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Abstract. We prove that on many inaccessible cardinals there is a Jonsson algebra, so e.g.
the first regular Jonsson cardinal λ is λ×ω-Mahlo. We give further restrictions on successor
of singulars which are Jonsson cardinals. E.g. there is a Jonsson algebra of cardinality �+

ω .
Lastly, we give further information on guessing of clubs.

Annotated content

§1 Jonsson algebras on higher Mahlos and idγ

rk(λ).

[We return to the ideal of subsets of A ⊆ λ of ranks < γ (for self-containment;
see [Sh:g, IV],1.1–1.6) for γ < λ+; we deal again with guessing of clubs
(1.11). Then we prove that there are Jonsson algebras on λ for λ inaccessible
not (λ × ω)-Mahlo (1.1, 1.25)].

§2 Back to successor of singulars.

[We deal with λ = µ+, µ singular of uncountable cofinality. We give sufficient

conditions for µ+ �→
[
µ+

]<n

θ

, (2.6, 2.7), in particular on �+
ω there is a Jonsson

algebra and if cf(µ) < µ < 2<µ < 2µ then on µ+ there is a Jonsson algebra.
Also if cf(µ) ≤ κ, 2κ+

< µ, idp(C̄, Ī ) is a proper ideal not weakly κ+-sat-
urated and each Iδ is κ-based, then λ is close to being “cf(µ)-supercompact”
(note that such C̄ exists if λ → [λ]2

κ+)].
§3 More on guessing clubs.

[We prove that, e.g. if λ = ℵ1, S ⊆ {δ < ℵ2 : cf(δ) = ℵ1} is stationary, then
we can find a strict λ-club system C̄ = 〈Cδ : δ ∈ S〉 and
hδ : Cδ → ω such that for every club E of ℵ2 for stationarily many δ ∈ S,
nacc(Cδ) ∩ E ∩ h−1

δ {n} is unbounded in δ for each n. Also we have such C̄

with a property like the one in Fodor’s Lemma. Also we have such C̄’s satis-
fying: for every club E of λ, for stationarily many δ ∈ S ∩ acc(E) we have
{sup(E ∩ Cδ ∩ α) : α ∈ E ∩ nacc(Cδ)} is a stationary subset of δ].
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2 S. Shelah

The sections are independent.
This paper is continued in [EiSh 535] getting e.g. Pr1(λ, λ, λ, ℵ0) for e.g. λ = �+

ω .
It is further continued in [Sh 572] getting e.g. Pr1(ℵ2, ℵ2, ℵ2, ℵ0) and more on
guessing of clubs. We thank Todd Eisworth for detecting various mistakes and
errors.

1. Jonsson algebras on higher Mahlos and idγ

rk(λ)

We continue [Sh:g, III], [Sh:g, IV], see history there, and we use some theorems
from there.

Our main result: if λ is inaccessible not λ × ω-Mahlo then on λ there is a
Jonsson cardinal. If the reader is willing to lose 1.29 he can ignore also 1.6(1), 1.7,
1.8(2), 1.9, 1.11, 1.12, 1.13, 1.15, 1.16(2), 1.28, 1.29; also, 1.12 is just for “pure
club guessing interest”. Why “< λ × ω” just as γ �= λ + γ ⇒ γ < λ × ω.

1.1 Theorem. 1) Suppose λ is inaccessible and λ is not (λ × ω)-Mahlo.
Then on λ there is a Jonsson algebra.
2) Instead of “λ not (λ × ω)-Mahlo” it suffices to assume there is a stationary set
A of singulars satisfying (on idγ

rk(λ) see below):

{δ < λ : δ inaccessible, A ∩ δ stationary} ∈ idγ

rk(λ), A /∈ idγ

rk(λ) and γ <

λ × ω.

Proof. 1) If λ is not λ-Mahlo, use [Sh:g, IV,2.14,p.212]. Otherwise this is a partic-
ular case of 1.25 as there are n < ω and E ⊆ λ, a club of λ such that µ ∈ E & µ

inaccessible ⇒ µ is not µ × n-Mahlo. So S = {δ ∈ E : cf(δ) < δ} is as required
in 1.25.
2) Look at 1.25. ��1.1

1.2 Definition. We say ē is a strict (or strict∗ or almost strict) λ+-club system if:

(a) ē = 〈ei : i < λ+ limit〉,
(b) ei a club of i

(c) otp(ei) = cf(i) for the strict case and otp(ei) ≤ λ for the strict∗ case
and i > λ ⇒ otp(ei) < i for the almost strict case (so in the strict∗ case,
cf(i) < λ ⇒ otp(ei) < λ and cf(i) = λ ⇒ otp(ei) = λ).

1.3 Definition. 1) For λ inaccessible, γ < λ+, let S ∈ idγ

rk(λ) iff for every1 strict∗

λ+-club system ē, the following sequence 〈Ai : i ≤ γ 〉 of subsets of λ defined below
satisfies “Aγ is not stationary”:

(i) A0 = S ∪ {δ < λ : S ∩ δ stationary in δ}
(ii) Ai+1 = {δ < λ : Ai ∩ δ stationary in δ so cf(δ) > ℵ0}

(iii) if i is a limit ordinal, then for the club ei of i of order type ≤ λ we have2:

1 equivalently some — see 1.4
2 We may consider adding a second clause: (b) if i is inaccessible, ℵ0 < i < λ then

cf(δ) > i; this influences 1.5(6); true, it has only “local” effect that is the two definitions
agree for γ except when for some inaccessible i, ℵ0 < i ≤ γ < i + ω < λ; in [Sh:g, IV]
we use the version with clause (b)

Sh:413



More Jonsson Algebras 3

Ai = {
δ < λ : if j ∈ ei, and [ cf(i) = λ ⇒ otp(j ∩ ei) < δ] then δ ∈ Aj }

2) We define rkλ(A) as Min{γ : A ∈ idγ

rk(λ)} for A ⊆ λ.

3) id<γ

rk (λ) = ⋃
β<γ idβ

rk(λ).

4) Let A[i,ē] be Ai from part (1) for our ē and S =: A; if i < λ × ω we may omit ē

meaning eδ = {j : λ + j ≥ δ} for limit δ ≤ i.
5) For λ a cardinal of uncountable cofinality and ordinal γ < λ we define idγ

rk(λ),

rkλ(A) and A[i] as above (so eδ = δ for limit δ ≤ γ )

1.4 Claim. Let λ be inaccessible or a limit cardinal of uncountable cofinality.
0) If α < β < λ+, S, ē, A[i,ē] are as in Definition 1.3 then A[β,ē]\A[α,ē] is a
non-stationary3 subset of λ and {ζ < λ : ζ /∈ A[α,ē], cf(ζ ) > ℵ0 but A[α,ē] is a
stationary subset of ζ } is not stationary in λ, (in fact, both are empty if β < α +λ).
1) If γ < λ+, S ⊆ λ and for some strict∗ λ+-club system ē, the condition in
Definition 1.3 holds, then S ∈ idγ

rk(λ) (i.e. this holds for every such ē).
2) If ē, 〈Ai : i ≤ γ 〉 are as in Definition 1.3 then i + rkλ(Ai) = rkλ(A0).
3) If δ ∈ A[γ,ē] so a limit ordinal and λ > γ > 0, then cf(δ) ≥ ℵγ and if γ ≥ λ

then λ is inaccessible.
4) Let ē be a strict∗ λ+-club system. If γ < µ = cf (µ) < cf (λ) and 〈Ai : i < µ〉
is an increasing sequence of subsets of λ with union A and (∀δ ∈ A)(cf (δ) > µ)

or (∀δ < λ)(cf (δ) = µ → A ∩ δ not stationary in δ), then A[γ,ē] = ⋃
i<µ A

[γ,ē]
i ,

note also that 〈A[γ,ē]
i : i < µ〉 is increasing.

5) Let ē be a strict∗ λ+-club system. If λ is inaccessible, 〈Ai : i < λ〉 is an in-
creasing sequence of subsets of λ and A = {δ < λ : δ ∈ ⋃

i<δ Ai} and γ < cf (λ)

then A[γ,ē]\(γ + 1) ⊆ ∪{δ < λ : δ ∈ ⋃
i<δ A

[γ,ē]
i and δ > γ }.

6) If cf(λ) ≤ ℵγ < λ, then idγ

rk(λ) = P(λ).

Proof. 0) By induction on β.
1) For 
 = 1, 2 let ē
 be a strict∗ club system and let 〈A


i : i ≤ γ 〉 be defined as in
Definition 1.3 using ē
. We can prove by induction on β ≤ γ that

(∗)β there is a club Cβ of λ such that for each α ≤ β, the symmetric difference
of A1

α ∩ Cβ and A2
α ∩ Cβ is bounded (in λ).

2) Check.
3) By induction on γ .
4) We prove this by induction on γ . For γ = 0 this is trivial. For γ successor,
by Definition 1.4(1)(iii) this is easy by the last assumption. For γ limit, by clause
(iii) in 1.3(1), if δ ∈ A[γ,ē] then (∀j ∈ eγ )[δ ∈ A[j,ē]], recalling γ < µ < λ.

So for j ∈ eγ as 〈A[j,ē]
i : i < µ〉 is increasing with union A[j,ē] by the induc-

tion hypothesis for some i(j, δ) < µ we have i ∈ [i(j, δ), µ) ⇒ δ ∈ A
[j,ē]
i .

As |eγ | ≤ γ < µ = cf(µ) necessarily i(δ) = sup{i(j, δ) : j ∈ eδ} < µ,

so δ ∈ ⋂
j∈eδ

A
[j,ē]
i(δ) which means δ ∈ A

[γ,ē]
i(δ) . As δ was any member of A[γ,ē]

we can conclude that A[γ,ē] ⊆ ⋃
i<µ A

[γ,ē]
i , but by monotonicity of the function

3 in fact, bounded

Sh:413



4 S. Shelah

B �→ B[γ,ē] we get A
[γ,ē]
i ⊆ A[γ,ē], hence we are done.

5) Similar proof.
6) By part (3). ��1.4

1.5 Claim. Let λ be inaccessible or a limit cardinal of uncountable cofinality.

0) For γ < λ+, the family idγ

rk(λ) is an ideal on λ including all non-stationary
subsets of λ.

1) If S ⊆ λ, γ = rkλ(S), ζ < γ, S′ = S[ζ,ē] (ē as in Definition 1.3(1)) then
ζ + rkλ(S

′) = γ .
2) In (1) if ζ < γ = ζ + γ (e.g. ζ < λ ≤ γ ) then rkλ(S

′) = γ .
3) Assume S ⊆ λ, ζ < λ and δ is a limit ordinal δ ∈ S[ζ,ē] and let ε = ζ + 1

except that when ζ < ω or ζ = i + n & 0 < i < λ & [i inaccessible] we let
ε = ζ . Then we have: cf(δ) ≥ ℵε, moreover cf(δ) ≥ Min{cf (α)+ε : α ∈ S}.

4) Assume
(a) µ ≤ λ inaccessible
(b) γ = λ × n + β, n < ω, β < µ

(c) A ⊆ λ.
Then A[γ ] ∩ µ = (A ∩ µ)[µ×n+β], recalling Definition 1.3(4).

5) Assume γ < cf(µ) ≤ µ < λ, A ⊆ λ then A[γ ] ∩ µ = (A ∩ µ)[γ ].
6) If µ = cf(µ) < cf(λ) and γ < µ then idγ

rk(λ) + {δ < λ : cf(δ) ≤ µ} is
µ-indecomposable (see Definition 1.6(2) below and Claim 1.4(4) above).

7) If γ < cf(λ) then idγ

rk(λ) is a weakly normal ideal (see Definition 1.6(1) below,
possibly it is P(λ)).

8) For λ inaccessible and γ < λ+ we have: λ is γ -Mahlo iff λ /∈ idγ

rk(λ).
9) For λ inaccessible, n < ω, β < λ and A ⊆ λ we have: rkλ(A) ≤ λ × n + β iff

for some club E of λ we have µ ∈ E & cf(µ) > ℵ0 ⇒ rkµ(A∩µ) < µ×n+β.

Proof. Straight (parts (6), (7) like the proof of 1.11(6)). ��1.7

Recall

1.6 Definition. 1) An ideal I on a cardinal λ of uncountable cofinality is called
weakly normal if it contains all bounded subsets of λ and: for every f : λ → λ

satisfying f (α) < 1 + α and A ∈ I+, for some β < λ we have {α ∈ A : f (α) <

β} ∈ I+.
2) An ideal I is µ-indecomposable when: for any sequence 〈Ai : i < µ〉 of

subsets of λ if
⋃

i<µ Ai ∈ I+ then for some w ⊆ µ of cardinality < µ we have⋃
i∈w Ai ∈ I+; clearly if µ is regular then without loss of generality 〈Ai : i < µ〉

is increasing.

1.7 Observation. Suppose 〈Ii : i < λ〉 is an increasing sequence of µ-indecom-
posable ideals on the regular cardinal λ, each including the bounded subsets of
λ, µ < λ is regular and

I =
{
A ⊆ λ : there is a pressing down function h on A such that

for each α < λ, {β ∈ A : h(β) < α} ∈ ⋃
i<λ

Ii

}
.

Sh:413



More Jonsson Algebras 5

Then I ′ =: I + {δ < λ : cf(δ) ≤ µ} is weakly normal and µ-indecomposable.

Remark. If I is an ideal on λ and I is κ-indecomposable for every regular κ < µ,
then I is µ-complete.

Proof. I ′ is weakly normal by its definition (first note that for every club C of λ

the set λ\C belongs to I : use hC where hC(α) = sup(α ∩C); then we use a pairing
function < −, − > such that 〈α, β〉 < Min{δ : α, β < δ = ω × δ < λ}).

For µ-indecomposability, assume 〈Ai : i < µ〉 is an increasing continuous se-
quence of members of I ′, Aµ = ⋃

i<µ Ai and we shall prove that Aµ ∈ I ′, this suf-
fices as µ is regular. Without loss of generality Aµ is disjoint to {δ < λ : cf(δ) ≤ µ}
hence i < µ ⇒ Ai ∈ I . Let hi be a pressing down function witnessing Ai ∈ I , so
for α < λ for some ζ(α, i) < λ we have {β ∈ Ai : hi(β) < α} ∈ Iζ(α,i).

For each α < λ let ζ(α) = ⋃
i<µ ζ(α, i), so as µ < λ clearly ζ(α) < λ.

Let us define a function h with Dom(h) = Aµ by setting h(α) = ∪{hi(α) :
α ∈ Ai and i < µ}. Let α < λ, so for each i < µ we have {β ∈ Ai : h(β) < α} ⊆
{β ∈ Ai : hi(β) < α} ∈ Iζ(α,i) ⊆ Iζ(α) (remember 〈Ii : i < λ〉 is increasing). For
i ≤ µ let Bα

i =: {β ∈ Ai : h(β) < α}, so 〈Bα
i : i ≤ µ〉 is increasing continuous,

and for i < µ we have Bα
i ⊆ {β ∈ Ai : hi(β) < α} ∈ Iζ(α). So as Iζ(α) is

µ-indecomposable {β ∈ Aµ : h(β) < α} ∈ Iζ(α). So if α ∈ Aµ, as Aµ is disjoint
to {δ < λ : cf(δ) ≤ µ} then h(α) < α hence h witnesses Aµ ∈ I ⊆ I ′. So clearly
I ′ = I + {δ < λ : cf(δ) ≤ µ} is µ-indecomposable. ��1.7

1.8 Observation. Let 〈Ii : i < δ〉 be an increasing sequence of ideals on λ, each Ii

is µ-indecomposable, µ regular.

(1) If cf(δ) �= µ, then
⋃

i<δ Ii is a µ-indecomposable ideal.
(2) If each Ii is weakly normal, δ < λ then

⋃
i<δ Ii is a weakly normal ideal on λ.

Proof. Check.
∗ ∗ ∗

1.9 Definition. 1) Let λ be a limit cardinal of uncountable cofinality, γ = λ×n+β

(where [cf(λ) < λ ⇒ n = 0 & γ = β < cf(λ)] and [cf(λ) = λ ⇒ β < λ]).
We define idγ (λ), an ideal on λ (temporarily — a family of subsets of λ, see
1.11); this is defined by induction on λ:
(a) if γ = 0 it is the family of non-stationary subsets of λ

(b) if γ < λ it is the family of A ⊆ λ such that:
{µ < λ : A ∩ µ /∈ ⋃

α<γ idα(µ)} is not a stationary subset of λ.
(c) If n > 0, β = 0 it is the family of A ⊆ λ such that for some pressing down

function h on A, for each i < λ the set{
µ : µ < λ inaccessible, h(µ) = i and A ∩ µ /∈ ⋃

α<µ×n idα(µ)

}
is not a stationary subset of λ.

(d) If n > 0, β > 0 it is the family of A ⊆ λ such that{
µ : µ < λ inaccessible and A ∩ µ /∈ ⋃

α<β idµ×n+α(µ)

}
is not a stationary subset of λ.

Sh:413



6 S. Shelah

2) rk∗
λ(A) = Min{γ : A ∈ idγ (λ), γ < λ × ω or γ = λ+}.

3) id<γ (λ) = ∪{idβ(λ) : β < λ}, an ideal too (well for γ > 0)

1.10 Remark. 1) If in clause (c) we imitate clause (d), we get the ideal from Defi-
nition 1.3. We can continue this to all γ < λ+.

2) Also this definition can be continued for γ ∈ [λ × ω, λ+] using a strictly∗
λ+-club system ē, proving its choice is immaterial, idγ

rk(λ) ⊆ idγ (λ)) and other
parts of 1.11.

3) We can replace the closure to normal ideal to one for weakly normal ideal.
4) Also we can divide the ordinals < λ × ω differently between those three

operations: reflecting, normality and weak normality. All are O.K. in 1.16, but no
need here.

5) Trivially, idγ (λ) increase with γ and is an ideal on λ (possibly equal to P(λ)).

1.11 Observation.

0) idγ (λ) is an ideal on λ.
1) For λ of uncountable cofinality, γ < λ, S ⊆ λ we have: S ∈ idγ

rk(λ) ⇔ S ∈
idγ (λ), i.e. idγ

rk(λ) = idγ (λ).

2) If λ is inaccessible, λ ≤ γ < λ × ω and S ⊆ λ then idγ

rk(λ) ⊆ idγ (λ).
3) Assume λ is inaccessible (> ℵ0), λ ≤ γ < λ × ω, γ = rkλ(λ) and θ =

cf(θ) < λ, S = {δ < λ : cf(δ) = θ} then we have (∗)S where

(∗)S for some β < λ × ω we have S /∈ ⋃
i<λ idβ+i (λ),

but {µ : µ inaccessible, S ∩ µ stationary} ∈ idβ(λ).

4) For λ inaccessible, S ⊆ λ and rkλ(S) < λ×ω then Min{λ, rkλ(S)} ≤ rk∗
λ(S).

5) Let λ be inaccessible and S ⊆ {δ < λ : cf(δ) = θ} be stationary
(a) if λ ≤ γ = rk∗

λ(S) < λ × ω then (∗)S from part (3) holds
(b) if λ ≤ rkλ(S) < λ×ω then for some γ, λ ≤ γ = rk∗

λ(S) < λ×ω hence
(∗)S of part (3) holds

(c) if λ is γ -Mahlo not (γ + 1)-Mahlo and λ ≤ γ < λ × ω then for some
γ, λ ≤ γ ≤ γ1 < λ × ω we have (∗)S from part (3) or rk∗

λ(S) < λ.
6) For λ inaccessible and γ = λ × n + β, β < λ, the ideal idγ (λ) + {δ < λ :

cf(δ) ≤ σ } (also id<γ (λ) +{δ < λ : cf(δ) ≤ σ }) is σ -indecomposable for any
σ = cf(σ ) ∈ [|β|+, λ) and is weakly normal.

7) If λ is inaccessible, S ⊆ λ, rk∗
λ(S) = λ × n∗ + γ, γ < λ then we can find a

club E of λ such that

(a) if δ ∈ E, cf(δ) > ℵ0 then rk∗
δ (S) ≤ δ × n∗ + γ

(b) if γ > 0, δ ∈ E, cf(δ) > ℵ0 then rk∗
δ (S) < δ × n∗ + γ .

