of A and B, i.e., it is the function with 
domain 

{a z EA: otp(ao n A) < otp(B)} 

and OPBA (a) ,1 if and only if a e A, EE E B and 

otp(cv n A) otp(/ n B). 

If A, B are sets of ordinals, let A < B mean A is a proper initial segment of B. If 
v are sequences let q < v mean v is an initial segment of v. If we write < (rather 

than <) we allow equality. 
Let 

S;, = f < A : cf(6)=K} 

DEFINITION 4. A -) [a]' holds provided that whenever F is a function from [{]n 

to 0, then there is A C A of order type a and t < 0 such that 

[w E [A]" =# F (w) f4 t]. 

DEFINITION 5. A -* [a]n.0 if for every function F from [)]n to K there is A C A 

of order type a such that { F(w): w E [A]" } has power < 0. If we write "< 0" 
instead of 0 we mean that the set above has cardinality < 0. 

DEFINITION 6. A forcing notion P satisfies the Knaster condition (has property 
K) if for any { pi : i < co1 } C P there is an uncountable A C col such that the 
conditions pi and pj are compatible whenever i, j E A. 

What problems do [6], [8], [7], [9] and [10] raise? The most important "minimal 
open", as suggested in [10] were: 

QUESTION A. 

(1) Can we get, e.g., CON(28o -, [R2]2) (generally raise u+ in part (3) below to 
higher cardinals)? We solve it here. 

(2) Can we get CON(',K, > 210 - [1]2) (the exact tn seems to me less exciting)? 
(3) Can we get, e.g., CON(2P > A ) [,u+]2)? 

Also 

QUESTION B. 

(1) Can we get the continuity on a non-meagre set for functions fi: K2 - 2? 
(Solved in [9].) 

(2) What can we say on continuity of 2-place functions (dealt with in Rabus-Shelah 
[3])? 
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WAS SIERPINSKI RIGHT? IV 1033 

(3) What about n-place functions (continuing in this respect [8] probably just 
combined with [3])? 

QUESTION C. 

(1) [10] forum > tfo. 
(2) Can we get, e.g., 

CON(21o > t2, and if P is 21o-c. c., Q is 82-c. c., then P x Q is 21o-c. c.)? 

(3) Can we get, e.g., 

CON(21o > A > t, and if P is A-c. c., Q is lI-c. c. then P x Q is A-c. c.); 

more general is 

CON (,u- =u ' > t+ if P is 2"-c. c. Q is u +-c. c. then P x Q is 2'-c. c)? 

So several are solved. But, of course, solving two or more of those problems does 
not necessarily solve their natural combinations, though probably it does. 

?1. We return here to consistency of statements of the form x , [O], 2 (i.e., for 
every c: [x]2 -, ca there is A E [x]0 such that on [A], c has at most two values), 
(when 2" > x > 0<", > ,i, of course). In [6, ?2] this was done for ji = 8, x - 2", 
0 = ti, 2 < ca < o and x quite large (in the original universe x is an Erdos 
cardinal). Originally, [6, ?2] was written for any ju - iu'<" (x measurable in the 
original universe) but because of the referee urging it is written up there for , = i 

only; though with an eye on the more general result which is only stated. In [8] the 
main objective is to replace colouring of pairs by colouring of n-tuples (and even 
(< co)-tuples) but we also say somewhat more on the u > t% case (in [8, 1.4]) and 
using only k 2-Mahlo (for a specific natural number k 2) (an improvement for p = o 
too), explaining that it is like [7]. A side benefit of the present paper is giving a full 
self-contained proof of this theorem even for 1 -Mahlo. The main point of this work 
is to increase 0, and this time write it forum = 1u<P > t0, too. 

The case 0 - ,u+ is easier as it enables us to separate the forcing producing the 
sets admitting few colours: each appear for some b < x, cf(cs) - u+, is connected 
to a closed subset a6 of 5 unbounded in s of order type u+, so that below a < c in 
P, we get little information on the colouring on the relevant set. Here there is less 
separation, as names of such colouring can have long common initial segments, but 
they behave like a tree and in each node we divide the set to ,u sets, each admitting 
only 2 colours. 

As we would like to prove the theorem also for ,u > t%, we repeat material on 
,u+-c. c., essentially from [4], [12], [8]. 

DEFINITION 7. 
(1) Let D be a normal filter on u+ to which 

{5< + :cf(6)w=} 

belongs. A forcing notion Q satisfies *D where e is a limit ordinal < ,u, if player I 
has a winning strategy in the following game *D [Q] defined as follows: 

PLAYING. The play finishes after e moves. In the Sth move: 
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1034 SAHARON SHELAH 

Player I. If 4 74 0 he chooses ( qua: i < u+ ) such that q; E Q and 

(V8 < )(Vi <,+) p, < q, 

and he chooses a function f(: u+ ' u+ such that for a club of i < u f (i) < i; 

if 0 0 let q= 0Q, f( is identically zero. 
Player II. He chooses (pi: i < u+ ) such that (Vi) qC < pa and p EQ. 

OUTCOME. Player I wins provided that for some E E D: if u < i < j < u+, i, 
j E E, cf(i) = cf(j) = u and 

A f$(i)= f4(j) 

then the set 

{P p <8 } U { p: <8 } 
has an upper bound in Q; also, if player I has no legal move for some < i he loses. 

(1') If D is 

{ A C u+ : for some club E ofu+ we have i E E and cf(i) = i i E A} 

we may write ju instead of D (in *D and in the related notions defined below and 
above). 

(2) A strategy for a player is a sequence F (F 4 < 8 ), FC telling him what 
to do in the Sth move depending only on the previous moves of the other player. 
But here a play according to the strategy F will mean the player chooses in the Sth 
move for each i < u+ an element of Q which is above and possibly strictly above 
(in <Q's sense) of what F( dictates and a function f( such that on some E E D, the 
equivalence relation f - (a) = f( (/) induce on E refine the one which the strategy 
induces (this change does not change the truth value of "player X has a winning 
strategy"). This applies to the game ?'5 in part (5) below too. 

(3) We define **, similarly but for ; limit qQ is not chosen (so player II has to 

satisfy for limit ; just VF < (Vi (p; < pi ) 
(4) We may allow the strategy to be non-deterministic, e.g., choose not f just 

(5) We say a forcing notion Q is e-strategically complete if for the following 
game, 1Q, player I has a winning strategy. 

PLAYING. A play lasts e moves. In the Sth move: 
Player I. If 4 74 0 he chooses q, E Q such that (VX < I) pi,? < q(, if; 0 let 

q- 0Q. 
Player II. He chooses p( E Q such that q- < p(. 

OUTCOME. In the end Player I wins provided that he always has a legal move. 

(6) We say Q is (< ,u)-strategically complete if for each e < u it is e-strategically 
complete. 

REMARK 8. 

(1) In this paper, in the case , t o we can use the Knaster condition instead of 
*E 
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WAS SIERPINSKI RIGHT? IV 1035 

(2) We use below *, and not **, but **, could serve as well. 
(3) We may consider omitting the strategic completeness (a weak version of it is 

hidden in player I winning *D [Q]), but no present use. 

DEFINITION 9. 

