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Abstract. We prove that on many inaccessible cardinals there is a Jonsson algebra, so e.g.
the first regular Jonsson cardinal A is A x w-Mahlo. We give further restrictions on successor
of singulars which are Jonsson cardinals. E.g. there is a Jonsson algebra of cardinality 3} .
Lastly, we give further information on guessing of clubs.

Annotated content

§1 Jonsson algebras on higher Mahlos and idf} (3.

[We return to the ideal of subsets of A C A of ranks < y (for self-containment;
see [Sh:g, IV],1.1-1.6) for y < A™; we deal again with guessing of clubs
(1.11). Then we prove that there are Jonsson algebras on X for A inaccessible
not (A x w)-Mahlo (1.1, 1.25)].

§2 Back to successor of singulars.

[We deal with A = ut, u singular of uncountable cofinality. We give sufficient
<n

conditions for u* 4 |:/,L+i| ,(2.6,2.7), in particular on 3} there is a Jonsson
0

algebra and if cf(u) < u < 2<% < 2/ then on u™ there is a Jonsson algebra.
Also if cf(n) < x,2" < p, id,(C, I) is a proper ideal not weakly «-sat-
urated and each I is k-based, then A is close to being “cf(u)-supercompact”
(note that such C exists if A — [)L]i Dl

§3 More on guessing clubs.

[We prove that, e.g. if L. = R, § € {§ < Ry : cf(§) = Ry} is stationary, then
we can find a strict A-club system C=(Cs:68¢€S)and

hs : Cs — w such that for every club E of 8, for stationarily many § € S,
nacc(Cs) N E N hgl {n} is unbounded in § for each n. Also we have such C
with a property like the one in Fodor’s Lemma. Also we have such C’s satis-
fying: for every club E of A, for stationarily many § € S N acc(E) we have
{sup(ENCs Na) : @ € ENnacc(Cs)} is a stationary subset of §].

S. Shelah: Institute of Mathematics, The Hebrew University, Givat Ram, Jerusalem 91904,
Israel (e-mail: shelah@math.huji.ac.il) and Rutgers University, Mathematics
Department, New Brunswick, NJ, USA


Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.3
     Optimize For Fast Web View: Yes
     Embed Thumbnails: No
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 1200 1200 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 300 dpi
     Downsampling For Images Above: 450 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: High
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 300 dpi
     Downsampling For Images Above: 450 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: High
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 1200 dpi
     Downsampling For Images Above: 1800 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: Yes
     Subset When Percent Of Characters Used is Less: 100 %
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Tag Everything for Color Managment (no conversion)
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: None
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Preserve
     Preserve Halftone Information: No

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: Yes
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: Yes
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: Yes
     Log DSC Warnings: No
     Resize Page and Center Artwork for EPS Files: Yes
     Preserve EPS Information From DSC: Yes
     Preserve OPI Comments: Yes
     Preserve Document Information From DSC: Yes

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (None)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket true
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.4 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.4 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /UseDeviceIndependentColor
     /PreserveOPIComments true
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Preserve
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 1200
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts true
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo false
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 1200 1200 ]
>> setpagedevice


Sh:413

2 S. Shelah

The sections are independent.

This paper is continued in [EiSh 535] getting e.g. Pry (A, A, A, Ro) fore.g. A = JF.
It is further continued in [Sh 572] getting e.g. Pr; (X2, 82, Ry, Rg) and more on
guessing of clubs. We thank Todd Eisworth for detecting various mistakes and
erTors.

1. Jonsson algebras on higher Mahlos and id:k()‘)

We continue [Sh:g, III], [Sh:g, IV], see history there, and we use some theorems
from there.

Our main result: if A is inaccessible not A x w-Mahlo then on A there is a
Jonsson cardinal. If the reader is willing to lose 1.29 he can ignore also 1.6(1), 1.7,
1.8(2), 1.9, 1.11, 1.12, 1.13, 1.15, 1.16(2), 1.28, 1.29; also, 1.12 is just for “pure
club guessing interest”. Why “< A x @” justasy #A+y =y <A X o.

1.1 Theorem. 1) Suppose X is inaccessible and A is not (A x w)-Mahlo.

Then on X there is a Jonsson algebra.

2) Instead of “)\ not (A X w)-Mahlo” it suffices to assume there is a stationary set
A of singulars satisfying (on id;’k()x) see below):

{6 < A : 8 inaccessible, AN stationary} € id;k()‘)’ A ¢ id]r/k(k) and y <
A X o.

Proof. 1) If A is not A-Mabhlo, use [Sh:g, IV,2.14,p.212]. Otherwise this is a partic-
ular case of 1.25 as therearen < w and E C A, aclubof A suchthat u € E& n
inaccessible =  is not u x n-Mahlo. So S = {§ € E : cf(§) < 8} is as required
in 1.25.

2) Look at 1.25. 011

1.2 Definition. We say é is a strict (or strict* or almost strict) A™-club system if:
(a) e = {e; : i < AT limit),
(D) ej aclub of i
(c) otp(e;) = cf(i) for the strict case and otp(e;) < M\ for the strict* case

andi > A = otp(e;) < i for the almost strict case (so in the strict* case,
cfi) < A = otp(e;) < rand cf(i) = A = otp(e;) = A).
1.3 Definition. /) For A inaccessible, y < AT, let S € idi‘/k()“) iff for every! strict*
AY-club system e, the following sequence (A; : i < y) of subsets of A defined below
satisfies “A,, is not stationary”:
(i) Ao = SU{S < A : SN stationary in §}
(ii) Ai+1 = {6 < A : A; N § stationary in § so cf(§) > R}
(iii) if i is a limit ordinal, then for the club e; of i of order type < % we have®:

!'equivalently some — see 1.4

2We may consider adding a second clause: (b) if i is inaccessible, 8 < i < A then
cf(§) > i; this influences 1.5(6); true, it has only “local” effect that is the two definitions
agree for y except when for some inaccessible i, Ry < i < y < i + ® < A;in [Sh:g, IV]
we use the version with clause (b)
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Ai={8<Ar:ifj€e, and[cf(i) =1 = otp(jNe;) <] thend € A}

2) We define 1k (A) as Min{y : A € id;’k()\)}for AC A

<Y - - B
3)id 0 ()‘L)__ Uﬁ<y id; (V).
4) Let A€l be A; from part (1) for our & and S =: A; ifi < A X w we may omit é
meaning es = {j : A + j > 8} for limit § < i.
5) For A a cardinal of uncountable cofinality and ordinal y < A we define id}r/k ),
tky (A) and A" as above (so es = S for limit§ < y)

1.4 Claim. Let A be inaccessible or a limit cardinal of uncountable cofinality.
0)Ifae < B < AT, S, e, A€l are as in Definition 1.3 then AlF-¢h\ Al*el js a
non-stationary> subset of A and {¢ < A : ¢ ¢ Al*€l cf(¢) > Ro but Al®¢ is a
stationary subset of £} is not stationary in A, (in fact, both are empty if 8 < o + X).
HDIfy < AT, S € A and for some strict® AT-club system e, the condition in
Definition 1.3 holds, then S € id;’k (1) (i.e. this holds for every such e).

2)Ife, (A; : i < y) are as in Definition 1.3 then i + rk; (A;) = rk; (Ap).

3)If 8 € Al"¢! 50 alimit ordinal and A > y > 0, then cf(§) > X, andif y > A
then A is inaccessible.

4)Letebeastrict* AT-clubsystem.Ify < u = cf(n) < cf(A)and (A; :i < )
is an increasing sequence of subsets of A with union A and (V§ € A)(cf(§) > w)
or (V8 < 2)(cf(8) = u — AN 5 not stationary in 8), then A-? = J;_, AV,
note also that (Al[y’e] 1 < W) is increasing.

5) Let & be a strict* AT-club system. If A is inaccessible, (A; : i < A) is an in-
creasing sequence of subsets of Aand A = {§ <A :8 € |J;_sAi}andy < cf(})
then AN\ (y + 1) CUS <A:8€U;_; AV and 8 > y).

6) If cf(A) <Ry < A, thﬁid;k(x) =P).

Proof. 0) By induction on 8.
1) For £ = 1, 2 let &° be a strict* club system and let (Af :i < y) be defined as in
Definition 1.3 using ¢¢. We can prove by induction on 8 < y that

(¢)g thereisaclub Cg of A such that for each o« < B, the symmetric difference
of AL N Cp and A2 N Cg is bounded (in 1).

2) Check.

3) By induction on y.

4) We prove this by induction on y. For y = O this is trivial. For y successor,
by Definition 1.4(1)(iii) this is easy by the last assumption. For y limit, by clause
(iii) in 1.3(1), if § € A-¢! then (Vj € ¢,)[§ € AU, recalling y < p < A
So for j € e, as (Al[j i< w) is increasing with union Al/-¢! by the induc-
tion hypothesis for some i(j,8) < pu we have i € [i(j,d),u) = § € Al[.]’e].
As ley| <y < u = cf(n) necessarily i(8) = sup{i(j,0) : j € es} < u,

s0d € AE{(’S;T] which means § € Al[)(/g)é] As § was any member of AlV-¢]

we can conclude that AlV-¢l C Ui~ M Al[y’é], but by monotonicity of the function

JjEes

3 in fact, bounded
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B > B we get Al[.y’é] c A€l hence we are done.
5) Similar proof.
6) By part (3). .4

1.5 Claim. Let A be inaccessible or a limit cardinal of uncountable cofinality.

0) For y < AT, the family id;k()‘) is an ideal on A including all non-stationary
subsets of A.

DIfS C A,y = 1ki(5),¢ < y,8 = S (e as in Definition 1.3(1)) then
¢+ 1k (S) =y.

2)In(1)if¢ <y =¢+y (eg. ¢ <A <y)thenrk,(S) = y.

3) Assume S € A,¢ < A and § is a limit ordinal § € Sleel and let ¢ = C+1
except that when ¢ < wor¢ =i +n&0 < i < A& [i inaccessible] we let
e = ¢. Then we have: cf(8) > 8, moreover cf(8) > Min{cf(a)** : a € S}.

4) Assume
(a) 4 < X inaccessible
G y=rAxn+pn<w,pB<pu
() AC .
Then A1 N = (A N p)#>"+81 recalling Definition 1.3(4).

5) Assume y < cf(u) <u <A, AC Athen AV N = (AN

6)If u = cf(n) < cf(r) and y < p then id;’k()») +{8 < A :cf(8) < u}is
u-indecomposable (see Definition 1.6(2) below and Claim 1.4(4) above).

7) If y < cf(X) then id;/k (A) is a weakly normal ideal (see Definition 1.6(1) below,
possibly it is P(1)).

8) For A inaccessible and y < AT we have: A is y-Mahlo iff A ¢ id;/k ).

9) For A inaccessible,n < w, 8 < Aand A C A we have: 1k, (A) < A x n + B iff
for some club E of A wehave u € E & cf() > Ko = rk, (ANp) < uxn+p.

Proof. Straight (parts (6), (7) like the proof of 1.11(6)). Oy 7
Recall

1.6 Definition. /) An ideal I on a cardinal A of uncountable cofinality is called
weakly normal if it contains all bounded subsets of ) and: for every f : A — A
satisfying f(a) < 1 +a and A € I, for some B < A we have {a € A : f(a) <
Byel™ .

2) An ideal I is p-indecomposable when: for any sequence (A; : i < u) of
subsets of L ifUi<M A; € I'N then for some w C 1 of cardinality < |1 we have
Uicw Ai € I clearly if w is regular then without loss of generality (A; : i < )
is increasing.

1.7 Observation. Suppose (I; : i < A) is an increasing sequence of p-indecom-
posable ideals on the regular cardinal A, each including the bounded subsets of
A, L < X is regular and

1= {A C A : there is a pressing down function z on A such that

foreacha < A, {8 € A:h(B) <a}e U Il-}.

i<A
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Then I’ =: I 4+ {8 < A : cf(8) < u} is weakly normal and p-indecomposable.

Remark. If I is an ideal on A and [ is k-indecomposable for every regular x < u,
then 7 is pu-complete.

Proof. I’ is weakly normal by its definition (first note that for every club C of A
the set A\ C belongs to I: use hc where hc () = sup(a N C); then we use a pairing
function < —, — > such that (o, 8) < Min{§ : o, 8 < =w X § < A}).

For p-indecomposability, assume (A; : i < p) is an increasing continuous se-
quence of members of /', A, = (J;_,, Ai and we shall prove that A, € I’, this suf-
fices as u is regular. Without loss of generality A, is disjointto {6 < A : cf(8) < u}
hencei < u = A; € I. Let h; be a pressing down function witnessing A; € I, so
for o < A for some (e, i) < A wehave {8 € A; : h;(B) < a} € Ir(a,i)-

For each ¢ < X let {(a) = Ui<M{(a, i), soas u < A clearly ¢(x) < A.
Let us define a function & with Dom(h) = A, by setting h(e) = Ufh;(a) :
ae€Ajandi < u}. Leta < A, soforeachi < u wehave {8 € A; : h(B) < a} C
{(BeAi:hi(B) <a}€ I, C I (remember (I; : i < A) is increasing). For
i <plet BY = {B €A :h(B)<a},so(B:i < u)isincreasing continuous,
and for i < wu we have BY C {8 € A; : hi(B) < a} € Iy@). So as I is
p-indecomposable {8 € A, : h(B) < a} € I;(@). Soifa € Ay, as Ay is disjoint
to {§ < A : c¢f(§) < u} then h(w) < « hence h witnesses A, € I C I'. So clearly
I'=1+{8 <X\ :cf(§) < u}is u-indecomposable. Oy 7

1.8 Observation. Let (I; : i < §) be an increasing sequence of ideals on A, each I;
is pu-indecomposable, 1 regular.

(1) If ¢f(8) # p, then | J; _s I; is a u-indecomposable ideal.
(2) If each I; is weakly normal, § < A then | J; _s I; is a weakly normal ideal on A.

i<$
Proof. Check.
* * *

1.9 Definition. 1) Let A be a limit cardinal of uncountable cofinality, y = A xn+
(where [cf(A) < A= n=0&y =B < cf(M)] and [cf(L) =2 = B < A]).
We define id” (1), an ideal on M\ (temporarily — a family of subsets of A, see
1.11); this is defined by induction on A:

(a) if y = 0 it is the family of non-stationary subsets of A

(b) if y < A itis the family of A C A such that:
fu<i:ANup ¢ Ua<y id* ()} is not a stationary subset of \.

(c)Ifn > 0, B =0 itis the family of A C A such that for some pressing down
function h on A, for each i < A the set

{/1, : < Ainaccessible, k() =iand AN u ¢ U(Kuxn id"‘(u)}

is not a stationary subset of A.
(d) If n > 0, B > 0 it is the family of A C A such that

{u : w < Ainaccessible and A N ¢ U, g id“X”JF“(M)}

is not a stationary subset of A.
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2) rki(A) = Min{y : A€ id"(A),y <A xwory =it}
3)id<r (A) = U{id? (1) : B < A}, an ideal too (well for y > 0)

1.10 Remark. 1) If in clause (c) we imitate clause (d), we get the ideal from Defi-
nition 1.3. We can continue this to all y < A ™.

2) Also this definition can be continued for y € [A x w, A*] using a strictly*
AT-club system e, proving its choice is immaterial, idir/k()‘) C id” (X)) and other
parts of 1.11.

3) We can replace the closure to normal ideal to one for weakly normal ideal.

4) Also we can divide the ordinals < A x w differently between those three
operations: reflecting, normality and weak normality. All are O.K. in 1.16, but no
need here.

