Groupwise density cannot be much bigger than the unbounded number

Saharon Shelah*
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
and Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Received 1 June 2007, revised 17 September 2007, accepted 18 September 2007
Published online 1 July 2008
Key words Cardinal characteristics of the continuum, unbounded number, groupwise density. MSC (2000) 03E17, 03E05, 03E20

We prove that \mathfrak{g} (the groupwise density number) is smaller or equal to \mathfrak{b}^{+}, the successor of the minimal cardinality of an unbounded subset of ${ }^{\omega} \omega$. This is true even for the version of \mathfrak{g} for groupwise dense ideals.
(c) 2008 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

In the present note we are interested in two cardinal characteristics of the continuum, the unbounded number \mathfrak{b}, and the groupwise density number \mathfrak{g}. The former cardinal belongs to the oldest and most studied cardinal invariants of the continuum (see, e. g., van Douwen [9] and Bartoszyński and Judah [2]) and it is defined as follows.

Definition 1.1
(a) The partial order $\leq_{J_{\omega}^{\text {bd }}}$ on ${ }^{\omega} \omega$ is defined by

$$
f \leq_{J_{\omega}^{\mathrm{bd}}} g \quad \text { if and only if } \quad(\exists N<\omega)(\forall n>N)(f(n) \leq g(n))
$$

(b) The unbounded number \mathfrak{b} is defined by

$$
\mathfrak{b}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\omega} \omega \text { has no } \leq_{\left.J_{\omega}^{\text {bd }}-\text { upper bound in }{ }^{\omega} \omega\right\} ~}^{\text {. }}\right.
$$

The groupwise density number \mathfrak{g}, introduced by Blass and Laflamme in [4], is perhaps less popular but it has gained substantial importance in the realm of cardinal invariants. For instance, it has been studied in connection with the cofinality $\operatorname{cf}(\operatorname{Sym}(\omega))$ of the symmetric group on the set ω of all integers, see Thomas [8] or Brendle and Losada [5]. The cardinal \mathfrak{g} is defined as follows.

Definition 1.2

(a) We say that a family $\mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ is groupwise dense whenever
(a1) $B \subseteq A \in \mathcal{A}, B \in[\omega]^{\aleph_{0}}$ implies $B \in \mathcal{A}$;
(a2) for every increasing sequence $\left\langle m_{i}: i<\omega\right\rangle \in{ }^{\omega} \omega$ there is an infinite set $\mathcal{U} \subseteq \omega$ such that

$$
\bigcup\left\{\left[m_{i}, m_{i+1}\right): i \in \mathcal{U}\right\} \in \mathcal{A}
$$

(b) The groupwise density number \mathfrak{g} is the minimal cardinal θ for which there is a sequence $\left\langle\mathcal{A}_{\alpha}: \alpha<\theta\right\rangle$ of groupwise dense subsets of $[\omega]^{\aleph_{0}}$ such that

$$
\left(\forall B \in[\omega]^{\aleph_{0}}\right)(\exists \alpha<\theta)\left(\forall A \in \mathcal{A}_{\alpha}\right)\left(B \not \mathbb{Z}^{*} A\right)
$$

(Recall that for infinite sets A and $B, A \subseteq^{*} B$ means $A \backslash B$ is finite.)

[^0]The unbounded number \mathfrak{b} and the groupwise density number \mathfrak{g} can be in either order, see Blass [3] and more Mildenberger and Shelah [7, 6], the latter article gives a bound on \mathfrak{g}. However, as we show in Theorem 2.3, \mathfrak{g} cannot be bigger than \mathfrak{b}^{+}.

Notation 1.3 Our notation is rather standard and compatible with that of classical textbooks on set theory (like Bartoszyński and Judah [2]). We will keep the following rules concerning the use of symbols.

1. A, B, \mathcal{U} (with possible sub- and superscripts) denote subsets of ω, infinite if not said otherwise.
2. m, n, ℓ, k, i, j are natural numbers; $\alpha, \beta, \gamma, \delta, \varepsilon, \xi, \zeta$ are ordinals, θ is a cardinal.