(1) LetFe( ( : < e ) be a strategy for player I in the game for i = 1, 

2. We say F < F2 equivalently, F2 is above F1 if any play 

in which player I uses the strategy F2 (that is letting 

((q':i<A) f) = FCQ(pi: <() 

we have i < u+ q' < q( and for some E E D, i E E A j E E A f (i) 
f (j) => f((i) = f((i)) is also a play in which player I uses the strategy FP. 

(2) Let a* <fl* < 1u, St be a winning strategy for player I in the game ?fl. 

We say ( Fa : a < oV* ) is an increasing sequence of strategies of player I in *D [Q] 
obeying St if: 

(a) Fa is a winning strategy of player I in *D [ 
(b) for a < < a*, Ff is above Fa 

(c) if ( (4(, f(, pI): C < e ) is a play of *DjQ], Player I uses his strategy F!, 
then for any i < u letting F((p Q <c)) = (a, f f ) we have: 

Q =St(( q. 
a, a < # )< q. a,. 

(3) Similarly to (1), (2) for the game ?' (instead *D [Q]), omitting St and clause 

(c) in (2). 

OBSERVATION 10. 

(1) Assume Q is u-complete. If 6 < ju and (Fa : ca < i) is an increasing 
sequence of winning strategies of player I in *D [Q], then some winning strategy F3 
of player I in *D [Q] is above every t (a < 5). 

(2) Assume /l* < ,u and Q is /l*-strategically complete with a winning strategy 
St. If fi < /l* and (Fa : a < ,) is an increasing sequence of winning strategies of 
player I in *1 [Q] obeying St, then for some Ff, (P a: a <fi + 1 ) is an increasing 
sequence of winning strategies of player I in * [Q] obeying St. 

(3) Similarly with &I instead of * D]. 

PROOF. Straight. - 

DEFINITION 1 1. Assume P, R are forcing notions, P C R, P < R. 
(1) We say [ is a restriction operation for the pair (P, R) (or (P, R, [)) is a strong 

restriction triple if (P, R are as above, of course, and) for every member r E R. 
r [P E P is defined such that: 

(a) r [P < r, 
(b) if r UP < p E P then r, p are compatible in R in fact have a least upper 

bound, 
(c) r1 < r2= r1 P < r2[p, 
(d) if p E P then p UP - p and 0R [P - 0P 
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1036 SAHARON SHELAH 

(so this is a strong, explicit way to say P < R). 
(1') We say weak restriction triple if we omit in clause (b) the "have a least upper 

bound". 
(2) We say "(P, R, [) is e-strategically complete" if 

(a) [ is a restriction operation for the pair (P, R). 
(,1) P is e-strategically complete. 
(y) if St, is a winning strategy for player I in the game ?5, then in the game 

06[P, R, ; St ] the first player has a winning strategy St,. 

PLAYING. A play of ? is a play ( (p(, q) < E ) of ?R but 

(a) ( (q( [P, qg [P) < e ) is a play of the game ?p in which the first player uses 
the strategy St, (see 7 (2)!). 

OUTCOME. If condition (IB); below fails in stage ( for some g < E then the first 
player loses immediately, and if not, then he wins. 

(,6), for every g < &, if St, dictate to player 1 in the play ( (qua rP, pi [P) 4 < 0 
to choose q'I E P and p E P is above q, E P then {p} U { qua: < g } has an 
upper bound. (Read second sentence in 7 (2)). 

(2') We say (P, R, [) is (< E)-strategically complete if it is c-strategically complete 
for every ( < e. 

(3) Let "(P, R, 0) satisfy *," mean (for this and in other definitions many times 
will be understood from context hence omitted): 

(a) [ is a restriction operation for the pair (P, R) 
(/3) P satisfies 
(y) If St, is a winning strategy for player I in the game ? [P] then in the 

following game called *, [P, R, : St, ] the first player has a winning strategy 
St). 

PLAYING. As before in *, [R], but 

(( q; [P i < u'+), ( pi [P: i < /+,O, g< e 

is required to be a play of *, [P] in which first player uses the strategy St1 (see the 
second sentence of47 (2)). 

We also demand that if { p, j< i } C P, then q. E P; (seem technical, but help 
in iterations). 

OUTCOME. Player I wins provided that for each i < u+ and limit g < E the 
sequence ( (q4, p) ): 4 < g) satisfies clause (,#)( above and: 

(*) for some club E of u + if i < j are from E, cf(i) - cf(j) - u, 

A f(i) = fli) 

and r E P is a <p-upper bound of { p(P < 8 } U { pP: < e}, then 

{r} U {fp: p <8 } U {pi.: p < E } has an upper bound in R. 

Could let some strategy determine r, no need at present. 
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WAS SIERPINSKI RIGHT? IV 1037 

In this case we say that St2 projects to St, or is above St,. If we omit the demand 
on the outcome (so maybe St2 is not necessarily a winning strategy of player I in 
*, [R]), we say St2 weakly projects to St,. 

NOTE. Naturally in St2 the functions f, code more information than St,, so we 
may use a function g to decode the "older" part. 

(3') The game * [P, R, [] and "(P, R, [) satisfies *D" are defined naturally and 
similarly projections of strategies. Similarly concerning part (4). 

(4) We say (P, R, [) satisfies strongly *,, if (so when [ is clear from context, it is 
omitted; not used): 

(a) [ is a restriction operation for the pair (P, R) 
(,) P satisfies *,, 
(y) the first player has a winning strategy in the game *, [P, R, [] where 

PLAYING. Just like a play of *, [R], except that 

E3 in addition, for every limit ordinal 4 < &, in the Sth move first the second 
player is allowed to choose (r, : i < u+ ) such that: 

r1 eP 

is an upper bound of { p; [P < } and the first player choosing qQ has to 
satisfy also (VDi) (r' < q)-. 

OUTCOME. Player I wins if (*) from part (3) holds or 
(*) in the play ((pIP : i < u+u),(q P : i < Au) + < 6) of *[P] the first 

player loses, (note concerning the outcome, then now in (*) in part (3), the 
existence of r is not (even essentially) guaranteed); so possibly for some ; < 6 
player I has no legal move. 

(5) If %e is a restriction operation for (Pe, Pe+i) for i = 1, 2, = o 2, then 
"a strategy St of first player in *' [PI, P3] project to one for *, [PI, P2]" is defined 
naturally. 

REMARK 12. We may restrict ourselves to a suitable family of strategies St, (to 
work in the iteration this family has to be suitably closed). 

CLAIM 13. 

(1) If theforcing notion P satisfies *I then P satisfies the +-c. c. 
2) If P satisfies *I and R is the trivialforcing {0p} then the pair (R, P) satisfies *I 

where [ is defined by p [R = 0. 
(3) If (P, R, D) satisfies *I? then P and R satisfy*> 
(4) If triples (Po, Pi, [0), (PI, P2, [1) satisfy *I then (Po, P2, [o K [1) satisfies *> 
(5) If P satisfies *I and IFp "Q satisfies *-" then P * Q satisfies *>, moreover the 

pair (P, P * Q) (with the natural [) satisfies *> 

PROOF. Should be clear. - 

REMARK 14. 
(1) If D is a normal filter on + to which {5 < u+ : cf(6) = u } belongs, then in 

13 we can replace *,, by *D (of course, in part (5), D in VP means the normal filter 
it generates). 
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1038 SAHARON SHELAH 

Similarly for the claim below. 
(2) Assume that in the game of choosing Ai e D+ for i < E (or i < eu), with 

player I choosing A2i, player II choosing A2i+l , Ai decreasing, player II loses if and 
only if he sometime has no legal move; player I has a strategy guaranteeing that he 
has legal moves. (If i, in measurable V in VLevY(pI<n) this holds for some D by [1].) 
In fact assume more generally that 96 is a partial order and , ?- { A: A C 1u+ } 
is decreasing: 

9 ?X y < (y) C (X) 

and g' is a function with domain 96 where 9'(x) is a non-empty subset of [g(X)]2 
and 

96 F x <_ y (y) C 9 (Y) 

and if x Ec 9, E is a club ofu+ and f be a pressing down function from 1u+ to 1u+ 
then for some y satisfying x < y we have f [{ sup(E n a): a E F(y) } is constant 
(above 9 = (D+, D), 9 is the identity 9'(x) - [g(X)]2 and we say that a forcing 
notion Q satisfies * if in the following game *'F i ith, the first player has a 
winning strategy. 