5) Trivially, id” (A) increase with y and is an ideal on A (possibly equal to P (1)).

1.11 Observation.

0) id¥ (A) is an ideal on A.

1) For A of uncountable cofinality, y < A, S € A we have: § € id;/k()») & S e
idv (L), i.e. id;’k()\) = idV(A).

2) If A isinaccessible, A <y <A xwand § C A thﬁid;k()\) C id¥ (A).

3) Assume X is inaccessible (> Rp), A < ¥y < A X w, ¥y = 1k, (A) and 0 =
cf(@) < A, S ={§ < A : cf(§) = 6} then we have (x)s where

(¥)s forsome B < i x wwehave S ¢ | J,_, idfri),
but {u : @ inaccessible, S N w stationary} € id® ().

4) For X inaccessible, S € A and 1k, (S) < A x o then Min{A, rk; (S)} < 1k} (S).
5) Let X be inaccessible and S C {§ < A : c¢f(8) = 0} be stationary
(a) if A <y = 1K} (S) < A x w then (x)g from part (3) holds
(b) if A < 1k; (S) < A X w then for some y, A < y = ki (S) < A x w hence
(x)s of part (3) holds
(c) if A is y-Mahlo not (y + 1)-Mahlo and A < y < A X w then for some
Ys A <y < y1 <A X o wehave (x)g from part (3) or rk} (S) < A.
6) For X inaccessible and y = A x n 4+ 8, 8 < A, the ideal id” (A) + {8 < A :
cf(§) < o} (alsoid=7 (A) +{8 < A : cf(8) < o}) is o-indecomposable for any
o = cf(o) € [|B|T, A) and is weakly normal.
7) If A is inaccessible, S C A, 1k} (S) = A x n* 4y, y < A then we can find a
club E of A such that
(a) if § € E, cf(8) > R then k3 (S) <8 x n* +y
(b) ify > 0,8 € E, cf(§) > R then 1k§(S) < § x n* + y.
8) Assume S C Aand ST = {§ : §isinaccessibleand § € SV (NS is stationary)}.
Then 1k} (S) < rkI(S) + A.
9) If 1kj (S) = y + 1 then for some club C of A, {§ < A: tk5(SNC) > y}isa
stationary nonreflecting subset of A.

Proof. Let é be a strict A*-club system as in 1.3(4).
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0) Should be clear.
1) Clearly also id” (1) is an ideal which includes all bounded subsets of 1. We prove
the equality by induction on X and then by induction on y.

Soify < A, A C X;letforany B, Bl be defined as in Definition 1.3 (fore), we
can discard the case y = 0; and without loss of generality A = sup(A) & A N
(y + 1) = @; now (ignoring the case y is inaccessible for simplicity)

Acid’(h) &

{M <Ai:pu>yandunNA¢ U id"‘(u)} is not stationary <

a<y

{u <A:p>yand /\ [uNA¢ id"‘(,u)]} is not stationary <

o<y

{M <XA:pu>yand /\ [uNA¢ id?‘k(u)]} is not stationary <

a<y

{y, <A: /\ [(u N A s stationary in ,u]} is not stationary <

a<y

{u <A /\ [(u N A) N Al is stationary in u]} is not stationary <

a<y

{,u < A: /\ [N Al g stationary in M]} is not stationary <

a<y

{M <A:pE€ ﬂ A[“H]} is not stationary <

a<y
AT not stationary <
LY
Ae 1drk(k).

2) We prove this by induction on A, and for each A by induction on y. For
y < Ause part (1). For y > X successor ordinal, read the definitions (and 1.10(3)).
So assume y € [A, A X w) is a limit ordinal. For every A € idir/k()‘)’ we know
Alv-el ig not stationary, so for some club E of A, Avel N E = @. So if we define
h:E — Abyh(8) = Min{otp(j Ne,) : j €e,,8 ¢ AU otp(j Ne,) < 8},
by the definition of AY+¢! it is well defined, and h(8) < § & 11(§) < otp(e ). Let
y=Axn+p,B8<ison>1.

Clearly, possibly replacing E by a thinner club of A
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X foreveryé € E
(o) 8§ > Bisalimit cardinal and § = sup(A)
(B) ifcf(8) > No&y = Athen ANS € id:’l(f) (5)
(y) if § is inaccessible, y = A xn,n > 1 (so B = 0)then ANS €
idﬁﬁ (=D+h®) 5y and h(8) <
() if § is inaccessible, y = A xn+ B > A xn,n > 1then ANJ €

idﬁﬁ"“’(‘” (8) and h(8) < B.

Now we can case by case prove that A € id” (1), using the induction hypothesis
on A and on y (or part (1)) and the definition of id” (—).

3), 4) Check.

5) For the second statement note that by parts (1) + (2) we have 1 < 1k} (S) <
k) (S) < A x wso y =: 1k, (S) is as required.

6) We prove this by induction on X and for a fix A by induction on y.

Case l: y < A.

By part (1) we know thatid” (A) = id;/k(k) and the latter +{6 < A : c¢f(8) < o}
is weakly normal by 1.5(7) and is o -indecomposable for any regular o € (|y|*, 1)
by 1.5(6). Alternatively, the proofs are similar to those of case (3).

Case2:y =i xn,1<n<ow.

By Definition 1.9 clause (c) obviously id” (1) contains the family of bounded
subsets of A and is even normal hence A-complete hence o -indecomposable for any
o <A

Case3:y=Axn+B,1<n<w, 1< <A
First we prove the indecomposability part, soletc = cf(o) € [|B8]|T, A) and as-
sume (A; : i < o) is anincreasing continuous sequence of subsets of A and assume
Ay ¢ id” (1) and we should prove that for some i < o we have A; ¢ id” (L).
Let us define fori < o:

B; =: { < A : uinaccessible and A, N ¢ U idA T ().

a<f

For each inaccessible & < A which is > ¢ and « < $ we apply the induction
hypothesis with A’ = 1, ' = uxn+aand (A} :i <o) = (A;Np:i <o)and
get: for every . € B, for some i (u, ) < o wehave Aj(,qo) N ¢ idmxn e (),
but y < o hencei(p) =: sup{i(u, @) : @ < y} < o, andclearly u € B;(,), as the
Aj’s are increasing. As 0 < A and B,; stationary (by assumptions) we have: B is
a stationary subset of A and B, C Ui<0 B; Uo T, hence for some i () < o the set
Bi(s) is stationary, hence A;(x ¢ id**"7 (1) is as required.

Second we prove the weak normality part. Solet A € A, A ¢ id”(A) and &
a function with domain A, h(i) < 1 +i,andlet A; = {a € A : h(a) < j}. We
define B; =: {x < A : uinaccessible > i, and A ¢ |, ide e ), B =:
{m < A : uinaccessible and A; N ¢ Ua<ﬂ id*xnte )y,
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Again we assume that B is stationary and has to prove that some B; is station-
ary. For every inaccessible 4 € B and o < 8 applying the induction hypothesis to
w,ANu,h | (A ﬁ w) for some i(u, @) < p the set {u’ < w : w' inaccessible,
A“ o N1 ¢ id* "xmta (7)) is stationary where AI(M ow=leAnpu: (]
(A ﬂu))(;) <i(u,a)}). Leti(un) = sup{i(u, ) : @ < B} soitis < u, and clearly
Aigyr & Ug<p 1" (2). So B < U, _, Bj, and we easily finish.

7) By induction on the rank.

8) By induction on A.

9) Easy. O1.11
* * *

1.12 Claim. Suppose A is inaccessible, S € X a stationary set of inaccessibles > o,
S1 € {6 < A : 6 alimit cardinal > o of cofinality > Ry and # o} is stationary,
A > o = cf(0) and for § € S the ideal /5 is a weakly normal o -indecomposable
ideal on § N 1 and J is a weakly normal o -indecomposable ideal on S, (and of
course all are proper ideals which contains the bounded subsets of their domain;
of course we demand § € § = § = sup(S1NJ)sod € S = § > o). Further let
Cc!' = (C1 o € S1) be a strict S;-club system satisfying:

() for every club E of A

{(SES:{aeSl08:Eﬂé\Collunboundedina}EI;}e Jt.

Then: (1) We can find an Sj-club system C? = (C2 a € S1) such that for every
club E of A the set of § € S satisfying the following is not in J:

{a <8:a €S NEand{cf(B): B €nacc(C2)and B € E}

is unbounded in a} el 5"’ .

(2) Suppose in addition U{cf(x) : o € S1} < A.Then we can demand that for some
0 <haes = |C2| < 6. Also if C! is almost strict then we can demand that
C? is almost strict.
(3) Suppose U{cf () : @ € S1} < X and for arbitrarily large regular k < A we have
{§ € S : Is not k-indecomposable} € J.

Then we can strengthen the conclusion to: C? is a nice strict Sj-club system
such that for every club E of A the set of § € S satisfying the following is not in J:

{a <é§:a e S NEand Cozl\E isboundedina} # ¥ mod 1.

(4) In part (1) (and (2), (3)) instead of “Is weakly normal o-indecomposable” it
suffices to assume: if  belongs to S and 41 : 6 N S; — § is pressing down and
hy : 6 NS — o then for some j; <8, <o wehave{o € 6N Sy : hi(w) < j
and hp(a) < ¢} € I

5) We can replace ({6 : 6§ < A, cf(8) >0} :0 < L) by (Sp : 6 < A) such that
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(l) ﬂ0<x S9 = Q’
(ii) Sp decreasing in 6 and
(iii) for no § € A\Sg do we have cf(8) > Rg and Sy N § stationary subset of §;
and
(iv) Min(Syp) > 6.

6) Assume A C A is stationary such that A®¢] = A (any ¢ will do).
Then in part (1) we can add nacc(Cé) C A and waive § € § = cf(§) > No.

1.13 Remark. 1) This is similar to [Sh:g, IV, 1.7, p.188]. We can replace “S is a
set of inaccessibles > o by “S is a set of cardinals of cofinality # o and get a
generalization of [Sh:g, IV,1.7,p.188].

2) Note that (x) of 1.12 holds if S is a set of singulars and otp(C(i) < o for every
o € 8.

Concerning (x) see [Sh 276, 3.7,p.370] or [Sh:g, I11,2.12,p.134], it is a very weak
condition, a strong version of not being weakly compact.

3) This claim is not presently used here (but its relative 1.14 will be used) but still
has interest.

Proof. 1) Let e be a strict A-club system.

It suffices to show that for some regular < A and club E? of A the sequence
C2E 0 — <C§’Ez’9 = gﬁé(Coll, E% &) : 0 < a € S)) satisfies the conclusion (on
géé see [Sh 365], Definition 2.1(2) and uses in §2 there). So we shall assume that
this fails. This means that for every club E2 of A and regular cardinal # < A some

club E = E(EZ2, 0) exemplifies the “failure” of C>E%9 This means that for some
Y = Y(E?,0) e J forevery § € S\Y we have

{(x <8:aeS NEand{cf(B): B e nacc(Cé’Ez"g) and B € E} is

unbounded in oz} e Is.
We now define by induction on { < o aclub E; of A:
for =0: E;=:A
for ¢ limit:  E; =: (s, Es
forc =& +1:

E; =: {S: 8 alimit cardinal < A,8 € E¢,§ > o and :
0= cf(9)<8:>8€E(Eg,9)}.

Let Et = {i < A:iacardinal ,i € E,, moreoveri = otp(Es N i)}.

By (%) (in the assumption)
B=:{§eS:Aself}eJt
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and let

A:UA(S

where for§ € S
As=:{a € $;N8: ETNa\C! unbounded in a}.

Note thatif § € Bor§ € Athen§ = sup(§ N ET) € ET; note also that A C S
and B C S.Nowasa € S| = cf(x) # o, foreach«a € A there are ¢ (o) < o and
0(a) = cf[f(a)] < a such that:

(*)o Ola) <0 =cf@)<a&i(e) < <0o=>

o= sup{cf(ﬂ) L B e nace(Ca ™"y N Eppy }

[Why? We can find an increasing sequence (¢, i : i < cf(a)), «; increasing
with i with limit &, o € C), B € E5, 0 < cf(Bi) < Bi < Min(Cl\(e; + 1))
(possible by the definition of the set As and of the club ET). For eachi < cf(a)
we can find §; < 0,6; < Uj<iaj and y; suchthat §; < ¢ < o &6; <6 <

. 2,E;,0
Uj<i a; &0 = cf(®) = Min(Cy “\Bi) =i
(check definition of gﬂé!). So by the definition of géé we have o; < y; < Bi
and cf(y;) > Uj<i0‘j and ¢ < ¢ <o &b <0 = cf(®) < Uj<i(1j = V¥ €

2,E; .0 .. .
nacc (CO, g ) this implies the statement (x)q].

Now if § € B, we have: As € I;r and As is the union of ({o € As : (@) <
¢} : ¢ < o) which is increasing.
As Is is o-indecomposable, and As € 13+ for some £ = £(8) < o,

Ase = {a€As:¢(a) <&}elf.
Similarly, as I5 is weakly normal, for some regular cardinal T = 7(§) < &, we have
Aje ={a€As: (@) <&andf(a) <t} €.

Similarly, as the ideal J is o-indecomposable weakly normal ideal on S C A,
for some € < o and t* < A we have:

Bt ={(8eB:Aj, elf}el

In particular BT cannot be a subset of Y (E,, T*) (as the latter is a member of
J, it was chosen in the first paragraph of the proof). Choose § € BT\Y (E., t*),
which is > t*.
By the definition of Y (E,, T¥),

la <8:0 €S8 NE(E:,T") and
a = sup{cf(B) : B € naCC(CO%’ES’T*) N E(E,, l'*)}} € Is.
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Ifa e Ag;\r* + 1thena € S N E(E,, t™) and since (@) < ¢ and O(a) < %,
we have by (x)g

o =supf{cf(B) : B € nacc(Cg'Eé"t*) NE¢r1}

hence
o = sup{cf(B) : B € nacc(Cg’E“r YN E(Eg, ).

Since Ag;\r* + 1 ¢ I5, we have a contradiction.

2) By the proof of part (1) for some regular § < A and club E? of A, C? =
C2E*9 i as required. So |C§| < 60+ |C(}(|+ as we repeat the proof of part (1)
for such C!, so the second phrase (in 1.12(2)) follows. For the first phrase 6 +
Supyes, |C 11T < A is as required (remember C! is a strict S;-club system).

3) Let C?, 0 be as in part (2). Let x be regular be such that 6 < k¥ < A,« €

S1 = IC‘%I < k and {§ € S : I5 not k-indecomposable} € J.
For any club E of A we define C>£ = (C>F : « € §y) as follows: if C2NEisa
clubof @ and @ = U{cf(B) : B € nacc(Ci N E)} then cng = Cé N E, otherwise
CS’E is a club of « of order type cf(a) with nacc(Cg’E ) consisting of successor
cardinals (remember each « € S is a limit cardinal).

If for some club E of A, C3F satisfies: for every club E! of A the set {8 eS:
(BeSNa: Cg’E\El bounded in B} € I;}} € J7 then we essentially finish,
as we can choose Cg C CS’E which is closed of order type cf(«) and [ €
nacc|C2| = cf(B) > sup(Cg N B)], and (C; : B € 8p) is as required. So as-
sume that for every club E of A for some club E’ = E’(E) this fails. We choose by
induction on { < «, aclub E; of A, as follows:

Eqg= A
Ecy1 = E'(Ep)
E; = () Ex for ¢ limit
£<t
and recalling the choice of k¥ we easily get a contradiction.