2 The result

Lemma 2.1 For some cardinal $\theta \leq \mathfrak{b}$ there is a sequence $\left\langle B_{\zeta, t}: \zeta<\theta, t \in I_{\zeta}\right\rangle$ such that the following hold:
(a) $B_{\zeta, t} \in[\omega]^{\aleph_{0}}$.
(b) If $\zeta<\theta$ and $s \neq t$ are from I_{ζ}, then $B_{\zeta, s} \cap B_{\zeta, t}$ is finite (so $\left|I_{\zeta}\right| \leq 2^{\aleph_{0}}$).
(c) For every $B \in[\omega]^{\aleph_{0}}$ the set $\left\{(\zeta, t): \zeta<\theta \& t \in I_{\zeta} \& B_{\zeta, t} \cap B\right.$ is infinite $\}$ is of cardinality $2^{\aleph_{0}}$.

Proof. This lemma is a weak version of the celebrated base-tree theorem of Bohuslav Balcar and Petr Simon with $\theta=\mathfrak{h}$ which is known to be $\leq \mathfrak{b}$, see Balcar and Simon [1, Theorem 3.4, p. 350]. However, for the sake of completeness of our exposition, let us present a proof.

Let $\left\langle f_{\zeta}: \zeta<\mathfrak{b}\right\rangle$ be $\mathrm{a} \leq_{J_{\omega} \mathrm{bd}}$-increasing sequence of members of ${ }^{\omega} \omega$ with no $\leq_{J_{\omega} \text { bd }-u p p e r ~ b o u n d ~ i n ~}{ }^{\omega} \omega$. Moreover we demand that each f_{ζ} is increasing (clearly, this does not change \mathfrak{b}). By induction on $\zeta<\mathfrak{b}$ choose sets \mathcal{T}_{ζ} and systems $\left\langle B_{\zeta, \eta}: \eta \in \mathcal{T}_{\zeta+1}\right\rangle$ such that the following hold:
(i) $\mathcal{I}_{\zeta} \subseteq \zeta\left(2^{\aleph_{0}}\right)$, and if $\eta \in \mathcal{T}_{\zeta+1}$, then $B_{\zeta, \eta} \in[\omega]^{\aleph_{0}}$.
(ii) If $\eta \in \mathcal{T}_{\zeta}$ and $\varepsilon<\zeta$, then $\eta \upharpoonright \varepsilon \in \mathcal{T}_{\varepsilon}$.
(iii) If ζ is a limit ordinal, then

$$
\mathcal{T}_{\zeta}=\left\{\eta \in{ }^{\zeta}\left(2^{\aleph_{0}}\right):(\forall \varepsilon<\zeta)\left(\eta \upharpoonright \varepsilon \in \mathcal{T}_{\varepsilon}\right) \&\left(\exists A \in[\omega]^{\aleph_{0}}\right)(\forall \varepsilon<\zeta)\left(A \subseteq^{*} B_{\varepsilon, \eta \upharpoonright(\varepsilon+1)}\right)\right\}
$$

(iv) If $\varepsilon<\zeta$ and $\eta \in \mathcal{T}_{\zeta+1}$, then $B_{\zeta, \eta} \subseteq^{*} B_{\varepsilon, \eta \upharpoonright(\varepsilon+1)}$.
(v) For $\eta \in \mathcal{T}_{\zeta+1}$ and $m_{1}<m_{2}$ from $B_{\zeta, \eta}$ we have $f_{\zeta}\left(m_{1}\right)<m_{2}$.
(vi) If $\eta \in \mathcal{T}_{\varepsilon}$, then the set $\left\{B_{\varepsilon, \nu}: \eta \triangleleft \nu \in \mathcal{T}_{\varepsilon+1}\right\}$ is an infinite maximal subfamily of

$$
\left\{A \in[\omega]^{\aleph_{0}}:(\forall \xi<\varepsilon)\left(A \subseteq^{*} B_{\xi, \eta \upharpoonright(\xi+1)}\right)\right\}
$$