A play lasts E moves, in the (th move player I chooses x; E 96 such that 

4 < (==>Y4<g X( 

and if 4> 0 also (q~ : i E 9(x )) such that 

<gand i E F(x() =>p; < q; 

and player II chooses y( E 96 such that x; < y( and (pi : i E 5 (y,) ) such that 

g> 0 A i E 9-(y() =>q; <Q pi. 

OUTCOME. Player I wins a play if 

(a) for every limit g < E he has a legal move (this depends on having upper bounds 
in 9 and in Q) 

(,f) for every {i, j} E nf< fl(x), in Q there is an upper bound to 

{pi : <F }U{p g <F }. 

The natural generalizations of the relevant lemmas works for this notion. 
(3) We can systematically use the weak restriction triples, and/or use the strong 

version of *, for triples in this paper. 

CLAIM 15. 
(1) If the forcing notions P1, P2 are equivalent then PI satisfies *I if and only if P2 

satisfies *H. 
(2) Suppose [ is a restriction operation for (P1, P2), Be the complete Boolean 

algebra corresponding to Pe (so B1 < B2) and i' is the projection from B2 to B1 and 
P' - (Be - {0}, >) then 

(a) (P', P', i) is a restriction triple and 
(b) (P1, P2, F) satisfies *I if and only if (P', P', i') satisfies */. 
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WAS SIERPINSKI RIGHT? IV 1039 

(2') In part (2) it is enough to assume that [ is a weak restriction operation. 
(3) If a forcing notion Q satisfies *A then player I has a winning strategy in the play 

even if we demandfrom him: 

A[pX =0Q==>q; - 0Q] 

for each i < ju+. 
(4) Similarly for (P, R, F) satisfying *I demanding 

A[P>= 0R== q = R] and P qi E P]. 

CONVENTION 16. Strategies are as in 15 (3), (4). 

DEFINITION/CLAIM 17. Assume for i = 1, 2 that (P, Re, [e) is a restriction triple, 
(P, Re, We) satisfies *,, and we let 

R = {(p,ri,r2): p E P, ri E R1, r2 E R2, 

P l "r1 [P < p" and P l= "r2 P < p"} 

identifying r1 E RI with (ri [P, ri, 0RA), and identifying r2 E R2 with (r2 TP, 0R,, r2). 
Under the quasi order 

(p, rl, r2) < (pl, r', r') if and only if p < ?p' and 

lubR1 {p, ri } <R lubR, {p', r' } and lubRp {p, r2} ?<R lubR2 {P, r'}. 

Then Re < R (for i = 1, 2) and (Re, R, e) is a restriction triple and it satisfies 
where (p, rl, r2) [4Re = the least upper bound of p, re in Re (see clause (b) of 

Definition 11 (1)). Moreover if for i = 1, 2 we have Ste is a winning strategy for 
player I in the game *, for Re projecting to Sto, a winning strategy for player I in 
the game *, for P, then player I has a winning strategy in the game *,, for R which 
project to Ste for i = 1, 2. 

DEFINITION/LEMMA 18. Let u = u<P < S = cf(i) < A < x. (Usually fixed 
hence suppressed in the notation.) We define and prove the following by induction 
on (the ordinal) a: 

(1) [Definition]. Let _Wa = aS be the family of sequences 

Q=( Pp. Qp, ap : Pl < ar) 

such that: 

(a) ( Pp, Qu : fi < a) is a (< ,u)-support iteration (so Pa = Lim,, Q denotes 
the natural limit) 

(b) ap C /I, lap I < a, [y E ap > ay C ap] 
(c) Qq is (< au)-strategically complete, has cardinality < A and is a Pa -name 

(see parts 18 (2) (b) and 18 (5) (b) below). 
(1') [Definition]. Q is called standard if: for every fi < lg(Q) each element 

of Qua is from V, even from Y(Z), and the order is a fixed quasi order from V 
such that any chain of length < ju which has an upper bound has a least upper 
bound and for any sequence x = (xi : i < (s < ,ui), for some y we have p IFpa 
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1040 SAHARON SHELAH 

"if x is <Q -increasing then y is its lub" (we can use less), but note that the set of 
elements is not necessarily from V. 

(2) [Definition]. For Q as above: 

(a) a C a is called Q-closed if [fl E a= ail C a]; we also call it ( a/il < 

closed and let 5Q = (ad: < a) 
(b) for a Q-closed subset a of a we let 

P ={ p E P, Dom(p) C a and for each f6 E Dom(p) we have: 

p(f6) is a P(nfl-name (i.e., involving only 

GP, n Pan0 so necessarily QA E V[Gpfl n Paonfl) } 

PO = I p E P.>: Dom(p) C a and for each f6 E Dom(p) we have: 

p(fl) is a P* -name and: if Q is standard, then p(fl) is from V 

not just a name }. 

On both Pa, and P*, the order is inherited from P. Note that PO is defined 
by induction on sup(a). 

(3) [Lemma]. For Q as above, f6 < a 

(a) Q ,l E Xf1 and is standard if Q is 
(b) if a C f6 then: a is Q-closed if and only if a is (Q lP)-closed 
(c) if a C a is Q-closed, then so is a n0 f, in fact f6 is Q-closed and the 

intersection of a family of Q-closed subsets of a is Q-closed. 

(4) [Lemma]. For Q as above, and f6 < a, 

(a) Pt < P, moreover, if p E P, p l/ < q E Ppl then (p (a ))Uq E Pa 
is a least upper bound of p, q 

(b) P&l/Pf is (< ju)-strategically complete (hence does not add new sequences 
of length < 1u of old elements). 

(5) [Lemma]. For Q as above 

(a) P* is a dense subset of P.> 
(b) if a is Q-closed then PO < P.> and Pa is a dense subset of P, 
(c) if a is Q-dosed, p E P., p [a < q E Pa then (pL(a Ko a)) U q belongs to 

Pc, and is a least upper bound of p, q in Pc, 
(d) if a is Q-closed, then Q [a E Xotp(a) (up to renaming of indexes) 
(e) if a C b C lg(Q) are Q-closed, then (P*, P*, i) is a restriction triple 

(where pLPP* = p [a) 
6) [Lemma]. The sequence Q K Pi, Qp, ap : f6 < a) belongs to 5c if a is a 

limit ordinal and 

A 01 
(7) [Lemma]. The sequence Q K P/i, Qu, al : f6 < a) belongs to Xc if a 

y + 1, a, C y is a (QLy)-closed set of cardinality < a, Q,, is a P* -name of a 
(< u)-strategically complete forcing notion of cardinality < A. 
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WAS SIERPINSKI RIGHT? IV 1041 

8) [Definition]. ' Xfl. 

