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POINTWISE COMPACT AND STABLE SETS 
OF MEASURABLE FUNCTIONS 

S. SHELAH AND D . H. FREMLIN 

Introduction. In a series of papers culminating in [9], M. Talagrand, the second 
author, and others investigated at length the properties and structure of pointwise 
compact sets of measurable functions. A number of problems, interesting in them
selves and important for the theory of Pettis integration, were solved subject to 
various special axioms. It was left unclear just how far the special axioms were 
necessary. In particular, several results depended on the fact that it is consistent to 
suppose that every countable relatively pointwise compact set of Lebesgue mea
surable functions is 'stable' in Talagrand's sense, the point being that stable sets 
are known to have a variety of properties not shared by all pointwise compact sets. 
In the present paper we present a model of set theory in which there is a countable 
relatively pointwise compact set of Lebesgue measurable functions which is not 
stable and discuss the significance of this model in relation to the original ques
tions. A feature of our model which may be of independent interest is the following: 
in it, there is a closed negligible set Q £ [0, l ] 2 such that whenever D s [0,1] has 
outer measure 1, then 

Q-lW = {x:3yeD,(x,y)eQ} 

has inner measure 1 (see 2G below). 

§1. The model. We embark immediately on the central ideas of this paper, setting 
out a construction of a partially ordered set which forces a fairly technical propo
sition in measure theory (IS below); the relevance of this proposition to pointwise 
compact sets will be discussed in §2. The construction is complex, and rather than 
give it in a single stretch we develop it cumulatively in IE, II, 1Q below; it is to be 
understood that each notation introduced in these paragraphs, as well as those in 
the definitions 1A, IK, 1L, is to stand for the remainder of the section. After each 
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436 S. SHELAH AND D. H. FREMLIN 

part of the construction we give lemmas which can be dealt with in terms of the 
construction so far, even if their motivation is unlikely to be immediately clear. 

When we come to results involving forcing, we will try to follow the methods of 
[4]; in particular, in a p.o. set, 'p < a' will always mean that p is a stronger condi
tion than q. 

1A. DEFINITION. If s4 is any family of sets not containing 0 , set 

dp(,«0 = min{#(/): / n i # 0 V / l e r f } . 

Observe that dp(^/) = Oiff^/ = 0 and that dp(-s/uJ?) is at most the cardinal 
sum of dp(^/) and dp(^). (Of course much more can be said.) 

IB. LEMMA. Suppose that n,l,keN, with n,l not less than 2, and that e is such 
that 0 < e < 1/2 and lsk >(k + 2) In n. Then there is a set W E n x n (we identify n 
with the set of its predecessors) such that #(W) <, en2 and whenever I e [n] ' and 
J0 , . . . , J,_ x e [n ] s k are disjoint, there are ie I,j < I such that {i} x Jj, £ W. 

PROOF. If k = 0, this is trivial; suppose that k > 0. Set Q = &{n x n). Give Q a 
probability for which the events (i, j) s W, as (i,j) runs over n x n, are independent 
with probability £. If W e Q is a random set, then 

PT(#(W) < en2) > i 

because e < 1/2 and #{W) has the binomial distribution B(n2, e). On the other 
hand, if J e [n]-* and i < n, Pr({i} x J £ W) > sk. So if / e [n] ' and J0,...,J^i 
are disjoint members of [ n ] s t , 

Pr({i} xJj£WVieI,j<l)£{l- tkf 

<, e x p ( - / V ) . 

Accordingly the probability that there are le[ri]1, disjoint J0 , . . . , J,_! e [n]-*1 

such that {i} x J, £ W V i e /, j < I is at most 

# (M' )# (W s *) l exp ( - / 2 e ' t ) < n ' n H e x p ( - l V ) 

= exp((fc + l)l\nn - l2ek) < 1/4 

because 

l V - ( f c + l ) / l n n > / l n n > 2 1 n 2 . 

There must, therefore, be some W e iQ of the type required. • 
REMARK. Compare the discussion of cliques in random graphs in [8, pp. 18-20]. 
1C. LEMMA. Let m and I be strictly positive integers and stf a nonempty family 

of nonempty sets. Let T be the family of nonempty sets 2T £ stfm. For f e T , write 
ST* = {t \j: t e F, j < m} £ (Jj<m^J- For

 ^,&OGT we say that y^&o # 
& S^and 

dp({u: t~u e f*}) > dp({«: t~u e ^ } ) / 2 Z 

for every t e ^*\2T. Fix f 0 e T and a cover <<SOi<2i o/ ^o- Then there is a 
9~ ̂  3T0 such that F £ Sft for some i < 21. 