consisting of pairwise almost disjoint sets.
It should be clear that the choice is possible. Note that for some limit $\zeta<\mathfrak{b}$ we may have $\mathcal{T}_{\zeta}=\emptyset$ (and then also $\mathcal{T}_{\xi}=\emptyset$ for $\xi>\zeta$). Also, if we define $\mathcal{T}_{\mathfrak{b}}$ as in (iii), then it will be empty (remember clause (v) and the choice of $\left.\left\langle f_{\zeta}: \zeta<\mathfrak{b}\right\rangle\right)$.

The lemma will readily follow from the following fact.
Fact 2.2 For every $A \in[\omega]^{\aleph_{0}}$ there is $\xi<\mathfrak{b}$ such that $\mid\left\{\eta \in \mathcal{I}_{\xi+1}: B_{\xi, \eta} \cap A\right.$ is infinite $\} \mid=2^{\aleph_{0}}$.
To show Fact 2.2 let $A \in[\omega]^{\aleph_{0}}$ and define

$$
S=\bigcup_{\zeta<\mathfrak{b}}\left\{\eta \in \mathcal{T}_{\zeta}:(\forall \varepsilon<\zeta)\left(A \cap B_{\varepsilon, \eta \upharpoonright(\varepsilon+1)} \text { is infinite }\right)\right\}
$$

Clearly S is closed under taking the initial segments and $\rangle \in S$. By the "maximal" in clause (vi), we have that
(\circledast) if $\eta \in S \cap \mathcal{T}_{\zeta}$, where $\zeta<\mathfrak{b}$ is non-limit or $c f(\zeta)=\aleph_{0}$, then $(\exists \nu)\left(\eta \triangleleft \nu \in \mathcal{T}_{\zeta+1} \cap S\right)$.
Now if $\eta \in S$ and $\lg (\eta)$ is non-limit or $\operatorname{cf}(\lg (\eta))=\aleph_{0}$, then there are \triangleleft-incomparable $\nu_{0}, \nu_{1} \in S$ extending η, i. e., $\eta \triangleleft \nu_{0}$ and $\eta \triangleleft \nu_{1}$. [Why? As otherwise $S_{\eta}=\{\nu \in S: \eta \unlhd \nu\}$ is linearly ordered by \triangleleft, so let $\varrho=\bigcup S_{\eta}$. It follows from (\circledast) that $\lg (\varrho)>\lg (\eta)$ is a limit ordinal (of uncountable cofinality). Moreover, by (iv) + (vi),

$$
\lg (\eta) \leq \varepsilon<\lg (\varrho) \Rightarrow A \cap B_{\lg (\eta), \varrho \upharpoonright(\lg (\eta)+1)}=^{*} A \cap B_{\varepsilon, \varrho \upharpoonright(\varepsilon+1)}
$$

Hence, by (iii) + (ii), $\varrho \in \mathcal{T}_{\lg (\varrho)}$, so necessarily $\lg (\varrho)<\mathfrak{b}$. Using (vi) again we may conclude that there is $\varrho^{\prime} \in S$ properly extending ϱ, getting a contradiction.]

Consequently, we may find a system $\left\langle\eta_{\varrho}: \varrho \in{ }^{\omega>} 2\right\rangle \subseteq S$ such that for every $\varrho \in{ }^{\omega>} 2$

1. $k<\lg (\varrho) \Rightarrow \eta_{\varrho \upharpoonright k} \triangleleft \eta_{\varrho}$,
2. $\eta_{\varrho-\langle 0\rangle}, \eta_{\varrho-\langle 1\rangle}$ are \triangleleft-incomparable.