PROOF. Straightforward. - 

DEFINITION 19. Let ,u = 1u<' < ' = cf(r,) < A < X (usually fixed hence sup- 
pressed in the notation) and E a limit ordinal < ,u. We define the following by 
induction on (the ordinal) ae: 

(1) We let X be the family of sequences 

Q= (Pp,Qp,ap,Ip :/3< a 

such that: 
(ae) (Pp, Qp, ap < a E X5' 
(,B) Iq is a family of Q-closed (see part (2) below, it is not what was defined in 

18 (2) (a)) subsets of ap, closed under finite unions, increasing unions of 
length < ,u and such that 0 E Ip 

(y) each aq is (Q lP)-closed (see part (2) below, this is not as in 18) 
(6) if b E Iq then the pair (Ps, P* {uBf) satisfies *-, of course for the natural 

restriction operation. 
(2) For Q e Z6 (even satisfying just 19 (1) (ae) and (,B)) we say that a set a is Q- 

closed in b (or is ( ap, Iq : ,B < a )-closed in b) if a C b C a, [,B E a \ aq C a] 
and [f, E b --, a # a n aq E Iq]. If we omit "in b" we mean b . 

(3) (a) Q is simple if for all f, < a 

Ifq { b C af :b is 7Q-fl-closed and for every y E ap, U 

if cf(y) = u+ and y = sup(y n b), then y E b}. 

(b) Q- =( Pp, Qp, ap: ,B < a ), aQ = ( a:, < ae ), and IQ=(I: , < ae 
(c) Q is standard if Q- is standard 
(d) X < = <C X 

CLAIM 20. LetoQ E . 

(1) If /B < a then Q[ B =: ( ,, a, I: y < ,B) belongs to X% f; moreover, 

if b C a is aQ-closed then Q [b E %Xotp(b) (up to renaming of index sets) 

understanding, I b =2 Lb. 

(2) If a C b C ,B < a and a is Q-closed in b then: a is (Q ,/)-closed in b. 
(3) If /B < a, a C a is Q-closed and y E a B a n a, n B E I,, then a n ,B is 

Q-closed. 
(4) If Q is simple, ,B < a, a C a is Q-closedandcf(/B) 7 u + V (Vy E a f,) (a2, n 

a n ,B is bounded in f,), then a n ,B is Q-closed. 
(5) Thefamily of Q-closed a C a is closed under increasing union of length < ,u and 

0 belongs to it and ae is Q-closed. 
(6) If a, b are Q-closed, then so is a U b. 
(7) If a C b C c C lg(Q), a is Q-closed in c, then a is Q-closed in b. 
(8) If/B < c, a C b C ce, a is Q-closedin b, then a n fl is (Qf/)-closedin b nfl. 
PROOF. Straight. - 

REMARK 21. Simple Q is what we shall use. 
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1042 SAHARON SHELAH 

LEMMA 22. Assume Q E Xa and a, b are Q--closed subsets of a and a is a 
Q-closed subset of b (C a) and Q is simple or at least 

(*) a E {aX} U Ip A y < /3 < a cv\ a On (y + 1) E I/. 

(Hence y < , < a and cf(y) <ju ,z ail n y E I/X.) Then the pair (PO, P*) satisfies 
* 

PROOF. We can assume by 20 (1) that b = a. By induction on a we shall show 
that for all Q-closed subsets a of ar the pair (Ps, P.) satisfies *i (see Definition 
11 (3)) and this is proved first when a = 0 and then when a 7 0. So we fix a 
strategy Sty, for the first player in *[P*]; why does it exist? If a = 0, trivially, if 
a 7$ 0 by the way the proof is arranged we know the conclusion for (a', b') = (0, a), 
and as otp(a) < a clearly Sta exists. Next we shall choose a strategy for the first 
player in the game */,[P*, P., Sta ], where at stage 4 < E the first player chooses 

I 
{q, ' < 1u+ }, a regressive function f, from 1u+ to 1u+ and the second player 

replies with suitable { pi 4 <jU+ }. 
For simplicity the reader may assume that the Q/a are ji-complete (which is the 

case used; otherwise we have to use the (< ju)-strategic completeness (and remember 
7 (2) second sentence). 

CASE 1. a c fl + 1, flEa. 

So a/ C a, now a n0 f is (QO f1)-closed (by 20 (2)) hence by the induction 
hypothesis (Pang Pa) satisfies *> Apply 17 with P* /]n Pj* Pl here standing for P. 
R1, R2 there and we get that (R2, R) satisfies which (translating) is the desired 
conclusion. 

CASE 2. a c fl + 1, 1f V a. 

We know that a n aq E Ifl. If a = 0 use 17, so assume a =4 0. 
By Definition 19 (1) (6) we know that (P*1SO/3l P(*uIu{/}) satisfies */X By 17 we get 

that (P, P satisfies Now a' =:a/ U l} U a is Q-closed by 20 (6) and 
C a' so by Case 1 we have: (Ps,, Pa) satisfies *> Together by 13 (4) we have: 

(Pa, P*) satisfies *-. 

CASE 3. a a limit ordinal, cf(ae) < u. 

Here we use 15 (3). 
We can find an increasing continuous sequence ( y : T < cf(ae) ) of ordinals 

< a with limit oa, yo = 0 and Yr+I a successor ordinal. Note that (a n yr+ ) U yr 
is (Q Lyr+ )-closed as [yr limit > T limit and cf (T) < u] moreover a U yr is Q- 
closed. We define by induction on T < cf(ae) a strategy St* of player I in the game 
*I [a a 'u2'] such that for T I < T we have that St* projects to St* (see Definition 
11 (4)) and St* is Sta. 

If we do not assume that all the Qp are pu-complete, then we demand that, 
moreover, they satisfy: 

Z if ( (qS : i < u+ ), (f p: i < A+h : ,< E ) is a play of [P*, P(u),,, St, 
then for any ordinal ,6, looking at ( qC(f), pQ ,): 4 < E 6 letting 
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WAS SIERPINSKI RIGHT? IV 1043 

if E E [ 0(, 0), (,B, 1)) and q4 LP forces that (q4(fl) 4 E [S., (f, 0), ,]) is 
increasing, then q' [fl forces that some ( q,, p, : - C, 0) + 1) is a 
play of in which player I uses a fix winning strategy (as in 7 (2)!) and 

Po - q4(f?) (fi), (remember qO not chosen) and 

0 < 4 < 0- C(,0) + 1 = q= q (/'?)+W(fl) 

and 

0 < < -(fl, ) P' P4=P (W 

This, of course, puts on us a burden also in successor y just to increase the condition. 
The inductive step is done by 17, the limit stage is straight (using Z to show we 

can). 

CASE 4. a limit ordinal, cf(ae) > u+. 

During the play, player I in the Sth move also chooses an ordinal y(, y( increases 
continuously with C, yo 0 0 as follows: 

y(+1 = mini y < a : (Vi < u+) (VX < 4) (P., qi E PY 
and y is a successor ordinal } 

and he will make q( E Pyk, and the rest is as in Case 3. 

CASE 5. cf(ae) = u+. 

