Jörg Brendle • Saharon Shelah

Evasion and prediction

IV. Strong forms of constant prediction

Received: 27 June 2001 / Revised version: 10 September 2001 /
Published online: 10 October 2002 - © Springer-Verlag 2002

Abstract

Say that a function $\pi: n^{<\omega} \rightarrow n$ (henceforth called a predictor) k-constantly predicts a real $x \in n^{\omega}$ if for almost all intervals I of length k, there is $i \in I$ such that $x(i)=\pi(x \backslash i)$. We study the k-constant prediction number $\mathfrak{v}_{n}^{\text {const }}(k)$, that is, the size of the least family of predictors needed to k-constantly predict all reals, for different values of n and k, and investigate their relationship.

Introduction

This work is about evasion and prediction, a combinatorial concept originally introduced by Blass when studying set-theoretic aspects of the Specker phenomenon in abelian group theory [B11]. The motivation for our investigation came from a (still open) question of Kamo, as well as from an argument in a proof by the first author. Let us explain this in some detail.

For our purposes, let $n \leq \omega$ and call a function $\pi: n^{<\omega} \rightarrow n$ a predictor. Say πk-constantly predicts a real $x \in n^{\omega}$ if for almost all intervals I of length k, there is $i \in I$ such that $x(i)=\pi(x \upharpoonright i)$. In case πk-constantly predicts x for some k, say that π constantly predicts x. The constant prediction number $\mathfrak{v}_{n}^{\text {const }}$, introduced by Kamo in [Ka1], is the smallest size of a set of predictors Π such that every $x \in n^{\omega}$ is constantly predicted by some $\pi \in \Pi$. Kamo [Ka1] showed that $\mathfrak{v}_{\omega}^{\text {const }}$ may be larger than all the $\mathfrak{v}_{n}^{\text {const }}$ where $n \in \omega$. He asked

Question. (Kamo [Ka2]) Is $\mathfrak{v}_{2}^{\text {const }}=\mathfrak{v}_{n}^{\text {const }}$ for all $n \in \omega$.

[^0]Some time ago, the first author answered another question of Kamo's by showing that $\mathfrak{b} \leq \mathfrak{v}_{2}^{\text {const }}$ where \mathfrak{b} is the unbounding number [Br]. Now, the standard approach to such a result would have been to show that, given a model M of $Z F C$ such that there is a dominating real f over M, there must be a real which is not constantly predicted by any predictor from M. This, however, is far from being true. In fact, one needs a sequence of $2^{k}-1$ models M_{i} and dominating reals f_{i} over M_{i} belonging to M_{i+1} to be able to construct a real which is not k-constantly predicted by any predictor from M_{0}, and this result is optimal (see [Br] for details). This means k-constant prediction gets easier in a strong sense the larger k gets, and one can expect interesting results when investigating the cardinal invariants which can be distilled out of this phenomenon.

Accordingly, let us define the k-constant prediction number $\mathfrak{v}_{n}^{\text {const }}(k)$ to be the size of the smallest set of predictors Π such that every $x \in n^{\omega}$ is k-constantly predicted by some $\pi \in \Pi$. Interestingly enough, Kamo's question cited above has a positive answer when relativized to the new situation. Namely, we shall show in Section 1 that $\mathfrak{v}_{2}^{\text {const }}(k)=\mathfrak{v}_{n}^{\text {const }}(k)$ for all $k, n<\omega$ (see 1.4). Moreover, for $k<\ell$, one may well have $\mathfrak{v}_{2}^{\text {const }}(\ell)<\mathfrak{v}_{2}^{\text {const }}(k)$ (Theorem 2.1). Any hope to use Theorem 1.4 as an intermediate step to answer Kamo's question is dashed, however, by Theorem 2.2 which says that $\mathfrak{v}_{2}^{\text {const }}$ may be strictly smaller than the minimum of all $\mathfrak{v}_{2}^{\text {const }}(k)$'s.

In Section 3, we dualize Theorem 2.1 to a consistency result about evasion numbers and establish a connection between those and Martin's axiom for $\sigma-k$-linked partial orders (see Theorem 3.7).

We keep our notation fairly standard. For basics concerning the cardinal invariants considered here, as well as the forcing techniques, see [BJ] and [B12].

The results in this paper were obtained in September 2000 during and shortly after the second author's visit to Kobe. The results in Sections 1 and 2 are due to the second author. The remainder is the first author's work.

1. The ZFC-results

Temporarily say that $\pi: n^{<\omega} \rightarrow n$ weakly k-constantly predicts $x \in n^{\omega}$ if for almost all m there is $i<k$ such that $\pi(x \upharpoonright m k+i)=x(m k+i)$. This notion is obviously weaker than k-constant prediction (and stronger than ($2 k-1$)-constant prediction). It is often more convenient, however. We shall see soon that in terms of cardinal invariants the two notions are the same.

Put $G=\left\{\bar{g}=\left\langle g_{i} ; i<k\right\rangle ; g_{i}: n^{k} \rightarrow 2\right\}$.
Theorem 1.1. There are functions $\bar{\pi}=\left\langle\pi^{\bar{g}}, j ;(\bar{g}, j) \in G \times k\right\rangle \mapsto \psi_{\bar{\pi}}$ (where $\pi^{\bar{g}, j}: 2^{<\omega} \rightarrow 2$ and $\left.\psi_{\bar{\pi}}: n^{<\omega} \rightarrow n\right)$ and $y \mapsto\left\langle y^{\bar{g}, j} ;(\bar{g}, j) \in G \times k\right\rangle$ (where $y \in n^{\omega}$ and $y^{\bar{g}, j} \in 2^{\omega}$) such that if $\pi^{\bar{g}, j}$ weakly k-constantly predicts $y^{\bar{g}, j}$ for all pairs (\bar{g}, j), then $\psi_{\bar{\pi}} k$-constantly predicts y.