4), 5) Same proof.
6) In the proof of part (1) choose e such that:

forlimita <A, a ¢ A => e, NA=0.
Then we replace the definition of Cé’Ez*e by CS’EZ'A = gZ}L‘(Coll, EZ2,8). O1.12

1.14 Claim. Assume

(a) A inaccessible

(b) A C Ais a stationary set of limit ordinals and § < A & (A N § stationary in
) =>d8€A

(c) J is a o-indecomposable ideal on X containing the nonstationary ideal
dSeJtandSNA=0
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(e) o =cf(o) <Xrandd € S = cf(§) #o.

Then for some S-club system C = (Cs: 8 € S) we have

X for every club E of A
{6 € S:8=sup(ENnacc(Cs)NA)} e JT.

Proof. Asusual lete = (e, : @ < A) be a strict A-club system but such that for ev-
ery limit§ € A\A wehave esN A = (). For any set C € X and club E of A we define
gl2(C, E, &, A) by induction on n < w as follows: forn = 0, g¢2(C, E, &, A) =
{sup(a N E) : ¢ € C} and

gZiH(C, E, e A) = gZ,zl(C, E,e, A) U {sup(x¢ N E) : for some
B e nacc(gEﬁ(C, E,e, A)) wehave 8 ¢ A, and
sup(a@ N E) > sup(B N g€2(C, E, &, A)) and
sup(a N E) > sup(a Neg) and @ € eg}

and

gl*(C.E.e.A)=| | gtr(C. E. 2. A).

n<w

If C is a club of some § € acc(E), clearly gZ%(C, E,e A), géz(C, E,e, A) are
clubs of 6.
If for some club E of A, letting Cs g be gﬁz(eg, E,e, A) when § € acc(E), and
letting Cs g be es otherwise, the sequence Cg =: (Cs.g : 6 € S) is as required,
then fine, we are done. Assume not, so for any club E of A for some club E(E) of
AthesetYg =: {6 € S: 8 =sup(E(E) N AN nacc(Cs,g))} belongs to J.

As we can replace E(E) by any club E/ C E(E) of A, without loss of generality
E(E) CE.
We choose E; by induction on ¢ < ¢ such that:

(i) Egisaclubof i
(ii) t<e=>E;, CE;
(iii) if e = ¢ + 1then E; C E(E;).

Fore = 0 let E, = A, for ¢ limit let E, = ﬂ§<€E§,f0r8 =¢+1let E, =
E(E;))NE;.

This is straightforward and let E = (1), _, Eg, it is a club of A hence E N A
is stationary hence E' = {§ € E : § = sup(E N AN §)} is a club of A hence
ME’ € J. Now for each § € E' N S, choose an increasing sequence (8s; : i <
cf(8)) of members of A N E N § with limit §; as § € S clearly § ¢ A hence
es NA = @ hence {Bs5,; : i < cf(6)} Nes = . Now for eachi < cf(§) and
& < o, we can prove by induction on n that gZ,% (es, Ec,e, A) N Bs,; is bounded
in Bs; and (min(gﬁ% (es, Ec, e, A)\Ps.i) : n < w) is decreasing hence eventually
constant say for n > n(38, €, i) hence min(gE% (es, Ec, e, A)\Ps.i) is a member of
Cs.E. = Un g@% (es, Eg¢, e, A) moreover of nacc(Cs, g, ) and so necessarily € A
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as only the demand “8 ¢ A” prevent gﬁrzl 1 having unboundedly many members
below min(gé2(es, Ee, &, A)\Bs.i)-

Also as usual for each i < cf(8) forsome ¢; 5 <o wehavee;s <¢ <o =
Min(C(s,E[\,Bg,i) = Min(Ca’Esiva\ﬁg,i) asforeach n, the sequence (Min(gﬂﬁ (es, E¢,
e, A)\Ps.i) : € < o) is nonincreasing hence eventually constant. But cf(§) €
{cf(8") : 8’ € S}hencecf(8) # o, soforsome g5 wehave cf(§) = sup{i : &; s < &5}.
So easily 5 < & < 0 = § € Y,, see definition below.

Let Y, = ﬂ{YEK ¢ >¢eand¢ < o). Clearly Yy € Yg, € JsoY, € J and
g1 < &2 = Y C Ye,.As J iso-indecomposable, necessarily UKU Y, € J,butby
the previous paragraph § € E'NS& A,.. 8 € YE, = € Yoy = 8 € U, Yes
SOE'NSC,_, Y. € JbutS € J*, A\E’ € J, a contradiction. 01,14

1.15 Claim. 1) Suppose A > 640, A inaccessible, 8 regular uncountable, o regular,
o0 #60,8 C {6 < A:cf(d) =0} stationary, J a weakly normal o -indecomposable
ideal on S (proper, of course).

Then for some S-club system (Cs : § € S):

(a) 6 € S& o € nacc(Cs) = cf(a) > sup(a N Cs)

(b) for every club E of A, {§ € S : § = sup(E Nnacc(Cs))} € J T

(c) supses |Cs| < A.

2) If in additiorl {kx < X :cf(x) =k, J is k-indecomposable} is unbounded in
A we can demand C is nice and strict.

Proof. Like 1.12 or 1.14 buteasier (and see [Sh:g, I11,2.7,p.128]). More specifically
part (1) is proved like 1.12(1) (but simpler) and part (2) like 1.12(3). 0115

1.16 Claim. 1) Assume X is an inaccessible Jonsson cardinal, n* < w, 0 = Ry ) <
ASCAhand ST ={(§ <XA:SNSis stationary and § is inaccessible}, satisfy
§eS=0<cf(§) <éand
() () A xn* <1k, (S) <A x (n*+1)and
(B) tkx(ST) < rka(S)
(y) if & > R then n* > 0 or at least y (%) x @ < 1k, (S),
(note: if & = Ry this holds trivially; similarly for clause (§))
(8) if @ > Ry, then for some a(*) we have y (%) + 1k, (ST) < a(x) < 1k, (S)
(recall = R (x)), and id‘;‘li*) (A) T S is 6-complete (of course, 8 = R, (x)).

(%) () C is an S-club system,
B) A ¢ idp(C_‘, I), see definition below, where I = (I5 : 8 € S), I5 =: {A C
Cs : forsomeo < §anda < §,(VB € A)B <avVvcf(B) <oVvpe
acc(Cs)}, moreover

(y) for every club E of A we have a(x) < rtky({§ € S : foreveryo <
8 we have § = sup(E Nnacc(Cs) N{o < § : cf(a) > a})).

Then idé (C)isa proper ideal (see 1.18 below).
2) Like part (1) using id", rk} instead of id’r/k, rk; respectively.
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1.17 Remark. The ideals idj(C_‘), idé(C_‘) are defined below; they are from [Sh:g,
IV, Definition 1.8(2),(3),p.190] 4 but id i) = id§0 (1) and the definition of rké (A)
is repeated in the proof below, and the ideal id, (C_', I_) in [Sh:g, II1,3.1,p.139] is:

1.18 Definition. For A regular > Ry, C = (Cs : § € S),Cs € § = sup(Cs), S C
A = sup(S), I = (Is - § € §), 15 an ideal on Cs let idp(C_‘, 1) be the Sfami-
ly {A € A : forsomeclub E of A fornoé§ € Dom(C) N acc(E) do we have
ANENCs ¢ Is}.

1.19 Definition. /) For A an inaccessible Jonsson cardinal, C = (Cs : § €
S$),Cs € 6,5 € A =sup(S) and 8 = cf(f) < A let idé(C_') be the family of
A C A such that: for every x > A and x € H(x) there is a sequence M exempli-
fying A € idg (X) for x (and C, x) where:

2) M exemplify A € idé(k)forx € H(x) (and x > A and )\) if:

KoM= (M;:¢ <E&),6 <9,
M & <0,0+1C M, <(H(x), s, <§)and|M§ﬂk| = Aand x € M; and
reM;, CeM:SeM;and)Z M;

X, for some a* < X for no § € S\a* do we have:

(a) § =sup(M; NJ) fori <&

(b) for every B < § for some a we have: o € nacc(Cs)\B, cfla) > B

and
® for every ¢ < & we have: a € M; or Min(M;\«) is

singular.

Proof of 1.16. 1) Recall & = R, (4, note that y () + rk;, (ST < 1k (8),if0 > Ry
by clause (x)(), if 8 = Ry trivially.
Without loss of generality § < A = 1ks(SNJ§) < § X w and even ks (S N ) <
8 x n* 4+ (tky (S) — A x n*) < § x n* 4 § (in part (2) the first inequality is <).
Toward contradiction assume A € idé (€C)letx = (r, C, S) and let (M ¢ <
&) exemplify A € idé(C_’ ) for x which means that Xy, X1, X, of Definition 1.19(2)
hold and let o* be as in X,.
Let: E=1{5§ <A:8 € M; and § = sup(M; Né) forevery { <& and § > a*
for the o™ from X, of 1.19(2)} and let

S*={8 € S : forevery o <4, {a € EN nacc(Cs) : cf(a) >0} is unbounded in §}.

So E is a club of A with every member a limit cardinal, $* C S is stationary (as
A ¢ idp(C_‘, 1)) and even S* ¢ id?ﬁ*) (A) (see clause (x*)(y) in the assumption)
and using X of Definition 1.19(2) we shall look only at § € S*.

Foreachi < Aand ¢ < & let ﬁé =: Min(M;\i).As (M; : ¢ < &) exemplifies

A E idé(C_'), we have

“ but the “same x” in line 4 should be “every x”
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X5 for each § € §* for some ¢ < &, ,3? = cf(,B?) > § hence ,3? is inaccessi-
ble.
Proving this will take some steps. First for some 8* < § we have:
X4 o € nacc(Cs)\B* & cf(a) > B* — (F¢ < &)[Min(M;\«) is an inac-
cessible > «].
[Why? In the definition of idé,, i.e. clause (b) of X, of Definition 1.19(2) we do not
speak on ,B‘S for § € S, we speak on 8%, for @ € nacc(Cs) N E.As § € S* we have
8 € E so 8 > o™ hence § cannot satisfy (a) + (b) of X, but as § € E it satisfies (a)
hence for some 8* < &, we have X.]
Next note

Xs ﬁ? = § & a € E N nacc(Cs) :>,B‘g =a.

[Why? So we have § = ﬂg € M; hence Cs € M; so (Vy € §N M )[Min(Cs\y) €
M;], and now for every o € E N nacc(Cs) we can find y € M; N « satisfying
y > sup(Cs Na) soa = Min(Cs\y) € M, as required in Xs.]

Mo B singular &a € E N nacc(Cs) & cf(@) > cf(B)) = p =a.
[Why? Fix such «. There is a club e of ﬂg of order type cf(,B?) which belongs
to M,; also cf(,B?) € M, N8 socf(B)) < §. Also for every §' € eg = {8’ €
eNS:a¢ acc(Cy)} there is yy such that sup(Cy N@) < yy < «, hence y* =
sup{ys : 8’ € eg} < a (as cf(a) > cf(ﬂ?) by assumption). As @ € acc(E) there is
vyl € M¢Na, y! > y*. Soa is the minimal ordinal &’ satisfying y! < o’ & (38’ €
eN S)[a’ € nacc(Cy)] & (V8 € e S)[8 € nacc(Cy) — sup(e’ N Cy) < p!]
hence @ € M hence ,8? = «a as required.]
Of course, [,82S singular = cf(ﬂ?) < 8] as cf(,B?) € M; N ﬂ? = M; N J; so
together X3 actually holds.

Letting S;‘ =:{§e§*: ,6? = cf(,B?) > 8}, we have S$* = U§<é S;‘,hence for
some ¢ (x) < & the set S;"(*) is stationary. Moreover, if 6 > R by clause (§) of ()
in our assumption and if & = ¥y by 1.5(0) (for the id;'k case) or 1.11(0) (for the
id” case) we can choose ¢ () such that rk;L(SZ‘(*)) > ().

So to get the contradiction it suffices to prove rk; <S;‘( *)) < «a(x). Stipulate
L
Bro =2

Let a rk

[ + )
con =5 TKgd (S N 'BZ(*)) for§ < A.
Let oz‘g ) = ,8?( 0 X n‘g( 0 ~|—y§‘s( « Where yg( o < ﬂ?( « (see the assumption in the
beginning of the proof). For § < A, as {A, S} € M) and ﬂg(*) € M4 clearly
8 8 8
oy € My(x hence vy, € My N8 hence v, < 8.
We now prove by induction oni € E U {A} that

X rk; (S§(*)ﬂiﬂE) <X My + Vi)
This suffices as fori = A (asal ,, < (%)) it gives: rky, (S;(*)) =1k, (S NE) =

¢(%) ¢(x)
rkA(S;(*) NANE) <« < 1ky(ST) < a(*), contradicting the choice of ¢ (%)

(and a(*)).

A
£(%)
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Proof of ®. The case cf(i) < 8o Vi € nacc(E) Vi € nacc(acc(E)) is trivial; so
we assume

®) i acc(acc(E)) &cf(i) > Nohencerk; (s;(*) nin E): k; (s§(*) n i).

For a given i, clearly for every club e of ,Bé(*) which belongs to M) we have
i = sup(e Ni)(as M, “think” e is an unbounded subset of,Bé(*) andi = sup(iNM;)
asi € E)and for a given i, by the definition of rk there is a club e of ,3;(*) satisfying
Min(e) > yé(*) such that one of the following occurs:

(a) o, =0ande €e= rke(STNe) =0& ST Ne =0

(b) aé(*) >0ande ce= 1k, (STNe) <ex né(*) + yc"(*).
As ST, ﬂé(*) € M;(x) without loss of generality e € M) hence i € acc(e).
Necessarily

®, if e €i N acc(e) N acc(E), then ,323(*) Ee.
[Why? Otherwise sup(ﬂﬁ(*) Ne) is amember of e (as e is closed, ﬂg(*) > g € acc(e)
SO /3;"(*) > Min(e)),is > ¢ (as € € acc(e)) and is < ﬂg(*) and it belongs to M ()
(as e, ,B;f(*) € M; (), contradicting the choice of ,323(*).]
Hence one of the following occurs:

(A) aé(*) = 0 and e is disjoint to ST

. N . .
B) aé(*) > 0 and rkﬁ[s(*) (S ﬁﬁ§(*)> < ﬁ§(*) X n’c(*) + )/é(*) for every

e € acc(e) N acc(E).
First assume (A). Now forany § € acc(E)N S;"( o We have ﬂ? ) is inaccessible (as
8 e SZ‘(*) and the definition of S?(*)) and ﬂ?( » NS is stationary in ,8?(*) (otherwise
there is a club ¢’ € M) of ﬁ?(*) disjoint to S, but necessarily § € ¢’ but our

*

present assumption is § € S C S, contradiction); together ﬂ?( o € ST hence

£(x) '
,8?(*) ¢ e (e from above, after ®1), so necessarily § # ,82(*) = § ¢ acc(e). So
acc(e) N acc(E) Ni is aclub of i disjoint to S;f(*) hence rk; (SZ‘(*) N i) = 0 which
suffices for ®.
If (B) aboye occur.s, then for e € acc(e) N acc(E) we have ﬁg(*) X ng(*) + y;(*) <

& 1 1
Beoy X ey + Ve S
Since y{l(*) <‘ M1n(e)., we have (ng(*), )/;(*)) <lex (n’{(*), y{’(*)), hence ¢ x ni(*) +
yf(*) <é&X n’z(*) + yé(*) forall ¢ € acc(e) N acc(E). Using the induction hypoth-
esis, we see for ¢ € e N acc(E)\ Min(e) that

the (57 NE N E) < & X Mgy + Yoy < € X My + Vs

hence by the definition of rk; the statement ® holds for i; which as said above is
enough.