Let ( y : T < ju+ ) be increasing continuously with limit a, yo = 0, cf(yr) < 
,u, yr+1 a successor ordinal and we imitate Case 4, separating to different plays 
according to the value of 

ji' - mint j < i: for each < 4 we have p~ [yi E Py and q[ E Plyi }. -A 

CLAIM 23. Assume 

(a) Q=- ( Pa, Qa, aa, Ia : a< ;) 
(b) b a limit ordinal 
(c) for every a <; we have Q [a E XE a. 
Then Q E X-I 
PROOF. Check. - 

CLAIM 24. Assume 

(a) Q E X6, 
(b) aa C a is Q-closed, Iaaj < K 

(c) Ia C { b C a: b is Q-closed} 
(d) Ia is closed underfinite unions, Ia is closed under increasing unions of length < ,u 

and 0 E Ia 
(e) Qa is a Pa -name of aforcing notion of cardinality < A 
(f) ifb E Ia then (Pb, Pa * Qa) satisfies *i 

Wg Pa1 Lima Q. 

Then Q7 (Pa, Qa, aa, Ia) belongs to . 

PROOF. Check. A 
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1044 SAHARON SHELAH 

THEOREM 25. Suppose u - #u'' < K = A < X and X is measurable. 
(1) For some forcing notion P of cardinality X, u-complete not collapsing cardi- 

nalities not changing cofinalities we have: 

IFp "2/' = X andfor every a < u and 0 < K we have X -' [0]J2" 

(and for a fixed E we can add the Axiom: if Q is a u-complete forcing notion of 
cardinality < i' satisfying *i and Ad C Q dense for a < a< X then some directed 
G C Q is not disjoint to any ah). 

(2) We can replace "u-complete" by"(< ,u)-strategically complete" (in the demand 
on P and, in the axiom, on Q). 

REMARK 26. We can add "P satisfies *," if the appropriate squared diamond 
holds which is true in reasonable inner models. 

PROOF. We concentrate on part (2). If we would like to do part (1), we should 
just demand all the Qi are ji-complete. 

STAGE A. Fix a limit ordinal E < u and let 

{ Q E XE : Q is simple and standard } 

a<z 

(Note: Q-closed will mean as in 19 (3) (a), 19 (2).) As the Q's are simple we shall 
not write the I's. By preliminary forcing without loss of generality "X measurable" 
is preserved by forcing with (Z>2, <) (= adding a Cohen subset of X), see Laver [2]. 
Let us define a forcing notion R: 

R { Q: Q E Add for some ar < X and Q E IYW } 

ordered by: Q1 Q2 if and only if Q1 = Q2 lg(Q1) 
As R is equivalent to (X>2, <) we know that in VR, X is still measurable. Let 

QZ = (Pp, Qp, a/ : f6 < X) be U GR and P, be the limit so P* = P* C P 
is a dense subset, those are R-names. Now R * P* is the forcing P we have 
promised. The non-obvious point is IkR*P* "X -> [0](2?" (where 0 < iK, a < u). 

So suppose (r*, p*) E R * Px and (r*,p*) IF "the coloring z: [X]2 - a is a 
counterexample". Let XI = (2X)+. Let GR C R be generic over V, r* E GR. 
By [7], but the meaning is explained below in VR we can find an end extension 
strong (XI, X, X, 2K'i+21, (, + A + 2/)+, w))-system M = (M. s E [B]<'o ) such 
that MS C (,{(xl) V[GR], Y (Xl), E), for x = {x, GR, P*, z}, (i.e., x E Os MS. and 
B E [Z]z). We do not define this as for helping to prove the next theorem (27) we 
assume less, in V[GR]: 

(*)o M = (M : s E [B]<(l+1 ) ) is an end extension (XI, X, X, 2n+1+2/?, (a + A + 
2/)+, n*)-system for x, for some 2 < n* < co. 

where (*)o means, in V[GR]: 
(*)' B E [Z]% and Ms < (,(Xl)V[GR] GR,(X1),E),X E nsMsMs n MM, 

Msnt. Furthermore, 11AM, 11 = 2K+1+2" and [Ms ]K+i+2' C Ms. In addition, for 
VI, V2 E [B]n, n < 1 + n* there is A the unique isomorphism from MV 
onto Ma2, and: 

IVl n6l = 2I nE21,l EVl, 69 E V ZfV1,V2(6l) = 62 
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WAS SIERPINSKI RIGHT? IV 1045 

Finally, s < t ==M s n < m . n x 

We meanwhile concentrate on case n* = 2. 

STAGE B. We assume (*)V. 
Let 

C = {b < X:6 = sup(B nb) and 

(s E [Bnr]n forsomen < 1 +n*= >M, nX zc)}. 
Let y(*) = min(B). Now for p E P* n m and c = (cl, c2) E a x a let us 

define the statement 
() if p < p0 E P* n mf,(*)j then we can find p1, p2 E P*n M{()}, p0 < pI, 

po <?p2 such that: forY1 <y 2, Y E B, E B, we can find r1, r2 E 
P* M{n,2} (so Dom(re) C 0 n) satisfying for i = 1, 2: 

re IF 'T({Y, Y2}) = ce 

rf L(x n mA{ye}) < f{}y(*)}{,e}(P 1) (for strong system: equality) 

re [(X n mA4,3_e}) < f{ (*)}{)3-}(P2) (for strong system: equality). 

As Ia x ai < u and the relevant forcing notions are (< ,u)-strategically complete, 
easily 

p E P* nM{2(}: forsome c, (*)p hold} 

is a dense subset of P* n m but this partial forcing satisfies the ,u+-c. c. Hence 
we can find J* { p p: C <,u } C J, a maximal antichain of P* n m hence 
of P,* (as P> (M{,(*)} ) is a subset of M{,(*)},). For p E ,* we can choose cj(p), 
C2(p) E a such that: (*) (c (P) c(P)) hold. 

STAGE C. As GR was any subset of R generic over V to which r* belongs, there are 
R-names y(*), (ps, Cl (Pc), C2(P<)) : < u) (M : s E [B]<o) (sf, : (st) E 

Un<l+n* ([B]' x [B]n ) ) forced by r* to be as above. As R is X-complete, X > 2K 
without loss ofgeneralityr* forcesvaluesy(*), MO, M{fy(*)} ((p, c (P;), C ((P)) 

< jU)- 

We now try to chpose by induction on < < 0 + 1, QS, W, y' such that: 

(A) (a) Q E R 
(b) Q={r*} 
(c) lg(QO) = W 

(d) < 0 Q = Q; [a'd 
(e) ( oW: < < 0 + 1 ) is (strictly) increasing continuous 
Mf at < Y( <a (+I 
(g) IFR "Y c BC" 

(h) Q+ forces (IFR) a value to 

(M n V: sE [B n (y~ + 1)]<1+n* 

which we call ( Ms s E [B.]<' ). 
(B) if ? < 0+1, cf() thenhe: 

(a) aM =U{x 1A{ 2}: {~1I,2} E [{YE :8<4}] } 
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(b) IQ { b : b an initial segment of a and cf (otp(b)) & 1u+ } 
[explanation: this satisfies the simplicity demands] 

(c) Q<a { h ha function, Dom(h) C 1u, Dom(h)l < 1u, h(i) E Q,* 

when defined} (see (d) below); order h1 < h2 if i E Dom(hi) ==hi (i) C 

h2(i) where Q j( * is defined in clause (d) below 
[explanation: the forcing notion in clause (d) adds a subset u of 4 such that 
on { ye : l E } the colouring z get only two values; the forcing notion 
from clause (c) makes 4 the union of < 1u such sets and this induces a 
representation of B( as a union of u sets on each z get at most two colours] 

(d) Q<.* { U : u E [M]<1, and for some 4 < u we have: for every jl < j2 

from u, we can find pl, p2, rl, r2 such that for i = 1, 2 we have: p* < 
E M{y(*)} n P>* rf E P* n M , re 1F - Yi I' Yi2}) = *(p*) 

r L(O nAMf{,, } ) < f {f2(*)} {1,il } (p 1), re ( nM {yj, }) ? f{y(*)},{ j (p2) 

and ri E GpE , or r2 E Gapl }. 