Proof. Given $y \in n^{\omega}$, define $y^{\bar{g}, j}$ by

$$
y^{\bar{g}, j}(m k+i)=g_{i}(y \upharpoonright[m k+j,(m+1) k+j)) .
$$

Also, for $\sigma \in n^{<\omega}$, say $|\sigma|=m_{0} k+j$, define $\sigma^{\bar{g}, j}$ by

$$
\sigma^{\bar{g}, j}(m k+i)=g_{i}(\sigma \upharpoonright[m k+j,(m+1) k+j))
$$

for all $m<m_{0}$. So $\left|\sigma^{\bar{g}, j}\right|=m_{0} k$.
Given $\bar{\pi}=\left\langle\pi^{\bar{g}}, j ;(\bar{g}, j) \in G \times k\right\rangle$, a sequence of predictors for the space 2^{ω}, and $\sigma \in n^{<\omega}$, say $|\sigma|=m k+j$, put

$$
A_{\sigma}^{k}=\left\{\tau \supset \sigma ;|\tau|=|\sigma|+k \text { and } \forall \bar{g} \exists i\left(\tau^{\bar{g}, j}(m k+i)=\pi^{\bar{g}, j}\left(\tau^{\bar{g}, j}\lceil m k+i)\right)\right\} .\right.
$$

For $i<k$, define $A_{\sigma}^{i}=\left\{\tau \supset \sigma ; \tau \in A_{\sigma| | \sigma \mid-k+i}^{k}\right\}$. So, if $\tau \in A_{\sigma}^{i},|\tau|=|\sigma|+i$.
Claim 1.2. $\left|A_{\sigma}^{k}\right|<2^{k}$ for all σ.
Proof. Assume that, for some σ, we have $\left|A_{\sigma}^{k}\right| \geq 2^{k}$. List pairwise distinct $\left\{\tau_{\ell} ; \ell<\right.$ $\left.2^{k}\right\} \subseteq A_{\sigma}^{k}$ and list $2^{k}=\left\{\sigma_{\ell} ; \ell<2^{k}\right\}$. Fix m and j such that $|\sigma|=m k+j$. Define $g_{i}\left(\tau_{\ell}\lceil[m k+j,(m+1) k+j))=\sigma_{\ell}(i)\right.$ and consider $\bar{g}=\left\langle g_{i} ; i<k\right\rangle$. Then $\tau_{\ell}^{\bar{g}, j} \upharpoonright[m k,(m+1) k)=\sigma_{\ell}$. This is a contradiction to the definition of A_{σ}^{k} for it would mean $\pi^{\bar{g}, j}$ cannot predict correctly all $\tau_{\ell}^{\bar{g}, j}$ somewhere in the interval $[m k,(m+1) k)$.

For $\sigma \in n^{<\omega}$ define $\psi_{\bar{\pi}}(\sigma)$ as follows. First let $i \leq k$ be minimal such that $\left|A_{\sigma}^{i}\right|<2^{i}$. Such i exists by the claim. Since $A_{\sigma}^{0}=\{\sigma\}$, we necessarily have $i \geq 1$. Then let $\psi_{\bar{\pi}}(\sigma)$ be any ℓ such that $A_{\sigma^{\prime}\langle\ell\rangle}^{i-1}$ is of maximal size.

To see that this works, let $y \in n^{\omega}$. Let $\pi^{\bar{g}}, j$ be predictors such that for all \bar{g}, j and almost all m, there is i such that $y^{\bar{g}, j}(m k+i)=\pi^{\bar{g}, j}\left(y^{\bar{g}, j}\lceil m k+i)\right.$. Fix m_{0} such that for all $m \geq m_{0}$ and all \bar{g}, j, there is i such that $y^{\bar{g}, j}(m k+i)=\pi^{\bar{g}, j}\left(y^{\bar{g}, j}\lceil m k+i)\right.$. Let $m k+j \in \omega$ with $m \geq m_{0}$. Thus $y\left\lceil m k+j+i \in A_{y\lceil m k+j}^{i}\right.$ for all $i \leq k$. We need to find $i<k$ such that $\psi_{\bar{\pi}}(y \upharpoonright m k+j+i)=y(m k+j+i)$. To this end simply note that if i is such that $\psi_{\bar{\pi}}(y\lceil m k+j+i) \neq y(m k+j+i)$, then, by definition of $\psi_{\bar{\pi}}$,

$$
\left|A_{y \backslash m k+j+i+1}^{\ell_{i}-1}\right| \leq \frac{\left|A_{y \backslash m k+j+i}^{\ell_{i}}\right|}{2}
$$

where ℓ_{i} is minimal with $\left|A_{y \backslash m k+j+i}^{\ell_{i}}\right|<2^{\ell_{i}}$. This means in particular $\left|A_{y\lceil m k+j+i+1}^{\ell_{i}-1}\right|$ $<2^{\ell_{i}-1}$. A fortiori, $\ell_{i+1} \leq \ell_{i}-1$. Since $\ell_{0} \leq k$, this entails that if we had $\psi_{\bar{\pi}}(y \mid m k+j+i) \neq y(m k+j+i)$ for all $i<k$, we would get $\ell_{i}=0$ for some $i \leq k$. Thus $\left|A_{y \backslash m k+j+i}^{0}\right|<2^{0}=1$. So $A_{y\lceil m k+j+i}^{0}=\emptyset$. However $y\left\lceil m k+j+i \in A_{y\lceil m k+j+i}^{0}\right.$, a contradiction. This completes the proof of the theorem.

Define the k-constant evasion number $\mathfrak{e}_{n}^{\text {const }}(k)$ to be the dual of $\mathfrak{v}_{n}^{\text {const }}(k)$, namely the size of the smallest set of functions $F \subseteq n^{\omega}$ such that for every predictor π there is $x \in F$ which is not k-constantly predicted by π. Similarly, define the constant evasion number $\mathfrak{e}_{n}^{\text {const }}$.

Let $\overline{\mathfrak{v}}_{n}^{\text {const }}(k)$ denote the size of the least family Π of predictors $\pi: n^{<\omega} \rightarrow n$ such that every $y \in n^{\omega}$ is weakly k-constantly predicted by a member of Π. Dually, $\overline{\mathfrak{e}}_{n}^{\text {const }}(k)$ is the size of the least family $F \subseteq n^{\omega}$ such that no predictor $\pi: n^{<\omega} \rightarrow n$ weakly k-constantly predicts all members of F. The above theorem entails

Corollary 1.3. $\mathfrak{v}_{n}^{\text {const }}(k) \leq \overline{\mathfrak{v}}_{2}^{\text {const }}(k)$. Dually, $\mathfrak{e}_{n}^{\text {const }}(k) \geq \overline{\mathfrak{e}}_{2}^{\text {const }}(k)$.
Proof. Let Π be a family of predictors in 2^{ω} weakly k-constantly predicting all functions. Put $\Psi=\left\{\psi_{\bar{\pi}} ; \bar{\pi}=\left\langle\pi^{\bar{g}}, j ;(\bar{g}, j) \in G \times k\right\rangle \in \Pi^{<\omega}\right\}$. By the theorem, every $y \in n^{\omega}$ is k-constantly predicted by a member of Ψ. This shows $\mathfrak{v}_{n}^{\text {const }}(k) \leq \overline{\mathfrak{v}}_{2}^{\text {const }}(k)$.