Notation. In this context we use ordinary italic u for members of stf and bold 
t for finite sequences of members of stf. 
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SETS OF MEASURABLE FUNCTIONS 437 

PROOF. For t e ^ V ^ , set 

a, = dp({w: t~u e &~%})/2l > 0. 

For i < 21 define <y|J)>J<m by setting y f " =<fir*STQ, 

S?\J) = {t: t e jrfj n 5"*, dp({u: t~u e ^ ' + " } ) > a,} 

for j < m. An easy downward induction (using the fact that dp is subadditive) shows 
that 3~* n sfJ = (J, < 2l y

{J] for every j < m. In particular, there is some i < 21 such 
that 0 e 5^0). Now define 3~ by 

J- = {t: t G s/m, t \j e yf'i] < m} £ 3T0 n %, 

and see that ST =̂  2T§, as required. 
ID. COROLLARY. Let n, /,fc, and W be as in Lemma IB. Take r < k, let Z be the 

cartesian product n', and set 

W = {(i,z): i<n,zeZ, (i,z(j)) € WMj < r}. 

Let m,ji/,J, and =̂  be as in Lemma 1C, and take J^ e T, H: STQ -• n any function. 
Then 

either there are i < n, 2T ' =̂  ̂ , such that H(t) = i for every t e ST or there 
is a J e [n\-rl such that for every z e (n\ J)r there is a 3" ^&~0 such that 
(H(t),z)e W for every te ST. 

PROOF. Set 

/l = { z : z e Z , 3 J ^ J 0 such that (H{t),z) e WVt e ST}. 

If A 2 (n\J)r for some J e [n]-w, we have the second alternative; suppose other
wise. Then we can find z0, . . . ,z ,_x e Z\A such that the sets J} = {zj(i): i < r) are 
all disjoint. Each J, belongs to [n~\-k, so by the choice of W, 

I = {i: {i} x Jj <£ WVj < 1} 

has cardinal less than /. Now observe that if t e ^0 then either H(t) e / or 
(H(t), Zj) e W for some j < I. So we have a cover of 3T0 by the sets 

# = {t: tf (t) = j} for i e I, 

<?'j = {t:(H(t),Zj)eW} for j < I. 

By Lemma 1C, there is a ST ̂  ^ such that either ^" £ 5^ for some i e / or 
^" s 9"j for some j < /. But we cannot have J s y j , because z}•$ A; so F s 5^ 
for some i, and we have the first alternative. 

REMARK. 1C-1D are, of course, elementary, but their significance is bound to 
be obscure; they will be used in 1R below. An essential feature of 1C is the fact that 
the denominator 2/ in the definition of =̂  is independent of the size of si. 

IE. Construction: part 1. (a) Take a sequence <nt>t(sW of integers increasing 
so fast that 

(i) n0 > 4; 
(ii) nk>2k + 1; 
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438 S. SHELAH AND D. H. FREMLIN 

(iii) writing c, = n,<;2"i, then 

l n ^ - * " 1 ^ ) > 2\k + l)(c|+ 1 In2 + c T ' l n n , ^ ) for 1 < I < k; 

(iv) lnnk>(2k+1)k(k + 2); 
(v) writing [a\ for the least integer greater than or equal to a, 

(k + l)ln(2r(lnnt)
21) < 2Tln(2-*-1«t)- | ; 

(vi) 2t/cr(ln«t)
2l(ni<k2'")'t + 1 < n , ; 

(vii) ln(2-*-1nk) >(k + l)\n(2ck
k
 + 1 + 2k) 

for every keN. 
For each keN, let Vk be the cartesian product Yli<k ni-
(b) For each k e M, let Tk be the set of those subsets t of Vk expressible as 

t = Yli<kCi(t), where Ct(t) £ n{ and #(Ci{t)) > (1 - 2"'"1)n; for each i < k. Set 
T = U*6M *̂> a n d for t e T say that rank(t) = k if t e Tt. For t, £' e T, we say that 
t < t' if rank(t) < rank(t') and C,(f) = C,-(t') for every ;' < rank(f). Then T is a 
finitely branching tree of height a> in which the Tk are the levels and 'rank' is the 
rank function. For t e T write T(" for the subtree {t'\ t' < t or t < t'}, suc(t) for 
{t'\ t < t', rank(f') = rank(f) + 1}. 