STAGE D. Again we shall use less than obtained for later use. 
The point is to verify that we can carry out the induction. Now there is no 

problem to do this for 4 0 and for 4 limit. So we deal with 4 + 1 , 4 <0 and we 
are assuming that QO is already defined. If cf(4) < 1u clause (B) is empty and it is 
easy to satisfy clause (A). So assume cf() > u+. Now as before clause (A) is easy. 
The point is to choose 04+' or just Q [' L(a( + 1) to satisfy clause (B). Now Qozc is 
chosen by clause (B) so K4+l [(a( + 1) is now fixed. 

The point is to prove that the condition concerning *, from Definition 11 holds 
as required in Definition 19 (1) (d). From now on we may omit the superscript 

or Kc+1 [(ac + 1) so P* = Po (o+) etc. 
That is, we assume b E Ic,, and we will prove that (P*, P* ) satisfies *& 

Note 

(*)1 if 04+' is well defined (or just 04+' [(oa + 1) E R) and cfQ4) > 1u then (PQ,>+i 
is well defined and) in Vpc'+, { ye : T < 4 } is well defined and it can be 

represented as Ui<, ?1i, such that each u E [W2i]<' belongs to Q,>zX * 

(*)2 if C(1) < C (2) < ' and cf(4 (1)), cf(4(2)) > ,u then Q l)C Q(2) *, also for 
the compatibility relation 

(*)3 the elements of Q$,, * are from V, in fact are sets of ordinals of cardinality < u 
ordered by C and the least upper bound of set of cardinality < 1u members is 

the union (if there is an upper bound), so Q 
0C 

* is i-complete 

(*)4 Q; is well defined and l-ps, "for 4 < C, if cf(4) > ,u then, Q is the union of 

,u sets, each set (< ju)-directed and with any two elements having a least upper 
bound". 

Hence 

(*)5 if cf(W) > u+, then in VP"s, each subset of Q,,* of cardinality < 1u+ is 
included in the union of , sets, each directed and with any two elements 
having a least upper bound. 
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Note that by the definition of Q O- * we have 

(*)6 a family of < 1u members of Q hasa common upper bound if and only if 
any two of them are compatible, and then the union is a least upper bound of 
the family. 

So if cf(4) > 1u+, we are done as by (*)5 + (*)6 we have fl=p "Qc satisfies and 
can use 13 (4). 

So we can assume T = T(*) < 0 + 1 and cf(4) - cf(a() u j+, and let (T (i) 
i < ,u+) be increasing continuous with limit 4 and cf(T (i)) < 1u for i < u+. Let 
b E I,,, hence b is a bounded subset of ac. So by the induction hypothesis and 13 
(4) without loss of generality 

b =U{ M{rO0.)rl} nO To <T1 <T(0)}. 

Define co = bo - b and for T E [T(0), T(*)) let 

bl -f= bo u (M{f,2} n at) u U (MT .} at) 
r 1 <T(0) 

(the third term could be waived with minor changes), 

bi = blr(o), b2= b1 U bl,(o)+l, 

C2= Ut b im: T E [T(0) T(*)) } 

C3= aoz-= U{ Mf)-r i IYr } n0ITS) T 1 < T(*), 2 < (* } 

and 

C4= azrr(*) U {ac 

NOTE. There is no cl. 

All these sets are Qc -closed except c4. We now choose several winning strategies 
which exist by the induction hypothesis on C. 

Let Sto be a winning strategy of the first player in a game above *, [P* ]. Let St, be 
a winning strategy of the first player in * [Pp*, Pj* ] which projects to Sto. For every 
T E [T (0), T (*)) let StlX be a winning strategy of the first player in *?t[P* , Pb*] 
conjugate to St, (by OPbl Tbb). 

For T (T, T2), T1 < T2, {T1, T} C [T(0), (*)) let 

b2 = bjl U bi, U (M{f at} n a() 
and let St2 t be a winning strategy in *A[P*lr UblT P* ] which is above Sti A x 

Stira (remember that both project to Sto, use 17); also note as long as the second 
player uses conditions in Pb*,, then so does the first player (for each i < u+ 

separately). 
Also, the first player has a winning strategy in *- [Pr, P*1] but we want a very 

special winning strategy St2: (letting g2 be a fixed pairing function on ,u+) in a play 
((ps i < u+ ),(q: i< uS+ ), f < E ) where the first player uses the strategy 
St2 we demand that clauses (a)-(d) below holds on f ',, p p3 .... see clause 
(d): 
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(a) ((pi Lbo: i < 1u ),(qi bo: i < u+ ),f1' < E) is a play of* [P* in 
which the first player uses the strategy Sto) 

(b) for each T E [T(0), T(*)) defining 

2TC~ fpLbir if T(i) > T 
'1i [pbo if T(i)<T 

q, i'I [bl ,f if T(i ) > T 

{qi bo if T(i)<T 

we have: ((iT i < +) (qifC i < < E) is a play of 
* [P*, PlT] in which the first player uses the strategy St1,,X. 

(c) For any pair =(4, C2) of ordinals in ,i x E, let 

T (i,C) T (i) is the Wjth member of Dom(qi2) K T(i) 

qi3 L"' = ?Pbj T(O).blyT11) ( ib1 .X(i)) 

we demand that (p3'.' : i < U+u),(qI7 i < 'U+),f3' 4 < E) isaplayof 
*, [Pg*, P* ] in which the first player uses the strategy Stl ,(o) . 

So for each i < u, for 4j < u too large T (i, C) is not well defined and we stipulate 
the forcing conditions are 0. 

(d) f (i) codes f W(i), (f2T :(1) T E [T(0),T(*)) and (Afl E b1j K 

bo) [pl(/3) $ 0Q]) and (f u3 (i): E X e, and T7(i) is well defined) 
and the information on pi(ar(*)) and it codes 

{ K1, 41, 42) 6, the 42th member of Dom(p ) satisfies 

j1 = min j: EDom(p'.)}, 

and f6 is the Cl th member of Dom(p ) } 

and 

{ (K , 2) for some T, /3, the Wi th member of Dom(pI), 
belongs to b1. K bo and satisfies 

j min{ j': (Dom(p4,) n (byj K b) 7$ 0 } 
and the 42th member of Dom(p.) belongs to bij X , bo } 

(note: for each 42 < E, j < u+ we have: { 4j < u : T ( I L2) (i) is well defined } is a 
bounded subset of u). 