For $\varrho \in{ }^{\omega>} 2$ let

$$
\zeta(\varrho)=\sup \left\{\lg \left(\eta_{\nu}\right): \varrho \unlhd \nu \in^{\omega>} 2\right\} .
$$

Pick ϱ such that $\zeta(\varrho)$ is the smallest possible (note that $\operatorname{cf}(\zeta(\varrho))=\aleph_{0}$). Now it is possible to choose a perfect subtree T^{*} of ${ }^{\omega>} 2$ such that

$$
\nu \in \lim \left(T^{*}\right) \Rightarrow \sup \left\{\lg \left(\eta_{\nu \upharpoonright n}\right): n<\omega\right\}=\zeta(\varrho) .
$$

We finish by noting that for every $\nu \in \lim \left(T^{*}\right)$ we have that

$$
\bigcup\left\{\eta_{\nu \uparrow n}: n<\omega\right\} \in \mathcal{T}_{\zeta(\varrho)} \cap S
$$

and there is $\eta^{*} \in \mathcal{T}_{\zeta(\varrho)+1} \cap S$ extending $\bigcup\left\{\eta_{\nu \upharpoonright n}: n<\omega\right\}$.
Theorem $2.3 \mathfrak{g} \leq \mathfrak{b}^{+}$.
Proof. Assume towards contradiction that $\mathfrak{g}>\mathfrak{b}^{+}$.
Let $\left\langle f_{\alpha}: \alpha<\mathfrak{b}\right\rangle \subseteq{ }^{\omega} \omega$ be a $\leq_{J_{\omega}^{\text {bd }}}$-increasing sequence with no $\leq_{J_{\omega}^{\text {bd }}}$-upper bound. We also demand that all functions f_{α} are increasing and $f_{\alpha}(n)>n$ for $n<\omega$. Fix a list $\left\langle\bar{m}_{\xi}: \xi<2^{\aleph_{0}}\right\rangle$ of all sequences

$$
\bar{m}=\left\langle m_{i}: i<\omega\right\rangle
$$

such that $0=m_{0}$ and $m_{i}+1<m_{i+1}$.
For $\alpha<\mathfrak{b}$ we define:

$$
\begin{aligned}
& n_{\alpha, 0}=0, \quad n_{\alpha, i+1}=f_{\alpha}\left(n_{\alpha, i}\right) \quad(\text { for } i<\omega), \quad \bar{n}_{\alpha}=\left\langle n_{\alpha, i}: i<\omega\right\rangle ; \\
& \bar{n}_{\alpha}^{0}=\left\langle 0, n_{\alpha, 2}, n_{\alpha, 4}, \ldots\right\rangle=\left\langle n_{\alpha, i}^{0}: i<\omega\right\rangle, \quad \bar{n}_{\alpha}^{1}=\left\langle 0, n_{\alpha, 3}, n_{\alpha, 5}, n_{\alpha, 7}, \ldots\right\rangle=\left\langle n_{\alpha, i}^{1}: i<\omega\right\rangle .
\end{aligned}
$$

Observe that if $\bar{m} \in{ }^{\omega} \omega$ is increasing, then for every large enough $\alpha<\mathfrak{b}$ we have:
(a) $\left(\exists^{\infty} i<\omega\right)\left(m_{i+1}<f_{\alpha}\left(m_{i}\right)\right)$, and hence
(b) for at least one $\ell \in\{0,1\}$ we have

$$
\left(\exists{ }^{\infty} i<\omega\right)(\exists j<\omega)\left(\left[m_{i}, m_{i+1}\right) \subseteq\left[n_{\alpha, j}^{\ell}, n_{\alpha, j+1}^{\ell}\right)\right)
$$

Now for $\xi<2^{\aleph_{0}}$ we put:

$$
\begin{aligned}
& \gamma(\xi)=\min \left\{\alpha<\mathfrak{b}:\left(\exists \infty_{i}<\omega\right)\left(f_{\alpha}\left(m_{\xi, i}\right)>m_{\xi, i+1}\right)\right\} \\
& \ell(\xi)=\min \left\{\ell \leq 1:\left(\exists \infty_{i<\omega)}(\exists j<\omega)\left(\left[m_{\xi, i}, m_{\xi, i+1}\right) \subseteq\left[n_{\gamma(\xi), j}^{\ell}, n_{\gamma(\xi), j+1}^{\ell}\right)\right)\right\} ;\right. \\
& \mathcal{U}_{\xi}^{1}=\left\{i<\omega:(\exists j<\omega)\left(\left[m_{\xi, i}, m_{\xi, i+1}\right) \subseteq\left[n_{\gamma(\xi), j}^{\ell(\xi)}, n_{\gamma(\xi), j+1}^{\ell(\xi)}\right)\right)\right\}
\end{aligned}
$$