2) We repeat the proof of part (1), replacing rk; by rk! up to and including the
phrasing of ® and the explanation of why it suffices. For any ordinal i < A and
¢ < & let Mc; be the Skolem Hull in (H(x), €, <}) of M U {j : j < B}}. But
RS S;“(*) = cf(,B?(*)) = ,35(*) > & hence clearly
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X7 M, ; increases with i, My ; < (H(x), €, <;‘<), and
Mg 8 € M & cf(8) > By = sup(M¢,; N 8) = sup(M; N §).

But§ € S7,) = cf(ﬂ{(*)) = ﬂg(*) > & hence clearly j < 8 € Sf,) = j <
8& 6 = sup(My ) ﬂﬂg(*) = j < §&8 = sup(M;x),j ﬂﬂg(*)) = /3;_(*) =
Min(M¢ ), ; NA\S). Now for j < AletW; = {w : w belongs to M), j and w C
S} and for w € W; we let wf = {6 < A : § inaccessible and w N § is a stationary
subset of 5}, letﬂé(*) i = Br,j = Min(Mg() j0AND). Alsofor j < A, w € W;

— * + i + +
and i > ﬂg(*)] » let ag(*” w = rkﬁ{(*)/u(w N ,3§<*)jw), soas wt € §
necessarﬂy ol twjw = :Bg(*)/w x n coo,jw T y{(*),w with n’ ONE" < w and

yg(*) jw < ﬂg(*) . By the definition of M, ; and /3{(*) jw clearly 'Bé(*) jw decrease
with j and by Xg we have ﬂj W <i€E& cf(i) > ,3“*) = lB{(*),],w ,34(*)
Now we prove by inductionon i € E U {A} that
Rt if j < A, ,Bg(*)<i€E w € W; then
rk; (SC(*)ﬂwﬂz NE)<i xn;(*)Jw—i—y{(*)]w
This clearly suffices (for w = § we shall get ® for each M, (4, ; which is more than
enough).

Proof of ®*. The case cf(i) < 8o Vi € nacc(E) Vi € nacc(acc(E)) is trivial;
SO we assume

@3 i € aco(ace(E)) & cf(i) > No hence ] (87, NwNiNE)
= 1kt (S5, Nwni).

For a given w € W, and i € E\,B ). ., Clearly for every club e of ;6{ ).
which belongs to M;(*) j wehavei = sup(l Ne); (this because “M; thinks” e is an
unbounded subset of /3 ) and i € E implies i = sup(i N M;) is a limit ordinal);

soi € acc(e) eveni € acc(acc(e)), etc. By the definition of rk*; , for our i,
_ , c0o.jw
there is a club e qf ﬁé(*)’j’w with Min(e) > yé(*)’j’w and 4 (for case (c)) such that
one of the following cases occurs:
(a) yg(*)]w_o&n{(*)]w_Othatlsa =0andw Ne=0so
cee= tki(wtNe)=0&

) N . ,
(b) yé(*)’j’w >0ande ee= rki(w™ Ne) <& X ”lg(*),j,w + Vé(*),j,w

¢, jow

(©) yg"(*)’ij 0& nc(*) jw > 0, h a pressing down function on w™ Ni such
that for each j < i wehave j < e € e&h(e) = j = k*(wt Ne) <
€ X My o T Ve

For j <A, w e W;andi < A, clearly /32(*) iw and w belongs to M4, ; hence

also ag(*) jw € Mc(x),j and so also (n! ), j,w @) v £, jw DEIONES 0 M (), . SO
without loss of generality to clauses (a), (b) (c) we can add

®4 € € My(x),j and h € M¢(x),j when defined (and i = sup(i Ne)).
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Necessarily
®s5 if & € i N acc(e) N acc(E) then ﬁ?(*),j,w €e.
[Why? Otherwise:
) ﬂg(*)’jﬂ!) <i(ase <i&i € acc(E) and the definition of ﬁg(*)’j’w and
the choice of E)
(ii) sup(ﬂg(*) jw N e) is a member of e (as e is a closed unbounded subset of
Be.jow A Min(e) < By o <1 = Briyy )
(iii) sup(ﬁa*)’j’w Ne)>e(ase € accle) &e < ﬂf(*),j,w)
@iv) ﬂ;(*),j,w € M; (), ; (by its definition)
(v) Sup(ﬁg(*),]"w Ne) € My, (ase, ,35(*) € My, j)-

Sosup(By ) ;. Ne€) € AN My, j\e henceis = Min(A N M, j\e) = B ;e

but triv?ally sup(ﬁg(*)’j’w Q.e) < ﬂf(*)’j’w so we get the /3§<*)’j’w = sup(ﬁa*)’j,w N
e) and it belongs to e by (ii) so we have proved ®s.]
So by the choice of e, one of the following cases occurs:

(A) ol = 0 and e is disjoint to w™

{ONA

i * + e & i
B) Vi, jw > 0andrkge (w mﬁ;(*u,w) < Bey,jow X Moo jw T

Vgl(*),j,w for every € € acc(e) N acc(E)
©) Vé(*),j,w 0, n cw g 0,h € Mg),; a pressing down funtion on
esuch that: ¢ < u € e&(u inaccessible) = rk:;({y < WU :y €
wrNeand h(y) = &}) < pu x ng(*) jw (read Definition 1.9(1) clause
(c) and use diagonal intersection; remember that for singular p, rk;‘; () =
rky (n) < w).
First assume (A). Now forany § € acc(E)N S{(*) Nw necessarily ﬂ?(*) jw is inac-

cessible (as § € S | and the definition of S *( *)) and ﬁ{ ), jow N w is stationary in

£(x)

5;(*),]',10 (otherwise thereis aclube’ € My () j Off{(*),j,w dlsJJromt to w;but neces-
. p e

sarily § € ¢’ and§ € w, contradiction); together ﬂ{(*),j’w € w™ hence ﬂ{(*),j,w ¢e

(e from above), so as e € M (y),; necessarily § # ,Bé(*) w = 8 ¢ acc(e). So

Nw hence rk’} (S* NwN i) =0

acc(e) Nacc(E) Niisaclubofi disjointto S} £ (5)

which suffices for @T.
Secondly, assume clause (B) occurs; then for every €€ acc(e) n acc(E) we
& & &€
have B o X Moy o T Vit < Beonjow X Mooy juw + Ve jow Since
Vi, jn = Min(e) we have (ng ) ;0 ¥ ju) <tex My jue Vi, ju) hence

e X n{(*) jw +y£(*) jw < EX n{(*) iw +y{(*) jow forevery ¢ € acc(e)N acc(E).
Using the induction hypothesis we get for every ¢ € acc(e) N acc(E) that

(%)

K (S, o NEOVE) < 8 X 0y + Vi juw < € X My jow T Ve, o

Lastly, assume that clause (C) holds and let e, i € M), j be as there, without loss
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of generality i is inaccessible (otherwise the conclusion is trivial), so eNi, ENi are
clubs of i, and let j* =: h(i), j1 = Max{j, j*} so j < ji <iand My, j, is well
defined (and j*, j; € M{(*),jl).- Clearly ﬂé(%),j*,w = ﬂé(*),j,w [because ﬁé(*)’j’w
l
} S
j<j <i= ,Bé(*) i = ,32(*) w38 in previous cases.]

. . . ; o
is inaccessible (as otherwise o W < /3{( 9. jw contradicting our case) hence

Letuj ={a € wNe: h@ = j*} € My, andas ji < i < Bty jw
clearly § € ¢ = rkg‘(S;‘(*)’j Nujy N8) < nye, i, x 8 hence by the induction

hypothesis § € i N acc(e) N acc(E) = rk(’s‘(Sz.‘(*)Jl Nu;Ns < né(*),j’w X 8,

. £ . 7 . .
hence rk,(SC(*)’j1 NwNi) < n’g(*),j’w X I as required. 0116

1.20 Claim. Assume

(@ @) ct() > pn
() SC{d<r:u<cf@) <6}
(iii) k) (S) = y* = A x n* 4+ ¢* where ¢* < A, n* < w
(b) (i) J an 8-complete ideal on u containing the singletons
(i)ifAeJt,(ie. ACu,A¢ J)and f eAkthﬁHfll”A <A
(ife.g. J = J}jd, w regular, then A = p sufficesas J [ A = J)

(ii) if A € J* and f € 4(¢*) then || flls1a < ¢*.
Then idr<ky *(A) I S is J-indecomposable (see Definition 1.21 below).

1.21 Definition. An ideal I on X\ is J-indecomposable where J is an ideal on
W, if: for any S, € A, S, ¢ I, and f : S, — J there is i < [ such that

Si = {a e S, i ¢ fla)) ¢ I, note that given Sy, f can be defined from
(S; :i < W) and vice versa.

Clearly

1.22 Claim. HIfJ = J}jd, w regular then “7 is J®-indecomposable” is equivalent
to “I is u-indecomposable”.

2)If J is a|¢ *| T -complete ideal on w, then the assumption (b) (iii) of 1.20 holds
automatically.

Proof of Claim 1.20. We prove this by induction on y*. Assume toward contradic-
tion that the conclusion fails as exemplified by S, f, S; (fori < p),so f : S, — J
wehave S; = {a € Sy, : i ¢ f(«)}and without loss of generality S;, C S such that
Su ¢ id5)” (). but S; € id3" (3) foreach i < j1. Now let rk; (S)) = 4 x n; + &
with & < A;clearly s € S,y = {i < u:6 ¢ S;} = f(8) € J. Without loss of
generality S = S, and clearly S; € S, = U j<u Sj- By our assumption toward
contradiction clearly n; < n* Vv (n; = n*& ¢ < ¢*) foreachi < pu.
As we can replace S by S N E for any club E of A, without loss of generality

(x%)p if 8 < Athentks(SNJ) <8 x n* 4+ (ky(S) — A xn*) =68 x n* 4+ ¢*
and rks(S; N8) < 8 X n; + ¢; and Min(S) > ¢*, ¢ fori < u.
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Recalling 1.3(1), (4), for § € SV U{A}andn < n*let: A> = {i < p: 8 x
n < tks(S; N8) < 8 x (n+ 1)} and let £ : AS — § be defined by f2(i) =:
rks(S; N'8) — 8 x n and let n(§) = Min{n : Afl ¢ J} so by (x)¢ clearly n(d) is
well defined and < n*.

Fori < pand § < X letrks(S; N8) = & x ms,; + €5,;, where ms; < n* and
&s5,i < 8; so for some Ey

(x)1 Episaclubof A, andif § < A, Ai ¢ J and n < n*, then

120140 < Min(Eo\(8 + 1))

(possible as ¥ : A3 — § C A and hypothesis (b)(ii)).

Now we shall prove for 6 € S0y {A} that, recalling sl — {6:5eSorSNé
is stationary in §}:

®s tks(S, N EgN3) <8 xn(8)+ ||f,f(5)||,mi(5> <8 x n(d) +4.

Why does this suffice? For § = A, first note: if n(A) < n* then 1k, (S,) < A x
nO)+ s llspaz, S AXOF =D+ fgll g, < 2x(F=D+A < dxn® <
tky (S) = 1k, (S,) [why? first inequality by ®;, second inequality by n(1) < n*
(see above), third inequality by assumption (b) (ii), as for i € A,;), ff(a) (i), that
is nk(x) (i) is ¢ < A by our assumption toward contradition; the fourth inequality
is an ordinal addition and the fifth we have assumed] and this is a contradiction.

So we can assume n(A) = n*, but then by ®;, we know rk; (S,,) < A x n(A) +
||f,?(3)||j[Ai(6)-

Butfori € Ai(a) = Aﬁ*,by the definition of the Afl’s we know thatn; = n(8) =
n(A) = n*, and so we know A x n; + ¢ = 1k, (S;) < tk(Sy) =y =Axn*+¢*
so we know fr?(8) (@) = rks(S;N8)—8 xn(8) = ¢ < ¢* soby assumption (b) (iii),
”fr:s(s)”JFAﬁ((g) < {*, 50 by @y, tka (S,) < A x n* + ¢*, contradiction.

So it actually suffices to prove ®s. We prove it by induction on 4.

If cf(8) = Vo, or § ¢ acc(Ep) or more generally S, N § is not a stationary
subset §, then rks(S, N 6) = 0, and rks(S; N 8) = 0 hence ||fif(5)|| = 0 so the
inequality ®; holds trivially.

So assume otherwise; for each i < u, for some club ¢; of § we have:

(6)2 8(1) € e = (msqn),i <ms,;i)V (mgy,i = ms; &esy,i < €s,i)-
Without loss of generality e; € Eo.As S, N §isastationary in § (as we are assuming
“otherwise”) by hypothesis (a) (ii) of the claim, cf(§) > Min{cf(x) : ¢ € S} > w,
s0 e =: ﬂieAi i is a club of 4.

As g5, < 8 (see its choice) and cf(6) > u (by hypothesis (a) (ii)) clearly
€ =sup;_, &, < J, hence sup(Rang(frf(S))) < & hence ||frf(5)||”A;s1(5) < & (see
(x)1,as 8§ € Eyp), so the second inequality in ®s holds; so without loss of generality
es.i < min(e) and || ff(5)|| Jial, < min(e).

Suppose the first inequality in ®s fails, so rks(S, N Ep N§) > & x n(s) +
”f,f((;) ””Afz((n’ hence

B= {5(1) € e tks1)(S, N EgN8(1) > 8(1) x n(8) + ||f,f(3)||”Ai(8)}
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is a stationary subset of §; note that
S(HeB=8(l)ce= ||f,f(5)||,rA3(5) < min(e) = ||f,f(5)||,[A2(8) <5(1).
But by the induction hypothesis

(1) € B = rks)(Su, N EgNéd(l)) <d8(1) xn(d(1)) + ||f8((31(1)) 71420

(@)1
< 8(1) x n(6(1)) + ().

Let 6(1) € B; putting this together with the definition of “§(1) € B” we get

(*)3 8(1) X n(5) + ||f,f(5)||]rA:Sl( < 5(1) X n(5(1)) + ||f8((5](1))|| rA&g)(])).

Now by (k)2 necessarily n(5(1)) < n(8) so by (x)3 we have n(§(1)) = n(s)
(remember || f, 3((51()1)) I a<1) < (1) by the induction hypothesis). So
1)

§(1)
Sl

4 1)l 14t = Ml

»~
Now by (x)2 (as we have n(§) = n((S(l)))

S8(1
{’ € App i ¢ An(é(l))} c U av
n<n(§(1))

nowasn(8(1)) = Min{n : AS" ¢ J}and J anideal, clearly Un<nay A e .

8 a(l) 8(1)
So we have shown A"(‘”\A’gﬁ‘f“” € J.Also fori € An(a) N An(a(l))’ we have
frf(a)(i) = sg)i > E5(1),i = fn(S(l))(l)' Together (and by the properties of || — ||—)
gl =11 T (A N ANl sa
n@NI1AL 5 = 1ne) @ " Ea@) Al nads )
8(1) a(1)
> s T Ay O Ana)ll s, naih,
s(1) A5
> Il a0
Fasay T Ansapllypane
contradicting (x)4. O1.20

1.23 Claim. If J isanideal on i, i < A, y alimitordinal, J is u-complete, y < p,
then I = id:ky (1) | S is J-indecomposable.

Proof. Assume S, € It and f: S, — Jand S; =: {a € S, :i ¢ f(x)}.