Check that such St2 exists, (note that the number of times we have to increase 

Pi Lbo is < eu). 
Clearly c2 C C3 are QO-closed,-hence there is a winning strategy St3 of the first 

player in *-' [Par Pc*] above St2 and such that: 
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WAS SIERPINSKI RIGHT? IV 1049 

(Z) For any T (T1,T2) such that T (0) < T1 < T2 < T(*), and defining 
p4'T'c pi Lb2 , qbT= qX Lb,.t (can behave similarly in clause (b)), we 

have: ((p P : i < U+),(qiT-L: j < +),f < E ) is a play of 
*, [Ps] in which the first player uses the strategy St2 . 

Lastly, let St4 be a strategy of the first player in * [Ps*, P(*] which is weakly project 
to St3 and it guarantees: 

(*) if((p : i < j+),(q i < u+),f: < E) isaplay of the game in which 

the first player uses his strategy St4 then: 

(a ) qt La,, forces a value to q (c(* ) 

(6) if TY $& T2 are from (the value forced on) qX (ar(*)) then qX l at is above 

the relevant parts of witnesses to this. 

Clearly St4 is (essentially) a strategy of the first player in * [Pg*, Pc*] (for the 

almost *-, case above Sto). All we have to prove is that St4 is a winning strategy 

above Sto. So let ((p' i < 1u+),(qi : i < 1+),fg : f < E) be a play of 

*4[P*, P* ] in which the first player uses the strategy St4. 

By the definition of the game *tj[P*, Pa ] without loss of generality for some club 

E1 of u+ (see clause (a)): 

(**)l if {i, j} c Si n El (see 3) and A<,f 4f(i) f (j) then 

{pi [bo, pi Lbo <E} 

has an upper bound in Pj*. 

By clause (b) in the demands on StlX for some club E2 ofu+ we have: 

(**)2 if {i, j} C Su1 n E2 andT cE [T(o), T(*)) and 

A[(bim -- bo) n Dom(p') 7$ 0 

and (blr b bo) n Dom(p.) $ 0 ,f2T4(i) - f22fi(j)] 

(which holds if A< E f(i) f 4 
(j)), and r is an upper bound of 

{PAFbopbo : <e} 

then 

{pb pblb, pa l : <}U {r} 

has an upper bound in P* 

By clause (c) in the choice of St2 we know that there is a club E3 of jU+ such that: 

(**)3 if 4 E Y x E, {i, j} C Su n E3 and A,<, f3'(i) - f3'&'4(j) (which holds if 

A~<6 f4(i) = f4 (j)) and r EE Po is an upper bound of 

{p4 bo,q'[bo < 

then 

<pK 6 U {r} 

has an upper bound. 
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1050 SAHARON SHELAH 

By clause (e) in the demand on St3, for some club E4 of ,u+ 

(**)4 if {i, J} c 0H ? E4 and A4<f f4(i) f 4(j) and r is an upper bound of 

{P pLbo, p Lbo < E} 

then 

{PI [T(i), p' T(j) < e}U {r} 

has an upper bound in P* (even P*maX{T(i)T(j)} 

Last 

(**)5 E is a club of ,u+ included in EL 0 ?2 n E3 n E4 such that: 

i < j E E ,> Dom(pI LC3) U Dom(q[ LC3) C a^(/). 

The rest is as in [6, ?2]. ] 

THEOREM 27. We can in 25 replace "measurable", by (strongly) Mahlo. 

REMARK 28. It is not straightforward; e.g., we may use the version of squared 
diamond given in Fact 30 below. 

We first prove two claims. 

CLAIM 29. Suppose ) is a strongly inaccessible Mahlo cardinal, x > > 0 = O', 
(t an expansion of (X(x), E, <) by < 0 relations. Then for some club E of ) for 
every inaccessible , EE E we have: 

(*),< for every x EE X(i) there are B E [ii]' and Ns (for s E [B U {f K}]2), N{'} 

(for i c B U {fK}), Np, (for i E B) and N0 (so N{,j is meaningless) such that 
(L, is like thefirst order logic but with conjunctions and a string of existential 
quantifiers of any length < a): 
(a) x E Ns Laa2 and 0 C Ns 

(b) x c N{i <LUU Cand 0 C N'j C N{i} 

(c) s C B = Ns n0i C , and Ns'n C c, (when defined) 
(d) N OLUU N{i} and 

min(N{p} no) N0) > sup[U{Ns nrv: s C [B n i]<2}] 

(e) for j < i, N{1j,} is the L,,,-Skolem hull of N{1j U N{I inside et 

(f) for j < i, N{j0 n)i is an initial segment of N~j I n) 

(g) for j < i, 

min(N{1j,} n ) " N{1}) > sup{ N{jlil} 0 ): 1j < <i } 

(h) Ns, Ns' have cardinality 0 when defined. 

PROOF. Let 01 = 20, 02 = 201. Let % and r, be such that: 

* K strongly inaccessible 

602 

* 6<C 

* A. . 
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WAS SIERPINSKI RIGHT? IV 1051 

(Clearly for some club E of i, for every strongly inaccessible i, E E there is A 

as above; so it is enough to prove (*),<). Without loss of generality, i > 0 and 
let x E X(K). Next choose 93i -<Lo 0+ , -increasing continuous in i for i < X, 

(~~~~~~~~~~9 B:i< )E j ,li11<A i n K, an ordinal and { x, i, 0, a, a, i, A} E 93o. 
Let 93 = B+, and let f be a function from 93 into A, which is an <L6+ 

o+ 
2 1 

elementary mapping (for the model (t, Dom(f) 9, Rang(f) C A). 
Let N- QLa (tbe such that fx, %, 9, ( 9: i < 0 +),f, a, 0,i,} K E N. 0+ I C N. 

-N= 0, N' C N. 
Let N+ be N. 
LetN0 beN+ nn93, as 11N0ol < 0 wehaveN0o E t9. LetN{o} = N+ nr 

so N0 = N{o n 93, and N0 n i (c Az) is an initial segment of N{o} n i (C A), let 

N'rK = N+ n 93 and N101 = f (N?.1), so N{0l -< La,,fN{o}. Let ao f (<). Now 
we choose by induction on i < a, ai, N'ij N{j}, gi and N{i,1j for j < i such that: 

(1) gi is an -<L,-elementary mapping from N{0} into A, go = idNf0o 
(2) gi (ao) ai 
(3) for j < i, N{1,i} is the Lax -Skolem hull of N{1j U N' (in (t) 

(4) N~j,. is the L.,-Skolem hull of N{ij U N', 
(5) N~jj, N~o, . are isomorphic, in fact there is an ismorphism from N~O,1; onto 

N~i,,j extending gj U idN1 

(6) for j < i there is an isomorphism from N{1,i} onto N jj extending 

idNe1} U(f og1)LN{I} 

(7) N{j j n)i is an initial segment of N jjj n i for j < i. 

This is possible and gives the desired result (by renaming, replace i < ii by oa). -A 

FACT 30. Let x be strongly inaccessible (k + 1)-Mahlo, K, < x is regular. By a 
forcing with a P which is ii+-complete of cardinality x, not collapsing cardinals nor 
cofinalities nor changing cardinal arithmetic we can get: 

(*)Kk there isA A A = a < x) and C =(C a e S) such that: 
(a) S C { < : < > , and cf(b) < , and {f E S: otp(Q) = , I is a 

stationary subset of x 
(b) Ca C ar nS, [/ E Cac, > Cp = Cca n ], otp(C) < ?, Cc a closed 

subset of a and [sup(Ca) = a =? Cc, has no last element] 
(c) Aa C a 
(d) c ECa >A = A. n 
(e) { i < x : i inaccessible, and for every X C i the set we have { a < 

A: otp(Ca) = , X n a = a } is a stationary subset of i } is not only 
stationary but is a k-Mahlo subset, moreover we actually get: 

(e)+ for every strongly inaccessible i EE (0, x)( (Aa, Ca) : a E S n0i) is a club 
guessing squared diamond, that is clauses (a)-(d) hold with i, S n i and: 
for every club E of i and X C i for some 6 E S we have CQ U {f} C E 
andotp(CQ) -,anda oE CU{}# ,>A,= AnXa. 