Next let $F \subseteq n^{\omega}$ be a family of functions such that no predictor k-constantly predicts all of F. Let $Y=\left\{y^{\bar{g}}, j ;(\bar{g}, j) \in G \times k\right.$ and $\left.y \in F\right\} \subseteq 2^{\omega}$. Assume $\pi: 2^{<\omega} \rightarrow 2$ weakly k-constantly predicts all members of Y. Then $\psi_{\bar{\pi}} k$-constantly predicts all members of F, where we put $\bar{\pi}=\left\langle\pi^{\bar{g}, j} ;(\bar{g}, j) \in G \times k\right\rangle$ with $\pi^{\bar{g}, j}=\pi$ for all $(\bar{g}, j) \in G \times k$, a contradiction.

Since the other inequalities are trivial, we get
Theorem 1.4. $\overline{\mathfrak{v}}_{n}^{\text {const }}(k)=\mathfrak{v}_{n}^{\text {const }}(k)=\mathfrak{v}_{2}^{\text {const }}(k)$ for all n. Dually, $\overline{\mathfrak{e}}_{n}^{\text {const }}(k)=$ $\mathfrak{e}_{n}^{\text {const }}(k)=\mathfrak{e}_{2}^{\text {const }}(k)$ for all n.

A fortiori, we also get $\min \left\{\mathfrak{v}_{n}^{\text {const }}(k) ; k \in \omega\right\}=\min \left\{\mathfrak{v}_{2}^{\text {const }}(k) ; k \in \omega\right\}$ and $\sup \left\{\mathfrak{e}_{n}^{\text {const }}(k) ; k \in \omega\right\}=\sup \left\{\mathfrak{e}_{2}^{\text {const }}(k) ; k \in \omega\right\}$ for all n.

2. Prediction and relatives of Sacks forcing

For $2 \leq k<\omega$, define k-ary Sacks forcing \mathbb{S}^{k} to be the set of all subtrees $T \subseteq k^{<\omega}$ such that below each node $s \in T$, there is $t \supset s$ whose k immediate successor nodes $t^{\wedge}\langle i\rangle(i<k)$ all belong to T. \mathbb{S}^{k} is ordered by inclusion. Obviously \mathbb{S}^{2} is nothing but standard Sacks forcing \mathbb{S}.

Iterating $\mathbb{S}^{k} \omega_{2}$ many times with countable support over a model for $C H$ yields a model where $\mathfrak{v}_{2}^{\text {const }}(\ell)$ is large if $2^{\ell} \leq k$ and small otherwise. This has been observed independently around the same time by Kada [Kd2]. However, one can get better consistency results by using large countable support products instead. The following is in the spirit of [GSh].

Theorem 2.1. Assume CH. Let $2 \leq k_{1}<\ldots<k_{n-1}$. Also let $\kappa_{i}, i \leq n$, be cardinals with $\kappa_{i}^{\omega}=\kappa_{i}$ and $\kappa_{n}<\ldots<\kappa_{0}$. Then there is a generic extension satisfying $\mathfrak{v}_{2}^{\text {const }}=\min \left\{\mathfrak{v}_{2}^{\text {const }}(k) ; k \in \omega\right\}=\mathfrak{v}_{2}^{\text {const }}\left(k_{n-1}+1\right)=\kappa_{n}, \mathfrak{v}_{2}^{\text {const }}\left(k_{i}\right)=$ $\mathfrak{v}_{2}^{\text {const }}\left(k_{i-1}+1\right)=\kappa_{i}$ for $0<i<n$ (where we put $k_{0}=1$) and $\mathfrak{c}=\kappa_{0}$.

Proof. We force with the countable support product $\mathbb{P}=\prod_{\alpha<\kappa_{0}} \mathbb{Q}_{\alpha}$ where

- \mathbb{Q}_{α} is Sacks forcing \mathbb{S}_{α} for $\kappa_{1} \leq \alpha<\kappa_{0}$,
- \mathbb{Q}_{α} is $2^{k_{i}}$-ary Sacks forcing $\mathbb{S}_{\alpha}^{2^{k_{i}}}$ for $0<i<n$ and $\kappa_{i+1} \leq \alpha<\kappa_{i}$, and
- \mathbb{Q}_{α} is $\mathbb{S}_{\alpha}^{\ell \alpha}$ where $\left|\left\{\alpha ; \ell=\ell_{\alpha}\right\}\right|=\kappa_{n}$ for all ℓ, for $\alpha<\kappa_{n}$.

By $C H, \mathbb{P}$ preserves cardinals and cofinalities. $\mathfrak{c}=\kappa_{0}$ is also immediate.

Note that if $X \subseteq 2^{\omega}$ and $|X|<\kappa_{i}$, then there is $A \subseteq \kappa_{0}$ of size $<\kappa_{i}$ such that $X \in V\left[G_{A}\right]$, the generic extension by conditions with support contained in A, i.e. via the ordering $\prod_{\alpha \in A} \mathbb{Q}_{\alpha}$. So there is $\alpha \in\left(\kappa_{i} \backslash \kappa_{i+1}\right) \backslash A$. Let $f_{\alpha} \in\left(2^{k_{i}}\right)^{\omega}$ be the generic real added by $\mathbb{Q}_{\alpha}=\mathbb{S}_{\alpha}^{2_{i}}$. Using a standard bijection $\phi^{k_{i}}$ between $2^{k_{i}}$ as a set of numbers and $2^{k_{i}}$ as a set of binary sequences of length k_{i}, we define $x_{\alpha} \in 2^{\omega}$ by $x_{\alpha}\left(m k_{i}+j\right)=\left(\phi^{k_{i}}\left(f_{\alpha}(m)\right)\right)(j)$ for $j<k_{i}$. Then x_{α} is not k_{i}-constantly predicted by any predictor from $V\left[G_{A}\right]$. This shows $\mathfrak{v}_{2}^{\text {const }}\left(k_{i}\right) \geq \kappa_{i}$. Similarly, given $A \subseteq \kappa_{0}$ of size $<\kappa_{n}$ such that $X \in V\left[G_{A}\right]$, choose $\alpha_{\ell} \in \kappa_{n} \backslash A$ such that $\ell_{\alpha_{\ell}}=2^{\ell}$ for all ℓ, and let $f_{\alpha_{\ell}} \in\left(2^{\ell}\right)^{\omega}$ be the corresponding generic. Next choose a partition $\left\langle I_{m}^{\ell} ; \ell, m \in \omega\right\rangle$ of ω into intervals with $\left|I_{m}^{\ell}\right|=\ell$, and define $x \in 2^{\omega}$ by $x \upharpoonright I_{m}^{\ell}=\phi^{\ell}\left(f_{\alpha_{\ell}}(m)\right)$. Then x is not constantly predicted by any predictor from $V\left[G_{A}\right]$, and $\mathfrak{v}_{2}^{\text {const }} \geq \kappa_{n}$ follows.