Now we prove by induction on 8 < y that: if § < A, rks(S, N ) > 28
and cf(8) # pu, then Ag =: {i : rks(S; N ) > B} = pwmod J. Note that we
have “> 28" in the assumption but > B in the conclusion; we can “get away”
with this as y is a limit ordinal. As J is u-complete, « > |y | this implies that
{i : 1ks(S; NS) = y} = wmod J. So let us carry the induction; if § = 0 this is
trivial and for B limit use 8 < y < w and the induction hypothesis (and J being
pu-complete). Soassume B = a+1,8 < A, cf(8) # u,rks(S,NE) > 28 =20 +2,
hence 8’ =: {8’ < 8: tky/ (S, N&') > 20 + 1} is a stationary subset of §.
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Sod € §'& cf(8') # u = § € A, by the induction hypothesis so if {§’ €
S’ : cf(8") # 1} is a stationary subset of § we are done. Otherwise, still [§' € S’ =
{8” < &' : 8" € Apy) is astationary subset of 8'] hence §” = {§” < § : ¢f(8”) < u
and 8” € Ay} is a stationary subset of 8, and we can finish as before. 01.23

1.24 Remark. 1) It is more natural to demand only J is k-complete and k > y; and
allow y to be a successor, but this is not needed and will make the statement more
cumbersome because of the “problematic” cofinalities in [«, u].

2) We can prove more in 1.23:

®if B < u, 1k (Sy) > Bthen {i < p:1ky(S;) > B} = uwmod J.

1.25 Theorem. Assume A is inaccessible and there is S C )\ stationary such that
rk, ({k < A : k is inaccessible and S N k is stationary in k}) < 1k, (S).

Then on X there is a Jonsson algebra.

Proof. Assume toward contradiction that there is no Jonsson algebra on A. Let
St =: {8 < A : § inaccessible and S N § is stationary in 8}.
Note that without loss of generality

® S is a set of singulars and rk; (S) is a limit ordinal.

[Why? Let ' = {§ € S : § asingularordinal }, S” = {§ € S : §isaregular
cardinal}, so 1k; (S) = 1k; (8’ U S”) = Max{rk(S"), rk(S”)} by 1.5(0). Now if
k;, (8”) < rk;.(S), then necessarily 1k; (S") = rk; (S) so we can replace S by §’. If
1k; (") = rk(S) thentk; (S”) > 1k; (ST) and clearly §” N § stationary = § € ST,
so necessarily 1k; (S”) is finite hence A has a stationary set which does not reflect
and we are done; see [Sh:g]. If rk; () is a successor ordinal we are done similarly.]
By the definition of rk;, y* =: 1k, (S) < A + 1k;(ST), but we have assumed
tky (ST < 1k, (S) so rky (S) < A + 1k;.(S), which implies rk; (S) < A x . So
for some n* < w we have A x n* < 1k (S) < A x n* + A.
Let tky (1) = B* = A x m* + &* with ¥ < A. We shall now prove 1.25 by
induction on A. By [Sh:g, Ch.III], without loss of generality 8* > 0. By 1.5(9) we
can find a club E of A such that:

(A) 8 € E = tks(SN8) <8 x n* + (1k, (S) — A x n*)
(B) § € E= 1ks(STNJ) <8 xm*+e*.

Note that § x m* +¢&* > Oford € E (orjust§ > 0)as f* > 0. Let A =:{§ € E :
8 inaccessible, ¢* < § and rks(S N 8) > 8§ x m™ + ¢*}.

Clearly § € A implies SN4 is a stationary subset of §. By the induction hypoth-
esis and the choice of A and clause (B) every member of A has a Jonsson algebra
on it and by the definition of A (and 1.5(9)) we have [« < A & AN« is stationary in
o = o € A];note that as A is a set of inaccessibles, any ordinal in which it reflects
is inaccessible. If A is not a stationary subset of A, then without loss of generality
A = @, and we get 1k, (S) < A x m* + &* = B* < 1k, (S), a contradiction. So
without loss of generality (using the induction hypothesis on A):

& A is stationary, Al C A je. (V6§ < A)(ANJ4is stationary in§ = § € A),
each 6 € A is an inaccessible with a Jonsson algebra on it.
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So by [Sh:g, IV, 2.12, p.209] without loss of generality for arbitrarily large « < A
(even k inaccessible):

®K k = cf(k) > R, x < XA and for every f € “A we have ”f”JKbd < Al
So choose such ¥ < A satisfying « > rk; (S) — A x n*. We shall show that
(%) id:ky ") 1 Sis J,Pd-indecomposable
hence it follows by 1.22(1)
(x) idr<ky* (M) | S is k-indecomposable.

Why (x) holds? If y* > A by 1.5(1),(3) we know that rk, ({§ € SO : cf(§) >
k}) = 1k, (§), so without loss of generality Min{cf(d) : 6 € S} > x and we can
use 1.20 and the statement (X) above to get (x). If y* < A use 1.23. So (x) and (x)’
holds.

Note that ST satisfies the assumptions on A in 1.14, i.e. clause (b) there and

letting o = , the ideal id "(1) is «-indecomposable by (%)’ above. Hence by
1.14 applied to J = id:ky* L), 0 =k, S, A, we get that for some S-club system C
we have:
(a) § € S = nacc(Cs) C A
(b) for every club E of A,
k({8 € § : § = sup(E N nacc(Cs))}) > y*.

We now apply 1.16(1) for our S, S*,n*, A and & = 8y. Why its assumptions
hold? Now A is a Jonsson cardinal by our assumption toward contradiction. Claus-
es (¥)(a) + (x)(B) hold by our choice of S, ST, clauses (x)(¥) + ()(8) holds as
0 = Ry, clause () () holds by the choice of C, clause (x%)(8) holds by (xx)(y).
Last and the only problematic assumption of 1.16 is clause () of () there, which
holds by clause (b) above because nacc(Cs) C A, each @ € A is inaccessible. So
the conclusion of 1.16 holds, i.e. A ¢ id{zo(C_‘). Now if § € S, @ € nacc(Cs) then
« is from A but by the choice of A (and the induction hypothesis on A) this implies
that on « there is a Jonsson algebra, so we finish by 1.26(1) below. 01.25

1.26 Claim. 1) Assume
(a) A is inaccessible
(b) C = (Cs : 8 € S), S astationary subset of A
(c) id{:() (C)isa proper ideal

(d) if o € |Jsegnacc(Cs) then on « there is a Jonsson algebra and o is
inaccessible.

Then on A there is a Jonsson algebra (so we get a contradiction to (c)).
2) We can replace (¢) + (d) by
(¢)t idg(C, I) is a proper ideal> and 0 < § & 8 € § = {0 € Cs5 : a €
acc(Cs) vef(a) <o} el

3 see [Sh:g, IV, Def.1.8(1), p.190], only in line 4 replace “some” by “every”’; but not used
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(d)" if a € | s g nacc(Cs) then on cf () there is a Jonsson algebra.

3) In clause (d) of part (1) we can omit “« is inaccessible”.

Proof. 1) Very similar to the proof of [Sh:g, IV, p.192].

Let x be large enough, M an elementary submodel of (H(x), €, <;‘() such that
A€ M,|MNAX| = A, and it suffices to prove A C M; assume toward contradiction
that this fails. Without loss of generality C € M and let E = {§ < A : & a limit
ordinal, § € M and § = sup(M N3§)}. Clearly E is aclub of A, so by the choice of C,
ie. “id{%(c_‘ ) a proper ideal” there is § € S N acc(E) such that § = sup(B;s) where
Bs = {o € nacc(Cs)NE : By = aV cf(By) < Bo} Where B, =: Min(M Ni\«),
itexists as |[M NA| = X and clearly cf(8s) < § = cf(Bs) < Bs. But for @ € Bs we
know that « is inaccessible so , cannot be singular so By = «, thatis o« € M. But
fora € Bs, a € acc(E) by the definition of Bs hence: « € M, sup(e "M) = o, o
is inaccessible on which there is a Jonsson algebra hence « € M. But § = sup(B;)
so § € M, contradicting 6 € E.

2) Similar.

3) In the proof of part (1) we use E = {i : w a limit cardinal, p = 8, =
IM N |, uw € M}. Now if B, is singular (hence « is singular) we consider M’, the
Skolem Hull of M U {i : i < cf(By)} as in the proof of 1.16(2). 01.26

Minimal cases we do not know are
1.27 Question.

1) Can the first A which is A x w-Mahlo be a Jonsson cardinal?

2) Let A be the first w-Mahlo cardinal; is A — [k]i consistent?

3) Is it enough to assume that for some set S of inaccessibles 0 < rk; (S) < AT
to deduce that there is a Jonsson algebra on A (or even have Pri (X, A, R¢))?

1.28 Remark. 1) Instead of J;E’d we could have used []<*, k < u, but there was
no actual need.

2) We can replace in 1.25, rk; by rk}. We can also axiomatize our demand on
the rank for the proof to work.

1.29 Theorem. Assume

(a) A is inaccessible,

(b) S C X is stationary, and let ST = {u < A : S N w is stationary and w is
inaccessible}

(o) if k5 (S1) < k3 (S).

Then on X there is a Jonsson algebra.

Proof. In essence, we repeat the proof of 1.25, replacing rk; by rkZ, and 1.16(2)
instead of 1.16(1) only the proof is shorter.

As in the proof of 1.25 without loss of generality § € S = cf(§) < § and we
prove this by induction on X.
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If 1k} (S) < A, thenalsork} (S1) < A, by L.11 (1) tky (S) = 1k3(S), kx (ST) =
rkX(S+) and so 1.25 apply so we are done, so we can assume 1k} (S) > A. Let
y* = 1k(S) be A x n* +¢*,¢* < Landleto € (Ko + [2*|F, 1) be reg-
ular. Now rkj{(S["J“”) > y* as y* > A, so without loss of generality we have
(V6 € §)(cf(6) > 0).By 1.11(6), the ideal id=<r” (1) is o-indecomposable. Let A =
ST = {u < A : winaccessible and S N w is stationary}, without loss of generality
A is a stationary subset of A (otherwise we are done by [Sh:g, Ch.III]), as in the
proof of 1.25, without loss of generality 1 € A = on u there is a Jonsson alge-
bra. Now we can apply claim 1.14 to X, A, §, id<r” (A), o; its assumption holds as
6 €S = cf(6) <4, whiled € A = § inaccessible). Now we can repeat the last
paragraph of the proof of 1.25, using 1.16(2) + 1.26(1). O1.29

2. Back to successor of singulars

Earlier we have thatif A = u™, u > cf(u) and u is “small” in the alephs sequence,
then on A there is a Jonsson algebra. Here we show that we can replace “small in the
aleph sequence” by other notions of smallness, like “small in the beth sequence”.
This shows that on J} there is a Jonsson algebra. Of course, we feel that being a
Jonsson cardinal is a “large cardinal property” and for successor of singulars it is
very large, both in consistency strength and in relation to actual large cardinals. We
have some results materializing this intuition. If A = u™ is Jonsson u > cf(u),
then p is a limit of cardinals close to being measurable (expressed by games). If
in addition cf() > Ko, pctnt W, then A is close to being cf(u)-compact, i.e.
there is a uniform cf(u)-complete ideal / on A that is close to being an ultrafilter
(the quotient is small).

2.1 Definition. We define the game Gm,, (1, i, v) for & > w cardinals, y an ordinal
andn < w. A play last y moves; in the a-th move the first player chooses a function
F, from [M\]=" = {w C A : |w| < n} into u, and the second player has to choose
a subset Ay of A such that A, C ﬂﬁw A, |Aql = X and Rang(Fy | [Ag]™") is
a proper subset of |1. Second player loses if he has no legal move for some « < y;
wins otherwise.

2.2 Claim. We can change the rules slightly without changing the existence of
winning strategies:

(a) instead of Rang(Fy) being C pu, just |Rang(F,)| = n and the demand on
A, is changed to: Rang(Fy | [A,]™") is a proper subset of Rang(Fy).
and/or

(b) the second player can decide in the & —th move to make it void, but defining
the outcome of a play, if otp({& < y : @-th move non-void}) < y he loses
and/or

(c) in (a) instead of |Rang(Fy)| = u, we can require just |[Rang(Fy)| > u.

Proof. Easy.
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2.3 Claim. 1) If 6 A [0]:" . (where & > k > Rg > n) then first player wins

K,<K

Gm, (0, , kT) (where “0 4 [0]=" ” means: there is F : [0]<" — « such that if

K, <K
A C 0, |A| = 0 then |Rang(F | A)| = k).

2)1f 0 4 [0]5", (where @ > k > 0 > ¥ > n) and k > o then for some

T € [0, «] first player wins Gm, (0, T, ") (where 6 /4 [0]15L, means: there is

F : [0]7" — k such thatif A € 0, |A| = 0 then |Rang(F | [A]"")| > 0.
Proof. 1) Let F exemplify 6 4 [6]", . For any subset A of « of cardinality

K,<K*
klethy : k > Kk be ha(aw) = otp(w N A) so hy | A is one to one from A
onto x. Now a first player strategy is to choose F, = hp, o F where B, =:

Rang(F | [ﬂﬁ<a Agl™") so Fy(x) = hp,(Fy(x)) (note: we can instead use (a)
of 2.2). Note that |Rang(F,)| = « by the choice of F. So if (Fy, Ay : a < k)
is a play in which this strategy is used then (Rang(F | [A,]<") : @ < k1) is
a strictly decreasing sequence of subsets of «, contradiction; i.e. for some « the

second player has no legal move hence he loses.
2)Let F : [0]7" — k exemplify 0 /4 [0]=" _,andlet B C 0, |B| = 6 be with

K,<0°
[Rang(F | [B]=")| minimal, so let T =: |Rang(F | [B]=")|, so B, F exemplify
0 # (017", and use part (1). O3
2.4 Claim.
1) If0 <2 but VY < k)2* < 0 then 6 4 [9]%’«.

2) Ifcf(k) <o <k < 0,ppt(k) > 0 = cf(0) then 6 4 [19]%1,“1 for some
k1 € [k, 6).

3) If0 = u* and p > [l . then 7> (01 If () < A < Jypa (k) and
0 <k = Jy11(0) < Athen h /> [A1T2.

4) Ifk +|T| <0, T is atree with k levels and > 0  k-branches and for any set
Y of k-branches |Y| > 0 = |{nNv:n#v e Y} > ko, then 0 4 [Q]EIKK1
for some k1 € [ko, |T|] C [ko, 0) hence the first player has a winning strategy
in Gmy (0, k1, K1+).

5) Assume: fo 1k —> 0, fo(i) <0j <o fora <0,i <kand0 > k,T < 0;
andfornoY C0,|Y| =0 dowehavei <k = o; > |{fy(i) : « € Y}|. Then
the first player wins in Gmy (0, t,0 + 1). Hence ifcf(k) <o <t <k <0 =
cf(0) < ppj(@) then first player wins in Gmy (0, t,0 + 1).

6) If the first player does not win Gm,, (A, «,y),k <Oand[f <y = B+6T <
v1, (equivalently, there is a limit ordinal B such that 6T x B = y) then the
first player does not win in the following variant of Gm,, (X, 8, y): the second
player has to satisfy |Rang(Fy [ [A¢]"")| < k.

7) ki1 < ko&y1 > y2&ny > ny & second player wins Gm,, (6, k1, y1) =
second player wins Gmy, (0, k2, y2).

8) Ifk1 < k2, Y1 = y2,n1 > np and first player wins Gmy,, (6, k2, v2) then it wins
Gmy, (8, k1, Y1)

Remark. On 2.4, 2.6, 2.7 see more in [EiSh 535], particularly on colouring theo-
rems (instead of, e.g., no Jonsson algebras).