(c) For k e N, set 

yik = (* + i)/in(r2-*-Vl); 
2~k~1nk > 1 by (a)(ii) above. For t e T, define d,\ ^ T - > U u {-oo} by writing 

^ ) = W , „ l n ( d p ( { C : t x C 6 S } ) ) 

for every S £ T, allowing dt(S) = - oo if S n suc(f) = 0 . Observe that d,(T) > k + 1 
whenever rank(t) = k (because 

dp({C: C £ «», #(C) > (1 - 2~k~l)nk}) > R"*" ^ J . ) 

(d) Let Q be the set of subtrees q £ T such that 

if ( < t' £ q then t e ^ ; 
if te q then q n suc(t) # 0 ; 
writing (^(g) = mm{d,(q): t e q n Tk} for /c € N, l im^^ <5fc(q) = oo. 

Observe that dk{T) > k + 1 for each IceN.so that T e Q and Q # 0 . 
(e) For q,q' eQ say that q < q' if <j £ #'. Then (Q, <, T) is a p.o. set (that is, a 

preordered set with a top element, as in [4]). Observe that if teqeQ then 
q n T(" e Q and q n T(t) < q. 

(f) For q, q' e Q and /c e N, we say that q <k q' if q < q' and qnTk = q' nTk and 

d,(g) > min(Mr(«')) - 2"* 

for every te q. Note that <k is not transitive unless k = 0. 
REMARKS. Of course, the point of the sequence (nkykeN on which the rest of this 

construction will depend is that it increases 'as fast as we need it to'. The exact list 
given in (a) above is of no significance and will be used only as a list of clues to the 
(elementary) arguments below which depend on the rapidly increasing nature of 
the sequence. This is why we have made no attempt to make the list as elegant or 
as short as possible. 
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SETS OF MEASURABLE FUNCTIONS 439 

Three elements may be distinguished within the construction of Q. First, it is a 
p.o. set of rapidly branching trees; that is, if t e q e G, q n suc(t) is large compared 
with Trank(r), except for t of small rank. This is the basis of most of the (laborious 
but routine) work down to IP below. Second, there is a natural (Q-name for a subset 
of X = YlkeN nk of large measure; a generic filter in Q leads to a branch of T and 
hence to the f of lQ(d). Third, the use of dp in the definition of 'rapidly branching' 
((c))-(d) above) is what makes possible the side-step in the last part of the proof 
of 1R. 

IF. LEMMA. Q is proper. 
PROOF. This is a special case of Proposition 1.18 in [7]. (In fact, the arguments 

of 1G-1H below show that Q satisfies Axiom A and is therefore proper; see 
[2, §2.4].) 

1G. LEMMA. Let k e N and let ( be an ordinal. Suppose that A is a set with 
#(A) < exp(2~V)'j) — 1 far every j > k and that x is a Q-name for a member of 
A. Let A be a Q-name for a countable subset of £. Then for every qeQ there are a 
q' <k q, a function H: 7̂  -> A, and a countable (ground-model) set D z £ such that 

q' n T(,) lhQ T = H(t) Vteq'nTk, 

q' lr-Q A<=D. 

PROOF, (a) Set m = #(A). The point is that if j > k and t e 7} and <S,>;<m is a 
family of subsets of T, then 

4 ( U S) = V;ln(dp( U {O.txCe St}Jj 

Zyjln(^dp({C:txCeSt})j 

< yj\n((m + l)maxdp({C: t x C e S j ) ) 

= 7jln(m + 1) + maxy;-ln(dp({C: t x Ce Sj)) 
i<m 

< 2~k + max d,(St). 
i<m 

(b) For each a e A, let Sa be the set 

{t: t e q, rank(t) > k, 3p e Q, D e [C]Sro, 

p<kqr> T('\ p I hQ x = a & A £ £>}. 

If t e q\Sa and rank(t) > k, then dt(Sa) < min(/c, d,(q)) - 2~k. For if Sa n suc(t) = 0 , 
dt(Sa) = — 00. While if Sa n suc(t) # 0 , then for each s e suc(t) n S„ we can find 
a ps e Q and Ds e [C]-™ such that ps<kqn r(s), ps H-Q x = a and ps lhQ /I S Ds. 
If we now set 

p= [J ps, D= [j Ds, 
s esuc(r) nSa S€SUc(t)nSa 

then pzqn T(,) and p\\-Qx = a and p ll-Q A s D. Because f ^ Sfl, p £kqr\ T(I) 

and there must be an s e p such that ds(p) < min(k,ds(q n T(")) — 2 _ t ; evidently 
s = t and 