So it remains to see that $\mathfrak{v}_{2}^{\text {const }}\left(k_{i_{0}-1}+1\right) \leq \kappa_{i_{0}}$ for $0<i_{0} \leq n$. Put $\ell=k_{i_{0}-1}+1$. Let \dot{f} be a \mathbb{P}-name for a function in 2^{ω}. By a standard fusion argument we can recursively construct

- a strictly increasing sequence $m_{j}, j \in \omega$,
- $A \subseteq \kappa_{0}$ countable,
- $\left\langle D_{\alpha} ; \alpha \in A\right\rangle$, a partition of ω into countable sets,
- a condition $p=\left\langle p_{\alpha} ; \alpha \in A\right\rangle \in \mathbb{P}$, and
- a tree $T \subseteq 2^{<\omega}$
such that
(a) if $\sigma \in T \cap 2^{m_{j}}, j \in D_{\alpha}$, and $\alpha \in \kappa_{i} \backslash \kappa_{i+1}(i<n)$, then $\mid\left\{\tau \in T \cap 2^{m_{j+1}} ; \sigma \subseteq\right.$ $\tau\} \mid=2^{k_{i}}$,
(b) $p \Vdash \dot{f} \in[T]$, and
(c) whenever $q \leq p$ where $q=\left\langle q_{\beta} ; \beta \in B\right\rangle$ with $A \subseteq B, \sigma \in T \cap 2^{m_{j}}$, and $j \in D_{\alpha}$ are such that $q \Vdash \sigma \subseteq \dot{f}$, then there are $r_{\alpha} \leq q_{\alpha}$ and $\tau \in T \cap 2^{m_{j+1}}$ with $\tau \supseteq \sigma$, such that $r \Vdash \tau \subseteq \dot{f}$ where $r=\left\langle r_{\beta} ; \beta \in B\right\rangle$ with $r_{\beta}=q_{\beta}$ for $\beta \neq \alpha$.

Now let $G_{\kappa_{i_{0}}}$ be $\prod_{\alpha<\kappa_{i_{0}}} \mathbb{Q}_{\alpha}-$ generic with $p\left\lceil\kappa_{i_{0}} \in G_{\kappa_{i_{0}}}\right.$. By (c) above, there is, in $V\left[G_{\kappa_{i_{0}}}\right]$, a tree $S \subseteq T$ such that for all $\alpha \in A \cap \kappa_{i_{0}}, j \in D_{\alpha}$ and $\sigma \in S \cap 2^{m_{j}}$, there is a unique $\tau \in S \cap 2^{m_{j+1}}$ extending σ, and such that \dot{f} is forced to be a branch of S by the remainder of the forcing below p. By (a), we also have that for all $\alpha \in A \backslash \kappa_{i_{0}}, j \in D_{\alpha}$ and $\sigma \in S \cap 2^{m_{j}}$, there are at most $2^{k_{i_{0}-1}}$ many $\tau \in S \cap 2^{m_{j+1}}$ extending σ. This means we can recursively construct a predictor $\pi \in V\left[G_{\kappa_{i_{0}}}\right]$ which ℓ-constantly predicts all branches of S. A fortiori, \dot{f} is forced to be predicted by π by the remainder of the forcing below p. On the other hand, $V\left[G_{\kappa_{i_{0}}}\right]$ satisfies $\mathfrak{c}=\kappa_{i_{0}}$ so that there are a total number of $\kappa_{i_{0}}$ many predictors in $V\left[G_{\kappa_{i_{0}}}\right]$, and they ℓ-constantly predict all reals of the final extension. This completes the argument.

It is easy to see that in models obtained by such product constructions, $\mathfrak{v}_{2}^{\text {const }}=$ $\min \left\{\mathfrak{v}_{2}^{\text {const }}(k) ; k \in \omega\right\}$ must always hold. To distinguish between these two cardinals, we must turn once again to a countable support iteration.

Theorem 2.2. Assume CH. There is a generic extension satisfying $\mathfrak{v}_{2}^{\text {const }}=\aleph_{1}<$ $\min \left\{\mathfrak{v}_{2}^{\text {const }}(k) ; k \in \omega\right\}=\mathfrak{c}=\aleph_{2}$.

Proof. Let $\left\langle k_{\alpha} ; \alpha<\omega_{2}\right\rangle$ be a sequence of natural numbers ≥ 2 in which each k appears ω_{2} often and such that in each limit ordinal, the set of α with $k_{\alpha}=2$ is cofinal.

We perform a countable support iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} ; \alpha<\omega_{2}\right\rangle$ such that

$$
\Vdash_{\alpha} " \dot{\mathbb{Q}}_{\alpha}=\dot{\mathbb{S}}^{k_{\alpha}} \text {, that is } k_{\alpha} \text {-ary Sacks forcing." }
$$

By $C H, \mathbb{P}_{\omega_{2}}$ preserves cardinals and cofinalities. As in the previous proof, we see $\mathfrak{v}_{2}^{\text {const }}(k)=\mathfrak{c}=\aleph_{2}$ for all k. We are left with showing that $\mathfrak{v}_{2}^{\text {const }}=\aleph_{1}$.

For $\ell \geq 2, p \in \mathbb{S}^{\ell}$ and $s \in p$, say s is a splitting node of p if all ℓ immediate successor nodes of s belong to p. Define recursively the $n-t h$ splitting level of p such that the 0 -th splitting level consists of the least splitting node and the $(n+1)$-st splitting level consists of the least splitting nodes beyond the n-th splitting level. For $p, q \in \mathbb{S}^{\ell}$, say $q \leq_{n} p$ if $q \leq p$ and the n-th splitting levels of p and q are the same.

Let \dot{f} be a $\mathbb{P}_{\omega_{2}}$-name for a function in 2^{ω}. Notice given any $p_{0} \in \mathbb{P}_{\omega_{2}}$, we can find $p \leq p_{0}$ and $\alpha<\omega_{2}$ such that

$$
p \Vdash \dot{f} \in V\left[\dot{G}_{\alpha}\right] \backslash \bigcup_{\beta<\alpha} V\left[\dot{G}_{\beta}\right] .
$$

First consider the case α is a successor ordinal, say $\alpha=\beta+1$. Let ℓ be such that $2^{\ell}>k_{\beta}$. The following is the main point.