8) Assume S ⊆ λ and S+ = {δ : δ is inaccessible and δ ∈ S∨(δ∩S is stationary)}.
Then rk∗

λ(S) ≤ rk∗
λ(S) + λ.

9) If rk∗
λ(S) = γ + 1 then for some club C of λ, {δ < λ: rk∗

δ (S ∩ C) ≥ γ } is a
stationary nonreflecting subset of λ.

Proof. Let ē be a strict λ+-club system as in 1.3(4).

Sh:413



More Jonsson Algebras 7

0) Should be clear.
1) Clearly also idγ (λ) is an ideal which includes all bounded subsets of λ. We prove
the equality by induction on λ and then by induction on γ .

So if γ < λ, A ⊆ λ; let for any B, B[i] be defined as in Definition 1.3 (for ē), we
can discard the case γ = 0; and without loss of generality λ = sup(A) & A ∩
(γ + 1) = ∅; now (ignoring the case γ is inaccessible for simplicity)

A ∈ idγ (λ) ⇔
{
µ < λ : µ > γ and µ ∩ A /∈

⋃
α<γ

idα(µ)

}
is not stationary ⇔

{
µ < λ : µ > γ and

∧
α<γ

[µ ∩ A /∈ idα(µ)]

}
is not stationary ⇔

{
µ < λ : µ > γ and

∧
α<γ

[µ ∩ A /∈ idα

rk(µ)]

}
is not stationary ⇔

{
µ < λ :

∧
α<γ

[(µ ∩ A)[α] is stationary in µ]

}
is not stationary ⇔

{
µ < λ :

∧
α<γ

[(µ ∩ A) ∩ A[α] is stationary in µ]

}
is not stationary ⇔

{
µ < λ :

∧
α<γ

[µ ∩ A[α] is stationary in µ]

}
is not stationary ⇔

{
µ < λ : µ ∈

⋂
α<γ

A[α+1]
}

is not stationary ⇔

A[γ ] not stationary ⇔

A ∈ idγ

rk(λ).

2) We prove this by induction on λ, and for each λ by induction on γ . For
γ < λ use part (1). For γ ≥ λ successor ordinal, read the definitions (and 1.10(3)).
So assume γ ∈ [λ, λ × ω) is a limit ordinal. For every A ∈ idγ

rk(λ), we know

A[γ,ē] is not stationary, so for some club E of λ, A[γ,ē] ∩ E = ∅. So if we define
h : E → λ by h(δ) = Min{otp(j ∩ eγ ) : j ∈ eγ , δ /∈ A[j,ē], otp(j ∩ eγ ) < δ},
by the definition of A[γ,ē] it is well defined, and h(δ) < δ & h(δ) < otp(eγ ). Let
γ = λ × n + β, β < λ, so n ≥ 1.

Clearly, possibly replacing E by a thinner club of λ
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� for every δ ∈ E

(α) δ > β is a limit cardinal and δ = sup(A)

(β) if cf(δ) > ℵ0 & γ = λ then A ∩ δ ∈ idh(δ)

rk (δ)

(γ ) if δ is inaccessible, γ = λ × n, n > 1 (so β = 0) then A ∩ δ ∈
idδ×(n−1)+h(δ)

rk (δ) and h(δ) < δ

(ε) if δ is inaccessible, γ = λ × n + β > λ × n, n ≥ 1 then A ∩ δ ∈
idδ×n+h(δ)

rk (δ) and h(δ) < β.

Now we can case by case prove that A ∈ idγ (λ), using the induction hypothesis
on λ and on γ (or part (1)) and the definition of idγ (−).
3), 4) Check.
5) For the second statement note that by parts (1) + (2) we have λ ≤ rk∗

λ(S) ≤
rkλ(S) < λ × ω so γ =: rkλ(S) is as required.
6) We prove this by induction on λ and for a fix λ by induction on γ .

Case 1: γ < λ.
By part (1) we know that idγ (λ) = idγ

rk(λ) and the latter +{δ < λ : cf(δ) ≤ σ }
is weakly normal by 1.5(7) and is σ -indecomposable for any regular σ ∈ (|γ |+, λ)

by 1.5(6). Alternatively, the proofs are similar to those of case (3).

Case 2: γ = λ × n, 1 ≤ n < ω.
By Definition 1.9 clause (c) obviously idγ (λ) contains the family of bounded

subsets of λ and is even normal hence λ-complete hence σ -indecomposable for any
σ < λ.

Case 3: γ = λ × n + β, 1 ≤ n < ω, 1 ≤ β < λ.
First we prove the indecomposability part, so let σ = cf(σ ) ∈ [|β|+, λ) and as-

sume 〈Ai : i ≤ σ 〉 is an increasing continuous sequence of subsets of λ and assume
Aσ /∈ idγ (λ) and we should prove that for some i < σ we have Ai /∈ idγ (λ).

Let us define for i ≤ σ :

Bi =: {µ < λ : µ inaccessible and Aσ ∩ µ /∈
⋃
α<β

idµ×n+α(µ)}.

For each inaccessible µ < λ which is > σ and α < β we apply the induction
hypothesis with λ′ = µ, γ ′ = µ × n + α and 〈A′

i : i ≤ σ 〉 = 〈Ai ∩ µ : i ≤ σ 〉 and
get: for every µ ∈ Bσ for some i(µ, α) < σ we have Ai(µ,α) ∩ µ /∈ idµ×n+α(µ),
but γ < σ hence i(µ) =: sup{i(µ, α) : α < γ } < σ , and clearly µ ∈ Bi(µ), as the
Aj ’s are increasing. As σ < λ and Bσ stationary (by assumptions) we have: Bσ is
a stationary subset of λ and Bσ ⊆ ⋃

i<σ Bi ∪ σ+, hence for some i(∗) < σ the set
Bi(∗) is stationary, hence Ai(∗) /∈ idλ×n+γ (λ) is as required.

Second we prove the weak normality part. So let A ⊆ λ, A /∈ idγ (λ) and h

a function with domain A, h(i) < 1 + i, and let Aj = {α ∈ A : h(α) < j}. We
define Bi =: {µ < λ : µ inaccessible > i, and A /∈ ⋃

α<β idµ×n+α(µ)}, B =:
{µ < λ : µ inaccessible and Ai ∩ µ /∈ ⋃

α<β idµ×n+α(µ)}.
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Again we assume that B is stationary and has to prove that some Bj is station-
ary. For every inaccessible µ ∈ B and α < β applying the induction hypothesis to
µ, A ∩ µ, h � (A ∩ µ) for some i(µ, α) < µ the set {µ′ < µ : µ′ inaccessible,
A

µ

i(µ,α) ∩ µ′ /∈ idµ′×n+α(µ′)} is stationary where A
µ

i(µ,α) = {ζ ∈ A ∩ µ : (h �
(A∩µ))(ζ ) < i(µ, α)}. Let i(µ) = sup{i(µ, α) : α < β} so it is < µ, and clearly
Ai(µ)∩µ /∈ ⋃

α<β idµ×n+β(λ). So B ⊆ ⋃
j<λ Bj , and we easily finish.

7) By induction on the rank.
8) By induction on λ.
9) Easy. ��1.11

∗ ∗ ∗
1.12 Claim. Suppose λ is inaccessible, S ⊆ λ a stationary set of inaccessibles > σ ,
S1 ⊆ {δ < λ : δ a limit cardinal > σ of cofinality > ℵ0 and �= σ } is stationary,
λ > σ = cf(σ ) and for δ ∈ S the ideal Iδ is a weakly normal σ -indecomposable
ideal on δ ∩ S1 and J is a weakly normal σ -indecomposable ideal on S, (and of
course all are proper ideals which contains the bounded subsets of their domain;
of course we demand δ ∈ S ⇒ δ = sup(S1 ∩ δ) so δ ∈ S ⇒ δ > σ ). Further let
C̄1 = 〈C1

α : α ∈ S1〉 be a strict S1-club system satisfying:

(∗) for every club E of λ

{
δ ∈ S : {α ∈ S1 ∩ δ : E ∩ δ\C1

α unbounded in α} ∈ I+
δ

}
∈ J+.

Then: (1) We can find an S1-club system C̄2 = 〈C2
α : α ∈ S1〉 such that for every

club E of λ the set of δ ∈ S satisfying the following is not in J :{
α < δ : α ∈ S1 ∩ E and {cf(β) : β ∈ nacc(C2

α) and β ∈ E}

is unbounded in α

}
∈ I+

δ .

(2) Suppose in addition ∪{cf(α) : α ∈ S1} < λ. Then we can demand that for some
θ < λ, α ∈ S1 ⇒ |C2

α| < θ . Also if C̄1 is almost strict then we can demand that
C̄2 is almost strict.
(3) Suppose ∪{cf(α) : α ∈ S1} < λ and for arbitrarily large regular κ < λ we have
{δ ∈ S : Iδ not κ-indecomposable} ∈ J .

Then we can strengthen the conclusion to: C̄2 is a nice strict S1-club system
such that for every club E of λ the set of δ ∈ S satisfying the following is not in J :{

α < δ : α ∈ S1 ∩ E and C2
α\E is bounded in α

}
�= ∅ mod Iδ.

(4) In part (1) (and (2), (3)) instead of “Iδ weakly normal σ -indecomposable” it
suffices to assume: if δ belongs to S and h1 : δ ∩ S1 → δ is pressing down and
h2 : δ ∩ S1 → σ then for some j1 < δ, ζ < σ we have {α ∈ δ ∩ S1 : h1(α) < j

and h2(α) < ζ } ∈ I+
δ .

5) We can replace 〈{δ : δ < λ, cf(δ) ≥ θ} : θ < λ〉 by 〈Sθ : θ < λ〉 such that
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(i)
⋂

θ<λ Sθ = ∅,
(ii) Sθ decreasing in θ and

(iii) for no δ ∈ λ\Sθ do we have cf(δ) > ℵ0 and Sθ ∩ δ stationary subset of δ;
and

(iv) Min(Sθ ) > θ .

6) Assume A ⊆ λ is stationary such that A[0,ē] = A (any ē will do).
Then in part (1) we can add nacc(C2

α) ⊆ A and waive δ ∈ S ⇒ cf(δ) > ℵ0.

1.13 Remark. 1) This is similar to [Sh:g, IV, 1.7, p.188]. We can replace “S is a
set of inaccessibles > σ” by “S is a set of cardinals of cofinality �= σ” and get a
generalization of [Sh:g, IV,1.7,p.188].
2) Note that (∗) of 1.12 holds if S1 is a set of singulars and otp(C1

α) < α for every
α ∈ S1.
Concerning (∗) see [Sh 276, 3.7,p.370] or [Sh:g, III,2.12,p.134], it is a very weak
condition, a strong version of not being weakly compact.
3) This claim is not presently used here (but its relative 1.14 will be used) but still
has interest.

Proof. 1) Let ē be a strict λ-club system.
It suffices to show that for some regular θ < λ and club E2 of λ the sequence

C̄2,E2,θ = 〈C2,E2,θ
α = g
1

θ (C
1
α, E2, ē) : θ < α ∈ S1〉 satisfies the conclusion (on

g
1
θ see [Sh 365], Definition 2.1(2) and uses in §2 there). So we shall assume that

this fails. This means that for every club E2 of λ and regular cardinal θ < λ some
club E = E(E2, θ) exemplifies the “failure” of C̄2,E2,θ . This means that for some
Y = Y (E2, θ) ∈ J for every δ ∈ S\Y we have{

α < δ : α ∈ S1 ∩ E and {cf(β) : β ∈ nacc(C2,E2,θ
α ) and β ∈ E} is

unbounded in α

}
∈ Iδ.

We now define by induction on ζ ≤ σ a club Eζ of λ:
for ζ = 0: Eζ =: λ

for ζ limit: Eζ =:
⋂

ξ<ζ Eξ

for ζ = ξ + 1:

Eζ =:

{
δ : δ a limit cardinal < λ, δ ∈ Eξ , δ > σ and :

θ = cf(θ) < δ ⇒ δ ∈ E(Eξ , θ)

}
.

Let E+ =
{
i < λ : i a cardinal , i ∈ Eσ , moreover i = otp(Eσ ∩ i)

}
.

By (∗) (in the assumption)

B =: {δ ∈ S : Aδ ∈ I+
δ } ∈ J+
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and let
A =

⋃
δ∈S

Aδ

where for δ ∈ S

Aδ =: {α ∈ S1 ∩ δ : E+ ∩ α\C1
α unbounded in α}.

Note that if δ ∈ B or δ ∈ A then δ = sup(δ ∩ E+) ∈ E+; note also that A ⊆ S1
and B ⊆ S. Now as α ∈ S1 ⇒ cf(α) �= σ , for each α ∈ A there are ζ(α) < σ and
θ(α) = cf[θ(α)] < α such that:

(∗)0 θ(α) ≤ θ = cf(θ) < α & ζ(α) ≤ ζ < σ ⇒
α = sup

{
cf(β) : β ∈ nacc(C

2,Eζ ,θ
α ) ∩ Eζ+1

}
.

[Why? We can find an increasing sequence 〈αi, βi : i < cf(α)〉, αi increasing
with i with limit α, αi ∈ C1

α, βi ∈ Eσ , αi < cf(βi) ≤ βi < Min
(
C1

α\(αi + 1)
)

(possible by the definition of the set Aδ and of the club E+). For each i < cf(α)

we can find ζi < σ, θi <
⋃

j<i αj and γi such that ζi ≤ ζ < σ & θi ≤ θ <⋃
j<i αj & θ = cf(θ) ⇒ Min(C

2,Eζ ,θ
α \βi) = γi

(check definition of g
1
θ !). So by the definition of g
1

θ we have αi ≤ γi ≤ βi

and cf(γi) ≥ ⋃
j<i αj and ζi ≤ ζ < σ & θi ≤ θ = cf(θ) <

⋃
j<i αj ⇒ γi ∈

nacc
(
C

2,Eζ ,θ
α

)
, this implies the statement (∗)0].

Now if δ ∈ B, we have: Aδ ∈ I+
δ and Aδ is the union of 〈{α ∈ Aδ : ζ(α) ≤

ζ } : ζ < σ 〉 which is increasing.
As Iδ is σ -indecomposable, and Aδ ∈ I+

δ for some ξ = ξ(δ) < σ ,

Aδ,ξ =: {α ∈ Aδ : ζ(α) ≤ ξ} ∈ I+
δ .

Similarly, as Iδ is weakly normal, for some regular cardinal τ = τ(δ) < δ, we have

Aτ
δ,ξ = {α ∈ Aδ : ζ(α) ≤ ξ and θ(α) ≤ τ } ∈ I+

δ .

Similarly, as the ideal J is σ -indecomposable weakly normal ideal on S ⊆ λ,
for some ε < σ and τ ∗ < λ we have:

B+ =: {δ ∈ B : Aτ∗
δ,ε ∈ I+

δ } ∈ J+.

In particular B+ cannot be a subset of Y (Eε, τ
∗) (as the latter is a member of

J , it was chosen in the first paragraph of the proof). Choose δ ∈ B+\Y (Eε, τ
∗),

which is > τ ∗.
By the definition of Y (Eε, τ

∗),{
α < δ : α ∈ S1 ∩ E(Eε, τ

∗) and

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ E(Eε, τ
∗)}} ∈ Iδ.
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If α ∈ Aτ∗
δ,ε\τ ∗ + 1 then α ∈ S1 ∩ E(Eε, τ

∗) and since ζ(α) ≤ ε and θ(α) ≤ τ ∗,
we have by (∗)0

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ Eε+1}
hence

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ E(Eε, τ
∗)}.

Since Aτ∗
δ,ε\τ ∗ + 1 /∈ Iδ , we have a contradiction.

2) By the proof of part (1) for some regular θ < λ and club E2 of λ, C̄2 =
C̄2,E2,θ is as required. So |C2

α| < θ + |C1
α|+ as we repeat the proof of part (1)

for such C̄1, so the second phrase (in 1.12(2)) follows. For the first phrase θ +
supα∈S1

|C1
α|+ < λ is as required (remember C̄1 is a strict S1-club system).

3) Let C̄2, θ be as in part (2). Let κ be regular be such that θ < κ < λ, α ∈
S1 ⇒ |C2

α| < κ and {δ ∈ S : Iδ not κ-indecomposable} ∈ J .
For any club E of λ we define C̄3,E = 〈C̄3,E

α : α ∈ S1〉 as follows: if C2
α ∩ E is a

club of α and α = ∪{cf(β) : β ∈ nacc(C2
α ∩ E)} then C3,E

α = C2
α ∩ E, otherwise

C3,E
α is a club of α of order type cf(α) with nacc(C3,E

α ) consisting of successor
cardinals (remember each α ∈ S1 is a limit cardinal).

If for some club E of λ, C̄3,E satisfies: for every club E1 of λ the set
{
δ ∈ S :

{β ∈ S1 ∩ α : C
3,E
β \E1 bounded in β} ∈ I+

δ

} ∈ J+ then we essentially finish,

as we can choose C3
α ⊆ C3,E

α which is closed of order type cf(α) and [β ∈
nacc|C3

α| ⇒ cf(β) > sup(C3
α ∩ β)], and 〈C3

β : β ∈ S1〉 is as required. So as-
sume that for every club E of λ for some club E′ = E′(E) this fails. We choose by
induction on ζ < κ , a club Eζ of λ, as follows:

E0 = λ

Eζ+1 = E′(Eζ )

Eζ =
⋂
ξ<ζ

Eξ for ζ limit

and recalling the choice of κ we easily get a contradiction.
4), 5) Same proof.
6) In the proof of part (1) choose ē such that:

for limit α < λ, α /∈ A ⇒ eα ∩ A = ∅.

Then we replace the definition of C2,E2,θ
α by C2,E2,A

α = g
1
A(C1

α, E2, ē). ��1.12

1.14 Claim. Assume

(a) λ inaccessible

(b) A ⊆ λ is a stationary set of limit ordinals and δ < λ & (A ∩ δ stationary in
δ) ⇒ δ ∈ A

(c) J is a σ -indecomposable ideal on λ containing the nonstationary ideal

(d) S ∈ J+ and S ∩ A = ∅
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(e) σ = cf(σ ) < λ and δ ∈ S ⇒ cf(δ) �= σ .

Then for some S-club system C̄ = 〈Cδ : δ ∈ S〉 we have

� for every club E of λ

{δ ∈ S : δ = sup(E ∩ nacc(Cδ) ∩ A)} ∈ J+.

Proof. As usual let ē = 〈eα : α < λ〉 be a strict λ-club system but such that for ev-
ery limit δ ∈ λ\A we have eδ ∩A = ∅. For any set C ⊆ λ and club E of λ we define
g
2

n(C, E, ē, A) by induction on n < ω as follows: for n = 0, g
2
n(C, E, ē, A) =

{sup(α ∩ E) : α ∈ C} and

g
2
n+1(C, E, ē, A) = g
2

n(C, E, ē, A) ∪ {sup(α ∩ E) : for some

β ∈ nacc(g
2
n(C, E, ē, A)) we have β /∈ A, and

sup(α ∩ E) > sup(β ∩ g
2
n(C, E, ē, A)) and

sup(α ∩ E) ≥ sup(α ∩ eβ) and α ∈ eβ}
and

g
2(C, E, ē, A) =
⋃
n<ω

g
2
n(C, E, ē, A).

If C is a club of some δ ∈ acc(E), clearly g
2
n(C, E, ē, A), g
2(C, E, ē, A) are

clubs of δ.
If for some club E of λ, letting Cδ,E be g
2(eδ, E, ē, A) when δ ∈ acc(E), and
letting Cδ,E be eδ otherwise, the sequence C̄E =: 〈Cδ,E : δ ∈ S〉 is as required,
then fine, we are done. Assume not, so for any club E of λ for some club E(E) of
λ the set YE =: {δ ∈ S : δ = sup(E(E) ∩ A ∩ nacc(Cδ,E))} belongs to J .

As we can replace E(E) by any club E′ ⊆ E(E) of λ, without loss of generality
E(E) ⊆ E.
We choose Eε by induction on ε < σ such that:

(i) Eε is a club of λ

(ii) ζ < ε ⇒ Eε ⊆ Eζ

(iii) if ε = ζ + 1 then Eε ⊆ E(Eζ ).