Note that $\gamma(\xi)$ is well defined by (a), and so also $\ell(\xi)$ is well defined (by (b)). Plainly, \mathcal{U}_{ξ}^{1} is an infinite subset of ω. Now for each $\xi<2^{\aleph_{0}}$, we may choose \mathcal{U}_{ξ}^{2} so that $\mathcal{U}_{\xi}^{2} \subseteq \mathcal{U}_{\xi}^{1}$ is infinite and for any $i_{1}<i_{2}$ from \mathcal{U}_{ξ}^{2} we have

$$
(\exists j<\omega)\left(m_{\xi, i_{1}+1}<n_{\gamma(\xi), j}^{\ell(\xi)} \& n_{\gamma(\xi), j+1}^{\ell(\xi)}<m_{\xi, i_{2}}\right)
$$

Let a function $g_{\xi}: \mathcal{U}_{\xi}^{2} \longrightarrow \omega$ be such that
$(*)_{1} i \in \mathcal{U}_{\xi}^{2} \& g_{\xi}(i)=j \Rightarrow\left[m_{\xi, i}, m_{\xi, i+1}\right) \subseteq\left[n_{\gamma(\xi), j}^{\ell(\xi)}, n_{\gamma(\xi), j+1}^{\ell(\xi)}\right)$.
Clearly, g_{ξ} is well defined and one-to-one. (This is very important, since it makes sure that the set $g_{\xi}\left[\mathcal{U}_{\xi}^{2}\right]$ is infinite.)

Fix a sequence $\bar{B}=\left\langle B_{\zeta, t}: \zeta<\theta, t \in I_{\zeta}\right\rangle$ given by Lemma 2.1 (so $\theta \leq \mathfrak{b}$ and \bar{B} satisfies the demands in Lemma 2.1(a) - (c)). By Lemma 2.1(c), for every $\xi<2^{\aleph_{0}}$, the set

$$
\left\{(\zeta, t): \zeta<\theta \text { and } t \in I_{\zeta} \text { and } B_{\zeta, t} \cap g_{\xi}\left[\mathcal{U}_{\xi}^{2}\right] \text { is infinite }\right\}
$$

has cardinality continuum.
Now for each $\beta<\mathfrak{b}^{+}$and $\xi<2^{\aleph_{0}}$ we choose a pair $\left(\zeta_{\beta, \xi}, t_{\beta, \xi}\right)$ such that
$(*)_{2} \zeta_{\beta, \xi}<\theta$ and $t_{\beta, \xi} \in I_{\zeta_{\beta, \xi}}$,
$(*)_{3} B_{\zeta_{\beta, \xi}, t_{\beta, \xi}} \cap g_{\xi}\left[\mathcal{U}_{\xi}^{2}\right]$ is infinite, and
$(*)_{4} t_{\beta, \xi} \notin\left\{t_{\alpha, \varepsilon}: \varepsilon<\xi\right.$ or $\left.\varepsilon=\xi \& \alpha<\beta\right\}$.
To carry out the choice we proceed by induction first on $\xi<2^{\aleph_{0}}$, then on $\beta<\mathfrak{b}^{+}$. As there are $2^{\aleph_{0}}$ pairs (ζ, t) satisfying clauses $(*)_{2}+(*)_{3}$, whereas clause $(*)_{4}$ excludes $\leq\left(\mathfrak{b}^{+}+|\xi|\right) \times \theta<2^{\aleph_{0}}$ pairs (recalling that towards contradiction we are assuming $\mathfrak{b}^{+}<\mathfrak{g} \leq 2^{\aleph_{0}}$), there is such a pair at each stage $(\beta, \xi) \in \mathfrak{b}^{+} \times 2^{\aleph_{0}}$.