Main Claim 2.3. There are $q \leq p$ and a predictor $\pi \in V$ such that

$$
q \Vdash \text { " } \pi \quad \ell \text {-constantly predicts } \dot{f} . "
$$

Proof. We construct recursively

- $A \subseteq \alpha$ countable (intended as the domain of the fusion q),
- $\left\langle D_{\gamma} ; \gamma \in A\right\rangle$, a partition of ω into countable sets (its purpose being that at step j of the construction we preserve one more splitting level of the γ-th coordinate of the condition where $j \in D_{\gamma}$),
- finite partial functions $a_{j}: A \rightarrow \omega, j \in \omega$ (keeping track of how often the γ-th coordinate has been worked through),
- conditions $p_{j} \in \mathbb{P}_{\alpha}, j \in \omega$ (intended as a fusion sequence),
- a strictly increasing sequence $m_{j}, j \in \omega$,
- a tree $T \subseteq 2^{<\omega}$, and
- a predictor $\pi: 2^{<\omega} \rightarrow 2$
such that
(a) $\beta \in A$,
(b) $a_{0}=\emptyset$,
(c) if $j \in D_{\gamma}$, then $\operatorname{dom}\left(a_{j+1}\right)=\operatorname{dom}\left(a_{j}\right) \cup\{\gamma\}$; in case $\gamma \notin \operatorname{dom}\left(a_{j}\right)$, we have $a_{j+1}(\gamma)=0$, otherwise $a_{j+1}(\gamma)=a_{j}(\gamma)+1 ; a_{j+1}(\delta)=a_{j}(\delta)$ for $\delta \neq \gamma$,
(d) $p_{0}=p$,
(e) $p_{j+1} \leq p_{j}$; furthermore for all $\gamma \in \operatorname{dom}\left(a_{j+1}\right)$,
$p_{j+1}\left\lceil\gamma \Vdash_{\gamma} p_{j+1}(\gamma) \leq_{a_{j+1}(\gamma)} p_{j}(\gamma)\right.$,
(f) $\bigcup_{j} \operatorname{dom}\left(p_{j}\right)=\bigcup_{j} \operatorname{dom}\left(a_{j}\right)=A$,
(g) if $\sigma \in T \cap 2^{m_{j}}, j \in D_{\gamma}$, then $\left|\left\{\tau \in T \cap 2^{m_{j+1}} ; \sigma \subseteq \tau\right\}\right|=k_{\gamma}$,
(h) for each $\sigma \in T \cap 2^{m_{j}}$, there is $p_{j}^{\sigma} \leq p_{j}$ which forces $\sigma \subseteq \dot{f}$; furthermore $p_{j} \Vdash \dot{f} \upharpoonright m_{j} \in T \cap 2^{m_{j}}$, and
(i) $\pi \ell$-constantly predicts all branches of T.

Most of this is standard. There is, however, one trick involved, and we describe the construction. For $j=0$, there is nothing to do. So assume we arrived at stage j, and we are supposed to produce the required objects for $j+1$. This proceeds by recursion on $\sigma \in T \cap 2^{m_{j}}$. Since the recursion is straightforward, we confine ourselves to describing a single step.

Fix $\sigma \in T \cap 2^{m_{j}}$. Let γ be such that $j \in D_{\gamma}$. Without loss $\gamma<\beta$ (the case $\gamma=\beta$ being easier). Consider p_{j}^{σ}. Step momentarily into $V\left[G_{\beta}\right]$ with $p_{j}^{\sigma} \upharpoonright \beta \in G_{\beta}$. Then $p_{j}^{\sigma}(\beta) \Vdash_{\mathbb{Q}_{\beta}} \sigma \subseteq \dot{f}$. Since \dot{f} is forced not to be in $V\left[G_{\beta}\right]$, we can find $m^{\sigma} \in \omega$, pairwise incompatible $r_{i}^{\sigma} \leq p_{j}^{\sigma}(\beta)$, and distinct $\tau_{i}^{\sigma} \in 2^{m^{\sigma}}$ extending σ where $i<k_{\gamma}$ such that $r_{i}^{\sigma} \vdash_{\mathbb{Q}_{\beta}} \tau_{i}^{\sigma} \subseteq \dot{f}$. As \mathbb{Q}_{β} is k_{β}-ary Sacks forcing, we may do this in such a way that the predictor π can be extended to ℓ-constantly predict all τ_{i}^{σ}.

Back in V, by extending the condition p_{j}^{σ} if necessary, we may without loss assume that it decides m^{σ} and the τ_{i}^{σ}. We therefore have the extension of π which ℓ-constantly predicts all τ_{i}^{σ} already in the ground model V. We may also suppose that $p_{j}^{\sigma} \upharpoonright \gamma$ decides the stem of $p_{j}^{\sigma}(\gamma)$, say $p_{j}^{\sigma} \upharpoonright \gamma \Vdash_{\gamma} \operatorname{stem}\left(p_{j}^{\sigma}(\gamma)\right)=t$. For $i<k_{\gamma}$ define $p_{j+1}^{\tau_{i}^{\sigma}}$ such that

- $p_{j+1}^{\tau_{i}^{\sigma}} \upharpoonright \gamma=p_{j}^{\sigma} \upharpoonright \gamma, p_{j+1}^{\tau_{i}^{\sigma}} \upharpoonright[\gamma+1, \beta)=p_{j}^{\sigma} \upharpoonright[\gamma+1, \beta)$,
- $p_{j+1}^{\tau_{i}^{\sigma}} \upharpoonright \gamma \Vdash_{\gamma} p_{j+1}^{\tau_{i}^{\sigma}}(\gamma)=\left(p_{j}^{\sigma}(\gamma)\right)_{t^{\wedge}\langle i\rangle}$,
- $p_{j+1}^{\tau_{i}^{\sigma}} \upharpoonright \beta \Vdash_{\beta} p_{j+1}^{\tau_{i}^{\sigma}}(\beta)=\dot{r}_{i}^{\sigma}$.

Doing this (in a recursive construction) for all $\sigma \in T \cap 2^{m_{j}}$ and increasing m^{σ} if necessary, we may assume there is m_{j+1} with $m_{j+1}=m^{\sigma}$ for all σ. Finally p_{j+1} is the least upper bound of all the $p_{j+1}^{\tau_{i}^{j}}$.

This completes the construction. By (c), (e), and (f), the sequence of p_{j} 's has a lower bound $q \in \mathbb{P}_{\alpha}$. By (d), $q \leq p$. By (h), $q \Vdash$ " $\dot{f} \in[T]$ " which means that (i) entails $q \Vdash$ " \dot{f} is ℓ-constantly predicted by π," as required.