For ε = 0 let Eε = λ, for ε limit let Eε = ⋂
ζ<ε Eζ , for ε = ζ + 1 let Eε =

E(Eζ ) ∩ Eζ .
This is straightforward and let E = ⋂

ε<σ Eε, it is a club of λ hence E ∩ A

is stationary hence E′ = {δ ∈ E : δ = sup(E ∩ A ∩ δ)} is a club of λ hence
λ\E′ ∈ J . Now for each δ ∈ E′ ∩ S, choose an increasing sequence 〈βδ,i : i <

cf(δ)〉 of members of A ∩ E ∩ δ with limit δ; as δ ∈ S clearly δ /∈ A hence
eδ ∩ A = ∅ hence {βδ,i : i < cf(δ)} ∩ eδ = ∅. Now for each i < cf(δ) and
ε < σ , we can prove by induction on n that g
2

n(eδ, Eε, ē, A) ∩ βδ,i is bounded
in βδ,i and 〈min(g
2

n(eδ, Eε, ē, A)\βδ,i) : n < ω〉 is decreasing hence eventually
constant say for n ≥ n(δ, ε, i) hence min(g
2

n(eδ, Eε, ē, A)\βδ,i) is a member of
Cδ,Eε = ⋃

n g
2
n(eδ, Eε, ē, A) moreover of nacc(Cδ,Eε ) and so necessarily ∈ A
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as only the demand “β /∈ A” prevent g
2
n+1 having unboundedly many members

below min(g
2
n(eδ, Eε, ē, A)\βδ,i).

Also as usual for each i < cf(δ) for some εi,δ < σ we have εi,δ ≤ ζ < σ ⇒
Min(Cδ,Eζ\βδ,i) = Min(Cδ,Eεi,δ

\βδ,i) as for eachn, the sequence 〈Min(g
2
n(eδ, Eε,

ē, A)\βδ,i) : ε < σ 〉 is nonincreasing hence eventually constant. But cf(δ) ∈
{cf(δ′) : δ′ ∈ S} hence cf(δ) �= σ , so for some εδ we have cf(δ) = sup{i : εi,δ ≤ εδ}.
So easily εδ ≤ ε < σ ⇒ δ ∈ YEε , see definition below.

Let Yε = ∩{YEζ : ζ ≥ ε and ζ < σ }. Clearly Yε ⊆ YEε ∈ J so Yε ∈ J and
ε1 < ε2 ⇒ Yε1 ⊆ Yε2 .As J is σ -indecomposable, necessarily

⋃
ε<σ Yε ∈ J , but by

the previous paragraph δ ∈ E′ ∩ S &
∧

ε≥εδ
δ ∈ YEε ⇒ δ ∈ Yεδ ⇒ δ ∈ ⋃

ε<σ Yε,
so E′ ∩ S ⊆ ⋃

ε<σ Yε ∈ J but S ∈ J+, λ\E′ ∈ J , a contradiction. ��1.14

1.15 Claim. 1) Suppose λ > θ+σ, λ inaccessible, θ regular uncountable, σ regular,
σ �= θ, S ⊆ {δ < λ : cf(δ) = θ} stationary, J a weakly normal σ -indecomposable
ideal on S (proper, of course).

Then for some S-club system 〈Cδ : δ ∈ S〉:
(a) δ ∈ S & α ∈ nacc(Cδ) ⇒ cf(α) > sup(α ∩ Cδ)

(b) for every club E of λ, {δ ∈ S : δ = sup(E ∩ nacc(Cδ))} ∈ J+

(c) supδ∈S |Cδ| < λ.

2) If in addition {κ < λ : cf(κ) = κ, J is κ-indecomposable} is unbounded in
λ we can demand C̄ is nice and strict.

Proof. Like 1.12 or 1.14 but easier (and see [Sh:g, III,2.7,p.128]). More specifically
part (1) is proved like 1.12(1) (but simpler) and part (2) like 1.12(3). ��1.15

1.16 Claim. 1) Assume λ is an inaccessible Jonsson cardinal, n∗ < ω, θ = ℵγ (∗) <

λ, S ⊆ λ, and S+ = {δ < λ : S ∩ δ is stationary and δ is inaccessible}, satisfy
δ ∈ S ⇒ θ ≤ cf(δ) < δ and

(∗)(α) λ × n∗ ≤ rkλ(S) < λ × (n∗ + 1) and

(β) rkλ(S
+) < rkλ(S)

(γ ) if θ > ℵ0 then n∗ > 0 or at least γ (∗) × ω < rkλ(S),
(note: if θ = ℵ0 this holds trivially; similarly for clause (δ))

(δ) if θ > ℵ0, then for some α(∗) we have γ (∗) + rkλ(S
+) ≤ α(∗) < rkλ(S)

(recall θ = ℵγ (∗)), and idα(∗)

rk (λ) � S is θ -complete (of course, θ = ℵγ (∗)).

(∗∗)(α) C̄ is an S-club system,

(β) λ /∈ idp(C̄, Ī ), see definition below, where Ī = 〈Iδ : δ ∈ S〉, Iδ =: {A ⊆
Cδ : for some σ < δ and α < δ, (∀β ∈ A)(β < α ∨ cf(β) < σ ∨ β ∈
acc(Cδ)}, moreover

(γ ) for every club E of λ we have α(∗) < rkλ({δ ∈ S : for every σ <

δ we have δ = sup(E ∩ nacc(Cδ) ∩ {α < δ : cf(α) > σ })).
Then idj

θ (C̄) is a proper ideal (see 1.18 below).
2) Like part (1) using idγ , rk∗

λ instead of idγ

rk, rkλ respectively.
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1.17 Remark. The ideals idj (C̄), idj
θ (C̄) are defined below; they are from [Sh:g,

IV,Definition 1.8(2),(3),p.190] 4 but idj (λ) = idj
ℵ0

(λ) and the definition of rkj
θ (λ)

is repeated in the proof below, and the ideal idp(C̄, Ī ) in [Sh:g, III,3.1,p.139] is:

1.18 Definition. For λ regular > ℵ0, C̄ = 〈Cδ : δ ∈ S〉, Cδ ⊆ δ = sup(Cδ), S ⊆
λ = sup(S), Ī = 〈Iδ : δ ∈ S〉, Iδ an ideal on Cδ let idp(C̄, Ī ) be the fami-
ly {A ⊆ λ : for some club E of λ for no δ ∈ Dom(C̄) ∩ acc(E) do we have
A ∩ E ∩ Cδ /∈ Iδ}.
1.19 Definition. 1) For λ an inaccessible Jonsson cardinal, C̄ = 〈Cδ : δ ∈
S〉, Cδ ⊆ δ, S ⊆ λ = sup(S) and θ = cf(θ) < λ let idj

θ (C̄) be the family of
A ⊆ λ such that: for every χ > λ and x ∈ H(χ) there is a sequence M̄ exempli-
fying A ∈ idj

θ (λ) for x (and C̄, χ ) where:

2) M̄ exemplify A ∈ idj
θ (λ) for x ∈ H(χ) (and χ > λ and λ) if:

�0 M̄ = 〈Mζ : ζ < ξ〉, ξ < θ ,

�1 ξ < θ, θ + 1 ⊆ Mζ ≺ (H(χ), ∈, <∗
χ ) and |Mζ ∩ λ| = λ and x ∈ Mζ and

λ ∈ Mζ , C̄ ∈ Mζ , S ∈ Mζ and λ �⊆ Mζ

�2 for some α∗ < λ for no δ ∈ S\α∗ do we have:

(a) δ = sup(Mζ ∩ δ) for ζ < ξ

(b) for every β < δ for some α we have: α ∈ nacc(Cδ)\β, cf(α) ≥ β

and
� for every ζ < ξ we have: α ∈ Mζ or Min(Mζ \α) is

singular.

Proof of 1.16. 1) Recall θ = ℵγ (∗), note that γ (∗)+ rkλ(S
+) < rkλ(S), if θ > ℵ0

by clause (∗)(δ), if θ = ℵ0 trivially.
Without loss of generality δ < λ ⇒ rkδ(S ∩ δ) < δ × ω and even rkδ(S ∩ δ) <

δ × n∗ + (rkλ(S) − λ × n∗) < δ × n∗ + δ (in part (2) the first inequality is ≤).
Toward contradiction assume λ ∈ idj

θ (C̄) let x = 〈λ, C̄, S〉 and let 〈Mζ : ζ <

ξ〉 exemplify λ ∈ idj
θ (C̄) for x which means that �0, �1, �2 of Definition 1.19(2)

hold and let α∗ be as in �2.
Let: E = {δ < λ : δ �⊆ Mζ and δ = sup(Mζ ∩ δ) for every ζ < ξ and δ > α∗

for the α∗ from �2 of 1.19(2)} and let

S∗ ={δ ∈ S : for every σ <δ, {α∈E ∩ nacc(Cδ) : cf(α)>σ } is unbounded in δ}.
So E is a club of λ with every member a limit cardinal, S∗ ⊆ S is stationary (as
λ /∈ idp(C̄, Ī )) and even S∗ /∈ idα(∗)

rk (λ) (see clause (∗∗)(γ ) in the assumption)
and using �2 of Definition 1.19(2) we shall look only at δ ∈ S∗.

For each i < λ and ζ < ξ let βi
ζ =: Min(Mζ \i). As 〈Mζ : ζ < ξ〉 exemplifies

λ ∈ idj
θ (C̄), we have

4 but the “same x” in line 4 should be “every x”
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16 S. Shelah

�3 for each δ ∈ S∗ for some ζ < ξ, βδ
ζ = cf(βδ

ζ ) > δ hence βδ
ζ is inaccessi-

ble.
Proving this will take some steps. First for some β∗ < δ we have:

�4 α ∈ nacc(Cδ)\β∗ & cf(α) ≥ β∗ → (∃ζ < ξ)[Min(Mζ \α) is an inac-
cessible > α].

[Why? In the definition of idj
θ , i.e. clause (b) of �2 of Definition 1.19(2) we do not

speak on βδ
ζ for δ ∈ S, we speak on βα

ζ , for α ∈ nacc(Cδ) ∩ E. As δ ∈ S∗ we have
δ ∈ E so δ > α∗ hence δ cannot satisfy (a) + (b) of �2, but as δ ∈ E it satisfies (a)
hence for some β∗ < δ, we have �4.]
Next note

�5 βδ
ζ = δ & α ∈ E ∩ nacc(Cδ) ⇒ βα

ζ = α.

[Why? So we have δ = βδ
ζ ∈ Mζ hence Cδ ∈ Mζ so (∀γ ∈ δ ∩Mζ )[Min(Cδ\γ ) ∈

Mζ ], and now for every α ∈ E ∩ nacc(Cδ) we can find γ ∈ Mζ ∩ α satisfying
γ > sup(Cδ ∩ α) so α = Min(Cδ\γ ) ∈ Mζ as required in �5.]

�6 βδ
ζ singular & α ∈ E ∩ nacc(Cδ) & cf(α) > cf(βδ

ζ ) ⇒ βα
ζ = α.

[Why? Fix such α. There is a club e of βδ
ζ of order type cf(βδ

ζ ) which belongs

to Mζ ; also cf(βδ
ζ ) ∈ Mζ ∩ δ so cf(βδ

ζ ) < δ. Also for every δ′ ∈ e0 = {δ′ ∈
e ∩ S : α /∈ acc(Cδ′)} there is γδ′ such that sup(Cδ′ ∩ α) < γδ′ < α, hence γ ∗ =
sup{γδ′ : δ′ ∈ e0} < α (as cf(α) > cf(βδ

ζ ) by assumption). As α ∈ acc(E) there is

γ 1 ∈ Mζ ∩α, γ 1 > γ ∗. So α is the minimal ordinal α′ satisfying γ 1 < α′ & (∃δ′ ∈
e ∩ S)[α′ ∈ nacc(Cδ′)] & (∀δ′ ∈ e ∩ S)[δ′ ∈ nacc(Cδ′) → sup(α′ ∩ Cδ′) < γ 1]
hence α ∈ Mζ hence βα

ζ = α as required.]

Of course, [βδ
ζ singular ⇒ cf(βδ

ζ ) < δ] as cf(βδ
ζ ) ∈ Mζ ∩ βδ

ζ = Mζ ∩ δ; so
together �3 actually holds.

Letting S∗
ζ =: {δ ∈ S∗ : βδ

ζ = cf(βδ
ζ ) > δ}, we have S∗ = ⋃

ζ<ξ S∗
ζ , hence for

some ζ(∗) < ξ the set S∗
ζ(∗) is stationary. Moreover, if θ > ℵ0 by clause (δ) of (∗)

in our assumption and if θ = ℵ0 by 1.5(0) (for the idγ

rk case) or 1.11(0) (for the
idγ case) we can choose ζ(∗) such that rkλ(S

∗
ζ(∗)) > α(∗).

So to get the contradiction it suffices to prove rkλ

(
S∗

ζ(∗)

)
≤ α(∗). Stipulate

βλ
ζ(∗) = λ.

Let αδ
ζ(∗) =: rkβδ

ζ(∗)

(
S+ ∩ βδ

ζ(∗)

)
for δ ≤ λ.

Let αδ
ζ(∗) = βδ

ζ(∗) ×nδ
ζ(∗) +γ δ

ζ(∗) where γ δ
ζ(∗) < βδ

ζ(∗) (see the assumption in the

beginning of the proof). For δ < λ, as {λ, S} ⊆ Mζ(∗) and βδ
ζ(∗) ∈ Mζ(∗) clearly

αδ
ζ(∗) ∈ Mζ(∗) hence γ δ

ζ(∗) ∈ Mζ(∗) ∩ δ hence γ δ
ζ(∗) < δ.

We now prove by induction on i ∈ E ∪ {λ} that⊗
rki

(
S∗

ζ(∗) ∩ i ∩ E
)

≤ i × ni
ζ(∗) + γ i

ζ(∗).

This suffices as for i = λ (as αi
ζ(∗) ≤ α(∗)) it gives: rkλ

(
S∗

ζ(∗)

)
= rkλ(S

∗
ζ(∗)∩E) =

rkλ(S
∗
ζ(∗) ∩ λ ∩ E) ≤ αλ

ζ(∗) ≤ rkλ(S
+) ≤ α(∗), contradicting the choice of ζ(∗)

(and α(∗)).
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Proof of ⊗. The case cf(i) ≤ ℵ0 ∨ i ∈ nacc(E) ∨ i ∈ nacc(acc(E)) is trivial; so
we assume

�1 i ∈ acc( acc(E)) & cf(i) > ℵ0 hence rki

(
S∗

ζ(∗) ∩ i ∩ E
)
= rki

(
S∗

ζ(∗) ∩ i
)

.

For a given i, clearly for every club e of βi
ζ(∗) which belongs to Mζ(∗) we have

i = sup(e ∩ i) (as Mζ “think” e is an unbounded subset of βi
ζ(∗) and i = sup(i∩Mζ )

as i ∈ E) and for a given i, by the definition of rk there is a club e of βi
ζ(∗) satisfying

Min(e) > γ i
ζ(∗) such that one of the following occurs:

(a) αi
ζ(∗) = 0 and ε ∈ e ⇒ rkε(S

+ ∩ ε) = 0 & S+ ∩ e = ∅
(b) αi

ζ(∗) > 0 and ε ∈ e ⇒ rkε(S
+ ∩ ε) < ε × ni

ζ(∗) + γ i
ζ(∗).

As S+, βi
ζ(∗) ∈ Mζ(∗) without loss of generality e ∈ Mζ(∗) hence i ∈ acc(e).

Necessarily

�2 if ε ∈ i ∩ acc(e) ∩ acc(E), then βε
ζ(∗) ∈ e.

[Why? Otherwise sup(βε
ζ(∗)∩e) is a member of e (as e is closed, βε

ζ(∗) ≥ ε ∈ acc(e)
so βε

ζ(∗) > Min(e)), is ≥ ε (as ε ∈ acc(e)) and is < βε
ζ(∗) and it belongs to Mζ(∗)

(as e, βε
ζ(∗) ∈ Mζ(∗)), contradicting the choice of βε

ζ(∗).]
Hence one of the following occurs:

(A) αi
ζ(∗) = 0 and e is disjoint to S+

(B) αi
ζ(∗) > 0 and rkβε

ζ(∗)

(
S+ ∩ βε

ζ(∗)

)
< βε

ζ(∗) × ni
ζ(∗) + γ i

ζ(∗) for every

ε ∈ acc(e) ∩ acc(E).

First assume (A). Now for any δ ∈ acc(E)∩S∗
ζ(∗) we have βδ

ζ(∗) is inaccessible (as

δ ∈ S∗
ζ(∗) and the definition of S∗

ζ(∗)) and βδ
ζ(∗) ∩ S is stationary in βδ

ζ(∗) (otherwise

there is a club e′ ∈ Mζ(∗) of βδ
ζ(∗) disjoint to S, but necessarily δ ∈ e′ but our

present assumption is δ ∈ S∗
ζ(∗) ⊆ S, contradiction); together βδ

ζ(∗) ∈ S+ hence

βδ
ζ(∗) /∈ e (e from above, after �1), so necessarily δ �= βi

ζ(∗) ⇒ δ /∈ acc(e). So

acc(e) ∩ acc(E) ∩ i is a club of i disjoint to S∗
ζ(∗) hence rki

(
S∗

ζ(∗) ∩ i
)

= 0 which

suffices for ⊗.

If (B) above occurs, then for ε ∈ acc(e)∩ acc(E) we have βε
ζ(∗) ×nε

ζ(∗) + γ ε
ζ(∗) <

βε
ζ(∗) × ni

ζ(∗) + γ i
ζ(∗).

Since γ i
ζ(∗) < Min(e), we have (nε

ζ(∗), γ
ε
ζ(∗)) <lex (ni

ζ(∗), γ
i
ζ(∗)), hence ε×nε

ζ(∗)+
γ ε
ζ(∗) < ε ×ni

ζ(∗) + γ i
ζ(∗) for all ε ∈ acc(e) ∩ acc(E). Using the induction hypoth-

esis, we see for ε ∈ e ∩ acc(E)\ Min(e) that

rkε(S
∗
ζ(∗) ∩ ε ∩ E) ≤ ε × nε

ζ(∗) + γ ε
ζ(∗) < ε × ni

ζ(∗) + γ i
ζ(∗)

hence by the definition of rki the statement ⊗ holds for i; which as said above is
enough.
2) We repeat the proof of part (1), replacing rki by rk∗

i up to and including the
phrasing of ⊗ and the explanation of why it suffices. For any ordinal i < λ and
ζ < ξ let Mζ,i be the Skolem Hull in (H(χ), ∈, <∗

χ ) of Mζ ∪ {j : j ≤ βi
ζ }. But

δ ∈ S∗
ζ(∗) ⇒ cf(βδ

ζ(∗)) = βδ
ζ(∗) > δ hence clearly
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18 S. Shelah

�7 Mζ,i increases with i, Mζ,i ≺ (H(χ), ∈, <∗
χ ), and

�8 δ ∈ Mζ & cf(δ) > βi
ζ ⇒ sup(Mζ,i ∩ δ) = sup(Mζ ∩ δ).

But δ ∈ S∗
ζ(∗) ⇒ cf(βδ

ζ(∗)) = βδ
ζ(∗) > δ hence clearly j < δ ∈ S∗

ζ(∗) ⇒ j <

δ & δ = sup(Mζ(∗) ∩ βδ
ζ(∗)) ⇒ j < δ & δ = sup(Mζ(∗),j ∩ βδ

ζ(∗)) ⇒ βδ
ζ(∗) =

Min(Mζ(∗),j ∩λ\δ). Now for j < λ let Wj = {w : w belongs to Mζ(∗),j and w ⊆
S} and for w ∈ Wj we let w+ = {δ < λ : δ inaccessible and w ∩ δ is a stationary
subset of δ}, letβi

ζ(∗),j,w = βi
ζ(∗),j = Min(Mζ(∗),j∩λ\i).Also for j < λ, w ∈ Wj

and i > β
j

ζ(∗),j,w let αi
ζ(∗),j,w = rk∗

βi
ζ(∗),j,w

(w+ ∩ βi
ζ(∗),j,w), so as w+ ⊆ S+

necessarily αi
ζ(∗),j,w = βi

ζ(∗),j,w × ni
ζ(∗),j,w + γ i

ζ(∗),j,w with ni
ζ(∗),j,w < ω and

γ i
ζ(∗),j,w < βi

ζ(∗),j . By the definition of Mζ,j and βi
ζ(∗),j,w clearly βi

ζ(∗),j,w decrease

with j and by �8 we have β
j

ζ(∗) < i ∈ E & cf(i) > β
j

ζ(∗) ⇒ βi
ζ(∗),j,w = βi

ζ(∗).
Now we prove by induction on i ∈ E ∪ {λ} that

⊗+ if j < λ, β
j

ζ(∗) < i ∈ E, w ∈ Wj then

rki (S
∗
ζ(∗) ∩ w ∩ i ∩ E) ≤ i × ni

ζ(∗),j,w + γ i
ζ(∗),j,w.