Lastly, for $\beta<\mathfrak{b}^{+}$and $\xi<2^{\aleph_{0}}$ we let
$(*)_{5} \mathcal{U}_{\beta, \xi}=g_{\xi}^{-1}\left[B_{\zeta_{\beta, \xi}, t_{\beta, \xi}}\right] \cap \mathcal{U}_{\xi}^{2}$
(it is an infinite subset of ω) and we put
$(*)_{6} A_{\beta, \xi}^{+}=\bigcup\left\{\left[m_{\xi, i}, m_{\xi, i+1}\right): i \in \mathcal{U}_{\beta, \xi}\right\}$, and $\mathcal{A}_{\beta}=\left\{A \in[\omega]^{\aleph_{0}}:\right.$ for some $\xi<2^{\aleph_{0}}$ we have $\left.A \subseteq A_{\beta, \xi}^{+}\right\}$.
By the choice of $\left\langle\bar{m}_{\xi}: \xi<2^{\aleph_{0}}\right\rangle, A_{\beta, \xi}^{+}$, and \mathcal{A}_{β} one easily verifies that for each $\beta<\mathfrak{b}^{+}, \mathcal{A}_{\beta}$ is a groupwise dense subset of $[\omega]^{\aleph_{0}}$. Since we are assuming towards contradiction that $\mathfrak{g}>\mathfrak{b}^{+}$, there is an infinite $B \subseteq \omega$ such that

$$
\left(\forall \beta<\mathfrak{b}^{+}\right)\left(\exists A \in \mathcal{A}_{\beta}\right)\left(B \subseteq^{*} A\right)
$$

Hence for every $\beta<\mathfrak{b}^{+}$we may choose $\xi(\beta)<2^{\aleph_{0}}$ such that $B \subseteq^{*} A_{\beta, \xi(\beta)}^{+}$. Plainly,

$$
\gamma(\xi(\beta))<\mathfrak{b} \quad \text { and } \quad \zeta_{\beta, \xi(\beta)}<\theta \leq \mathfrak{b} \quad \text { and } \quad \ell(\xi(\beta)) \in\{0,1\}
$$

and therefore for some triple $\left(\gamma^{*}, \zeta^{*}, \ell^{*}\right)$ the set

$$
W:=\left\{\beta<\mathfrak{b}^{+}:\left(\gamma(\xi(\beta)), \zeta_{\beta, \xi(\beta)}, \ell(\xi(\beta))\right)=\left(\gamma^{*}, \zeta^{*}, \ell^{*}\right)\right\}
$$

is unbounded in \mathfrak{b}^{+}. Note that if $\beta \in W$, then

$$
\begin{align*}
B & \subseteq^{*} A_{\beta, \xi(\beta)}^{+} \tag{1}\\
& =\bigcup\left\{\left[m_{\xi(\beta), i}, m_{\xi(\beta), i+1}\right): i \in \mathcal{U}_{\beta, \xi(\beta)}\right\} \\
& \subseteq \bigcup\left\{\left[n_{\gamma(\xi(\beta))}^{\ell(\xi(\beta)), j}, n_{\gamma(\xi(\beta))}^{\ell(\xi(\beta)), j+1}\right): j=g_{\xi(\beta)}(i) \text { for some } i \in \mathcal{U}_{\beta, \xi(\beta)}\right\} \\
& \subseteq \bigcup\left\{\left[n_{\gamma(\xi(\beta)), j}^{\ell(\xi(\beta))}, n_{\gamma(\xi(\xi(\beta)), j+1}^{\ell(\xi(\beta))}\right): j \in B_{\zeta_{\beta, \xi(\beta), t}}\right\}
\end{align*}
$$