Proof. 1)Let (A, : o < 0) be alist of distinct subsets of «, and define F(«, 8) =:
Min{y : y € Ay =y ¢ Ag}.
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2) Easy, too, but let us elaborate.

First case. There is a set a of < o regular cardinals < 6, with no last element,
o < min(a) and sup(a) € [k, 6) such that k1 € @ = max pcf(a N k1) < k1 and
max pcf(a) = 6. Clearly it suffices to prove 8 /4 [9]supa <supa

Let J be an ideal on a extending de such that 8 = tcf(Ila, <;) and let
(fo : @ < 6) bea < j-increasing cofinal sequence in ITa such that for u € a, [{fy |
o < 0} < u(exists by [Sh:g, I1,3.5,p.65]). Let F (o, B) = fg(i(x, B)) where
i(a, ) = Min{i : fo (i) # fp(i)}.

The rest should be clear after reading the proof of Pry(u™, ut, cf(w), cf(i))
in [Sh:g, I1, 4.1].

Second case. For some ordinal® § < « we have pp;“bd (k) > 0.
8

Hence (by [Sh:g, II, 2.3(1)]) for some strictly increasing sequence (o; : i < &)
of regulars with limit « such that tcf[[; _5 03/ J. ;’d is equal to 0 and let fy (o < 0)
exemplify this. Let F(a, B) = fg(i(a, B)) wherei = i(a, B) is maximal such that
a < B = fu(i) > fg(@) if there is such i and zero otherwise (or probably more
transparenti = sup{j+1:j <danda < B = fu(i) = fg(i)}). The proof should

be clear after reading [Sh:g, I, 4.1].

We finish by
2.5 Observation. At least one case holds.

Proof As ppf (k) > 6, by [Sh:g, 11, 2.3] there is @’ C k = sup(«), |a'| < o such
that a’ is a set of regular cardinals > o and there is an ideal J extending J(E’,d such that
tef(Ia’/J) = 0; without loss of generality max pcf(a’) = 6 and & N pcf(a’) has
no lastelement. If J_y[a'] € J (E,d we use the second case. If not, we try to choose in-
ductively oni < o, 7; € pef(a’)\{6}\«, such that 6, 7; > max pef{z; : j < i}.
As Jg[d'] € J('I’,d we can choose for i = 0, for i successor pcf{z; : j < i}
has a last element but pcf(a’)\{6}\« does not, so we can choose t; recalling that
pef({z; : j < i}) € pef(a’) by [Sh:g, I]. By localization (i.e. [Sh:g, VIII,3.4]) we
cannot arrive to i = |a’|T < o, so for some limit § < |a’|t < o we have: 1; is
defined iff i < §. So {r; : i < 8} is as required in the first case. So we can apply
the first case.

Continuation of the proof of 2.4.

3) — 6) Left to the reader.

) _Jaifa <«
7) Leth :kp — k1 be  h(a) = 0ifk < o < ko,
During a play (Fy, Ay : o < y2) of Gmy, (8, k2, y2), the second player simu-
lates (an initial segment of) a play of Gm,, (8, k1, y1), where fort C 6,n| <
[t| < ny weleth o Fy(¢t) = 0 and in the simulated play (h o Fy, Ay : @ < ¥2)

the second player uses a winning strategy.

6 of course, without loss of generality, § is a regular cardinal
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8) During a play of Gmy,, (0, k1, y1), the first player simulates a play of the game
Gmy, (0, k2, y2). The simulated play is (Fy, Ay : @ < y1), the actual one
(hoFy, Ay : @ < y1) (so first player wins before he must, if y; # y»). O4

2.6 Theorem. 1) If . = ut,cf(u) < u,y* < u,k < p and for every large
enough regular 6 € Reg N w the first player wins Gm,, (0, k, y™*) then . / [A]S¢.

2) Instead of Gm(0,«k,y) we can use Gm,(0,x(0),y*) with k =
lim,, Reg rwl((@) < wu;, eg (k@) : 0 € Reg N w) is non-decreasing with
limit k < pu (so possibly k = i, and then we can get X /> [L]5?).

Proof of 2.6. (1) Compare with [Sh:g, II1, §2, §3]. If « < cf(u) we know this (see
[Sh:g, IL, 4.1(1), p.67]) so let k > cf(n). Solet S C {§ < A : cf(§) = cf(n)} be
stationary. If cf(u) > Rg let C! be a nice strict S-club system with A ¢ id, (ch,
(exists by [Sh:g, III, 2.6]) and let J = (J5 : § € S), Js = ngl‘ If cf(n) = Ro,

without loss of generality S is such that [§ € § = p divides 8],let C! = (C g S
S) be sqch that: Cal Cé= sup(Csl), otp(Cél) =u, C(} closed and A ¢ idp(C_‘l, J)
where J = (Js : 6 € §),Js = {A C Csl : forsome 8 < § and 6 < u, we have
Va)le e A&ka>B,a€e nacc(Cal) — cf(a) < 0]}, (exists by [Sh:g, IILp.131]).

Let C? = (Cg 1 8 < A) be a strict A-club system such that for every club E of
A, we have:

{5 <1: (VB <8)(@a € E)[a € nacc(C) &a > ,8]} ¢ id,(C', J).

[We can build together C!, C? like this as in the proof of 1.12 or use [Sh:g, 111, 2.6]
as each Js is cf(w)-based.]

Let i = 3~ of(u) Mi Where p; < pu. Let ot < u,y* < ot o regular >
cf(w). Let u* < w be such that first player has a winning strategy in Gm,, (0, «, y*)
if u* <6 = cf(0) < . For each § < A, if the first player has a winning strategy
in Gm,, (cf(8), «, y*), let Sts be a winning strategy for him in the variant of the play
where we use nacc(Caz) instead of cf(§) as domain, and allow the second player to
pass (see 2.2(b)); we let the play last o moves (this is even easier for first player
to win). So Sts is well defined if cf(§) > u*.

We try successively o T times to build an algebra on A witnessing the conclusion,
while at the same time for each § < A of cofinality > p* playing on Cg a play of
Gm,,(cf(8), k, 1) in which the first player uses the strategy Sts. In stage ¢ < o™
(i.e. the ¢-th try), initial segments of length ¢ of all those plays have already been
defined; now for § < A, cf(8) > p*, first player chooses F ; : [nacc(C?)]“‘) — K.
Let F; code all those functions F; : [A]=” — A (so § is viewed as a variable) and
enough set theory; specifically we demand:

®; ift € [A]=% and then
(i) Fy(t) belongs to A ;, the Sk_olelp Hullof t U{F5.(s) : 6 €t,5 C
tNCHin (H(H), €, <k, C', C? )

(ii) if x € A, then for infinitely many k < w we have:
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t<tt e = F ) =x.

Now let Fg’ be
o F0) ifFo(t) e
Fe) = { 0 otherwise .

Let B; € [A]* exemplify that Fél is not as required in 2.6, thatis x Z {F'(t) : t €

[B§]<N0}. Without loss of generality B; is closed under F; (possible by the choice
of Fy).

Let E; = {6:8@8; and8=sup(8ﬂB;)}ﬂﬂ/<§Ej.

Itisaclubof A. Foreach$ € E; suchthatcf(§) > u*,inthe game Gmw(C(sz, k,07),
second player has to make a move. The move is {« € nacc(Caz) ta € Eg}if thisis
a legal move and § € B;; otherwise the second player makes it void; i.e. pass (see
2.2(b)).

Having our o+

moves we shall get a contradiction. Let E be [ r<ot acc(Ey),

this is a club of A, hence by the choice of C!, C? for some 8(x) € S we have
8(x) = sup(A1) moreover A| € J(;Z*) where

Ay =: {3 : 8 € nacc(Cy,)) and (VB < 8)(3w € E)[a € nacc(Cy) &a > ,8]}.

For ¢ < o™ define

i(¢) = Min{i : p; > cf [Min(B,\8(%))]}.

Since B is closed under F; and F; codes enough set theory, the proof of [Sh:g,
II1,1.9], (similar things are in §1 here) shows that

(k) if 6€ Ay, cf(8) > i) then d € By and (Vo)[a € nacc(Cg) NE; = a€B;].

Now as o > cf(u) (whereas there are cf(w) cardinals u;) for some i (x) < cf(u)
we have
ot = sup(U) where U =: {¢ < ot i(¢) <i(x)}.

Choose § € Ay with cf(8) > i) (why is this possible? if cf(u) = Rg as 6(x) =
sup(A1) and C! is nice; if not as A; € J(;E*) see [Sh:g, III,1.1]). By () we have
¢ € U = 6 € By andby thechoice of E and 8 (%), d clearly E,N nacc(Cf) has card-
inality cf(8); so for every ¢ € U the second player (in the play of Gmw(Cg, k,a0))
make a non-void move. As |U| = o, this contradicts “Sts is a winning strategy
for the first player in Gmw(Cg, Kk, o).

(2) Similar proof (for k = u see [Sh:g, II, 355].) he

An example of an application is
2.7 Conclusion.

1) On 3} there is a Jonsson algebra.
2) If3,41(k) < A < Jyy2(x) then the first player wins in Gmy, 4 (4, kT, (2)T).



Sh:413

More Jonsson Algebras 31

3) If w is singular not strong limit, 0 < «<° < u < «° and A = u™ but
/\9<K 07 < p then A 7> [)‘]:w'

4) If p singular not strong limit, A = wh, w4k < <k, 0 <«kandthereisa
treeT « =|T| <u, T has> pu o-branches,and 7' C T &|T'| <k =T’
has < u* o-branches then A - [A]2.

5) Assume A = uT,cf(u) < u, and for every up < g there is a singular
X € (o, ) satisfying pp(x) > u. Then on A there is a Jonsson algebra.

6) Assume A = put, u > cf(u),cf(x) <k < x < x* <A, ppd (x) > A Then
’ A MG

7) If p singular not strong limit, 2<% < u <2 xk = Min{o : 2° > u} < pu
then p* A [+,

8) There is on u* a Jonsson algebra if cf(u) < u < 2<# < 2 (i.e. u singular
not strong limit and 2* < W) is not eventually constant).

Proof.

1) It is enough to prove for each n < o that 3} 4 [Jj)]i‘l”. By part 2) (and
monotonicity in n — see 2.4(8)) for every regular 6 < 3, large enough, first
player wins in Gm,, (6, 3,7, 37, ). So by 2.6 we get I} + [Jj)]i‘l”, and as
said above, this suffices.

2) Let k1 be Min{o : J,41(0) > A}, s0 k1 > « (as Jy41(k) < A) and 2¢ > k
(as 3,11(2%) = Jy40(k) > ), also A < Jp,11(k1) (by the definition of 1) and
Ju(k1) < A(asky < 2¥and J,11(k) < A), moreover 4 < k1 = Jpr1(i) < A
by the choice of k1. By 2.4(3) the second phrase we have A - [)»]ﬁlfqu.
By 2.3(1) the first player wins Gm,42(A, k1, /c1+ ). By monotonicity properties
(2.4(8)) the first player wins Gmy,,4 (A, kT, (2)T).

3) By2.4(4)foreveryregularf € (k <%, k), first player wins in Gmy (8, «, (x <%)™).
Now apply 2.6.

4) Similar to (3).

5) Ifcf(x) < x,ppt(x) > 0 = cf(9) > x and T < x then the first player wins
the game Gmy (6, 7, x + 1) (by 2.4(5)). Soby 2.6 if cf(x) < x < u < ppF (%)
we have 7 < x = A # [A]7® hence easily we are done.

6) Similar to (5).

7) If2<* < pweapply 2.4(1) and then 2.3 + 2.6. So assume 2<¥ = u, so necessar-
ily x is alimit cardinal < p and cf(u) = cf(k) < k < wu. Now for every regular
0 € (x, u) letting k() = Min{o : 27 > 0} we get k(0) < « hence by the reg-
ularity of 6, 2<® < g, s0 by 2.4(1) + 2.3 player I wins Gm; (8, k (6), K (6)1)
hence he wins Gm, (6, k (0), k). Use 2.6(2) to derive the conclusion.

8) By part (4) and [Sh 430, 3.4]. Oy .7

2.8 Remark. In 2.9 below, remember, an ideal I is 6-based if for every A C
Dom(l), A ¢ I thereis B € A, |B| < 0 such that B ¢ [; also I is weakly
k-saturated if Dom(/) cannot be partitioned to « sets not in /. The case we think
of in 2.9 is A = u™, u singular of uncountable cofinality.

2.9 Claim. Suppose
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(@ r=cf(r) > (2*)T and 6 =«

(b) C is an S-club system, S C A §tat_ionary and I = (I5 : § € S), I5 an ideal
on Cs containing Jgg andid,(C, I)is (see 1.17, a proper ideal and) weakly
« T-saturated and

(c) (*)Z’e if A € Dom([l5), A ¢ IsthenforsomeY C A, |Y| <0,Y ¢ I

hence |P(Y)/1Is| < 2°.
Then:

(i) P(A)/id,(C, I) has cardinality < 2¢

(ii) for every A € P(M\id,(C, I), there is B € A, B € P(M)\id,(C, I) and
an embedding of P(1)/ [idp(C, I+ (X\B)] into some P(Y)/Is for some
6€S,Y CCssuchthatY ¢ I,

(iii) moreover, in (ii) we can find & : B — 6 such that for every B’ C B for
some A’ C 6 we have B’ = h~1(A’) mod idp(C_‘, ). (In fact for some
g:Y — Oandideal J* on@ forevery B’ C B we have: B’ € idp(C_‘, &
g '(h(B") € J*)

2.10 Remark. 1) The use of 6 and « though 6 = « is to help considering the case
they are not equal.

2) The point of 2.9 is that e.g. if A = wt, > cf(n), S C A, then we can
findC = (Cs: 8 € S)and I = (I : § € C) such that A ¢ id,(C, ) and I is
(cf(u))-basedand § € S, 8 < 68,0 <u = {a¢ € Cs : a« € acc(Cs) ora < B or
cf(a) < 6} € Is. Now if idp(C_‘, ) is not weakly x-saturated then A 4 [X];“’ and
more; see [Sh:g, III].

Proof. There is a sequence (A; : i < i*) suchthat: Ag =0, A; C A, [i #j =
A; # Ajmodid,(C, I)] and: i* = (2°)* or: i* < (2)" and for every B C A for
some i < i* we have B = A; mod idp(C_‘, I). Let P be the closure of {A; 1 i <i*}
under finitary Boolean operations and the union of < «* members. So in particu-
lar P includes the family of sets of the form (A;\A;)\ U§<K+ (A,»[ \AJ;) (where
i) jric, jr < i%),clearly [P| < 28" + (2" < pandif [i*| < 2¢ then |P| < 2¢.

For each A € P whichisin idp(C', 1), choose aclub E 4 of A witnessing it (and
if A e P\idy(C,I)let E4 = A).

As (2"+)+ < Aclearly |P| < A hence E =: () 4p Ea isaclubof A.

SoS§* = {8 € §: EN Cs ¢ Iz} is a stationary subset of A. For prov-
ing (i) suppose i* = (2°)* and eventually we shall get a contradiction. We now
choose by induction on ¢ < «™ ordinals i{(¢), i2(¢) < i* and 8; € §* and sets
Yo C Apo\Aijy NEN C(s{ such that Y, ¢ 15[, |77(Y§)/15;| < 240X <
0. Aiyo)\Ai o) ¢ idp(C. D) and § < & = (Aiy)\Aiy)) N Ye = 0.