This clearly suffices (for w = S we shall get ⊗ for each Mζ(∗),j which is more than
enough).

Proof of ⊗+. The case cf(i) ≤ ℵ0 ∨ i ∈ nacc(E) ∨ i ∈ nacc(acc(E)) is trivial;
so we assume

�3 i ∈ acc(acc(E)) & cf(i) > ℵ0 hence rk∗
i

(
S∗

ζ(∗) ∩ w ∩ i ∩ E
)

= rk∗
i

(
S∗

ζ(∗) ∩ w ∩ i
)

.

For a given w ∈ Wj and i ∈ E\βj

ζ(∗),j,w clearly for every club e of βi
ζ(∗),j,w

which belongs to Mζ(∗),j we have i = sup(i ∩ e); (this because “Mζ thinks” e is an
unbounded subset of βi

ζ(∗) and i ∈ E implies i = sup(i ∩ Mζ ) is a limit ordinal);
so i ∈ acc(e) even i ∈ acc(acc(e)), etc. By the definition of rk∗

βi
ζ(∗),j,w

, for our i,

there is a club e of βi
ζ(∗),j,w with Min(e) > γ i

ζ(∗),j,w and h (for case (c)) such that
one of the following cases occurs:

(a) γ i
ζ(∗),j,w = 0 & ni

ζ(∗),j,w = 0 that is αi
ζ(∗),j,w = 0 and w+ ∩ e = ∅ so

ε ∈ e ⇒ rk∗
ε (w

+ ∩ ε) = 0 &

(b) γ i
ζ(∗),j,w > 0 and ε ∈ e ⇒ rk∗

ε(w
+ ∩ ε) < ε × ni

ζ(∗),j,w + γ i
ζ(∗),j,w

(c) γ i
ζ(∗),j,w = 0 & ni

ζ(∗),j,w > 0, h a pressing down function on w+ ∩ i such

that for each j < i we have j < ε ∈ e & h(ε) = j ⇒ rk∗
ε(w

+ ∩ ε) <

ε × ni
ζ(∗),j,w + γ i

ζ(∗),j,w.

For j < λ, w ∈ Wj and i < λ, clearly βi
ζ(∗),j,w and w belongs to Mζ(∗),j hence

also αi
ζ(∗),j,w ∈ Mζ(∗),j and so also (ni

ζ(∗),j,w and) γ i
ζ(∗),j,w belongs to Mζ(∗),j . So

without loss of generality to clauses (a), (b), (c) we can add:

�4 e ∈ Mζ(∗),j and h ∈ Mζ(∗),j when defined (and i = sup(i ∩ e)).
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Necessarily

�5 if ε ∈ i ∩ acc(e) ∩ acc(E) then βε
ζ(∗),j,w ∈ e.

[Why? Otherwise:

(i) βε
ζ(∗),j,w < i (as ε < i & i ∈ acc(E) and the definition of βε

ζ(∗),j,w and
the choice of E)

(ii) sup(βε
ζ(∗),j,w ∩ e) is a member of e (as e is a closed unbounded subset of

βi
ζ(∗),j,w and Min(e) < βε

ζ(∗),j,w < i ≤ βi
ζ(∗),j,w)

(iii) sup(βε
ζ(∗),j,w ∩ e) ≥ ε (as ε ∈ acc(e) & ε ≤ βε

ζ(∗),j,w)

(iv) βε
ζ(∗),j,w ∈ Mζ(∗),j (by its definition)

(v) sup(βε
ζ(∗),j,w ∩ e) ∈ Mζ(∗),j (as e, βε

ζ(∗) ∈ Mζ(∗),j ).

So sup(βε
ζ(∗),j,w ∩ e) ∈ λ∩Mζ(∗),j\ε hence is ≥ Min(λ∩Mζ(∗),j\ε) = βε

ζ(∗),j,w,
but trivially sup(βε

ζ(∗),j,w ∩e) ≤ βε
ζ(∗),j,w so we get the βε

ζ(∗),j,w = sup(βε
ζ(∗),j,w ∩

e) and it belongs to e by (ii) so we have proved �5.]
So by the choice of e, one of the following cases occurs:

(A) αi
ζ(∗),j,w = 0 and e is disjoint to w+

(B) γ i
ζ(∗),j,w > 0 and rk∗

βε
ζ(∗),j,w

(
w+ ∩ βε

ζ(∗),j,w

)
< βε

ζ(∗),j,w × ni
ζ(∗),j,w +

γ i
ζ(∗),j,w for every ε ∈ acc(e) ∩ acc(E)

(C) γ i
ζ(∗),j,w = 0, ni

ζ(∗),j,w > 0, h ∈ Mζ(∗),j a pressing down funtion on
e such that: ε < µ ∈ e & (µ inaccessible) ⇒ rk∗

µ({γ < µ : γ ∈
w+ ∩ e and h(γ ) = ε}) < µ × ni

ζ(∗),j,w (read Definition 1.9(1) clause
(c) and use diagonal intersection; remember that for singular µ, rk∗

µ(µ) =
rkµ(µ) < µ).

First assume (A). Now for any δ ∈ acc(E)∩S∗
ζ(∗) ∩w necessarily βδ

ζ(∗),j,w is inac-

cessible (as δ ∈ S∗
ζ(∗) and the definition of S∗

ζ(∗)) and βδ
ζ(∗),j,w ∩ w is stationary in

βδ
ζ(∗),j,w (otherwise there is a club e′ ∈ Mζ(∗),j of βδ

ζ(∗),j,w disjoint to w, but neces-

sarily δ ∈ e′ and δ ∈ w, contradiction); together βδ
ζ(∗),j,w ∈ w+ hence βδ

ζ(∗),j,w /∈ e

(e from above), so as e ∈ Mζ(∗),j necessarily δ �= βi
ζ(∗),j,w ⇒ δ /∈ acc(e). So

acc(e) ∩ acc(E) ∩ i is a club of i disjoint to S∗
ζ(∗)∩w hence rk∗

i

(
S∗

ζ(∗) ∩ w ∩ i
)

= 0

which suffices for ⊗+.

Secondly, assume clause (B) occurs; then for every ε ∈ acc(e) ∩ acc(E) we
have βε

ζ(∗),j,w × nε
ζ(∗),j,w + γ ε

ζ(∗),j,w < βε
ζ(∗),j,w × ni

ζ(∗),j,w + γ i
ζ(∗),j,w. Since

γ i
ζ(∗),j,w ≤ Min(e) we have (nε

ζ(∗),j,w, γ ε
ζ(∗),j,w) <
ex (ni

ζ(∗),j,w, γ i
ζ(∗),j,w) hence

ε×nε
ζ(∗),j,w +γ ε

ζ(∗),j,w < ε×ni
ζ(∗),j,w +γ i

ζ(∗),j,w for every ε ∈ acc(e)∩ acc(E).
Using the induction hypothesis we get for every ε ∈ acc(e) ∩ acc(E) that

rk∗
ε(S

∗
ζ(∗),j,w ∩ i ∩ E) ≤ ε × nε

ζ(∗),j,w + γ ε
ζ(∗),j,w < ε × ni

ζ(∗),j,w + γ i
ζ(∗),j,w.

Lastly, assume that clause (C) holds and let e, h ∈ Mζ(∗),j be as there, without loss
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of generality i is inaccessible (otherwise the conclusion is trivial), so e∩ i, E∩ i are
clubs of i, and let j∗ =: h(i), j1 = Max{j, j∗} so j ≤ j1 < i and Mζ(∗),j1 is well
defined (and j∗, j1 ∈ Mζ(∗),j1 ). Clearly βi

ζ(∗),j∗,w = βi
ζ(∗),j,w [because βi

ζ(∗),j,w

is inaccessible (as otherwise αi
ζ(∗),j,w < βi

ζ(∗),j,w contradicting our case) hence

j ≤ j ′ < i ⇒ βi
ζ(∗),j∗,w = βi

ζ(∗),j,w as in previous cases.]

Let uj1 = {α ∈ w ∩ e : h(α) = j∗} ∈ Mζ(∗),j1 and as j1 < i ≤ βi
ζ(∗),j,w

clearly δ ∈ e ⇒ rk∗
δ (S

∗
ζ(∗),j ∩ uj1 ∩ δ) < ni

ζ(∗),j,w × δ hence by the induction

hypothesis δ ∈ i ∩ acc(e) ∩ acc(E) ⇒ rk∗
δ (S

∗
ζ(∗),j1

∩ uj ∩ δ) < ni
ζ(∗),j,w × δ,

hence rki (S
∗
ζ(∗),j1

∩ w ∩ i) ≤ ni
ζ(∗),j,w × i as required. ��1.16

1.20 Claim. Assume

(a) (i) cf(λ) > µ

(ii) S ⊆ {δ < λ : µ < cf(δ) < δ}
(iii) rkλ(S) = γ ∗ = λ × n∗ + ζ ∗ where ζ ∗ < λ, n∗ < ω

(b) (i) J an ℵ1-complete ideal on µ containing the singletons

(ii) if A ∈ J+, (i.e. A ⊆ µ, A /∈ J ) and f ∈ Aλ then ‖f ‖J �A < λ

(if e.g. J = J bd
µ , µ regular, then A = µ suffices as J � A ∼= J )

(iii) if A ∈ J+ and f ∈ A(ζ ∗) then ‖f ‖J �A < ζ ∗.

Then id<γ ∗
rk (λ) � S is J -indecomposable (see Definition 1.21 below).

1.21 Definition. An ideal I on λ is J -indecomposable where J is an ideal on
µ, if: for any Sµ ⊆ λ, Sµ /∈ I , and f : Sµ → J there is i < µ such that
Si =: {α ∈ Sµ : i /∈ f (α)} /∈ I ; note that given Sµ, f can be defined from
〈Si : i < µ〉 and vice versa.

Clearly

1.22 Claim. 1) If J = J bd
µ , µ regular then “I is J bd-indecomposable” is equivalent

to “I is µ-indecomposable”.
2) If J is a |ζ ∗|+-complete ideal on µ, then the assumption (b) (iii) of 1.20 holds

automatically.

Proof of Claim 1.20. We prove this by induction on γ ∗. Assume toward contradic-
tion that the conclusion fails as exemplified by Sµ, f, Si (for i < µ), so f : Sµ → J

we have Si = {α ∈ Sµ : i /∈ f (α)} and without loss of generality Sµ ⊆ S such that

Sµ /∈ id<γ ∗
rk (λ), but Si ∈ id<γ ∗

rk (λ) for each i < µ. Now let rkλ(Si) = λ × ni + ζi

with ζi < λ; clearly δ ∈ Sµ ⇒ {i < µ : δ /∈ Si} = f (δ) ∈ J . Without loss of
generality S = Sµ and clearly Si ⊆ Sµ = ⋃

j<µ Sj . By our assumption toward
contradiction clearly ni < n∗ ∨ (ni = n∗ & ζi < ζ ∗) for each i < µ.

As we can replace S by S ∩ E for any club E of λ, without loss of generality

(∗)0 if δ < λ then rkδ(S ∩ δ) < δ × n∗ + (rkλ(S) − λ × n∗) = δ × n∗ + ζ ∗
and rkδ(Si ∩ δ) < δ × ni + ζi and Min(S) > ζ ∗, ζi for i < µ.
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Recalling 1.3(1), (4), for δ ∈ S
[0]
µ ∪ {λ} and n ≤ n∗ let: Aδ

n = {i < µ : δ ×
n ≤ rkδ(Si ∩ δ) < δ × (n + 1)} and let f δ

n : Aδ
n → δ be defined by f δ

n (i) =:
rkδ(Si ∩ δ) − δ × n and let n(δ) = Min{n : Aδ

n /∈ J } so by (∗)0 clearly n(δ) is
well defined and ≤ n∗.

For i < µ and δ < λ let rkδ(Si ∩ δ) = δ × mδ,i + εδ,i , where mδ,i ≤ n∗ and
εδ,i < δ; so for some E0

(∗)1 E0 is a club of λ, and if δ < λ, Aδ
n /∈ J and n ≤ n∗, then

‖f δ
n ‖J �Aδ

n
< Min(E0\(δ + 1))

(possible as f δ
n : Aδ

n → δ ⊆ λ and hypothesis (b)(ii)).
Now we shall prove for δ ∈ S[0] ∪ {λ} that, recalling S[0] = {δ : δ ∈ S or S ∩ δ

is stationary in δ}:⊗
δ rkδ(Sµ ∩ E0 ∩ δ) ≤ δ × n(δ) + ‖f δ

n(δ)‖J �Aδ
n(δ)

< δ × n(δ) + δ.

Why does this suffice? For δ = λ, first note: if n(λ) < n∗ then rkλ(Sµ) ≤ λ ×
n(λ)+‖f δ

n(δ)‖J �Aδ
n(δ)

≤ λ×(n∗−1)+‖f δ
n(δ)‖J �Aδ

n(δ)
< λ×(n∗−1)+λ ≤ λ×n∗ ≤

rkλ(S) = rkλ(Sµ) [why? first inequality by ⊗λ, second inequality by n(λ) < n∗
(see above), third inequality by assumption (b) (ii), as for i ∈ An(λ), f

δ
n(δ)(i), that

is f λ
n(λ)(i) is ζi < λ by our assumption toward contradition; the fourth inequality

is an ordinal addition and the fifth we have assumed] and this is a contradiction.
So we can assume n(λ) = n∗, but then by ⊗λ, we know rkλ(Sµ) ≤ λ × n(λ) +

‖f δ
n(δ)‖J �Aδ

n(δ)
.

But for i ∈ Aδ
n(δ) = Aλ

n∗ , by the definition of the Aδ
n’s we know that ni = n(δ) =

n(λ) = n∗, and so we know λ × ni + ζi = rkλ(Si) < rk(Sµ) = γ = λ × n∗ + ζ ∗
so we know f δ

n(δ)(i) = rkδ(Si ∩δ)−δ×n(δ) = ζi < ζ ∗ so by assumption (b) (iii),

‖f δ
n(δ)‖J �Aδ

n(δ)
< ζ ∗, so by ⊗λ, rkλ(Sµ) < λ × n∗ + ζ ∗, contradiction.

So it actually suffices to prove ⊗δ . We prove it by induction on δ.
If cf(δ) = ℵ0, or δ /∈ acc(E0) or more generally Sµ ∩ δ is not a stationary

subset δ, then rkδ(Sµ ∩ δ) = 0, and rkδ(Si ∩ δ) = 0 hence ‖f δ
n(δ)‖ = 0 so the

inequality ⊗δ holds trivially.
So assume otherwise; for each i < µ, for some club ei of δ we have:

(∗)2 δ(1) ∈ ei ⇒ (mδ(1),i < mδ,i) ∨ (mδ(1),i = mδ,i & εδ(1),i < εδ,i).

Without loss of generality ei ⊆ E0.As Sµ ∩ δ is a stationary in δ (as we are assuming
“otherwise”) by hypothesis (a) (ii) of the claim, cf(δ) ≥ Min{cf(α) : α ∈ S} > µ,
so e =:

⋂
i∈Aδ

n(δ)
ei is a club of δ.

As εδ,i < δ (see its choice) and cf(δ) > µ (by hypothesis (a) (ii)) clearly
ε = supi<µ εδ,i < δ, hence sup(Rang(f δ

n(δ))) < δ hence ‖f δ
n(δ)‖J �Aδ

n(δ)
< δ (see

(∗)1, as δ ∈ E0), so the second inequality in ⊗δ holds; so without loss of generality
εδ,i < min(e) and ‖f δ

n(δ)‖J �Aδ
n(δ)

< min(e).

Suppose the first inequality in ⊗δ fails, so rkδ(Sµ ∩ E0 ∩ δ) > δ × n(δ) +
‖f δ

n(δ)‖J �Aδ
n(δ)

, hence

B =
{
δ(1) ∈ e : rkδ(1)(Sµ ∩ E0 ∩ δ(1)) ≥ δ(1) × n(δ) + ‖f δ

n(δ)‖J �Aδ
n(δ)

}
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is a stationary subset of δ; note that

δ(1) ∈ B ⇒ δ(1) ∈ e ⇒ ‖f δ
n(δ)‖J �Aδ

n(δ)
< min(e) ⇒ ‖f δ

n(δ)‖J �Aδ
n(δ)

< δ(1).

But by the induction hypothesis

δ(1) ∈ B ⇒ rkδ(1)(Sµ ∩ E0 ∩ δ(1)) ≤ δ(1) × n(δ(1)) + ‖f δ(1)
n(δ(1))‖J �Aδ(1)

n((δ)(1))

< δ(1) × n(δ(1)) + δ(1).

Let δ(1) ∈ B; putting this together with the definition of “δ(1) ∈ B” we get

(∗)3 δ(1) × n(δ) + ‖f δ
n(δ)‖J �Aδ

n(δ)
≤ δ(1) × n(δ(1)) + ‖f δ(1)

n(δ(1))‖J �Aδ(1)
n(δ(1))

.

Now by (∗)2 necessarily n(δ(1)) ≤ n(δ) so by (∗)3 we have n(δ(1)) = n(δ)

(remember ‖f δ(1)
n(δ(1))‖J �Aδ(1)

n(δ(1))

< δ(1) by the induction hypothesis). So

(∗)4 ‖f δ
n(δ)‖J �Aδ

n(δ)
≤ ‖f δ(1)

n(δ(1))‖J �Aδ(1)
n(δ(1))

.

Now by (∗)2 (as we have n(δ) = n(δ(1))){
i ∈ Aδ

n(δ) : i /∈ A
δ(1)
n(δ(1))

}
⊆

⋃
n<n(δ(1))

Aδ(1)
n

now as n(δ(1)) = Min{n : A
δ(1)
n /∈ J } and J an ideal, clearly

⋃
n<n(δ(1)) A

δ(1)
n ∈ J .

So we have shown Aδ
n(δ)\Aδ(1)

n(δ(1)) ∈ J . Also for i ∈ Aδ
n(δ) ∩ A

δ(1)
n(δ(1)), we have

f δ
n(δ)(i) = εδ

δ,i > εδ(1),i = f
δ(1)
n(δ(1))(i). Together (and by the properties of ‖ − ‖−)

‖f δ
n(δ)‖J �Aδ

n(δ)
= ‖f δ

n(δ) � (Aδ
n(δ) ∩ A

δ(1)
n(δ(1)))‖J �(Aδ

n(δ)
∩A

δ(1)
n(δ(1))

)

> ‖f δ(1)
n(δ(1)) � (Aδ

n(δ) ∩ A
δ(1)
n(δ(1)))‖J �(Aδ

n(δ)
∩A

δ(1)
n(δ(1))

)

≥ ‖f δ(1)
n(δ(1)) � A

δ(1)
n(δ(1))‖J �Aδ(1)

n(δ(1))

contradicting (∗)4. ��1.20

1.23 Claim. If J is an ideal on µ, µ < λ, γ a limit ordinal, J is µ-complete, γ < µ,
then I = id<γ

rk (λ) � S is J -indecomposable.