[Why? By the choice of $(\beta, \xi(\beta))$, by $(*)_{6}$, and by $(*)_{1}$ as $\operatorname{Dom}\left(g_{\xi(\beta)}\right) \subseteq \mathcal{U}_{\beta, \xi(\beta)} \subseteq \mathcal{U}_{\beta, \xi(\beta)}^{2}$; by $(*)_{5}$.]
Also, for $\beta \in W$ we have $\ell(\xi(\beta))=\ell^{*}, \gamma(\xi(\beta))=\gamma^{*}$, and $\zeta(\beta, \xi(\beta))=\zeta^{*}$, so it follows from (1) that

$$
B \subseteq^{*} \bigcup\left\{\left[n_{\gamma^{*}, j}^{\ell^{*}}, n_{\gamma^{*}, j+1}^{\ell^{*}}\right): j \in B_{\zeta^{*}, t_{\beta, \xi(\beta)}}\right\}
$$

for every $\beta \in W$.
Consequently, if $\beta \neq \alpha$ are from W, then the sets

$$
\bigcup\left\{\left[n_{\gamma^{*}, j}^{\ell^{*}}, n_{\gamma^{*}, j+1}^{\ell^{*}}\right): j \in B_{\zeta^{*}, t_{\beta, \xi(\beta)}}\right\} \quad \text { and } \quad \bigcup\left\{\left[n_{\gamma^{*}, j}^{\ell^{*}}, n_{\gamma^{*}, j+1}^{\ell^{*}}\right): j \in B_{\zeta^{*}, t_{\alpha, \xi(\alpha)}}\right\}
$$

are not almost disjoint. Hence, as $\left\langle n_{\gamma^{*}, j}^{\ell^{*}}: j<\omega\right\rangle$ is increasing, necessarily the sets $B_{\zeta^{*}, t_{\beta, \xi(\beta)}}$ and $B_{\zeta^{*}, t_{\alpha, \xi(\alpha)}}$ are not almost disjoint. So applying Lemma 2.1(b) we conclude that $t_{\beta, \xi(\beta)}=t_{\alpha, \xi(\alpha)}$. But this contradicts $\beta \neq \alpha$ by $(*)_{4}$, and we are done.

Definition 2.4 We define a cardinal characteristic $\mathfrak{g}_{\mathrm{f}}$ as the minimal cardinal θ for which there exists a sequence $\left\langle\mathcal{I}_{\alpha}: \alpha<\theta\right\rangle$ of groupwise dense ideals of $\mathcal{P}(\omega)$ (i.e., $\mathcal{I}_{\alpha} \subseteq[\omega]^{\aleph_{0}}$ is groupwise dense and $\mathcal{I}_{\alpha} \cup[\omega]^{<\aleph_{0}}$ is an ideal of subsets of ω) such that

$$
\left(\forall B \in[\omega]^{\aleph_{0}}\right)(\exists \alpha<\theta)\left(\forall A \in \mathcal{A}_{\alpha}\right)\left(B \not \mathbb{E}^{*} A\right)
$$

Observation 2.5 $2^{\aleph_{0}} \geq \mathfrak{g}_{\mathfrak{f}} \geq \mathfrak{g}$.
Theorem $2.6 \mathfrak{g}_{\mathfrak{f}} \leq \mathfrak{b}^{+}$.
Proof. We repeat the proof of Theorem 2.3. However, for $\beta<\mathfrak{b}^{+}$the family $\mathcal{A}_{\beta} \subseteq[\omega]{ }^{\leq \aleph_{0}}$ does not have to be an ideal. So let \mathcal{I}_{β} be an ideal on $\mathcal{P}(\omega)$ generated by \mathcal{A}_{β} - so also \mathcal{I}_{β} is the ideal generated by

$$
\left\{A_{\beta, \xi}^{+}: \xi<2^{\aleph_{0}}\right\} \cup[\omega]^{<\aleph_{0}}
$$

Lastly, let $\mathcal{I}_{\beta}^{\prime}=\mathcal{I}_{\beta} \backslash[\omega]^{<\aleph_{0}}$.
Assume towards contradiction that $B \in[\omega]^{\aleph_{0}}$ is such that

$$
\left(\forall \alpha<\mathfrak{b}^{+}\right)\left(\exists A \in \mathcal{I}_{\alpha}\right)\left(B \subseteq^{*} A\right)
$$