PROOF. This can be obtained, e.g., by iteration with Easton support, in which 
for each strongly inaccessible i E (o, x] we add A, C satisfying (a)-(d) above, each 
condition being an initial segment. 
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1052 SAHARON SHELAH 

More specifically, we define and prove by induction on a < x 
(1) [Definition] P, { (a, C,A) 

(a) a C y -\ + 

(b) for every strongly inaccessible i E (a, x] we have i > sup(a n 
(c) C = (C;, y Ea) 
(d) C;, 74 0 , cf(y) < r, and otp(C),) < i 
(e) ,b EE C;, ,- EE a and C/ =C;, nb 
(f) Cu. 74 0 CuC closed 

(g) A = ( A;,: y (E a ) 
(h) As, is a P),-name of a subset of y 
(i) ,b 

E 
Cu. ==> y 4A;, n ,b = AA 

} 

order p < q if and only if a1' C aq, (l) = eq [all, Al" = A pal)". 
(2) [Claim] fl< ar > Pjj < PO. 
(3) [Claim] If p E POE, f < a, then p FP -: (a"P n /, C [(a n /3), AFL(a n /3)) 

belongs to P,3 and: if p F/ < q E P1/ then p, q are compatible in a simple way: 
p & q is a least upper bound of {p, q}. 

(4) [Claim] If i is strongly inaccessible < x and > K, then Pi. = Ua<2 Pa. If in 
addition i is Mahlo, then PA satisfies the A-c. c. 

Let cag = cg, A,, = AP for every large enough p E G p. The point is that for 
every strongly inaccessible i EE (0, x], P./P, does not add any subset of i, and so 
K (Cj, Ai[G]): i < i{) is as required. A 

CONCLUSION 31. Let 0 = 0 < < i, i a strongly inaccessible Mahlo cardinal, 
then for some 0+-complete, A-c. c. forcing notion of cardinality i not collapsing 
cardinals not changing cofinalities nor changing cardinal arithmetic, in VP we get: 

(**)27 there are ((Ba, Ma, Ca): a E S ) such that: 
(a) S C { < : cf(6) < 0 } and { E S : otp(Q) = 0} is a stationary 

subset of x and even of any strongly inaccessible i E (0, x) 
(b) CO C ao n s, [/ 3E coa = Ca = cOz n #], otp(Co) < 0, Co, a closed 

subset of a so [sup (Ca) = a -E Ca, has no last element] 
(c) Bog C a, otp(Ba) = co x otp(Ca), ,C Ea COz #- B = BBo nab 
(d) each (M A: s E [Ba]<2) is as in 29 (and Ba C B) and # E? Ca and 

s E [B]?<2 , Msa = 1vf 
(e) diamond property: if 93 is an expansion of (W(x), E, <x) by < 0 re- 

lations, B E [x]V then for a club E of x for every strong inaccessible 
i E acc(E) for stationarily many E S ni we have otp(Q) =, Q C E 
and B(s C B and s E [Bj]<2 M6 -_ 93. 

PROOF. By 30 and 29 (alternatively, force this directly: simpler than in 30). -A 

REMARK. In 30 we could force a stronger version. 

PROOF OF 27. We repeat the main proof, the one of Theorem 25, but using the 
diamond from 30 for k = 0. In fact the proof of 25 was written such that it can 
be read as a proof of 27, mainly in Stage B we can get (*) which is proved using 
measurability, but use only (*)'. A 

Combining the above proof and [8] we get 
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WAS SIERPINSKI RIGHT? IV 1053 

THEOREM 32. Suppose 
(a) u = t0 or u is Laver indestructible supercompact (see [2]) or just u as in [8, ?4] 
(b) i is n*-Mahlo, i > 0 > ,u 
(c) kn* as in [5] (see below). 
Then for some u+-c. c. forcing notion P of cardinality i we have: 

IFp 2 - -2 [O]n*+1 

moreover for a < ju, 

i 0]T,k-lz*- 

REMARK 33. What is kn*? 

CASE 1. ,U = t0. 

Define on ['2]nfl an equivalence relation E: if w= { l: t < n* } W2 ={ V 

t < n* } are members of [w2]1l both listed in lexicographic increasing order, then 
w1 E W2 if and only if for any ti < 2 < n* andt3 <4 < n* we have 

lg(qfp n qf,) < lg(pW3 n04) qfj = lg(vfI n vf,) < lg(vf3 n vf4 

Lastly, kn* is the number of E-equivalence classes. 

CASE2. /u > to. 

Choose <O, be a well ordering of c&2 and let E be the following equivalence relation 
on [1u2]n>: if wo = { ie: t < n* }, W2 = { Vf: t < n* } are members of ['2]'* 
both listed in lexicographic increasing order then: wi E w2 if and only if for any 
tl < 2 < n* and 3 <4 < n* we have 

(a) lg( I n 2 ) < lg(qf3 n0 /4) - # lg(vl nvf2) < lg(vf3 nv4) 

(b) W/3 [lg(qf I n' J) <ig(q5l nq,) 1/4 [lg(qfl n T2) " " Vf3 [lg(vfI n vf,) <ig(vov n,) 

Vt4 [ lg(vf I n vf ) 
(c) qf,(lg(qf, n f) = vf, (lg(vf n vf,)) 

REMARK 34. Of course 22 contains 

THEOREM 35. Assume 
(a) u = <,u' and D is a normalfilter on ju+ to which the set of ordinals of cofinality 

ji belongs and e is a limit ordinal < u + 
(b) Q = ( P, Qq : a < a*, fi < a* ) is a (< u)-support iteration 
(c) for each f, < a* in the universe VP# we have: the forcing notion Q1 is (< ju)- 

strategically complete satisfying *D. 

Then for y < f, < a* we have: in VP) the forcing notion Pl/PY satisfies *D hence 
satisfies the u-c. c. 

PROOF. For simplicity let D be the club filter on ,u+ plus the set of ordinals of 
cofinality ,u, the proof does not change by this. Let , = x = X be regular large 
enough, e.g., just > a*l 1, lPo,*. Let us for f, < a choose af = fi. Now (see 
Definition 18) trivially we have: Q* P, Q, ap: a < a*, ,b < a*) belongs to 

'UK x(see Definition 19), each f < ?a* is Q*-closed and P1 P. 
Next for ,B < a* we choose I -- { y: y < ,b } and we shall prove by induction 

on y < a* that QY = ( P, Q[3, ap, I : a < y, ,b < y ) belongs to K,, 7 . Now for 
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1054 SAHARON SHELAH 

y = 0 there is nothing to do and for y limit this holds by 23, and for y successor 
ordinal this holds by Lemma 24, where clause (f) there is proved by 13 (5) and the 
induction hypothesis. Having proved this the conclusion holds by 13 (1). -A 
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