Proof. Assume Sµ ∈ I+ and f : Sµ → J and Si =: {α ∈ Sµ : i /∈ f (α)}.
Now we prove by induction on β < γ that: if δ < λ, rkδ(Sµ ∩ δ) ≥ 2β

and cf(δ) �= µ, then Aβ =: {i : rkδ(Si ∩ δ) ≥ β} = µ mod J . Note that we
have “≥ 2β” in the assumption but ≥ β in the conclusion; we can “get away”
with this as γ is a limit ordinal. As J is µ-complete, µ > |γ | this implies that
{i : rkδ(Si ∩ δ) ≥ γ } = µ mod J . So let us carry the induction; if β = 0 this is
trivial and for β limit use β < γ < µ and the induction hypothesis (and J being
µ-complete). So assume β = α+1, δ < λ, cf(δ) �= µ, rkδ(Sµ ∩δ) ≥ 2β = 2α+2,
hence S′ =: {δ′ < δ: rkδ′(Sµ ∩ δ′) ≥ 2α + 1} is a stationary subset of δ.
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So δ′ ∈ S′ & cf(δ′) �= µ ⇒ δ′ ∈ Aα by the induction hypothesis so if {δ′ ∈
S′ : cf(δ′) �= µ} is a stationary subset of δ we are done. Otherwise, still [δ′ ∈ S′ ⇒
{δ′′ < δ′ : δ′′ ∈ A2α} is a stationary subset of δ′] hence S′′ = {δ′′ < δ : cf(δ′′) < µ

and δ′′ ∈ A2α} is a stationary subset of δ, and we can finish as before. ��1.23

1.24 Remark. 1) It is more natural to demand only J is κ-complete and κ > γ ; and
allow γ to be a successor, but this is not needed and will make the statement more
cumbersome because of the “problematic” cofinalities in [κ, µ].
2) We can prove more in 1.23:

⊗ if β < µ, rkλ(Sµ) > β then {i < µ : rkλ(Si) ≥ β} = µ mod J .

1.25 Theorem. Assume λ is inaccessible and there is S ⊆ λ stationary such that
rkλ({κ < λ : κ is inaccessible and S ∩ κ is stationary in κ}) < rkλ(S).

Then on λ there is a Jonsson algebra.

Proof. Assume toward contradiction that there is no Jonsson algebra on λ. Let
S+ =: {δ < λ : δ inaccessible and S ∩ δ is stationary in δ}.
Note that without loss of generality

� S is a set of singulars and rkλ(S) is a limit ordinal.

[Why? Let S′ = {δ ∈ S : δ a singular ordinal }, S′′ = {δ ∈ S : δ is a regular
cardinal}, so rkλ(S) = rkλ(S

′ ∪ S′′) = Max{rk(S′), rk(S′′)} by 1.5(0). Now if
rkλ(S

′′) < rkλ(S), then necessarily rkλ(S
′) = rkλ(S) so we can replace S by S′. If

rkλ(S
′′) = rk(S) then rkλ(S

′′) > rkλ(S
+) and clearly S′′ ∩δ stationary ⇒ δ ∈ S+,

so necessarily rkλ(S
′′) is finite hence λ has a stationary set which does not reflect

and we are done; see [Sh:g]. If rkλ(S) is a successor ordinal we are done similarly.]
By the definition of rkλ, γ ∗ =: rkλ(S) < λ + rkλ(S

+), but we have assumed
rkλ(S

+) < rkλ(S) so rkλ(S) < λ + rkλ(S), which implies rkλ(S) < λ × ω. So
for some n∗ < ω we have λ × n∗ ≤ rkλ(S) < λ × n∗ + λ.

Let rkλ(S
+) = β∗ = λ × m∗ + ε∗ with ε∗ < λ. We shall now prove 1.25 by

induction on λ. By [Sh:g, Ch.III], without loss of generality β∗ > 0. By 1.5(9) we
can find a club E of λ such that:

(A) δ ∈ E ⇒ rkδ(S ∩ δ) < δ × n∗ + ( rkλ(S) − λ × n∗)
(B) δ ∈ E ⇒ rkδ(S

+ ∩ δ) < δ × m∗ + ε∗.

Note that δ × m∗ + ε∗ > 0 for δ ∈ E (or just δ > 0) as β∗ > 0. Let A =: {δ ∈ E :
δ inaccessible, ε∗ < δ and rkδ(S ∩ δ) ≥ δ × m∗ + ε∗}.

Clearly δ ∈ A implies S ∩δ is a stationary subset of δ. By the induction hypoth-
esis and the choice of A and clause (B) every member of A has a Jonsson algebra
on it and by the definition of A (and 1.5(9)) we have [α < λ & A∩α is stationary in
α ⇒ α ∈ A]; note that as A is a set of inaccessibles, any ordinal in which it reflects
is inaccessible. If A is not a stationary subset of λ, then without loss of generality
A = ∅, and we get rkλ(S) ≤ λ × m∗ + ε∗ = β∗ < rkλ(S), a contradiction. So
without loss of generality (using the induction hypothesis on λ):⊕

A is stationary, A[0] ⊆ A, i.e. (∀δ < λ)(A∩ δ is stationary in δ ⇒ δ ∈ A),
each δ ∈ A is an inaccessible with a Jonsson algebra on it.
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So by [Sh:g, IV, 2.12, p.209] without loss of generality for arbitrarily large κ < λ

(even κ inaccessible):⊗
κ κ = cf(κ) > ℵ0, κ < λ and for every f ∈ κλ we have ‖f ‖

Jbd
κ

< λ.

So choose such κ < λ satisfying κ > rkλ(S) − λ × n∗. We shall show that

(∗) id<γ ∗
rk (λ) � S is Jbd

κ -indecomposable

hence it follows by 1.22(1)

(∗)′ id<γ ∗
rk (λ) � S is κ-indecomposable.

Why (∗) holds? If γ ∗ ≥ λ by 1.5(1),(3) we know that rkλ({δ ∈ S[0] : cf(δ) >

κ}) = rkλ(S), so without loss of generality Min{cf(δ) : δ ∈ S} > κ and we can
use 1.20 and the statement

⊗
above to get (∗). If γ ∗ < λ use 1.23. So (∗) and (∗)′

holds.
Note that S+ satisfies the assumptions on A in 1.14, i.e. clause (b) there and

letting σ = κ , the ideal id<γ ∗
rk (λ) is κ-indecomposable by (∗)′ above. Hence by

1.14 applied to J = id<γ ∗
rk (λ), σ = κ, S, A, we get that for some S-club system C̄

we have:

(a) δ ∈ S ⇒ nacc(Cδ) ⊆ A

(b) for every club E of λ,
rkλ({δ ∈ S : δ = sup(E ∩ nacc(Cδ))}) ≥ γ ∗.

We now apply 1.16(1) for our S, S+, n∗, λ and θ = ℵ0. Why its assumptions
hold? Now λ is a Jonsson cardinal by our assumption toward contradiction. Claus-
es (∗)(α) + (∗)(β) hold by our choice of S, S+, clauses (∗)(γ ) + (∗)(δ) holds as
θ = ℵ0, clause (∗∗)(α) holds by the choice of C̄, clause (∗∗)(β) holds by (∗∗)(γ ).
Last and the only problematic assumption of 1.16 is clause (γ ) of (∗∗) there, which
holds by clause (b) above because nacc(Cδ) ⊆ A, each α ∈ A is inaccessible. So
the conclusion of 1.16 holds, i.e. λ /∈ idj

ℵ0
(C̄). Now if δ ∈ S, α ∈ nacc(Cδ) then

α is from A but by the choice of A (and the induction hypothesis on λ) this implies
that on α there is a Jonsson algebra, so we finish by 1.26(1) below. ��1.25

1.26 Claim. 1) Assume

(a) λ is inaccessible

(b) C̄ = 〈Cδ : δ ∈ S〉, S a stationary subset of λ

(c) idj
ℵ0

(C̄) is a proper ideal

(d) if α ∈ ⋃
δ∈S nacc(Cδ) then on α there is a Jonsson algebra and α is

inaccessible.

Then on λ there is a Jonsson algebra (so we get a contradiction to (c)).
2) We can replace (c) + (d) by

(c)+ idk(C̄, Ī ) is a proper ideal5 and σ < δ & δ ∈ S ⇒ {α ∈ Cδ : α ∈
acc(Cδ) ∨ cf(α) < σ } ∈ Iδ

5 see [Sh:g, IV, Def.1.8(1), p.190], only in line 4 replace “some” by “every”; but not used
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(d)′ if α ∈ ⋃
δ∈S nacc(Cδ) then on cf(α) there is a Jonsson algebra.

3) In clause (d) of part (1) we can omit “α is inaccessible”.

Proof. 1) Very similar to the proof of [Sh:g, IV, p.192].
Let χ be large enough, M an elementary submodel of (H(χ), ∈, <∗

χ ) such that
λ ∈ M, |M ∩ λ| = λ, and it suffices to prove λ ⊆ M; assume toward contradiction
that this fails. Without loss of generality C̄ ∈ M and let E = {δ < λ : δ a limit
ordinal, δ �⊆ M and δ = sup(M∩δ)}. Clearly E is a club of λ, so by the choice of C̄,
i.e. “idj

ℵ0
(C̄) a proper ideal” there is δ ∈ S ∩ acc(E) such that δ = sup(Bδ) where

Bδ = {α ∈ nacc(Cδ)∩E : βα = α ∨ cf(βα) < βα} where βα =: Min(M ∩λ\α),
it exists as |M ∩ λ| = λ and clearly cf(βδ) < δ ≡ cf(βδ) < βδ . But for α ∈ Bδ we
know that α is inaccessible so βα cannot be singular so βα = α, that is α ∈ M . But
for α ∈ Bδ, α ∈ acc(E) by the definition of Bδ hence: α ∈ M, sup(α ∩M) = α, α

is inaccessible on which there is a Jonsson algebra hence α ⊆ M . But δ = sup(Bδ)

so δ ⊆ M , contradicting δ ∈ E.
2) Similar.
3) In the proof of part (1) we use E = {µ : µ a limit cardinal, µ = ℵµ =

|M ∩ µ|, µ �⊆ M}. Now if βα is singular (hence α is singular) we consider M ′, the
Skolem Hull of M ∪ {i : i ≤ cf(βα)} as in the proof of 1.16(2). ��1.26

Minimal cases we do not know are

1.27 Question.

1) Can the first λ which is λ × ω-Mahlo be a Jonsson cardinal?
2) Let λ be the first ω-Mahlo cardinal; is λ → [λ]2

λ consistent?
3) Is it enough to assume that for some set S of inaccessibles 0 < rkλ(S) < λ+

to deduce that there is a Jonsson algebra on λ (or even have Pr1(λ, λ, ℵ0))?

1.28 Remark. 1) Instead of Jbd
µ we could have used [µ]<κ, κ ≤ µ, but there was

no actual need.
2) We can replace in 1.25, rkλ by rk∗

λ. We can also axiomatize our demand on
the rank for the proof to work.

1.29 Theorem. Assume

(a) λ is inaccessible,

(b) S ⊆ λ is stationary, and let S+ = {µ < λ : S ∩ µ is stationary and µ is
inaccessible}

(c) if rk∗
λ(S

+) < rk∗
λ(S).

Then on λ there is a Jonsson algebra.

Proof. In essence, we repeat the proof of 1.25, replacing rkλ by rk∗
λ, and 1.16(2)

instead of 1.16(1) only the proof is shorter.
As in the proof of 1.25 without loss of generality δ ∈ S ⇒ cf(δ) < δ and we

prove this by induction on λ.
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If rk∗
λ(S) < λ, then also rk∗

λ(S
+) < λ, by 1.11 (1) rkλ(S) = rk∗

λ(S), rkλ(S
+) =

rk∗
λ(S

+) and so 1.25 apply so we are done, so we can assume rk∗
λ(S) ≥ λ. Let

γ ∗ = rk∗
λ(S) be λ × n∗ + ζ ∗, ζ ∗ < λ and let σ ∈ (ℵ0 + |ζ ∗|+, λ) be reg-

ular. Now rk∗
λ(S

[σ+1]) ≥ γ ∗ as γ ∗ ≥ λ, so without loss of generality we have
(∀δ ∈ S)(cf(δ) > σ). By 1.11(6), the ideal id<γ ∗

(λ) is σ -indecomposable. Let A =
S+ = {µ < λ : µ inaccessible and S ∩ µ is stationary}, without loss of generality
A is a stationary subset of λ (otherwise we are done by [Sh:g, Ch.III]), as in the
proof of 1.25, without loss of generality µ ∈ A ⇒ on µ there is a Jonsson alge-
bra. Now we can apply claim 1.14 to λ, A, S, id<γ ∗

(λ), σ ; its assumption holds as
δ ∈ S ⇒ cf(δ) < δ, while δ ∈ A ⇒ δ inaccessible). Now we can repeat the last
paragraph of the proof of 1.25, using 1.16(2) + 1.26(1). ��1.29

2. Back to successor of singulars

Earlier we have that if λ = µ+, µ > cf(µ) and µ is “small” in the alephs sequence,
then on λ there is a Jonsson algebra. Here we show that we can replace “small in the
aleph sequence” by other notions of smallness, like “small in the beth sequence”.
This shows that on �+

ω there is a Jonsson algebra. Of course, we feel that being a
Jonsson cardinal is a “large cardinal property” and for successor of singulars it is
very large, both in consistency strength and in relation to actual large cardinals. We
have some results materializing this intuition. If λ = µ+ is Jonsson µ > cf(µ),
then µ is a limit of cardinals close to being measurable (expressed by games). If
in addition cf(µ) > ℵ0, 2(cf(µ))+ < µ, then λ is close to being cf(µ)-compact, i.e.
there is a uniform cf(µ)-complete ideal I on λ that is close to being an ultrafilter
(the quotient is small).

2.1 Definition. We define the game Gmn(λ, µ, γ ) for λ ≥ µ cardinals, γ an ordinal
and n ≤ ω. A play last γ moves; in the α-th move the first player chooses a function
Fα from [λ]<n = {w ⊆ λ : |w| < n} into µ, and the second player has to choose
a subset Aα of λ such that Aα ⊆ ⋂

β<α Aβ, |Aα| = λ and Rang(Fα � [Aα]<n) is
a proper subset of µ. Second player loses if he has no legal move for some α < γ ;
wins otherwise.

2.2 Claim. We can change the rules slightly without changing the existence of
winning strategies:

(a) instead of Rang(Fα) being ⊆ µ, just |Rang(Fα)| = µ and the demand on
Aα is changed to: Rang(Fα � [Aα]<n) is a proper subset of Rang(Fα).
and/or

(b) the second player can decide in the α−th move to make it void, but defining
the outcome of a play, if otp({α < γ : α-th move non-void}) < γ he loses
and/or

(c) in (a) instead of |Rang(Fα)| = µ, we can require just |Rang(Fα)| ≥ µ.

Proof. Easy.
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2.3 Claim. 1) If θ �→ [θ ]<n
κ,<κ (where θ ≥ κ ≥ ℵ0 ≥ n) then first player wins

Gmn(θ, κ, κ+) (where “θ �→ [θ ]<n
κ,<κ” means: there is F : [θ ]<n → κ such that if

A ⊆ θ, |A| = θ then |Rang(F � A)| = κ).
2) If θ �→ [θ ]<n

κ,<σ (where θ ≥ κ > σ ≥ ℵ0 ≥ n) and κ > σ then for some
τ ∈ [σ, κ] first player wins Gmn(θ, τ, τ+) (where θ �→ [θ ]<n

κ,<σ means: there is
F : [θ ]<n → κ such that if A ⊆ θ, |A| = θ then |Rang(F � [A]<n)| ≥ σ .

Proof. 1) Let F exemplify θ �→ [θ ]<n
κ,<κ . For any subset A of κ of cardinality

κ let hA : κ → κ be hA(α) = otp(α ∩ A) so hA � A is one to one from A

onto κ . Now a first player strategy is to choose Fα = hBα ◦ F where Bα =:
Rang(F � [

⋂
β<α Aβ ]<n) so Fα(x) = hBα (Fα(x)) (note: we can instead use (a)

of 2.2). Note that |Rang(Fα)| = κ by the choice of F . So if 〈Fα, Aα : α < κ+〉
is a play in which this strategy is used then 〈Rang(F � [Aα]<n) : α < κ+〉 is
a strictly decreasing sequence of subsets of κ , contradiction; i.e. for some α the
second player has no legal move hence he loses.

2) Let F : [θ ]<n → κ exemplify θ �→ [θ ]<n
κ,<σ , and let B ⊆ θ, |B| = θ be with

|Rang(F � [B]<n)| minimal, so let τ =: |Rang(F � [B]<n)|, so B, F exemplify
θ �→ [θ ]<n

τ,<τ , and use part (1). ��2.3

2.4 Claim.

1) If θ ≤ 2κ but (∀µ < κ)2µ < θ then θ �→ [θ ]2
κ,<κ .

2) If cf(κ) ≤ σ < κ < θ, pp+
σ (κ) > θ = cf(θ) then θ �→ [θ ]2

κ1,<κ1
for some

κ1 ∈ [κ, θ).
3) If θ = µ+ and µ �→ [µ]nκ,<κ , then θ �→ [θ ]n+1

κ,<κ . If �n(κ) < λ ≤ �n+1(κ) and
θ < κ ⇒ �n+1(θ) < λ then λ �→ [λ]n+2

κ,<κ .
4) If κ + |T | < θ, T is a tree with κ levels and ≥ θ κ-branches and for any set

Y of κ-branches |Y | ≥ θ ⇒ |{η ∩ ν : η �= ν ∈ Y }| ≥ κ0, then θ �→ [θ ]2
κ1,<κ1

for some κ1 ∈ [κ0, |T |] ⊆ [κ0, θ) hence the first player has a winning strategy
in Gm2(θ, κ1, κ

+
1 ).

5) Assume: fα : κ → σ, fα(i) < σi < σ for α < θ, i < κ and θ ≥ κ, τ ≤ σi

and for no Y ⊆ θ, |Y | = θ do we have i < κ ⇒ σi > |{fα(i) : α ∈ Y }|. Then
the first player wins in Gm2(θ, τ, σ + 1). Hence if cf(κ) ≤ σ ≤ τ < κ < θ =
cf(θ) < pp+

σ (θ) then first player wins in Gm2(θ, τ, σ + 1).
6) If the first player does not win Gmn(λ, κ, γ ), κ ≤ θ and [β < γ ⇒ β + θ+ ≤

γ ], (equivalently, there is a limit ordinal β such that θ+ × β = γ ) then the
first player does not win in the following variant of Gmn(λ, θ, γ ): the second
player has to satisfy |Rang(Fα � [Aα]<n)| < κ .

7) κ1 ≤ κ2 & γ1 ≥ γ2 & n1 ≥ n2 & second player wins Gmn1(θ, κ1, γ1) ⇒
second player wins Gmn2(θ, κ2, γ2).

8) If κ1 ≤ κ2, γ1 ≥ γ2, n1 ≥ n2 and first player wins Gmn2(θ, κ2, γ2) then it wins
Gmn1(θ, κ1, γ1).

Remark. On 2.4, 2.6, 2.7 see more in [EiSh 535], particularly on colouring theo-
rems (instead of, e.g., no Jonsson algebras).

Proof. 1) Let 〈Aα : α < θ〉 be a list of distinct subsets of κ , and define F(α, β) =:
Min{γ : γ ∈ Aα ≡ γ /∈ Aβ}.
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2) Easy, too, but let us elaborate.

First case. There is a set � of ≤ σ regular cardinals < θ , with no last element,
σ < min(�) and sup(�) ∈ [κ, θ) such that κ1 ∈ � ⇒ max pcf(� ∩ κ1) < κ1 and
max pcf(�) = θ . Clearly it suffices to prove θ �→ [θ ]2

sup �,<sup �.

Let J be an ideal on � extending J bd
� such that θ = tcf(��, <J ) and let

〈fα : α < θ〉 be a <J -increasing cofinal sequence in �� such that for µ ∈ �, |{fα �
µ : α < θ}| < µ (exists by [Sh:g, II,3.5,p.65]). Let F(α, β) = fβ(i(α, β)) where
i(α, β) = Min{i : fα(i) �= fβ(i)}.

The rest should be clear after reading the proof of Pr1(µ
+, µ+, cf(µ), cf(µ))

in [Sh:g, II, 4.1].

Second case. For some ordinal6 δ < κ we have pp+
J bd
δ

(κ) > θ .