Why can we choose i1(¢), i2(¢) and Y, ? There is a natural equivalence relation
A oni*:

i~ jiff foreveryé < ¢, AiNYe=A;NY:

andithas < (27)¢ = 2¢ equivalence classes. So forsome j; # j» we have j; e ja.
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By assumption A;, # Aj, mod id, (C, I), so without loss of generality
Aj, £ Aj modid,(C,I), hence A;,\Aj; ¢ id,(C, I). By this for some §; €
S*M acc(E) wehave (Aj,\A;,)NCs, NE ¢ I5.,sothereis Y, € (Aj;\Aj)N Cs,
satisfying |Y;| < 0 and |P(Y¢)/Is, | < 2" and Y; ¢ I5,.

Letiz(¢) = j2, i1(8) = Jji.

S0 (Aj (), Aiy(e)» 8¢, Yo ¢ < k) is well defined. Let Bé =: Apo)\Ai @)
By =: B;\ Usec.et) Bél (for ¢ < k™). So each B, is in P, and they are pairwise
disjoint. Also Y, C Bg (by the choice of Y;)and ¢ < & <kt = Y, N Bél =0
(see the inductive choice of A;,(), A (r)) hence Y C B;. Next we prove that
B, ¢ idp(C_‘, I ), but otherwise E C E Bes and §;, Y, € E contradict the choice
of E,. Now (B; : ¢ < «™) contradicts “id,(C, I) is weakly « *-saturated”. So
i* < (297, ie. (i) holds.

Let B be the Boolean Algebra of subsets of A generated by {A; : i < i*}. Now we
prove clause (ii), solet A C A, A ¢ idp(C_‘, i).

Let iy < i* be such that A = A;, mod idp(C_‘, I), choose § € SN acc(E)
such that AN A;, NCs N E ¢ I5, and choose ¥ & A N A;, N Cs such that
Y| < 0,Y ¢ Is,|P(Y)/Is] < 2. Now we try to choose by induction on
¢ < kT, {i1(0), i2(0), 8¢, Y¢) as before, except that we demand in addition that
Y N (Aiy0)\Aiyr)) = 9. Necessarily for some ¢(x) < k* we are stuck. Let
B = A;)\ U£<§(*) (A,-z(;)\A,-l(g)), it belongs to P (as A;, = Aj,\Ap, remem-
ber Ag = #), also Y C B,but E C Eg hence B ¢ id,(C, I). The map-
ping H : P(B) — P(Y) defined by H(X) = X N Y induce a homomorphism
Hy = H | B from Binto P(Y).Nowif X € BN id,(C,I)then X € P (asB C P
because A; = A;j\Ag € P and P closed under the (finitary) Boolean operations).
Hence X € BN id, (C_‘, I_) = XNY € Is. Hence H; induces a homomorphism H>
from %/idp(c_‘, I) into P(Y)/I;. By the choice of B, this homomorphism is one
to one on (P(B) N V) /id,(C, I) and as P()/ [id,(C, I) + (A\B)] is essentially
equal to (P(B) N %)/idp(c_’, I), we have finished proving clause (ii).

We are left with clause (iii).

Let B* be the closure of {A; : i < i*} under finitary Boolean operations and
unions of < @ sets. So |B*| < 2¢. Foreach A € B*N idp((:‘, ) let E 4 witness this,
andlet E* =:N{E4s : A € B* N idp(C_', I)}. Without loss of generality E* = E.
For any A € P(M\id,,(C, I) choose §, Y, B as in the proof of (ii), fix them.

Let B* = {aeB:fornoy € Ydowehave A\;,_a €A =y eAi}.

Now

(*) B* € id,(C, 1)
[why? if not, there is §(1) € S such that B* N E* N Cs1) ¢ I5q1) hence
thereis Y} € B*N E* N Cs1y such that Y1 ¢ I5), [Y1] < 6. By the
definition of B* for every @ € Y1, B € Y (as necessarily @ € B*) there
is Ag,p € {A; 11 <i*} C V", suchthata € Ay p& B ¢ Aq p. Hence
AT = B N Uyey, Npey Aa,p belongs to B* and ¥ S A}, (as o €
Yi&B eV = a € Ayp) and Y N AT = ) (because for each g € ¥
wehavea € Vi&B €Y = B ¢ Ayp). AsA] C B, YNAT =0
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by the choifse _of B we have A7 € idp(C_', D). But ¥; (and E*) witness
A7 ¢ id,(C, I), contradiction.]

Define ho : (B\B*) — Y/ ~byh(@)is{y € Y : N\~ € A; =y € A;}
where for y1, y» € Y welety) = yp & /\i<i* y| € A; = y» € A;. The rest should
be clear. O2.9

2.11 Remark. 1) In 2.9 we can replace k™ by «, then instead of 2 < A we have
2< < A and in (i) we get < 2¢ for some 0 < «.

) If Is = Jfce(cy): 0 = k> and [§ € S = cf(8) < k] then the demand “6
based ideal on Cs containing Jgg” on I holds.

3. More on guessing Clubs
Here we continue the investigation of guessing clubs in a successor of regulars.

3.1 Claim. Assume e.g.

S C {§ < Ry : cf(8) = Ry and 4§ is divisible by (w1)?} is stationary.

There is C = (Cs : 8§ € S), a strict club system such that R, ¢ idp(C_‘) and
[¢ € nacc(Cs) = cf (o) = N1]; moreover, there are hs : Cs — w for § € S such
that for every club E of 8, for some §,

/\ 8= sup [hgl({n}) NEN nacc(C(g)] .

n<w

Proof. Let C = (Cs : 8 € S) be a strict S-club system such that A ¢ id, (C) and
[ € nace(Cs) = cf(§) = R] (exist by [Sh:g, III, 2.4, p.126]). For each § € S let
(n§ : a € Cs) be a sequence of pairwise distinct members of “2. We try to define

by induction on ¢ < wy, E¢, (TO,C :a € E¢) such that:
E; is a club of Ry, decreasing with ¢,
TS = {v € “72:8 =sup{a : a € E; N nacc(Cs) and v ﬂng‘}}
E¢ 41 is such that {8 es: T; = TSZJrl and § € acc(EH])} is not stationary .

We necessarily will be stuck say for { < w;. Then for each § € § N acc(E;)
let {v,‘z n < w} C T; be a maximal set of pairwise incomparable (exist as T(f
has > R branches), and let h5(c) = the n such that vﬁ < ng‘ if there is one, zero
otherwise. 031

3.2 Remark. 0) Where is “§ divisible by (w1)? used? If not, then there is no club C
of § such that @ € nacc(Cs) = cf(a) = Ry.

1) We can replace 8o, 81,8, by 6, A, AT when A = cf(A) > « > o and
for some tree T, |T| = «, T has > A branches, such that: if 7/ € T has > A
branches then 7’ has an antichain of cardinality > o. We can replace “branches”
by “6-branches” for some fixed 6. More in [Sh 572].
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2) In the end of the proof no harm is done if %5 is a partial function. Still we
could have chosen v,f so that it always exists: e.g. if without loss of generality {ng :
a € Cs} contains no perfect subset of “2, we can choose v oe “’2\{ng o € Cs)
suchthatn < w = Vv? | n € T;(*)&(E!,o)[v‘s ln<ap € Tf(*)&—'(,o <v9)],
and then we can choose {n§ : a € Cs} be nf = W T k) (1 — v¥(k,)) where
kn < kni1 < kand 00 [ k)1 —v2(k)) € TF ™ iff 3n) (k = ky).

3.3 Claim. Suppose A is regular uncountable and S, So C {§ < AT : c¢f(8§) = A}
are stationary. Then:

1) We can find C = (Cs : § € S) such that:
(A) Csisaclubof §
(B) forevery club E of AT and function f from A to AT satisfying f (o) < 14«
there are stationarily many 8 € S N acc(E) such that for some ¢ < A1 we
have § = sup{e € nacc(Cs) : @ € EN Spand ¢ = f(x)}
(C) foreach @ < AT the set {Cs N : § € S} has cardinality < A<*: moreover,
for any chosen strict A T-club system & we can demand:

(@) [/\ Hesna:s<at}j<a= A |{C50a:5<x+}|§x}and

a<it a<At

B) |:/\ {es N : a € nacc(es), & <A+}| <A

a<it

= /\ [{Cs No : & € nace(Cy), 8 < AT} §A].

a<Ait

2) Assume A = A<*. We can find C = (Cs : § € S) such that:
(A),(B),(C) as above and
(D) For some partition (S§ : & < 1) of So, for every club E of AT, there are
stationarily many 6 € S N acc(E) such that for every £ < A, we have
6 = sup{o € nacc(Cs) :ax € EN SE}.

3.4 Remark.

1) The main point is (B) and note that otp(Cs) may be > A.

2) In clause (B) we can make ¢ not depend on §.

3) In clause (D) we can have nacc(Cs) N E N S¢ has order type divisible say by
A" for any fixed n.

Proof. 1) Let e be a strict AT -club system (as assumed for clause (C)); note

(%) § <At & o € acc(es) = cf(w) < A
a=B+1<it=e, =108}
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For each B < AT and n < o we define Cg, by induction on 7 : Cg = eg,

Ci'l'=Chula:ae eMin(cg\a)}- Clearly g = (U, C} (as for @ € B\, Cj,
the sequence (Min(Cg \a) :n <wanda ¢ Cg) is a strictly decreasing sequence of
ordinals hence is finite), [also this is a case of the well known paradoxical decom-
position as otp(C g“) < A" (ordinal exponentiation)]. Also clearly Cg is a closed
subset of 8 and if B is a limit ordinal then it is unbounded in S.

Note:
' B < r&a < B&cfl@) = 2 = (Hn)[a € CP\Uin Ch

&a e nacc(Cg)i|.

Now for some n < w, (C§ : § € §) is as required; why? we can prove by
induction on n < w that for every « < A we have |{C} N« : § € S}| < A<H,
moreover also the second phrase of clause (C) is easy to check; we have noted above
that clause (A) holds. So clause (C) holds for every n; also clause (A) holds for
every n. So if the sequence fails we can choose E,,, f; such that E,, f, exemplify
(C§ : 6 € S) is not as required in clause (B).

Now E =: (), ., En is a club of At and £(8) =:sup{f,(®) +1 :n < w}
satisfies:
(%) if 8§ < AT, cf(8) > Rg then f(8) <8 :

hence by Fodor’s Lemma for some a* < AT we have §1 =: {a € Sp : f(a) = a*}
is stationary (remember: § € Sy = cf(§) =A > Ry). Let o* =U{<A A, |Ag| < A,
A¢ increasing in ¢, so easily for some ¢ we have S =: {8 €S in<ow=>
fn(8) € Ag} is a stationary subset of AT (remember A = cf(A) > Ro). Note that if
(Va)[a < A — |a|¥ < A] we can shorten the proof a little.

So also E N S is stationary, hence for some § € S we have: § = sup(E N S7).
Hence (remembering (x)') for some n,§ = sup(E N Sy N nacc(Cy)). Now as
cf(8) = A > |A;] there is B € E N S; N nacc(Cy) unbounded in § such that
fn | B is constant, contradicting the choice of E,,.

2) For simplicity we ignore here clause (B). Lete, (< C) :n < w > a <
AT) be as in the proof of part (1). We prove a preliminary fact. Let x < A,
let k* be k if cf(k) > Ro, kT if cf(k) = Ko and (Spe : € < k*) be a se-
quence of pairwise disjoint stationary subsets of Sy. For every club E of AT,
let ' = {8 < A : foreverye < «*, 8 = sup(E N Sp.)}, it too is a club of
AT, Now for every § € E’' N S and € < «* for some ng(8,€) < w we have
8 = sup(Sp,e N EN nacc(C:;E(a’g))) hence (as cf(k*) > R, see its choice) for
some ng(§) < w, u% =:{e < «k* :ng(8,€) = ng(8)} has cardinality «*. Without
loss of generality, ng (8, €), ng(§) are minimal. So for some n* for every club E
of AT, for stationarily many § € EN S, we have § € E’ and ng(§) = n*. Now
if cf(k) = Ry, for some e€(x) < «* for every club E of AT for stationarily many
8 € EN S we have ng(8) = n* and |u% Ne(x)| = k. If cf(k) > R let e(x) = k.
Now there is a club E of A" such that: if Eq € E is a club then for stationarily many
8§ e SNE,ng(8) =ngy(8) = n*, u% Ne(x) = u%o N e(x) and it has cardinality
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k (just remember e(x) < A in all cases so after < A tries of Ep we succeed). As
kK < A = A<* we conclude:

(x) for some w C «*, |w| = « (in fact w C e(x)), for every club E
of AT for stationarily many § € S N E, for every
€ € w we have § = sup{a € nacc(Cg’ )ia € S NE}

Let (S1,¢ : & < A) be a sequence of pairwise disjoint stationary subsets of Sp.
For each & we can partition Sj ¢ into | 4+ |1 pairwise disjoint stationary subsets
(S1¢6: 6 < |6+ w|™),and apply the previous discussion (i.e. S ¢, |€ + o], S1e.e
here stand for So, «, Sp ¢ there) hence for some ng, (S1ee:€ <&)
(%)e ng‘ < w,(S1,£e : € < &) is a sequence of pairwise disjoint stationary
subsets of Sj ¢ such that for every club E of AT for stationarily many
8 € SN E, for every € < & we have

s = sup{a € nacc(C;lg) o€ 81N E}

This is not what we really want but it will help. We shall next prove that

(x)" for some n, for every club E of AT, for stationarily many
8 € SN E we have; letting S ¢ = U{S1¢¢ : & € (¢, 1)}: forevery € < A,

8= sup{a to € EN nacc(Cy) N Sz,g}.

If not for every n, there is a club E, of A™ such that for some club E; of A no
8 € SN E), is as required in (x)’ for §.

Let E =: (-, En N(,=y, Ep» itisaclub of AT, Now for each § < A, by the
choice of (S; ¢.¢ : € < &) we have

§& =: {8 € §: forevery € <& we have § =sup{a € nacc(C;E) a€SigeN E}}

is a stationary subset of AT, so

Et ={8 <A™ : 8 eacc(E) is divisible by A2 and s N SE N E
has order type § for every & < A}

isaclubof AT,

Let us choose §* € SN EY, and let es» = {a : i < A} (a increasing contin-
uous). We shall show that for some n, §* is in E;, and is as required in (%)’ for E,,
thus deriving a contradiction. Let for § < A

A ={i <x:(af,af )NS5 #0).

As 8* = otp(8* N §¢ N E) clearly Ag is an unbounded subset of A; hence we
can choose by induction on § < A, a member i(§) € Ag such thati(§) > £&

i(§) > U< i(¢). Now for each & we have (i ¢), @ie)+1) € U, < Ch,,, hence

for some m(§) < w we have (o), di@)+1) N SEn (c;’;fjll \Urame) Cﬁi($)+l>
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# ¥ so choose §; in this intersection; as &g € S& C S clearly cf(8¢) = A. Look-

ing at the inductive definition of the C§’s, it is easy to check that (ai(g), Oll'(%')+])

m(§)+n§+l

ny
N Cs. N 8¢ contains an end-segment of Cf hence for every € < &,
¢

m(E)+nt+1 L
(@i, @i)+1) N E N nace(Cys ) N Si.¢e # @ hence by the definition

m(E)+ni+1
of 82 ¢ we have (o), aig)+1) N E N nacc(Cyx )NS2,. # . Now for some

k <wwehave B=1{& < A :m(§) + ng + 1 = k} is unbounded in A, hence for
eache < A, S NEN nacc(Cé‘*) is unbounded in §*, contradicting §* € E C E,’(
033

3.5 Claim. If . = u*, u =« and S C {§ < A : cf(8) = u} stationary then for
some strict S-club system C with C5 = {as,c : ¢ < u}, (where as ¢ is strictly
increasing continuous in ¢{) we have: for every club £ C X for stationarily many
s es,

{¢ < p:as 41 € E}is stationary (as subset of ).