4(S0) < min(M,(4)) ~ 2-k, 
as claimed. 
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440 S. SHELAH AND D. H. FREMLIN 

(c) Suppose, if possible, that there is a t0 e q n Tk\\JaeA Sa. Set 

p = \t:teqnr«>\t't (J SaVt'< tj-

Then p is a subtree of T. For every f e p with t > t0, 

dt(q) < max({rf((p)} u {d,(SB): aeA}) + 2~k 

because #(A) < m. But d,(Sa) < dt(q) — 2~k for every a e A, by (b) above, so 
dt(p) > d,(q) — 2~k (and p n suc(t) # 0 ) . This shows both that p has no maximal 
elements and that 6t(p) > S^q) — 2~k for every i > k, so that p eQ. Because Q is 
proper, we can find a p' < p and a countable £> £ ( such that p' \\- A £ D [6, p. 81, 
III.1.16]. Next there are p" <p',aeA such that p" ll-Q z — a. Let j 'eN be such 
that Si(p") S: k whenever i > j , and take t e p" such that rank(t) > max(/c, j). Then 
p" n T<() witnesses that t e Sa, which is impossible. 

(d) Accordingly we have for every t e q n Tfc an if (t) e /I, a countable set D, and 
a pr e 0 such that 

p, ll-Q T = H(t) & A £ D„ p,<kqnT«\ 

Set <?' = U.6,nrkP.. D = lUm* ̂  t h e n «' ̂  «» D i s countable, </' lhQ A £ D 
and q' n T(,) lhQ T = H(f) for every teqnTk. 

1H. LEMMA. Let (qkykef>j be a sequence in Q such that q2k + 2 ^n - i a2k+i ^ t <?2ic 
/or every keN. Then q = (~)keM qk belongs to Q and is accordingly a lower bound for 
{qk: keN} in Q; also, qr\ Tk+1 = q2k+i <"> Tk+1 for each IceM. 

PROOF. Because each qk is a finitely branching subtree of T with no maximal 
elements, so is q, and dt(q) = lim^^, dt(qk) for every t e q. Moreover, if t e q and 
k<leN, 

d,(q2l) > mm(k,d,(q2k)) - 3-2~k + 3.2"' 

(induce on /, using the definition of <,), so we have 

Si(q) = lim 5t(q2l) > min(/c,<5;(<?2*)) - 2>.2~k 

/-*oo 

for every i,k e N; consequently, l im^^ dt(q) — oo and qeQ. Now if k e N and 
2k+l< l,ql + 1nTk+1 = q,nTk+1,so qnTk+1 = q2k + i^Tk+1. D 

II. Construction: part 2. Let K be the cardinal c+ (evaluated in the ground 
model). 

(a) Let ((.Pi}i<K,(,Q^yi<K) be a countable-support iteration of p.o. sets, as in 
[4, chapter 8], such that each Q( is a P^-name for a p.o. set with the same definition, 
interpreted in Vp<, as the p.o. set Q of IE. (Note that T is absolute, and so, in effect, 
is ( d , ) l e T , because each d, is determined by its values on the finite set ^(suc(t)), so 
that the difference between <Q and Q4 subsists in the power of Pi to add new subsets 
of T. Also each Q4 is 'full' in Kunen's sense.) Write P = PK. 

(b) If C < K, K e [Q< m, keN, and p,p' belong to P?, say that p <K,k p' if p < p' 
and 

p\Z\hP(P(0<kP'(WZeK, 

taking <k here to be a P?-name for the relation on Q4 corresponding to the relation 
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SETS OF MEASURABLE FUNCTIONS 441 

<k on Q as defined in lE(f). Of course <Kk is not transitive unless K = 0 or 
/c = 0. 

U. LEMMA, (a) Pc is proper for every £ < K. 
(b) If ^ < K, C < K, then P^+? may foe identified with a dense subset of the iteration 

P% * P£, where P[ is a P^-name with the same definition, interpreted in VPt, as 
the definition of Pc in V. 

(c) For every t, < K, 

l p „ II [pv. J-> ^ / v . 

(d) If £ < K has uncountable cofinality, A is a (ground-model) set, f is a P^-name 
for a sequence in A and p e P?, then we can find £, < £, p' < p, and a P^-name g such 
that 

p' lhPs / = g. 

(e) / / A is a (ground-model) set and f is a P-name for a sequence in A, then we 
can find a £, <K and a P^-name g such that 

1 P lr-p / = g. 

PROOF, (a) This is just because Q> is proper, as noted in IF; see [6, p. 90, The
orem III.3.2]. 