Hence (by [Sh:g, II, 2.3(1)]) for some strictly increasing sequence 〈σi : i < δ〉
of regulars with limit κ such that tcf

∏
i<δ σi/J

bd
δ is equal to θ and let fα(α < θ)

exemplify this. Let F(α, β) = fβ(i(α, β)) where i = i(α, β) is maximal such that
α < β ≡ fα(i) > fβ(i) if there is such i and zero otherwise (or probably more
transparent i = sup{j +1 : j < δ and α < β ≡ fα(i) ≥ fβ(i)}). The proof should
be clear after reading [Sh:g, II, 4.1].

We finish by

2.5 Observation. At least one case holds.

Proof. As pp+
σ (κ) > θ , by [Sh:g, II, 2.3] there is �′ ⊆ κ = sup(�′), |�′| ≤ σ such

that �′ is a set of regular cardinals > σ and there is an ideal J extending J bd
�′ such that

tcf(��′/J ) = θ ; without loss of generality max pcf(�′) = θ and θ ∩ pcf(�′) has
no last element. If J<θ [�′] ⊆ J bd

�′ we use the second case. If not, we try to choose in-
ductively on i < σ+, τi ∈ pcf(�′)\{θ}\κ , such that θ, τi > max pcf{τj : j < i}.
As J<θ [�′] �⊆ J bd

�′ we can choose for i = 0, for i successor pcf{τj : j < i}
has a last element but pcf(�′)\{θ}\κ does not, so we can choose τi recalling that
pcf({τj : j < i}) ⊆ pcf(�′) by [Sh:g, I]. By localization (i.e. [Sh:g, VIII,3.4]) we
cannot arrive to i = |�′|+ ≤ σ+, so for some limit δ < |�′|+ ≤ σ+ we have: τi is
defined iff i < δ. So {τi : i < δ} is as required in the first case. So we can apply
the first case.

Continuation of the proof of 2.4.

3) — 6) Left to the reader.

7) Let h : κ2 → κ1 be h(α) =
{

α if α < κ1
0 if κ1 ≤ α < κ2.

During a play 〈Fα, Aα : α < γ2〉 of Gmn2(θ, κ2, γ2), the second player simu-
lates (an initial segment of) a play of Gmn1(θ, κ1, γ1), where for t ⊆ θ, n1 ≤
|t | < n2 we let h ◦ Fα(t) = 0 and in the simulated play 〈h ◦ Fα, Aα : α < γ2〉
the second player uses a winning strategy.

6 of course, without loss of generality, δ is a regular cardinal
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8) During a play of Gmn1(θ, κ1, γ1), the first player simulates a play of the game
Gmn2(θ, κ2, γ2). The simulated play is 〈Fα, Aα : α < γ1〉, the actual one
〈h ◦ Fα, Aα : α < γ1〉 (so first player wins before he must, if γ1 �= γ2). ��2.4

2.6 Theorem. 1) If λ = µ+,cf(µ) < µ, γ ∗ < µ, κ < µ and for every large
enough regular θ ∈ Reg ∩ µ the first player wins Gmω(θ, κ, γ ∗) then λ �→ [λ]<ω

κ .
2) Instead of Gmω(θ, κ, γ ) we can use Gmω(θ, κ(θ), γ ∗) with κ =

limθ∈ Reg ∩µ κ(θ) ≤ µ; e.g. 〈κ(θ) : θ ∈ Reg ∩ µ〉 is non-decreasing with
limit κ ≤ µ (so possibly κ = µ; and then we can get λ �→ [λ]<ω

λ ).

Proof of 2.6. (1) Compare with [Sh:g, III, §2, §3]. If κ ≤ cf(µ) we know this (see
[Sh:g, II, 4.1(1), p.67]) so let κ > cf(µ). So let S ⊆ {δ < λ : cf(δ) = cf(µ)} be
stationary. If cf(µ) > ℵ0 let C̄1 be a nice strict S-club system with λ /∈ idp(C̄1),
(exists by [Sh:g, III, 2.6]) and let J̄ = 〈Jδ : δ ∈ S〉, Jδ = J bd

C1
δ

. If cf(µ) = ℵ0,

without loss of generality S is such that [δ ∈ S ⇒ µ divides δ], let C̄1 = 〈C1
δ : δ ∈

S〉 be such that: C1
δ ⊆ δ = sup(C1

δ ), otp(C1
δ ) = µ, C1

δ closed and λ /∈ idp(C̄1, J̄ )

where J̄ = 〈Jδ : δ ∈ S〉, Jδ = {A ⊆ C1
δ : for some β < δ and θ < µ, we have

(∀α)[α ∈ A & α ≥ β, α ∈ nacc(C1
δ ) → cf(α) < θ ]}, (exists by [Sh:g, III,p.131]).

Let C̄2 = 〈C2
δ : δ < λ〉 be a strict λ-club system such that for every club E of

λ, we have:{
δ < λ : (∀β < δ)(∃α ∈ E)[α ∈ nacc(C2

δ ) & α > β]

}
/∈ idp(C̄1, J̄ ).

[We can build together C̄1, C̄2 like this as in the proof of 1.12 or use [Sh:g, III, 2.6]
as each Jδ is cf(µ)-based.]

Let µ = ∑
i<cf(µ) µi where µi < µ. Let σ+ < µ, γ ∗ < σ+, σ regular ≥

cf(µ). Let µ∗ < µ be such that first player has a winning strategy in Gmω(θ, κ, γ ∗)
if µ∗ ≤ θ = cf(θ) < µ. For each δ < λ, if the first player has a winning strategy
in Gmω(cf(δ), κ, γ ∗), let Stδ be a winning strategy for him in the variant of the play
where we use nacc(C2

δ ) instead of cf(δ) as domain, and allow the second player to
pass (see 2.2(b)); we let the play last σ+ moves (this is even easier for first player
to win). So Stδ is well defined if cf(δ) ≥ µ∗.

We try successively σ+ times to build an algebra on λ witnessing the conclusion,
while at the same time for each δ < λ of cofinality ≥ µ∗ playing on C2

δ a play of
Gmω(cf(δ), κ, σ+) in which the first player uses the strategy Stδ . In stage ζ < σ+
(i.e. the ζ -th try), initial segments of length ζ of all those plays have already been
defined; now for δ < λ, cf(δ) ≥ µ∗, first player chooses Fδ,ζ : [nacc(C2

δ )]<ω → κ .
Let Fζ code all those functions Fζ : [λ]<ω → λ (so δ is viewed as a variable) and
enough set theory; specifically we demand:

�1 if t ∈ [λ]<ω and then
(i) Fζ (t) belongs to Aζ,t , the Skolem Hull of t ∪ {Fδ,ζ (s) : δ ∈ t, s ⊆

t ∩ C2
δ } in (H(λ+), ∈, <∗

λ+ , C̄1, C̄2, κ)

(ii) if x ∈ Aζ,t , then for infinitely many k < ω we have:
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t � t+ ∈ [λ]k ⇒ Fζ (t
+) = x.

Now let F ′
ζ be

F ′
ζ (t) =

{
Fζ (t) if Fζ (t) ∈ κ

0 otherwise .

Let Bζ ∈ [λ]λ exemplify that F ′
ζ is not as required in 2.6, that is κ �⊆ {F ′(t) : t ∈

[Bζ ]<ℵ0}. Without loss of generality Bζ is closed under Fζ (possible by the choice
of Fζ ).

Let Eζ =
{
δ : δ �⊆ Bζ and δ = sup(δ ∩ Bζ )

}
∩ ⋂

j<ζ Ej .

It is a club of λ. For each δ ∈ Eζ such that cf(δ) ≥ µ∗, in the game Gmω(C2
δ , κ, σ+),

second player has to make a move. The move is {α ∈ nacc(C2
δ ) : α ∈ Eζ } if this is

a legal move and δ ∈ Bζ ; otherwise the second player makes it void; i.e. pass (see
2.2(b)).

Having our σ+ moves we shall get a contradiction. Let E be
⋂

ζ<σ+ acc(Eζ ),

this is a club of λ, hence by the choice of C̄1, C̄2 for some δ(∗) ∈ S we have
δ(∗) = sup(A1) moreover A1 ∈ J+

δ(∗) where

A1 =:

{
δ : δ ∈ nacc(C1

δ(∗)) and (∀β < δ)(∃α ∈ E)[α ∈ nacc(C2
δ ) & α > β]

}
.

For ζ < σ+ define

i(ζ ) = Min{i : µi ≥ cf [Min(Bζ \δ(∗))]}.
Since Bζ is closed under Fζ and Fζ codes enough set theory, the proof of [Sh:g,
III,1.9], (similar things are in §1 here) shows that

(∗) if δ∈A1, cf(δ) > µi(ζ ) then δ∈Bζ and (∀α)[α∈ nacc(C2
δ )∩Eζ ⇒ α∈Bζ ].

Now as σ ≥ cf(µ) (whereas there are cf(µ) cardinals µi) for some i(∗) < cf(µ)

we have
σ+ = sup(U) where U =: {ζ < σ+ : i(ζ ) ≤ i(∗)}.

Choose δ ∈ A1 with cf(δ) > µi(∗) (why is this possible? if cf(µ) = ℵ0 as δ(∗) =
sup(A1) and C̄1 is nice; if not as A1 ∈ J+

δ(∗) see [Sh:g, III,1.1]). By (∗) we have

ζ ∈ U ⇒ δ ∈ Bζ and by the choice ofE and δ(∗), δ clearlyEζ ∩ nacc(C2
δ )has card-

inality cf(δ); so for every ζ ∈ U the second player (in the play of Gmω(C2
δ , κ, σ+))

make a non-void move. As |U | = σ+, this contradicts “Stδ is a winning strategy
for the first player in Gmω(C2

δ , κ, σ+)”.
(2) Similar proof (for κ = µ see [Sh:g, II, 355].) �2.6

An example of an application is

2.7 Conclusion.

1) On �+
ω there is a Jonsson algebra.

2) If �n+1(κ) < λ ≤ �n+2(κ) then the first player wins in Gmn+2
(
λ, κ+, (2κ)+

)
.
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3) If µ is singular not strong limit, σ < κ<σ < µ ≤ κσ and λ = µ+ but∧
θ<κ θσ < µ then λ �→ [λ]<ω

κ .
4) If µ singular not strong limit, λ = µ+, µ∗ +κ < µ ≤ κσ , σ ≤ κ and there is a

tree T κ = |T | < µ, T has ≥ µ σ -branches, and T ′ ⊆ T & |T ′| < κ ⇒ T ′
has ≤ µ∗ σ -branches then λ �→ [λ]2

κ .
5) Assume λ = µ+, cf(µ) < µ, and for every µ0 < µ there is a singular

χ ∈ (µ0, µ) satisfying pp(χ) ≥ µ. Then on λ there is a Jonsson algebra.
6) Assume λ = µ+, µ > cf(µ), cf(χ) ≤ κ < χ < χ+ < λ, pp+

κ (χ) > λ. Then
λ �→ [λ]<ω

χ .
7) If µ singular not strong limit, 2<κ ≤ µ ≤ 2κ , κ = Min{σ : 2σ ≥ µ} < µ

then µ+ �→ [µ+]<ω
κ .

8) There is on µ+ a Jonsson algebra if cf(µ) < µ < 2<µ < 2µ (i.e. µ singular
not strong limit and 〈2λ : λ < µ〉 is not eventually constant).

Proof.

1) It is enough to prove for each n < ω that �+
ω �→ [�+

ω ]<ω
�n

. By part 2) (and
monotonicity in n – see 2.4(8)) for every regular θ < �ω large enough, first
player wins in Gmω(θ, �+

n , �
+
n+1). So by 2.6 we get �+

ω �→ [�+
ω ]<ω

�n
, and as

said above, this suffices.
2) Let κ1 be Min{σ : �n+1(σ ) ≥ λ}, so κ1 > κ (as �n+1(κ) < λ) and 2κ ≥ κ1

(as �n+1(2κ) = �n+2(κ) ≥ λ), also λ ≤ �n+1(κ1) (by the definition of κ1) and
�n(κ1) < λ (as κ1 ≤ 2κ and �n+1(κ) < λ), moreover µ < κ1 ⇒ �n+1(µ) < λ

by the choice of κ1. By 2.4(3) the second phrase we have λ �→ [λ]n+2
κ1,<κ1

.
By 2.3(1) the first player wins Gmn+2(λ, κ1, κ

+
1 ). By monotonicity properties

(2.4(8)) the first player wins Gmn+2
(
λ, κ+, (2κ)+

)
.

3) By 2.4(4) for every regular θ ∈(κ<σ , κσ), first player wins in Gm2(θ, κ, (κ<σ)+).
Now apply 2.6.

4) Similar to (3).
5) If cf(χ) < χ , pp+(χ) > θ = cf(θ) > χ and τ < χ then the first player wins

the game Gm2(θ, τ, χ + 1) (by 2.4(5)). So by 2.6 if cf(χ) < χ < µ ≤ pp+(χ)

we have τ < χ ⇒ λ �→ [λ]<ω
τ hence easily we are done.

6) Similar to (5).
7) If 2<κ < µ we apply 2.4(1) and then 2.3 + 2.6. So assume 2<κ = µ, so necessar-

ily κ is a limit cardinal < µ and cf(µ) = cf(κ) ≤ κ < µ. Now for every regular
θ ∈ (κ, µ) letting κ(θ) = Min{σ : 2σ ≥ θ} we get κ(θ) < κ hence by the reg-
ularity of θ , 2<κ(θ) < θ , so by 2.4(1) + 2.3 player I wins Gm2(θ, κ(θ), κ(θ)+)

hence he wins Gm2(θ, κ(θ), κ). Use 2.6(2) to derive the conclusion.
8) By part (4) and [Sh 430, 3.4]. ��2.7

2.8 Remark. In 2.9 below, remember, an ideal I is θ -based if for every A ⊆
Dom(I ), A /∈ I there is B ⊆ A, |B| < θ such that B /∈ I ; also I is weakly
κ-saturated if Dom(I ) cannot be partitioned to κ sets not in I . The case we think
of in 2.9 is λ = µ+, µ singular of uncountable cofinality.

2.9 Claim. Suppose
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(a) λ = cf(λ) > (2κ+
)+ and θ = κ

(b) C̄ is an S-club system, S ⊆ λ stationary and Ī = 〈Iδ : δ ∈ S〉, Iδ an ideal
on Cδ containing J bd

Cδ
and idp(C̄, Ī ) is (see 1.17, a proper ideal and) weakly

κ+-saturated and

(c) (∗)
2κ ,θ
Iδ

if A ⊆ Dom(Iδ), A /∈ Iδ then for some Y ⊆ A, |Y | ≤ θ , Y /∈ Iδ

hence |P(Y )/Iδ| ≤ 2θ .

Then:

(i) P(λ)/idp(C̄, Ī ) has cardinality ≤ 2κ

(ii) for every A ∈ P(λ)\idp(C̄, Ī ), there is B ⊆ A, B ∈ P(λ)\idp(C̄, Ī ) and
an embedding of P(λ)/

[
idp(C̄, Ī ) + (λ\B)

]
into some P(Y )/Iδ for some

δ ∈ S, Y ⊆ Cδ such that Y /∈ Iδ ,

(iii) moreover, in (ii) we can find h : B → θ such that for every B ′ ⊆ B for
some A′ ⊆ θ we have B ′ ≡ h−1(A′) mod idp(C̄, Ī ). (In fact for some
g : Y → θ and ideal J ∗ on θ for every B ′ ⊆ B we have: B ′ ∈ idp(C̄, Ī ) ⇔
g−1(h(B ′)) ∈ J ∗.)

2.10 Remark. 1) The use of θ and κ though θ = κ is to help considering the case
they are not equal.

2) The point of 2.9 is that e.g. if λ = µ+, µ > cf(µ), S ⊆ λ, then we can
find C̄ = 〈Cδ : δ ∈ S〉 and Ī = 〈Iδ : δ ∈ C〉 such that λ /∈ idp(C̄, Ī ) and Iδ is
(cf(µ))-based and δ ∈ S, β < δ, θ < µ ⇒ {α ∈ Cδ : α ∈ acc(Cδ) or α < β or
cf(α) < θ} ∈ Iδ . Now if idp(C̄, Ī ) is not weakly χ -saturated then λ �→ [λ]<ω

χ and
more; see [Sh:g, III].

Proof. There is a sequence 〈Ai : i < i∗〉 such that: A0 = ∅, Ai ⊆ λ, [i �= j ⇒
Ai �= Aj mod idp(C̄, Ī )] and: i∗ = (2κ)+ or: i∗ < (2κ)+ and for every B ⊆ λ for
some i < i∗ we have B ≡ Ai mod idp(C̄, Ī ). Let P be the closure of {Ai : i < i∗}
under finitary Boolean operations and the union of ≤ κ+ members. So in particu-
lar P includes the family of sets of the form (Ai\Aj)\

⋃
ζ<κ+

(
Aiζ \Ajζ

)
(where

i, j, iζ , jζ < i∗), clearly |P| ≤ 2κ+ + (2κ)+ < µ and if |i∗| ≤ 2κ then |P| ≤ 2κ+
.

For each A ∈ P which is in idp(C̄, Ī ), choose a club EA of λ witnessing it (and
if A ∈ P\idp(C̄, Ī ) let EA = λ).
As (2κ+

)+ < λ clearly |P| < λ hence E =:
⋂

A∈P EA is a club of λ.
So S∗ = {δ ∈ S : E ∩ Cδ /∈ Iδ} is a stationary subset of λ. For prov-

ing (i) suppose i∗ = (2κ)+ and eventually we shall get a contradiction. We now
choose by induction on ζ < κ+ ordinals i1(ζ ), i2(ζ ) < i∗ and δζ ∈ S∗ and sets
Yζ ⊆ Ai2(ζ )\Ai1(ζ ) ∩ E ∩ Cδζ such that Yζ /∈ Iδζ , |P(Yζ )/Iδζ | ≤ 2κ , |Yζ | ≤
θ, Ai2(ζ )\Ai1(ζ ) /∈ idp(C̄, Ī ) and ξ < ζ ⇒ (

Ai2(ζ )\Ai1(ζ )

) ∩ Yξ = ∅.
Why can we choose i1(ζ ), i2(ζ ) and Yζ ? There is a natural equivalence relation

≈ζ on i∗:
i ≈ζ j iff for every ξ < ζ, Ai ∩ Yξ = Aj ∩ Yξ

and it has ≤ (2θ )κ = 2κ equivalence classes. So for some j1 �= j2 we have j1 ≈ζ j2.
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By assumption Aj1 �=Aj2 mod idp(C̄, Ī ), so without loss of generality
Aj2 �⊆ Aj1 mod idp(C̄, Ī ), hence Aj2\Aj1 /∈ idp(C̄, Ī ). By this for some δζ ∈
S∗ ∩ acc(E) we have

(
Aj2\Aj1

)∩Cδζ ∩E /∈ Iδζ , so there is Yζ ⊆ (
Aj2\Aj1

)∩Cδζ

satisfying |Yζ | ≤ θ and |P(Yζ )/Iδζ | ≤ 2κ and Yζ /∈ Iδζ .
Let i2(ζ ) = j2, i1(ζ ) = j1.
So 〈Ai1(ζ ), Ai2(ζ ), δζ , Yζ : ζ < κ+〉 is well defined. Let B1

ζ =: Ai2(ζ )\Ai1(ζ ),

Bζ =: B1
ζ \ ⋃

ξ∈(ζ,κ+) B1
ξ (for ζ < κ+). So each Bζ is in P , and they are pairwise

disjoint. Also Yζ ⊆ B1
ζ (by the choice of Yζ ) and ζ < ξ < κ+ ⇒ Yζ ∩ B1

ξ = ∅
(see the inductive choice of Ai2(ζ ), Ai1(ζ )) hence Yζ ⊆ Bζ . Next we prove that
Bζ /∈ idp(C̄, Ī ), but otherwise E ⊆ EBζ , and δζ , Yζ ⊆ E contradict the choice
of EBζ . Now 〈Bζ : ζ < κ+〉 contradicts “idp(C̄, Ī ) is weakly κ+-saturated”. So
i∗ < (2κ)+, i.e. (i) holds.
Let � be the Boolean Algebra of subsets of λ generated by {Ai : i < i∗}. Now we
prove clause (ii), so let A ⊆ λ, A /∈ idp(C̄, Ī ).