Now let α be a limit ordinal. Using a similar argument and the fact that below $\alpha, \dot{\mathbb{Q}}_{\beta}$ is cofinally often Sacks forcing, we see

Claim 2.4. There are $q \leq p$ and a predictor $\pi \in V$ such that

$$
q \Vdash " \pi \quad \text { 2-constantly predicts } \dot{f} . "
$$

This completes the proof of the theorem.

3. Evasion and fragments of $M A(\sigma$-linked $)$

Let $k \geq 2$. Recall that a partial order \mathbb{P} is said to be σ - k-linked if it can be written as a countable union of sets P_{n} such that each P_{n} is k-linked, that is, any k many elements from P_{n} have a common extension. Clearly every σ-centered forcing is $\sigma-k$-linked for all k, and a $\sigma-k$-linked partial order is also $\sigma-(k-1)$-linked. Random forcing is an example of a partial order which is $\sigma-k$-linked for all k, yet not σ-centered. A partial order with the former property shall be called $\sigma-\infty$-linked henceforth. We shall deal with partial orders which arise naturally in connection with constant prediction and which are $\sigma-(k-1)$-linked but not $\sigma-k$-linked for some k. Let $\mathfrak{m}(\sigma-$ k-linked) denote the least cardinal κ such that for some $\sigma-k$-linked partial order \mathbb{P}, Martin's axiom $M A_{\kappa}$ fails for \mathbb{P}.

Lemma 3.1. Let \mathbb{P} be $\sigma-2^{k}$-linked, and assume $\dot{\phi}$ is a \mathbb{P}-name for a function $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$. Then there is a countable set Ψ of functions $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$ such that whenever $g \in 2^{\omega}$ is such that for all $\psi \in \Psi$ there are infinitely many i with $\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)$, then
\Vdash "there are infinitely many i with $\dot{\phi}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k) . "$
Proof. Assume $\mathbb{P}=\bigcup_{n} P_{n}$ where each P_{n} is 2^{k}-linked. Define $\psi_{n}: \bigcup_{i .} 2^{i k} \rightarrow 2^{k}$ such that, for each $\sigma \in 2^{i k}, \psi_{n}(\sigma)$ is a τ such that no $p \in P_{n}$ forces $\dot{\phi}(\sigma) \neq \tau$. (Such a τ clearly exists. For otherwise, for each $\tau \in 2^{k}$ we could find $p_{\tau} \in P_{n}$ forcing $\dot{\phi}(\sigma) \neq \tau$. Since P_{n} is 2^{k}-linked, the p_{τ} would have a common extension which would force $\dot{\phi}(\sigma) \notin 2^{k}$, a contradiction.) Let $\Psi=\left\{\psi_{n} ; n \in \omega\right\}$.

Now choose $g \in 2^{\omega}$ such that for all $\psi \in \Psi$ there are infinitely many i with $\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)$. Fix i_{0} and $p \in \mathbb{P}$. There is n such that $p \in P_{n}$. We can find $i \geq i_{0}$ such that $\psi_{n}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)$. By definition of ψ_{n}, there is $q \leq p$ such that $q \Vdash \dot{\phi}(g \upharpoonright i k)=\psi_{n}(g \upharpoonright i k)$. Thus $q \Vdash \dot{\phi}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)$, as required.

Lemma 3.2. Let $\left\langle\mathbb{P}_{n}, \dot{\mathbb{Q}}_{n} ; n \in \omega\right\rangle$ be a finite support iteration, and assume $\dot{\phi}$ is a \mathbb{P}_{ω}-name for a function $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$. Also assume for each n and each \mathbb{P}_{n}-name $\dot{\phi}_{n}$ for a function $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$, there is a countable set Ψ_{n} offunctions $\bigcup_{i} 2^{n i k} \rightarrow 2^{k}$ such that $\forall g \in 2^{\omega}$, if $\forall \psi \in \Psi_{n} \exists^{\infty} i(\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k))$, then

$$
\Vdash_{n} " \exists^{\infty} i\left(\dot{\phi}_{n}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)\right) . "
$$

Then there is a countable set Ψ of functions $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$ such that $\forall g \in 2^{\omega}$, if $\forall \psi \in \Psi \exists^{\infty} i(\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k))$, then

$$
\Vdash_{\omega} " \exists^{\infty} i(\dot{\phi}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)) . "
$$

Proof. This is a standard argument which we leave to the reader.
Lemma 3.3. Let \mathbb{P} be a partial order of size κ, and assume $\dot{\phi}$ is a \mathbb{P}-name for a function $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$. Then there is a set Ψ of size κ of functions $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$ such that $\forall g \in 2^{\omega}$, if $\forall \psi \in \Psi \exists^{\infty} i(\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k))$, then

$$
\Vdash " \exists^{\infty} i(\dot{\phi}(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k)) . "
$$

Proof. This is well-known and trivial.

Using the first two of these three lemmata we see that if we iterate $\sigma-2^{k}$-linked forcing over a model V containing a family $\mathcal{F} \subseteq 2^{\omega}$ such that
(\star) for all countable sets Ψ of functions $\bigcup_{i} 2^{i k} \rightarrow 2^{k}$ there is $g \in \mathcal{F}$ such that for all $\psi \in \Psi, \exists^{\infty} i(\psi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k))$,
then \mathcal{F} still satisfies (\star) in the final extension. We also have
Lemma 3.4. If \mathcal{F} satisfies (\star), then $\mathfrak{e}_{2}^{\text {const }}(k) \leq|\mathcal{F}|$.
Proof. Simply note \mathcal{F} is a witness for $\mathfrak{e}_{2}^{\text {const }}(k)$. For given a predictor $\pi: 2^{<\omega} \rightarrow 2$, define $\phi: \bigcup_{i} 2^{i k} \rightarrow 2^{k}$ by $\phi(\sigma)=$ the unique $\tau \in 2^{k}$ such that π predicts $\sigma^{\wedge} \tau$ incorrectly on the whole interval $[i k,(i+1) k$) where $|\sigma|=i k$. If $g \in \mathcal{F}$ is such that $\exists^{\infty} i(\phi(g \upharpoonright i k)=g \upharpoonright[i k,(i+1) k))$, then π does not k-constantly predict g.

Let $2 \leq k$. The partial order \mathbb{P}^{k} for adjoining a generic predictor k-constantly predicting all ground model reals is defined as follows. Conditions are triples (ℓ, σ, F) such that $\ell \in \omega, \sigma: 2^{<\omega} \rightarrow 2$ is a finite partial function, and $F \subseteq 2^{\omega}$ is finite, and such that the following requirements are met:

- $\operatorname{dom}(\sigma)=2^{\leq \ell}$,
- $f \upharpoonright \ell \neq g \upharpoonright \ell$ for all $f \neq g$ belonging to F,
- $\sigma(f \upharpoonright \ell)=f(\ell)$ for all $f \in F$.