So for each $\beta<\mathfrak{b}^{+}$we can find $k_{\beta}<\omega$ and $\xi(\beta, 0)<\xi(\beta, 1)<\cdots<\xi\left(\beta, k_{\beta}\right)<2^{\aleph_{0}}$ such that

$$
B \subseteq^{*} \bigcup\left\{A_{\beta, \xi(\beta, k)}^{+}: k \leq k_{\beta}\right\}
$$

Let D be a non-principal ultrafilter on ω to which B belongs. Then for every $\beta<\mathfrak{b}^{+}$there exists $k(\beta) \leq k_{\beta}$ such that $A_{\beta, \xi(\beta, k(\beta))}^{+} \in D$. As in the proof there for some $\left(\gamma^{*}, \zeta^{*}, \ell^{*}, k^{*}, k(*)\right)$ the following set is unbounded in \mathfrak{b}^{+}:

$$
\begin{aligned}
W:=\left\{\beta<\mathfrak{b}^{+}:\right. & k(\beta)=k(*), k_{\beta}=k^{*}, \gamma_{\xi(\beta, k(*))}=\gamma^{*}, \zeta_{\beta, \xi(\beta, k(*))}=\zeta^{*} \\
& \text { and } \left.\ell(\xi(\beta, k(*)))=\ell^{*}\right\} .
\end{aligned}
$$

As there it follows that if $\beta \in W$, then

$$
\bigcup\left\{\left[n_{\gamma^{*}, j}^{\ell^{*}}, n_{\gamma^{*}, j+1}^{\ell^{*}}\right): j \in B_{\zeta^{*}, t_{\beta, \xi(\beta, k(*))}}\right\}
$$

belongs to D. But for $\beta \neq \alpha \in W$ those sets are not almost disjoint, whereas $\left(\zeta^{*}, t_{\beta, \xi(\beta, k(*))}\right) \neq\left(\zeta^{*}, t_{\alpha, \xi(\alpha, k(*))}\right)$ are distinct, giving us a contradiction.

Acknowledgements We would like to thank Shimoni Garti and the anonymous referee for corrections.
The author acknowledges support from the United States-Israel Binational Science Foundation (Grant no. 2002323). This is publication 887 of the author.

References

[1] B. Balcar and P. Simon, Disjoint refinement. In: Handbook of Boolean Algebras, volume 2 (D. Monk and R. Bonnet, eds.), pp. 333-388 (North-Holland, 1989).
[2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line (AK Peters, 1995).
[3] A. Blass, Applications of superperfect forcing and its relatives. In: Set Theory and Its Applications. Lecture Notes in Mathematics 1401, pp. 18 - 40 (Springer, 1989).
[4] A. Blass and C. Laflamme, Consistency results about filters and the number of inequivalent growth types. J. Symbolic Logic 54, 50 - 56 (1989).
[5] J. Brendle and M. Losada, The cofinality of the infinite symmetric group and groupwise density. J. Symbolic Logic 68, 1354-1361 (2003).
[6] H. Mildenberger and S. Shelah, Increasing the groupwise density number by c.c.c. forcing. To appear in Annals of Pure and Applied Logic. Preprint available at http://www.logic.univie.ac.at/~heike/843rev3.pdf.
[7] H. Mildenberger and S. Shelah, The relative consistency of $\mathfrak{g}<\operatorname{cf}(\operatorname{Sym}(\omega))$. J. Symbolic Logic 67, 297 - 314 (2002).
[8] S. Thomas, Groupwise density and the confinality of the infinite symmetric group. Arch. Math. Logic 37, 483-493 (1998).
[9] E. K. van Douwen, The integers and topology. In: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), pp. 111 - 167 (Elsevier Science Publishers, 1984).

[^0]: * e-mail: shelah@math.huji.ac.il