Let i2 < i∗ be such that A ≡ Ai2 mod idp(C̄, Ī ), choose δ ∈ S ∩ acc(E)

such that A ∩ Ai2 ∩ Cδ ∩ E /∈ Iδ , and choose Y ⊆ A ∩ Ai2 ∩ Cδ such that
|Y | ≤ θ, Y /∈ Iδ, |P(Y )/Iδ| ≤ 2κ . Now we try to choose by induction on
ζ < κ+, 〈i1(ζ ), i2(ζ ), δζ , Yζ 〉 as before, except that we demand in addition that
Y ∩ (

Ai2(ζ )\Ai1(ζ )

) = ∅. Necessarily for some ζ(∗) < κ+ we are stuck. Let
B = Ai2\

⋃
ζ<ζ(∗)

(
Ai2(ζ )\Ai1(ζ )

)
, it belongs to P (as Ai2 = Ai2\A0, remem-

ber A0 = ∅), also Y ⊆ B, but E ⊆ EB hence B /∈ idp(C̄, Ī ). The map-
ping H : P(B) → P(Y ) defined by H(X) = X ∩ Y induce a homomorphism
H1 = H � � from � into P(Y ). Now if X ∈ �∩ idp(C̄, Ī ) then X ∈ P (as � ⊆ P
because Ai = Ai\A0 ∈ P and P closed under the (finitary) Boolean operations).
Hence X ∈ �∩ idp(C̄, Ī ) ⇒ X∩Y ∈ Iδ . Hence H1 induces a homomorphism H2
from �/idp(C̄, Ī ) into P(Y )/Iδ . By the choice of B, this homomorphism is one
to one on (P(B) ∩ �)/idp(C̄, Ī ) and as P(λ)/

[
idp(C̄, Ī ) + (λ\B)

]
is essentially

equal to (P(B) ∩ �)/idp(C̄, Ī ), we have finished proving clause (ii).
We are left with clause (iii).

Let �∗ be the closure of {Ai : i < i∗} under finitary Boolean operations and
unions of ≤ θ sets. So |�∗| ≤ 2θ . For each A ∈ �∗∩ idp(C̄, Ī ) let EA witness this,
and let E∗ =: ∩{EA : A ∈ �∗ ∩ idp(C̄, Ī )}. Without loss of generality E∗ = E.
For any A ∈ P(λ)\idp(C̄, Ī ) choose δ, Y, B as in the proof of (ii), fix them.

Let B∗ =
{
α ∈ B : for no γ ∈ Y do we have

∧
i<i∗ α ∈ Ai ≡ γ ∈ Ai

}
.

Now

(∗) B∗ ∈ idp(C̄, Ī )

[why? if not, there is δ(1) ∈ S such that B∗ ∩ E∗ ∩ Cδ(1) /∈ Iδ(1) hence
there is Y1 ⊆ B∗ ∩ E∗ ∩ Cδ(1) such that Y1 /∈ Iδ(1), |Y1| ≤ θ . By the
definition of B∗ for every α ∈ Y1, β ∈ Y (as necessarily α ∈ B∗) there
is Aα,β ∈ {Ai : i < i∗} ⊆ �∗, such that α ∈ Aα,β & β /∈ Aα,β . Hence
A∗

1 = B ∩ ⋃
α∈Y1

⋂
β∈Y Aα,β belongs to �∗ and Y1 ⊆ A∗

1, (as α ∈
Y1 & β ∈ Y ⇒ α ∈ Aα,β) and Y ∩ A∗

1 = ∅ (because for each β ∈ Y

we have α ∈ Y1 & β ∈ Y ⇒ β /∈ Aα,β). As A∗
1 ⊆ B, Y ∩ A∗

1 = ∅
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by the choice of B we have A∗
1 ∈ idp(C̄, Ī ). But Y1 (and E∗) witness

A∗
1 /∈ idp(C̄, Ī ), contradiction.]

Define h0 : (B\B∗) → Y/ ≈ by h(α) is
{
γ ∈ Y :

∧
i<i∗ α ∈ Ai ≡ γ ∈ Ai

}
where for γ1, γ2 ∈ Y we let γ1 ≈ γ2 ⇔ ∧

i<i∗ γ1 ∈ Ai ≡ γ2 ∈ Ai . The rest should
be clear. ��2.9

2.11 Remark. 1) In 2.9 we can replace κ+ by κ , then instead of 2κ < λ we have
2<κ < λ and in (i) we get ≤ 2θ for some θ < κ .

2) If Iδ = J bd
nacc(Cδ)

, θ = κ , and [δ ∈ S ⇒ cf(δ) ≤ κ] then the demand “θ

based ideal on Cδ containing J bd
Cδ

” on Ī holds.

3. More on guessing Clubs

Here we continue the investigation of guessing clubs in a successor of regulars.

3.1 Claim. Assume e.g.
S ⊆ {δ < ℵ2 : cf(δ) = ℵ1 and δ is divisible by (ω1)

2} is stationary.
There is C̄ = 〈Cδ : δ ∈ S〉, a strict club system such that ℵ2 /∈ idp(C̄) and
[α ∈ nacc(Cδ) ⇒ cf(α) = ℵ1]; moreover, there are hδ : Cδ → ω for δ ∈ S such
that for every club E of ℵ2, for some δ,∧

n<ω

δ = sup
[
h−1

δ ({n}) ∩ E ∩ nacc(Cδ)
]
.

Proof. Let C̄ = 〈Cδ : δ ∈ S〉 be a strict S-club system such that λ /∈ idp(C̄) and
[α ∈ nacc(Cδ) ⇒ cf(δ) = ℵ1] (exist by [Sh:g, III, 2.4, p.126]). For each δ ∈ S let
〈ηα

δ : α ∈ Cδ〉 be a sequence of pairwise distinct members of ω2. We try to define

by induction on ζ < ω1, Eζ , 〈T ζ
α : α ∈ Eζ 〉 such that:

Eζ is a club of ℵ2, decreasing with ζ,

T
ζ
δ = {

ν ∈ ω>2 : δ = sup{α : α ∈ Eζ ∩ nacc(Cδ) and ν � ηα
δ }}

Eζ+1 is such that

{
δ ∈ S : T

ζ
δ = T

ζ+1
δ and δ ∈ acc(Eζ+1)

}
is not stationary .

We necessarily will be stuck say for ζ < ω1. Then for each δ ∈ S ∩ acc(Eζ )

let {νδ
n : n < ω} ⊆ T

ζ
δ be a maximal set of pairwise incomparable (exist as T

ζ
δ

has ≥ ℵ1 branches), and let hδ(α) = the n such that νδ
n � ηα

δ if there is one, zero
otherwise. ��3.1

3.2 Remark. 0) Where is “δ divisible by (ω1)
2 used? If not, then there is no club C

of δ such that α ∈ nacc(Cδ) ⇒ cf(α) = ℵ1.
1) We can replace ℵ0, ℵ1, ℵ2 by σ, λ, λ+ when λ = cf(λ) > κ ≥ σ and

for some tree T , |T | = κ, T has ≥ λ branches, such that: if T ′ ⊆ T has ≥ λ

branches then T ′ has an antichain of cardinality ≥ σ . We can replace “branches”
by “θ -branches” for some fixed θ . More in [Sh 572].
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2) In the end of the proof no harm is done if hδ is a partial function. Still we
could have chosen νδ

n so that it always exists: e.g. if without loss of generality {ηδ
α :

α ∈ Cδ} contains no perfect subset of ω2, we can choose νδ ∈ ω2\{ηδ
α : α ∈ Cδ}

such that n < ω ⇒ νδ � n ∈ T
ζ(∗)
δ & (∃ρ)[νδ � n � ρ ∈ T

ζ(∗)
δ & ¬(ρ � νδ)],

and then we can choose {ηα
δ : α ∈ Cδ} be ηα

δ = (νδ � kn)ˆ〈1 − νδ(kn)〉 where

kn < kn+1 < k and (νδ � k)ˆ〈1 − νδ(k)〉 ∈ T
ζ(∗)
δ iff (∃n)(k = kn).

3.3 Claim. Suppose λ is regular uncountable and S, S0 ⊆ {δ < λ+ : cf(δ) = λ}
are stationary. Then:

1) We can find C̄ = 〈Cδ : δ ∈ S〉 such that:
(A) Cδ is a club of δ

(B) for every clubE ofλ+ and functionf fromλ+ toλ+ satisfyingf (α) < 1+α

there are stationarily many δ ∈ S ∩ acc(E) such that for some ζ < λ+ we
have δ = sup{α ∈ nacc(Cδ) : α ∈ E ∩ S0 and ζ = f (α)}

(C) for each α < λ+ the set {Cδ ∩ α : δ ∈ S} has cardinality ≤ λ<λ; moreover,
for any chosen strict λ+-club system ē we can demand:

(α)

[ ∧
α<λ+

∣∣{eδ ∩ α : δ<λ+}∣∣≤λ⇒
∧

α<λ+

∣∣{Cδ ∩ α : δ<λ+}∣∣≤λ

]
and

(β)

[ ∧
α<λ+

|{eδ ∩ α : α ∈ nacc(eδ), δ < λ+}∣∣ ≤ λ

⇒
∧

α<λ+

∣∣{Cδ ∩ α : α ∈ nacc(Cδ), δ < λ+}∣∣ ≤ λ

]
.

2) Assume λ = λ<λ. We can find C̄ = 〈Cδ : δ ∈ S〉 such that:
(A),(B),(C) as above and
(D) For some partition 〈Sξ : ξ < λ〉 of S0, for every club E of λ+, there are

stationarily many δ ∈ S ∩ acc(E) such that for every ξ < λ, we have
δ = sup{α ∈ nacc(Cδ) : α ∈ E ∩ Sξ }.

3.4 Remark.

1) The main point is (B) and note that otp(Cδ) may be > λ.
2) In clause (B) we can make ζ not depend on δ.
3) In clause (D) we can have nacc(Cδ) ∩ E ∩ Sξ has order type divisible say by

λn for any fixed n.

Proof. 1) Let ē be a strict λ+-club system (as assumed for clause (C)); note

(∗) δ < λ+ & α ∈ acc(eδ) ⇒ cf(α) < λ

α = β + 1 < λ+ ⇒ eα = {0, β}.
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For each β < λ+ and n < ω we define Cn
β , by induction on n : C0

β = eβ,

Cn+1
β = Cn

β ∪ {
α : α ∈ eMin(Cn

β\α)

}
. Clearly β = ⋃

n Cn
β (as for α ∈ β\ ⋃

n Cn
β ,

the sequence 〈Min(Cn
β\α) : n < ω and α /∈ Cn

β〉 is a strictly decreasing sequence of
ordinals hence is finite), [also this is a case of the well known paradoxical decom-
position as otp(Cn+1

β ) ≤ λn (ordinal exponentiation)]. Also clearly Cn
β is a closed

subset of β and if β is a limit ordinal then it is unbounded in β.

Note:

(∗)′ β < λ+ & α < β & cf(α) = λ ⇒ (∃n)

[
α ∈ Cn

β\ ⋃

<n C


β

& α ∈ nacc(Cn
β)

]
.

Now for some n < ω, 〈Cn
δ : δ ∈ S〉 is as required; why? we can prove by

induction on n < ω that for every α < λ+ we have |{Cn
δ ∩ α : δ ∈ S}| ≤ λ<λ,

moreover also the second phrase of clause (C) is easy to check; we have noted above
that clause (A) holds. So clause (C) holds for every n; also clause (A) holds for
every n. So if the sequence fails we can choose En, fn such that En, fn exemplify
〈Cn

δ : δ ∈ S〉 is not as required in clause (B).
Now E =:

⋂
n<ω En is a club of λ+, and f (δ) =: sup{fn(δ) + 1 : n < ω}

satisfies:

(∗)′′ if δ < λ+, cf(δ) > ℵ0 then f (δ) < δ :

hence by Fodor’s Lemma for some α∗ < λ+ we have S1 =: {α ∈ S0 : f (α) = α∗}
is stationary (remember: δ ∈ S0 ⇒ cf(δ)=λ>ℵ0). Let α∗ =⋃

ζ<λ Aζ , |Aζ | < λ,

Aζ increasing in ζ , so easily for some ζ we have S2 =:
{
δ ∈ S1 : n < ω ⇒

fn(δ) ∈ Aζ

}
is a stationary subset of λ+ (remember λ = cf(λ) > ℵ0). Note that if

(∀α)[α < λ → |α|ℵ0 < λ] we can shorten the proof a little.
So also E ∩ S2 is stationary, hence for some δ ∈ S we have: δ = sup(E ∩ S2).

Hence (remembering (∗)′) for some n, δ = sup(E ∩ S2 ∩ nacc(Cn
δ )). Now as

cf(δ) = λ > |Aζ | there is B ⊆ E ∩ S1 ∩ nacc(Cn
δ ) unbounded in δ such that

fn � B is constant, contradicting the choice of En.
2) For simplicity we ignore here clause (B). Let ē, 〈< Cn

α : n < ω >: α <

λ+〉 be as in the proof of part (1). We prove a preliminary fact. Let κ < λ,
let κ∗ be κ if cf(κ) > ℵ0, κ

+ if cf(κ) = ℵ0 and 〈S0,ε : ε < κ∗〉 be a se-
quence of pairwise disjoint stationary subsets of S0. For every club E of λ+,
let E′ = {δ < λ : for every ε < κ∗, δ = sup(E ∩ S0,ε)}, it too is a club of
λ+. Now for every δ ∈ E′ ∩ S and ε < κ∗ for some nE(δ, ε) < ω we have
δ = sup(S0,ε ∩ E ∩ nacc(CnE(δ,ε)

δ )) hence (as cf(κ∗) > ℵ0, see its choice) for
some nE(δ) < ω, uδ

E =: {ε < κ∗ : nE(δ, ε) = nE(δ)} has cardinality κ∗. Without
loss of generality, nE(δ, ε), nE(δ) are minimal. So for some n∗ for every club E

of λ+, for stationarily many δ ∈ E ∩ S, we have δ ∈ E′ and nE(δ) = n∗. Now
if cf(κ) = ℵ0, for some ε(∗) < κ∗ for every club E of λ+ for stationarily many
δ ∈ E ∩ S we have nE(δ) = n∗ and |uδ

E ∩ ε(∗)| = κ . If cf(κ) > ℵ0 let ε(∗) = κ .
Now there is a club E of λ+ such that: if E0 ⊆ E is a club then for stationarily many
δ ∈ S ∩ E, nE(δ) = nE0(δ) = n∗, uδ

E ∩ ε(∗) = uδ
E0

∩ ε(∗) and it has cardinality
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κ (just remember ε(∗) < λ in all cases so after ≤ λ tries of E0 we succeed). As
κ < λ = λ<λ, we conclude:

(∗) for some w ⊆ κ∗, |w| = κ (in fact w ⊆ ε(∗)), for every club E

of λ+ for stationarily many δ ∈ S ∩ E, for every
ε ∈ w we have δ = sup{α ∈ nacc(Cn∗

δ ) : α ∈ S0,ε ∩ E}.
Let 〈S1,ξ : ξ < λ〉 be a sequence of pairwise disjoint stationary subsets of S0.
For each ξ we can partition S1,ξ into |ξ + ω|+ pairwise disjoint stationary subsets
〈S1,ξ,ε : ε < |ξ +ω|+〉, and apply the previous discussion (i.e. S1,ξ , |ξ +ω|, S1,ξ,ε

here stand for S0, κ, S0,ε there) hence for some n∗
ξ , 〈S1,ξ,ε : ε < ξ〉

(∗)ξ n∗
ξ < ω, 〈S1,ξ,ε : ε < ξ〉 is a sequence of pairwise disjoint stationary

subsets of S1,ξ such that for every club E of λ+ for stationarily many
δ ∈ S ∩ E, for every ε < ξ we have

δ = sup

{
α ∈ nacc(C

n∗
ξ

δ ) : α ∈ S1,ξ,ε ∩ E

}
.

This is not what we really want but it will help. We shall next prove that

(∗)′ for some n, for every club E of λ+, for stationarily many
δ ∈ S ∩ E we have; letting S2,ε = ∪{S1,ξ,ε : ξ ∈ (ε, λ)}: for every ε < λ,

δ = sup

{
α : α ∈ E ∩ nacc(Cn

δ ) ∩ S2,ε

}
.

If not for every n, there is a club En of λ+ such that for some club E′
n of λ no

δ ∈ S ∩ E′
n is as required in (∗)′ for δ.

Let E =:
⋂

n<ω En ∩ ⋂
n<ω E′

n, it is a club of λ+. Now for each ξ < λ, by the
choice of 〈S1,ξ,ε : ε < ξ〉 we have

Sξ =:

{
δ ∈ S : for every ε<ξ we have δ=sup{α∈ nacc(C

n∗
ξ

δ ) : α∈S1,ξ,ε ∩ E}
}

is a stationary subset of λ+, so

E+ = {δ < λ+ : δ ∈ acc(E) is divisible by λ2 and δ ∩ Sξ ∩ E

has order type δ for every ξ < λ}
is a club of λ+.

Let us choose δ∗ ∈ S ∩ E+, and let eδ∗ = {α∗
i : i < λ} (α∗

i increasing contin-
uous). We shall show that for some n, δ∗ is in E′

n and is as required in (∗)′ for En,
thus deriving a contradiction. Let for ξ < λ

Aξ = {i < λ : (α∗
i , α∗

i+1) ∩ Sξ �= ∅}.

As δ∗ = otp(δ∗ ∩ Sξ ∩ E) clearly Aξ is an unbounded subset of λ; hence we
can choose by induction on ξ < λ, a member i(ξ) ∈ Aξ such that i(ξ) > ξ &
i(ξ) >

⋃
ζ<ξ i(ζ ). Now for each ξ we have

(
αi(ξ), αi(ξ)+1

) ⊆ ⋃
n<ω Cn

αi(ξ)+1
hence

for some m(ξ) < ω we have
(
αi(ξ), αi(ξ)+1

) ∩ Sξ ∩
(
C

m(ξ)
αi(ξ)+1\

⋃

<m(ξ) C


αi(ξ)+1

)
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�= ∅ so choose δξ in this intersection; as δξ ∈ Sξ ⊆ S clearly cf(δξ ) = λ. Look-
ing at the inductive definition of the Cn

δ ’s, it is easy to check that
(
αi(ξ), αi(ξ)+1

)
∩ C

m(ξ)+n∗
ξ +1

δ∗ ∩ δξ contains an end-segment of C
n∗

ξ

δξ
hence for every ε < ξ,(

αi(ξ), αi(ξ)+1
) ∩ E ∩ nacc(C

m(ξ)+n∗
ξ +1

δ∗ ) ∩ S1,ξ,ε �= ∅ hence by the definition

of S2,ε we have (αi(ξ), αi(ξ)+1)∩E∩ nacc(C
m(ξ)+n∗

ξ +1
δ∗ )∩S2,ε �= ∅. Now for some

k < ω we have B = {ξ < λ : m(ξ) + n∗
ξ + 1 = k} is unbounded in λ, hence for

each ε < λ, S2,ε ∩E ∩ nacc(Ck
δ∗) is unbounded in δ∗, contradicting δ∗ ∈ E ⊆ E′

k .
��3.3

3.5 Claim. If λ = µ+, µ = κ+ and S ⊆ {δ < λ : cf(δ) = µ} stationary then for
some strict S-club system C̄ with Cδ = {αδ,ζ : ζ < µ}, (where αδ,ζ is strictly
increasing continuous in ζ ) we have: for every club E ⊆ λ for stationarily many
δ ∈ S,

{ζ < µ : αδ,ζ+1 ∈ E} is stationary (as subset of µ).

Remark. So this is stronger than previous statements saying that this set is unbound-
ed in µ. A price is the demand that µ is not just regular but is a successor cardinal
(for inaccessible we can get by the proof a less neat result, see more [Sh 572]).