The order is given by: $(m, \tau, G) \leq(\ell, \sigma, F)$ if and only if $m \geq \ell, \tau \supseteq \sigma, G \supseteq F$, and for all $f \in F$ and all intervals $I \subseteq(\ell, m)$ of length k there is $i \in I$ with $\tau(f \upharpoonright i)=f(i)$. This is a variation of a partial order originally introduced in [Br]. It has been considered as well by Kada [Kd1], who also obtained the following lemma.

Lemma 3.5. \mathbb{P}^{k} is $\sigma-\left(2^{k}-1\right)$-linked.
Proof. Simply adapt the argument from [Br, Lemma 3.2], or see [Kd1, Proposition 3.3].

Corollary 3.6. (Kada [Kd1, Corollary 3.5]) $\mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked) $\leq \mathfrak{e}_{2}^{\text {const }}(k)$.
We are ready to prove a result which is dual to Theorem 2.1.
Theorem 3.7. Let $\left\langle\kappa_{k} ; 2 \leq k \in \omega\right\rangle$ be a sequence of uncountable regular cardinals with $\kappa_{k} \leq \kappa_{k+1}$. Also assume $\lambda=\lambda^{<\lambda}$ is above the κ_{k}. Then there is a generic extension satisfying $\mathfrak{e}_{2}^{\text {const }}(k)=\kappa_{k}$ for all k and $\mathfrak{c}=\lambda$. We may also get $\mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked $)=\kappa_{k}$ for all k.
Proof. Let $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} ; \alpha<\lambda\right\rangle$ be a finite support iteration of ccc forcing such that each factor $\dot{\mathbb{Q}}_{\alpha}$ is forced to be a $\sigma-\left(2^{k}-1\right)$-linked forcing notion of size less than κ_{k} for some $k \geq 2$. Also guarantee we take care of all such forcing notions by a book-keeping argument. Then $\mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked $) \geq \kappa_{k}$ is straightforward.

In view of Corollary 3.6 it suffices to prove $\mathfrak{e}_{2}^{\text {const }}(k) \leq \kappa_{k}$ for all k. So fix k. Note that by stage κ_{k} of the iteration we have adjoined a family \mathcal{F} of size κ_{k} satisfying (\star) above with countable replaced by less than κ_{k} (for example, let \mathcal{F} be the collection of Cohen reals added at limit stages of countable cofinality below κ_{k}). Show by induction on the remainder of the iteration that \mathcal{F} continues to satisfy this version of (\star). The limit step is taken care of by Lemma 3.2 because no new reals appear at limit steps of uncountable cofinality. For the successor step, in case $\dot{\mathbb{Q}}_{\alpha}$ is $\sigma-2^{\ell}$-linked for some $\ell \geq k$, use Lemma 3.1, and in case it is not $\sigma-2^{k}$-linked (and thus of size less than κ_{k}), use Lemma 3.3. By Lemma 3.4, $\mathfrak{e}_{2}^{\text {const }}(k) \leq \kappa_{k}$ follows.

By somewhat changing the above proof, we can dualize Kamo's $\operatorname{CON}\left(\mathfrak{v}_{2}^{\text {const }}>\right.$ $\operatorname{cof}(\mathcal{N})$) (and thus answer a question of his, see [Ka2]), and reprove his result as well.

Theorem 3.8. (a) $\mathfrak{e}_{2}^{\text {const }}<\operatorname{add}(\mathcal{N})$ is consistent; infact, given $\kappa<\lambda=\lambda^{<\kappa}$ regular uncountable, there is a partial order \mathbb{P} forcing $\mathfrak{e}_{2}^{\text {const }}=\kappa$ and $\operatorname{add}(\mathcal{N})=$ $\mathfrak{c}=\lambda$.
(b) (Kamo, $[\mathrm{Ka1}]) \mathfrak{v}_{2}^{\text {const }}>\operatorname{cof}(\mathcal{N})$ is consistent; infact, given κ regular uncountable and $\lambda=\lambda^{\omega}>\kappa$, there is a partial order \mathbb{P} forcing $\mathfrak{v}_{2}^{\text {const }}=\mathfrak{c}=\lambda$ and $\operatorname{cof}(\mathcal{N})=\kappa$.

Proof. (a) Let $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} ; \alpha<\lambda\right\rangle$ be a finite support iteration of ccc forcing such that

- for even $\alpha, \Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ is amoeba forcing,
- for odd $\alpha, \Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ is a subforcing of some \mathbb{P}^{k} of size less than κ.

Guarantee that we go through all such subforcings by a book-keeping argument. Then $\mathfrak{e}_{2}^{\text {const }} \geq \kappa$ is straightforward, as is $\operatorname{add}(\mathcal{N})=\mathfrak{c}=\lambda$. Now note that amoeba forcing is $\sigma-\infty$-linked (like random forcing). Therefore we can apply Lemmata 3.1, 3.2 , and 3.3 for all k simultaneously, and see that there is a family \mathcal{F} of size κ which satisfies the appropriate modified version of (\star) (such a family is adjoined after the first κ stages of the iteration).
(b) First add λ many Cohen reals. Then make a κ-stage finite support iteration of amoeba forcing. Again, $\operatorname{cof}(\mathcal{N})=\kappa$ is clear. $\mathfrak{v}_{2}^{\text {const }}=\mathfrak{c}=\lambda$ follows from Lemmata 3.1 and 3.2 using standard arguments.

One can even strengthen Theorem 3.7 in the following way. Say a partial order \mathbb{P} satisfies property K_{k} if for all uncountable $X \subseteq \mathbb{P}$ there is $Y \subseteq X$ uncountable such that any k many elements from Y have a common extension. Property K_{k} is a weaker relative of $\sigma-k$-linkedness. Let $\mathfrak{m}\left(K_{k}\right)$ denote the least cardinal κ such that $M A_{\kappa}$ fails for property K_{k} partial orders.

Lemma 3.9. Assume $C H . \mathbb{P}^{k}$ does not have property $K_{2^{k}}$. In fact no property $K_{2^{k}}$ partial order adds a predictor which k-constantly predicts all ground model reals.

Proof. List all predictors as $\left\{\pi_{\alpha} ; \alpha<\omega_{1}\right\}$. Choose reals $f_{\alpha} \in 2^{\omega}$ such that π_{α} does not k-constantly predict f_{β} for $\beta \geq \alpha$. Let $X=\left\{f_{\alpha} ; \alpha<\omega_{1}\right\}$.