Remark. Sothisis stronger than previous statements saying that this set is unbound-
ed in w. A price is the demand that u is not just regular but is a successor cardinal
(for inaccessible we can get by the proof a less neat result, see more [Sh 572]).

Proof. We know that for some strict S-club system CY = (Cg : 8 € S) we have
A ¢ idp(CO) (exists, e.g. as in 3.1). Let Cé) = {ozéS : ¢ < u} (increasing continu-
ously in ¢). We claim that for some sequence of functions h = (hs : 8 € S) with
hs : u — k we have:

(*)j; forevery club E of A for stationarily many § € S N acc(E),
for some € < « the following subset of u is stationary

A%g = {; < u: a(g € E and the ordinal Min{oeés cE > hs(E) =€)
belongs to E }

This suffices: for each € < « let Cc s be the closure in Cg of {ag e E:¢& <
", hg(ag) = €}, so for each club E of X for stationarily many § € S N acc(E) for

some ordinal ¢ the set A%g is stationary hence for one ¢ this holds for stationarily
many § € E;but E1 C E; implies e, is O.K. for E; hence for some € the sequence
(Ces 1 8 € S) is as required.

So assume for no A does (x) j holds, and we define by induction on n <
w,Ep,hi" = (W} : § € S),&" = (e} : § € S) with E, a club of A, e} club of
wand A : u — « as follows:
let Eg = A, hY(¢) =0, el = pu.

If Ey, ..., E,, KO, ... k", &0 ... &" are defined, necessarily (), fails, so for some
club E, 11 € acc(E,) of A forevery § € SN acc(E,+1) and € < « there is a club
es,e.n C e of u, such that:

¢ €esen=> Minfaf : £ > ¢ and hs(§) = €} ¢ Epp.
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Choose hg"H : ;4 — K such that |:h:;+l(§) = hg’“(’g‘) = h§(¢) = hg’(f;‘)i| and

H( FE&L <k&E <k& \[Minly €esne:y >¢) = Min{y € ey > E}}

€<k

= W2 # h;’“(&)}.

Note that we can do this as u© = « .

Lastly let egH = Ne<k €5.e,n N acc(ef).

There is no problem to carry out the definition. By the choice of C? for some
8 € acc((), -, En) wehave 8 = sup(A’) where A’ = acc((),_,, En) N nacc(Cg).

Let A C u be such that A = {oczS : ¢ € A} with Ol? increasing with ¢ and let

&= sup{sup{ﬁ ceA:h§j(B)=¢€}:n<w,e <kand{f € A: h§(B) =€}
is bounded in A}.

(so we get rid of the uninteresting &’s).

As A’ isunbounded in §, clearly A is unboundedin pand u = cf(u) = k™ > «,
whereas the sup is on a set of cardinality < 8¢ x k¥ < u, clearly & < sup(A) = pu,
sochoose ¢ € A, ¢ > & and ¢ > Min(ej) for each n. Now (sup(ef N¢) 1 n < w)
is non-increasing (as e§ decreases with n) hence for some n(x) < w : n > n(x) =

sup(ef§ N¢) = sup(eg(*) N ¢); and for n(x) + 1 we get a contradiction. 035

3.6 Remark. If we omit “u = k™ in 3.5, we can prove similarly a weaker statement
(from it we can then derive 3.5):

(%) if A = put, u = cf(u) > Ro, S € {8 < A : cf(8) = u} is stationary, C© is
a strict S-club system, Cg = {as,; 1 ¢ < pu} (with as ¢ strictly increasing
with ¢), and A ¢ idp(C‘O) then we can find e = (es : § € S) such that:

(a) es is a club of § with order type i

(b) for every club E of X for stationarily many § € S we have § € acc(E)
and for stationarily many ¢ < u we have:
{ €esand (FE)[¢ <&+ 1 < Min(es\(§ + 1) &as g1 € E]

3.7 Remark. In 3.5 we can for each § € S have hs : © — k such that for every
club E of A, for stationarily many § € S, for every € < «, for stationarily many
IS h;l({e}) we have a5 ;41 € E.

Use Ulam’s proof.

3.8 Claim. Suppo_se A = u',S C A stationary, C = (Cs : 8 € S) an S-club
system, A ¢ id?(C), u > k =: sup{cf(a)™ : a € nacc(Cs), § € S}.
Then there is e, a strict A-club system such that:

(x) for every club E of A, for stationarily many § € S,

6 = sup{a € nacc(Cs) : @ € E, moreover ¢, € E and min(ey) —
sup(a N Cs)}.

Proof. Let e be a strict A-club system.
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Clearly for some 6 < « for every club E of A, for stationarily many § € S, =
sup{e : @ € E, o € nacc(Cs) and cf(a) = 6}. For any club E of > and ¢ < 6 we
lete, = (e%’a ta < M) be: e%,a ={sup(y NE) :y € e, and otp(y Ney) > e} if
o € acc(E) & cf(a) = 6 and e%’a = e, otherwise. It is enough to show that for
some club E of A and & < 6 the sequence e}, is as required. If this fails, we choose
by induction on { < « aclub E; of A such that {1 < §, = E;, € acc(Ey)).

For ¢ +1,foreach¢ < «, & < 0,let E¢ . be aclub of A such that é%{ is not as re-
quired. Let Eé‘,s a club of X disjoint to {6 € S : § = sup{e € nacc(Cs): cf(a) =6
and e%{’a C E\(sup(Cs Na)} and lastly E;1 = (Vop Ecc N [(No<p E;qz N
acc(E;). By the choice of & we can find §* € SN ()., E¢ such that the set
A = {a € nacc(Cs#) : cf(w) = 0, € [,., Ee} is unbounded in §*. We can
easily find ¢ < 6, { < « giving contradiction. 038

3.9 Claim. Let A =ut, u>cf(u) =k, =cf(@) < pu,0 #xand S C {6 < A:
cf(8) = 0 and § divisible by u} be stationary.

1) For any limit ordinal y () < p of cofinality 8 there is an S-club system
CY® = (™ : 5 € ) satisfying A ¢ id* (CY®) with otp (CY™) = y (x).
Let C;’(*) = {ozl?’(*)’Cs i<y}, ay( )% increasing continuous with i.

2) Assume further ¥ > Rg, and y (x) is divisible by « and let e be a strict A-club
system.

Then for some o regular o < u, and club E? of A, C = CY®.0e B0 _
(gel(Cl™ EY, &) : 8 € S) satisfies:
(%)@ forevery club E C E° of A for stationarily many § € S, for arbitrarily large

Y (), 5 o ) 8)ﬂE

i <y(x)wehave u = sup{cf(y) y € nacc(Cs)N[o; oL

3) We can add in (2): for some club E! € E© of A,
(*)b for every club E C E! of A for some 8 € S we have E N Cs = Eln Cs
and for arbitrarily large i < y (x),

sup{cf(y) y eCsN [ay(*) a lyﬁ) 5N E}

4) In part (1), if S € I[A] then without loss of generality |{C§/(*) Na :§ €
Sanda € nacc(Cg/(*))}l < A forevery o < A.

Proof: 1) Letpu =3, _, AE with (A; : € < k) increasing continuous, A, < K.
Let for each o € [, ), (a¥ : ¢ < k) be an increasing sequence of subsets of
a, la¥| = re, o =, a. Now

(%)1 thereis an & < k such that

(x)1, forevery club E of A we have

S [E]l=:{6€S§: a N E is unbounded in §
and otp(as N E) is divisible by y (x)}

is stationary in A
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[Why? If not, for every ¢ < « there is a club Egl of A such that Sel[Eel] is not
stationary, so let it be disjoint to the club EZ of 1. Let E = Ne- (EIN E2), clearly
it is a club of A, hence E! = {§ < A : otp(86 N E) = & and is divisible by u
hence by y (%)} is a club of A and choose §* € E' N S. Now for every € < k, as
§* € E' C E C E2, clearly sup(a®” N El) < 8 or otp(a®” N E!) is not divisible
by y (x) hence sup(ag* NE)<dvVv [otp(aﬁ* N E) not divisible by y (x)]. Choose
Ye < 8% such that ag* NE C B¢ or otp(af* N E\B:) < y(x), so always the second
holds.

As 0 # « are regular cardinals, and cf(§) = 6 necessarily for some * < §*
we have: b* = {& < k : B, < B*} is unbounded in k. So

Ens \p* < | J(Enal\p"

geb*

hence
|ENS*\B*| < Y IENal \B*| < b*] x [y ()| < p.

geb*

But §* € E! hence otp(E N §*) = §* and is divisible by 1, so now E N §*\B* has
order type > u, a contradiction.]

Let & from ()| be g(x).

()2 There is a club E* of AT such that for every club E of A the set {§ €
Se)[E*] ag(*) N E* C FE} is stationary recalling

SJ[E*1={8€S: ag N E* is unbounded in §
and otp(ag N E*) is divisible by y ()}

[Why? If not, we choose by induction on ¢ < )»j(*) aclub E; of A7 as
follows:
(a) Eg = A
(b) if ¢ is limit, £, = m§<§ E;
(c) if { =& + 1 as we are assuming () fails, E¢ cannot serve as
E* so there is a club Egl of A such that the set {8 € S¢[Eg] :
af NEeg C Eé} is not stationary, say disjoint to the club E$2 of A,
(S¢[Eg] is defined above).
Let E; = Egy1 = E¢ N E} N EL.
SoE =), <, E isaclub of A. By the choice of & () for some
6 € Ewehaved = sup(ag(*) N E) and otp(ag(*) N E) is divisible
by y (x). Now ((ag(*) NE):¢ < )»:(*)) is necessarily strict-
ly decreasing sequence of subsets of ag(*), but |a§(*)| < dg(x), @
contradiction.]
Let E* be as in ().
Let " = Sex)[E*] and for § € S’ let C;/(*) be a closed unbounded subset of
ag(*) N E* of order type y () (possible as otp(ag(*) N E*) is divisible by y (x), has
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cofinality 6 (as sup(ag( 0 N E*) = § has cofinality 0) and cf(y (x)) = 6 (by an

assumption). For § € S\ S, [E*] choose any appropriate Cgl(*), so we are done.

2) Assume not, so easily for every regular o < p and club E° of A there is a
club E = E(E®, o) of A such that:

()1 thesetSgp po, = {8 € § : for arbitrarily large i < y (%), u = sup{cf(y) :

=~ -0
y € nacc(Cg(*)’U’e’E n [al?/(*)’a, al.yf[)"s) NE}} is not a stationary subset

of A so shrinking E further without loss of generality
(*)f‘ the set Sg go , is empty.

Choose a regular cardinal x < u, x > k + 60 + |y (*)|. We choose by induction on
¢ < x aclub E; of A as follows:

for¢ =0, Eg =2

for ¢ limit, E; = (s, E¢

forf =&+ 1let E; = {E(Eg,0) : 0 < uregular}.
Let E = ﬂqq E;,E' = {8 € E : otp(E N §) = 8} both are clubs of A and by the

choice of C?™ for some §(x) € S we have Cg’é:;) C E’ and 2 x p divides 8 ().

S(x)
For eachi < y(x), the set bs+ ; = {B € €500 ¢ otp(E N Min(e*+1\(B + D\p).
i1

Let j < y(x) be divisible by « (e.g. j = 0). Foreache <k ando < X;, ¢ <
we look at

. —\ 8
Vieco = Min(geh 1Y) Ec e\@)) +1)).
If we change only ¢ < x, for { < x large enough it becomes constant (as in

old proofs). Choose {* < x such that y; . ¢ o is the same for every ¢ € [¢*, x),
for any choice of j < y(x) divisible by k,e < k,0 € {A¢ : § < ¢}. Also
cf(yjeco) = 0 and (yje s, - § <€) is nonincreasing with & so for ¢ limit it is
eventually constant say yj ¢ ¢, = y;j&,;,},g for & € [£*(j, &, ¢), €). By Fodor for
some £** = E*(j, ¢) < «,{e : E*(J, &, ) = E¥(j, ¢)} is a stationary subset of
k; and for some £*** = £**(¢) < «
y () =sup{j < y (%) : j divisible by k, §™(j, ¢) = §™}

(recall cf(y (%)) = 6 # k). Now choosing o = £***(¢*) we are finished.

3) Based on (2) like the proof of (1).

4) Assume S € I[A], so let El b = (bé Do < A) witness it, i.e. b‘i Cua
closed in «, otp(b;) < 0,a € nacc(bllg) = b; = b,ls Na and E! a club of A
such that 8 € SN E! = § = sup(bs). Let k + 0 + y(x) < x = cf(x) < w3
by [Sh 420, §1] there is a stationary S* C {§ < A : cf(8) = x}, $* € I[A] and
let E2, b% = (bg :a < A) witness it. There is a club E3 of A such that for every
club E of A the set {§ € S* : § € acc(E?), gﬁ(bg, E3) C E}is stationary. Let
§* = §* N acc(E3), Cg = gZ(bg[, E3) for @ € §**; clearly Cg is a club of a of
order type x and

(x) HCZ Ny 1y € nacc(CHY < I{C5 : B < Min(E*\p)}| < p.



Sh:413

More Jonsson Algebras 43

Let bé = {Bue : € < 0}, By, increasing continuous with . Fix fg : B — u
be one to one for § < A. For each @ € S and club E of A let b0 = BI[E] =
b‘}[ U {Cg\(ﬂa,g +1):e<6,B€[Bse, Bsetr1) and Cé C E and for no such g’
1S fBse12 (B") < B}. We shall prove that for some club E of A, (bg[E] ta € 8)
satisfies: for every club E’ of A for stationarily many § € S, E’ N b°[E] is an
unbounded subset of § of order type x x 0; this clearly suffices.

First note

(x) for some ¢ < « for every club E of A for some § € S N acc(E) we have:

0 = sup{e < 0 : for some 8 € [Bs.c + 1, Bs.e+1) we have
Cj S Eand fp,., ., (B) < he).

[Why? If not, then for every & < « there is a club E, of A for which the
above fails, let £ = ﬂ8<K E;, itisaclubof A.So E/ = {§ < A : § alimit
ordinal and for arbitrarily large & € § N §** we have C2 C E}.

Now E’ is a club of A and so for some §* € § divisible by 4> we have
otp(E’ N §*) = §* and we easily get a contradiction.]

Fix &(x), now:

(x) forsome club E° of A for every club E! C EVof A forsomed € SN acc[E]
we have
(a) 6 =sup{e <k : forsome B € [Bs.c + 1, Bs.e+1] we have

szi CE°NE"and fﬁa,e+2(ﬂ) < e}

(b) if £ is as in (a) then
BOLE'] = BO[EC].

[Why? We try )»j(*) times.]

Now it is easy to check that (bg[EO] T € §) is as required. O3.9

3.10 Conclusion. Assume A = u™, 0 > cf(u) =« > Ko,k #0 = cf(0) < A,
y* <A, cf(y*) =06,8 C {8 < A :cf(§) = 60}. Then we can find an S-club system

C such that:
(@) A ¢ id*(C)

(b) Cs = {a? 11 < k X y*} increasing, and for each i,
(cf(otfﬂﬂ) : J < k) is increasing with limit p

(c)if S € I[A] then [{Cs N : 8 € S and o € nacc(Cy)}| < A.
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