Proof. We know that for some strict S-club system C̄0 = 〈C0
δ : δ ∈ S〉 we have

λ /∈ idp(C̄0) (exists, e.g. as in 3.1). Let C0
δ = {αδ

ζ : ζ < µ} (increasing continu-

ously in ζ ). We claim that for some sequence of functions h̄ = 〈hδ : δ ∈ S〉 with
hδ : µ → κ we have:

(∗)h̄ for every club E of λ for stationarily many δ ∈ S ∩ acc(E),
for some ε < κ the following subset of µ is stationary

A
δ,ε
E =

{
ζ < µ : αδ

ζ ∈ E and the ordinal Min{αδ
ξ : ξ > ζ, hδ(ξ) = ε}

belongs to E

}
.

This suffices: for each ε < κ let Cε,δ be the closure in C0
δ of {αδ

ξ ∈ E : ξ <

µ, hδ(α
δ
ξ ) = ε}, so for each club E of λ for stationarily many δ ∈ S ∩ acc(E) for

some ordinal ε the set A
δ,ε
E is stationary hence for one εE this holds for stationarily

many δ ∈ E; but E1 ⊆ E2 implies εE1 is O.K. for E2 hence for some ε the sequence
〈Cε,δ : δ ∈ S〉 is as required.

So assume for no h̄ does (∗)h̄ holds, and we define by induction on n <

ω, En, h̄
n = 〈hn

δ : δ ∈ S〉, ēn = 〈en
δ : δ ∈ S〉 with En a club of λ, en

δ club of
µ and hn

δ : µ → κ as follows:
let E0 = λ, h0

δ (ζ ) = 0, en
δ = µ.

If E0, ..., En, h̄
0, ..., h̄n, ē0, ..., ēn are defined, necessarily (∗)h̄n fails, so for some

club En+1 ⊆ acc(En) of λ for every δ ∈ S ∩ acc(En+1) and ε < κ there is a club
eδ,ε,n ⊆ en

δ of µ, such that:

ζ ∈ eδ,ε,n ⇒ Min{αδ
ξ : ξ > ζ and hδ(ξ) = ε} /∈ En+1.
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Choose hn+1
δ : µ → κ such that

[
hn+1

δ (ζ ) = hn+1
δ (ξ) ⇒ hn

δ (ζ ) = hn
δ (ξ)

]
and

[[
ζ �= ξ & ζ < κ & ξ < κ &

∨
ε<κ

Min{γ ∈ eδ,n,ε : γ > ζ } = Min{γ ∈ eδ,n,ε : γ > ξ}
]

⇒ hn+1
δ (ζ ) �= hn+1

δ (ξ)

]
.

Note that we can do this as µ = κ+.
Lastly let en+1

δ = ⋂
ε<κ eδ,ε,n ∩ acc(en

δ ).
There is no problem to carry out the definition. By the choice of C̄0 for some

δ ∈ acc(
⋂

n<ω En) we have δ = sup(A′) where A′ = acc(
⋂

n<ω En)∩ nacc(C0
δ ).

Let A ⊆ µ be such that A′ = {αδ
ζ : ζ ∈ A} with αδ

ζ increasing with ζ and let

ξ =: sup
{
sup{β ∈ A : hn

δ (β) = ε} : n < ω, ε < κ and {β ∈ A : hn
δ (β) = ε}

is bounded in A
}
.

(so we get rid of the uninteresting ε’s).
AsA′ is unbounded in δ, clearlyA is unbounded inµ andµ = cf(µ) = κ+ > κ ,

whereas the sup is on a set of cardinality ≤ ℵ0 × κ < µ, clearly ξ < sup(A) = µ,
so choose ζ ∈ A, ζ > ξ and ζ > Min(en

δ ) for each n. Now 〈sup(en
δ ∩ ζ ) : n < ω〉

is non-increasing (as en
δ decreases with n) hence for some n(∗) < ω : n > n(∗) ⇒

sup(en
δ ∩ ζ ) = sup(e

n(∗)
δ ∩ ζ ); and for n(∗) + 1 we get a contradiction. ��3.5

3.6 Remark. If we omit “µ = κ+” in 3.5, we can prove similarly a weaker statement
(from it we can then derive 3.5):

(∗) if λ = µ+, µ = cf(µ) > ℵ0, S ⊆ {δ < λ : cf(δ) = µ} is stationary, C̄0 is
a strict S-club system, C0

δ = {αδ,ζ : ζ < µ} (with αδ,ζ strictly increasing
with ζ ), and λ /∈ idp(C̄0) then we can find ē = 〈eδ : δ ∈ S〉 such that:
(a) eδ is a club of δ with order type µ

(b) for every club E of λ for stationarily many δ ∈ S we have δ ∈ acc(E)

and for stationarily many ζ < µ we have:
ζ ∈ eδ and (∃ξ)[ζ < ξ + 1 < Min(eδ\(ζ + 1)) & αδ,ξ+1 ∈ E]

3.7 Remark. In 3.5 we can for each δ ∈ S have hδ : µ → κ such that for every
club E of λ, for stationarily many δ ∈ S, for every ε < κ , for stationarily many
ζ ∈ h−1

δ ({ε}) we have αδ,ζ+1 ∈ E.
Use Ulam’s proof.

3.8 Claim. Suppose λ = µ+, S ⊆ λ stationary, C̄ = 〈Cδ : δ ∈ S〉 an S-club
system, λ /∈ idp(C̄), µ > κ =: sup{cf(α)+ : α ∈ nacc(Cδ), δ ∈ S}.
Then there is ē, a strict λ-club system such that:

(∗) for every club E of λ, for stationarily many δ ∈ S,
δ = sup{α ∈ nacc(Cδ) : α ∈ E, moreover eα ⊆ E and min(eα) →
sup(α ∩ Cδ)}.

Proof. Let ē be a strict λ-club system.
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Clearly for some θ < κ for every club E of λ, for stationarily many δ ∈ S, δ =
sup{α : α ∈ E, α ∈ nacc(Cδ) and cf(α) = θ}. For any club E of λ and ε < θ we
let ēε

E = 〈eε
E,α : α < λ〉 be: eε

E,α = {sup(γ ∩ E) : γ ∈ eα and otp(γ ∩ eα) > ε} if
α ∈ acc(E) & cf(α) = θ and eε

E,α = eα otherwise. It is enough to show that for
some club E of λ and ε < θ the sequence ēε

E is as required. If this fails, we choose
by induction on ζ < κ a club Eζ of λ such that ζ1 < ζ2 ⇒ Eζ2 ⊆ acc(Eζ1).

For ζ +1, for each ζ < κ, ε < θ , let Eζ,ε be a club of λ such that ēε
Eζ

is not as re-

quired. Let E′
ζ,ε a club of λ disjoint to {δ ∈ S : δ = sup{α ∈ nacc(Cδ): cf(α) = θ

and eε
Eζ ,α ⊆ E\(sup(Cδ ∩ α)} and lastly Eζ+1 = ⋂

ε<θ Eε,ζ ∩ ⋂
θ<θ E′

ε,ζ ∩
acc(Eζ ). By the choice of θ we can find δ∗ ∈ S ∩ ⋂

ζ<κ Eζ such that the set
A = {α ∈ nacc(Cδ∗) : cf(α) = θ, α ∈ ⋂

ε<κ Eε} is unbounded in δ∗. We can
easily find ε < θ, ζ < κ giving contradiction. ��3.8

3.9 Claim. Let λ = µ+, µ > cf(µ) = κ, θ = cf(θ) < µ, θ �= κ and S ⊆ {δ < λ :
cf(δ) = θ and δ divisible by µ} be stationary.

1) For any limit ordinal γ (∗) < µ of cofinality θ there is an S-club system
C̄γ (∗) = 〈Cγ(∗)

δ : δ ∈ S〉 satisfying λ /∈ ida
(
C̄γ (∗)

)
with otp

(
C̄γ (∗)

) = γ (∗).

Let C
γ(∗)
δ = {αγ (∗),δ

i : i < γ (∗)}, αγ (∗),δ

i increasing continuous with i.
2) Assume further κ > ℵ0, and γ (∗) is divisible by κ and let ē be a strict λ-club

system.
Then for some σ regular σ < µ, and club E0 of λ, C̄ = C̄γ (∗),σ,ē,E0 =
〈g
1

σ (C
γ (∗)
δ , E0, ē) : δ ∈ S〉 satisfies:

(∗)a for every club E ⊆ E0 of λ for stationarily many δ ∈ S, for arbitrarily large

i < γ (∗) we have µ = sup

{
cf(γ ) : γ ∈ nacc(Cδ)∩[αγ (∗),δ

i , α
γ (∗),δ

i+κ )∩E

}
.

3) We can add in (2): for some club E1 ⊆ E0 of λ,
(∗)b for every club E ⊆ E1 of λ for some δ ∈ S we have E ∩ Cδ = E1 ∩ Cδ

and for arbitrarily large i < γ (∗),

µ = sup

{
cf(γ ) : γ ∈ Cδ ∩ [αγ (∗),δ

i , α
γ (∗),δ

i+κ ) ∩ E

}
.

4) In part (1), if S ∈ I [λ] then without loss of generality |{Cγ(∗)
δ ∩ α : δ ∈

S and α ∈ nacc(Cγ (∗)
δ )}| < λ for every α < λ.

Proof. 1) Let µ = ∑
ε<κ λε with 〈λε : ε < κ〉 increasing continuous, λε < µ.

Let for each α ∈ [µ, λ), 〈aα
ε : ε < κ〉 be an increasing sequence of subsets of

α, |aα
ε | = λε, α = ⋃

ε<κ aα
ε . Now

(∗)1 there is an ε < κ such that

(∗)1,ε for every club E of λ we have

S1
ε [E] =: {δ ∈ S : aδ

ε ∩ E is unbounded in δ

and otp(aδ
ε ∩ E) is divisible by γ (∗)}

is stationary in λ
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[Why? If not, for every ε < κ there is a club E1
ε of λ such that S1

ε [E1
ε ] is not

stationary, so let it be disjoint to the club E2
ε of λ. Let E = ⋂

ε<κ(E1
ε ∩E2

ε ), clearly
it is a club of λ, hence E1 = {δ < λ : otp(δ ∩ E) = δ and is divisible by µ

hence by γ (∗)} is a club of λ and choose δ∗ ∈ E1 ∩ S. Now for every ε < κ , as
δ∗ ∈ E1 ⊆ E ⊆ E2

ε , clearly sup(aδ∗
ε ∩ E1

ε ) < δ or otp(aδ∗
ε ∩ E1

ε ) is not divisible
by γ (∗) hence sup(aδ∗

ε ∩ E) < δ ∨ [otp(aδ∗
ε ∩ E) not divisible by γ (∗)]. Choose

γε < δ∗ such that aδ∗
ε ∩ E ⊆ βε or otp(aδ∗

ε ∩ E\βε) < γ (∗), so always the second
holds.

As θ �= κ are regular cardinals, and cf(δ) = θ necessarily for some β∗ < δ∗
we have: b∗ = {ε < κ : βε ≤ β∗} is unbounded in κ . So

E ∩ δ∗\β∗ ⊆
⋃
ε∈b∗

(E ∩ aδ∗
ε \β∗)

hence
|E ∩ δ∗\β∗| ≤

∑
ε∈b∗

|E ∩ aδ∗
ε \β∗| ≤ |b∗| × |γ (∗)| < µ.

But δ∗ ∈ E1 hence otp(E ∩ δ∗) = δ∗ and is divisible by µ, so now E ∩ δ∗\β∗ has
order type ≥ µ, a contradiction.]

Let ε from (∗)1 be ε(∗).

(∗)2 There is a club E∗ of λ+ such that for every club E of λ the set {δ ∈
Sε(∗)[E∗] : aδ

ε(∗) ∩ E∗ ⊆ E} is stationary recalling

Sε[E∗] = {δ ∈ S : aδ
ε ∩ E∗ is unbounded in δ

and otp(aδ
ε ∩ E∗) is divisible by γ (∗)}

[Why? If not, we choose by induction on ζ < λ+
ε(∗) a club Eζ of λ+ as

follows:
(a) E0 = λ

(b) if ζ is limit, Eζ = ⋂
ξ<ζ Eζ

(c) if ζ = ξ + 1 as we are assuming (∗)2 fails, Eξ cannot serve as
E∗ so there is a club E1

ξ of λ such that the set {δ ∈ Sε[Eξ ] :

aδ
ε ∩ Eξ ⊆ E1

ξ } is not stationary, say disjoint to the club E2
ξ of λ,

(Sε[Eξ ] is defined above).
Let Eζ = Eξ+1 =: Eξ ∩ E1

ξ ∩ E2
ξ .

So E = ⋂
ζ<λ+

ε(∗)
Eζ is a club of λ. By the choice of ε(∗) for some

δ ∈ E we have δ = sup(aδ
ε(∗) ∩E) and otp(aδ

ε(∗) ∩E) is divisible

by γ (∗). Now 〈(aδ
ε(∗) ∩ Eζ ) : ζ < λ+

ε(∗)〉 is necessarily strict-

ly decreasing sequence of subsets of aδ
ε(∗), but |aδ

ε(∗)| ≤ λε(∗), a
contradiction.]

Let E∗ be as in (∗)2.
Let S′ = Sε(∗)[E∗] and for δ ∈ S′ let C

γ(∗)
δ be a closed unbounded subset of

aδ
ε(∗) ∩ E∗ of order type γ (∗) (possible as otp(aδ

ε(∗) ∩ E∗) is divisible by γ (∗), has
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cofinality θ (as sup(aδ
ε(∗) ∩ E∗) = δ has cofinality θ ) and cf(γ (∗)) = θ (by an

assumption). For δ ∈ S\Sε(∗)[E∗] choose any appropriate C
γ(∗)
δ , so we are done.

2) Assume not, so easily for every regular σ < µ and club E0 of λ there is a
club E = E(E0, σ ) of λ such that:

(∗)1 the setSE,E0,σ = {
δ ∈ S : for arbitrarily large i < γ (∗), µ = sup{cf(γ ) :

γ ∈ nacc(Cγ (∗),σ,ē,E0

δ )∩[αγ (∗),δ

i , α
γ (∗),δ

i+1 )∩E}} is not a stationary subset
of λ so shrinking E further without loss of generality

(∗)+1 the set SE,E0,σ is empty.

Choose a regular cardinal χ < µ, χ > κ + θ + |γ (∗)|. We choose by induction on
ζ < χ a club Eζ of λ as follows:

for ζ = 0, E0 = λ

for ζ limit, Eζ = ⋂
ξ<ζ Eζ

for ζ = ξ + 1 let Eζ = ∩{E(Eε, σ ) : σ < µ regular}.
Let E = ⋂

ζ<χ Eζ , E
′ = {δ ∈ E : otp(E ∩ δ) = δ} both are clubs of λ and by the

choice of C̄γ (∗) for some δ(∗) ∈ S we have C
γ(∗)

δ(∗) ⊆ E′ and µ2 × µ divides δ(∗).

For each i < γ (∗), the set bδ∗,i = {β ∈ e
α

δ(∗)
i+1

: otp(E ∩ Min(eα
δ(∗)
i+1 \(β + 1)\β).

Let j < γ (∗) be divisible by κ (e.g. j = 0). For each ε < κ and σ < λε, ζ < χ

we look at

γj,ε,ζ,σ = Min
(
g
1

σ [Cγ(∗)

δ(∗) , Eζ , ē]\(αδ(∗)
j+ε + 1)

)
.

If we change only ζ < χ , for ζ < χ large enough it becomes constant (as in

old proofs). Choose ζ ∗ < χ such that γj,ε,ζ,σ is the same for every ζ ∈ [ζ ∗, χ),
for any choice of j < γ (∗) divisible by κ, ε < κ, σ ∈ {λξ : ξ < ε}. Also
cf(γj,ε,ζ,σ ) ≥ σ and 〈γj,ε,ζ,λξ : ξ < ε〉 is nonincreasing with ξ so for ε limit it is
eventually constant say γj,ε,ζ,λξ = γ ∗

j,ε,ζ,λξ
for ξ ∈ [ξ∗(j, ε, ζ ), ε). By Fodor for

some ξ∗∗ = ξ∗∗(j, ζ ) < κ, {ε : ξ∗(j, ε, ζ ) = ξ∗∗(j, ζ )} is a stationary subset of
κ; and for some ξ∗∗∗ = ξ∗∗(ζ ) < κ

γ (∗) = sup{j < γ (∗) : j divisible by κ, ξ∗∗(j, ζ ) = ξ∗∗∗}
(recall cf(γ (∗)) = θ �= κ). Now choosing σ = ξ∗∗∗(ζ ∗) we are finished.

3) Based on (2) like the proof of (1).
4) Assume S ∈ I [λ], so let E1, b̄1 = 〈b1

α : α < λ〉 witness it, i.e. b1
α ⊆ α

closed in α, otp(b1
α) ≤ θ, α ∈ nacc(b1

β) ⇒ b1
α = b1

β ∩ α and E1 a club of λ

such that δ ∈ S ∩ E1 ⇒ δ = sup(bδ). Let κ + θ + γ (∗) < χ = cf(χ) < µ;
by [Sh 420, §1] there is a stationary S∗ ⊆ {δ < λ : cf(δ) = χ}, S∗ ∈ I [λ] and
let E2, b̄2 = 〈b2

α : α < λ〉 witness it. There is a club E3 of λ such that for every
club E of λ the set {δ ∈ S∗ : δ ∈ acc(E3), g
(b2

α, E3) ⊆ E} is stationary. Let
S∗∗ = S∗ ∩ acc(E3), C2

α = g
(b2
α, E3) for α ∈ S∗∗; clearly C2

α is a club of α of
order type χ and

(∗) |{C2
α ∩ γ : γ ∈ nacc(C2

α)}| ≤ |{C2
β : β ≤ Min(E3\γ )}| ≤ µ.
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Let b1
α = {βα,ε : ε < θ}, βα,ε increasing continuous with ε. Fix fβ : β → µ

be one to one for β < λ. For each α ∈ S and club E of λ let b0
α = b0

α[E] =
b1
α ∪ {C2

β\(βδ,ε + 1) : ε < θ, β ∈ [βδ,ε, βδ,ε+1) and C2
β ⊆ E and for no such β ′

is fβδ,ε+2(β
′) < β}. We shall prove that for some club E of λ, 〈b0

α[E] : α ∈ S〉
satisfies: for every club E′ of λ for stationarily many δ ∈ S, E′ ∩ b0[E] is an
unbounded subset of δ of order type χ × θ ; this clearly suffices.

First note

(∗) for some ε < κ for every club E of λ for some δ ∈ S ∩ acc(E) we have:

θ = sup{ε < θ : for some β ∈ [βδ,ε + 1, βδ,ε+1) we have

C2
β ⊆ E and fβδ+ε+2(β) < λε}.

[Why? If not, then for every ε < κ there is a club Eε of λ for which the
above fails, let E = ⋂

ε<κ Eε, it is a club of λ. So E′ = {δ < λ : δ a limit
ordinal and for arbitrarily large α ∈ δ ∩ S∗∗ we have C2

α ⊆ E}.
Now E′ is a club of λ and so for some δ∗ ∈ S divisible by µ2 we have

otp(E′ ∩ δ∗) = δ∗ and we easily get a contradiction.]

Fix ε(∗), now:

(∗) for some club E0 of λ for every club E1 ⊆ E0 of λ for some δ ∈ S∩ acc[E]
we have

(a) θ = sup{ε < κ : for some β ∈ [βδ,ε + 1, βδ,ε+1] we have

C2
β ⊆ E0 ∩ E1 and fβδ,ε+2(β) < λε(∗)}

(b) if ε is as in (a) then

b0
α[E1] = b0

α[E0].

[Why? We try λ+
ε(∗) times.]

Now it is easy to check that 〈b0
α[E0] : α ∈ S〉 is as required. ��3.9

3.10 Conclusion. Assume λ = µ+, µ > cf(µ) = κ > ℵ0, κ �= θ = cf(θ) < λ,

γ ∗ < λ, cf(γ ∗) = θ, S ⊆ {δ < λ : cf(δ) = θ}. Then we can find an S-club system
C̄ such that:

(a) λ /∈ ida(C̄)

(b) Cδ = {αδ
i : i < κ × γ ∗} increasing, and for each i,

〈cf(αδ
i+j+1) : j < κ〉 is increasing with limit µ

(c) if S ∈ I [λ] then |{Cδ ∩ α : δ ∈ S and α ∈ nacc(C′
δ)}| < λ.
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