Let \mathbb{P} have property $K_{2^{k}}$. Also let $\dot{\pi}$ be a $\mathbb{P}-$ name for a predictor. Assume there are conditions $p_{\alpha} \in \mathbb{P}$ such that $p_{\alpha} \Vdash$ " $\dot{\pi} k$-constantly predicts f_{α} from m_{α} onwards." Without loss $m_{\alpha}=m$ for all α, and any 2^{k} many p_{α} have a common extension. Let $T \subseteq 2^{<\omega}$ be the tree of initial segments of members of X. Given $\sigma \in T$ with $|\sigma| \geq m$, let $A_{\sigma}^{k}=\{\tau \in T ; \sigma \subset \tau$ and $|\tau|=|\sigma|+k\}$. Note that if $\left|A_{\sigma}^{k}\right|<2^{k}$ for all such σ, then we could construct a predictor πk-constantly predicting all of X past m as in the proof of Theorem 1.1. So there is $\sigma \in T$ with $\left|A_{\sigma}^{k}\right|=2^{k}$. Find $\alpha_{0}, \ldots, \alpha_{2^{k}-1}$ such that $A_{\sigma}^{k}=\left\{f_{\alpha_{i}}| | \sigma \mid+k ; i<2^{k}\right\}$ and notice that a common extension of the $p_{\alpha_{i}}$ forces a contradiction.

Note that some assumption is necessary for the above result for $M A_{\aleph_{1}}$ implies all ccc partial orders have property K_{k} for all k. We now get

Theorem 3.10. Assume CH. Let $2 \leq k<\omega$. Then there is a generic extension satisfying $\mathfrak{e}_{2}^{\text {const }}(k)=\aleph_{1}$ and $\mathfrak{m}\left(K_{2^{k}}\right)=\aleph_{2}$.

Proof. Use the lemma and the folklore fact that the iteration of property K_{ℓ} partial orders has property K_{ℓ}.

Since we saw in Corollary 3.6 that $\mathfrak{e}_{2}^{\text {const }}(k) \geq \mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked), one may ask, on the other hand, whether $\mathfrak{e}_{2}^{\text {const }}(k)>\mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked $)$ is consistent. This, however, is easy, for the forcing \mathbb{P}^{k} is Suslin ccc [BJ] while it is well-known that iterating Suslin ccc forcing keeps numbers like $\mathfrak{m}\left(\sigma-\left(2^{k}-1\right)\right.$-linked) small (it even keeps the splitting number \mathfrak{s} small).

The results in this section are related to work of Blass [B12, Section 10]. We briefly sketch the connection. Fix $k \geq 2$. Momentarily call a function $\pi: \omega^{<\omega} \rightarrow$ $[\omega]^{k}$ a predictor. Say that π globally predicts $f \in \omega^{\omega}$ if $f(n) \in \pi(f \upharpoonright n)$ holds for almost all n. The global evasion number $\mathfrak{e}^{\mathrm{gl}}(k)$ is the size of the least $F \subseteq \omega^{\omega}$ such that for every predictor π there is $f \in F$ which is not globally predicted by π. (The concept is due to Blass [B12] while the notation is due to Kada [Kd1].) Then $\mathfrak{m}(\sigma-k$-linked $) \leq \mathfrak{e}^{\mathrm{gl}}(k) \leq \operatorname{add}(\mathcal{N})[\mathrm{Bl} 2]$. Also, Corollary 3.6 can be improved to $\mathfrak{e}^{\mathrm{gl}}\left(2^{k}-1\right) \leq \mathfrak{e}^{\text {const }}(k)[\mathrm{Kd} 2]$. On the other hand, one can prove the analog of Theorem 3.7, saying that $\mathfrak{e}^{\mathfrak{g l}}(k)=\mathfrak{m}\left(\sigma-k\right.$-linked) $=\kappa_{k}$ is consistent (where the κ_{k} form an increasing sequence of regular uncountable cardinals). Furthermore, by Theorem 3.8, $\sup \left\{\mathfrak{e}^{\mathrm{gl}}(k) ; k \in \omega\right\}<\operatorname{add}(\mathcal{N})$ is consistent, and, by the previous paragraph, so is $\mathfrak{e}^{\mathrm{gl}}(k)>\mathfrak{m}(\sigma-k$-linked $)$.

We close this section with a few questions. We have no dual result for Theorem 2.2 so far.

Question 3.11. Is $\mathfrak{e}_{2}^{\text {const }}>\sup \left\{\mathfrak{e}_{2}^{\text {const }}(k) ; k<\omega\right\}$ consistent?
Question 3.12. Can $\mathfrak{e}_{2}^{\text {const }}$ have countable cofinality?
By Theorem 3.7, one of these two questions must have a positive answer. In fact, in view of the proof of Theorem 3.8, $\mathbb{e}_{2}^{\text {const }}$ must be

- either $\max \left\{\kappa_{k} ; k \in \omega\right\}$ (in case the set has a max),
- or $\sup \left\{\kappa_{k} ; k \in \omega\right\}$ or its successor (in case the set has no max)
in the model of Theorem 3.7.

References

[BJ] Bartoszyński, T., Judah, H.: Set theory. On the structure of the real line, A K Peters, Wellesley, Massachusetts, 1995
[B11] Blass, A.: Cardinal characteristics and the product of countably many infinite cyclic groups, J. Algebra 169, 512-540 (1994)
[B12] Blass, A.: Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory (A. Kanamori et al., eds.), to appear
[Br] Brendle, J.: Evasion and prediction III - Constant prediction and dominating reals, to appear
[GSh] Goldstern, M., Shelah, S.: Many simple cardinal invariants, Arch. Math. Logic 32, 203-221 (1993)
[Kd1] Kada, M.: A note on various classes of evasion numbers, unpublished manuscript
[Kd2] Kada, M.: Strategic Sacks property and covering numbers for prediction, to appear
[Ka1] Kamo, S.: Cardinal invariants associated with predictors, in: Logic Colloquium '98 (S. Buss et al., eds.), Lecture Notes in Logic 13, 280-295 (2000)
[Ka2] Kamo, S.: Cardinal invariants associated with predictors II, J. Math. Soc. Japan 53, 35-57 (2001)

[^0]: J. Brendle*: The Graduate School of Science and Technology, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe 657-8501, Japan.
 e-mail: brendle@kurt.scitec.kobe-u.ac.jp
 S. Shelah ${ }^{\dagger}$: Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel and Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
 *Supported by Grant-in-Aid for Scientific Research (C)(2)12640124, Japan Society for the Promotion of Science
 ${ }^{\dagger}$ Supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities. Publication 762