(b) This now follows by induction on £. The inductive step to a successor ordinal 
is trivial, because if we can think of P? + c as dense in P^ * P[, then we can identify 
Qi + C with Qj. As for the inductive step to limit £, any member of Pi+i can be 
regarded as (p,p') where p e P? and p' is a P^-name for a member of P[. On the 
other hand, given (p,p') ePi* P[, we have a P?-name J for the support of p' which 
in VPls is a countable subset of £. But because P? is proper, there are a Pi < p and 
a countable ground-model set / £ f such that p t H-p? J £ / [6, p. 81, III.1.16]. 
Now (Pi,p') can be reinterpreted as a member of P4 + c stronger than (p,p'). Thus, 
P^+? is dense in Pi * P£, as claimed. 

(c) [6, p. 96, III.4.1]. 
(d) [6, p. 171.V.4.4]. 
(e) By [6, p. 96, III.4.1], P satisfies the K-C.C; because K is regular, (d) gives the 

result. • 
IK. DEFINITION. Let £ < K, p e Pc. 

(a) Define U(p), (,p(n)}U€Vip) as follows. A finite function u £ £ x T belongs to 
U(p) if dr/ier 

u = 0 , in which case p(u) = p, 

or 

u = v u {(£, t)}, where v e U(p), dom(v) £ £ < £, and 

p ( T ) r« i i -p , t6P ( v ) ( a 

in which case p<u) is defined by writing 

P ( » = P ( V W > / 6 C \ { 0 , 
P , t ) = Pw(9nT"». 
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442 S. SHELAH AND D . H. FREMLIN 

(b) Observe that if u e U(p), then p(u)(£) = p(f) for £ e £\dom(u), p(B,(^) = 
p(£) n T(a(?)) if (J e dom(u); U(p) is just the set of finite functions u for which these 
formulae define such a p<0) e Pc. Of course, pia) < p for every u e U(p). 

(c) Note that if { < £ p e Pc, u e U(p) then u \ £ e U(p t {) and (p f <J)("ro = 

P( n ,K-
(d) If p e P;, u e U(p), and v c ( x T is a finite function such that dom(u) £ 

dom(v) and u(|) < v(£) in T for every <!; e dom(u), then v e U(p) iff v e U(p(u)), and 
in this case p(v) = (p(,,))(T, (induce on #(v)). 

(e) We shall mostly be using not the whole of U(p) but the sets U(p; K,k) = 
U(p) n 7f for K e [C]<co, fc e N, writing Tf for the set of functions from K to Tk. 

1L. DEFINITION. For C < K, K e [C]<0>, fc 6 N, and p E P?, say that p is (K,k)-
fixed if for every n e K, ue\J(p; Knt],k) there is a (ground-model) set A £ Tk 

such that 
P w N ^ n P ( l ) n T » = A 

Equivalently, p is (K, /c)-fixed if U(p; X, k) 2 U(pt ; K, fc) for every px < p. 
1M. LEMMA. Suppose £ < K, K e [C]<<0, fc > 1 and t/iaf /I is a finite set with 

2cmacm~' < exp(2;Vr;) far every i > k, where c = #(Tk), m = #(K), a = #(A). Let 
xbea P^-name for a member of A, and A a P^-name for a countable subset of K. Then 
for any p e Pc there are p t <K<k p, a function H: Tk -> A, and a countable (ground-
model) set D £ K such that 

pt is (K, k)-fixed, 

pf>lr-PeT = H(n)VueU(p1;K,fc)> 

Pi lhPf A £ D. 

PROOF. Induce on m = #(K). If m = 0 we may take any as A,p\ < p such that 
Pi lr-p T = a, (again using [6, III.1.16], this time based on U(a)) a countable D, 
and a Pi < p\ such that pt lr>t J £ D. Now set # ( 0 ) = a. 

For the inductive step to #(K) = m > 1, let ^ be max K. As explained in U(b), 
P? may be regarded as a dense subset of Pi+l * P'; arguing momentarily in FP { + I , 
we can find a P^+1-name r0 for a member of P', a P^+1-name T' for a member of 
A and a P?+1-name A' for a countable set such that 

( p r£ + l , f 0 ) < p i n P ? + 1 * P ' , 

( p K + 1, r0)lbP ? + i ,p, T' = T, 

( p r { + l , r 0 ) l r - p t + 1 . p . J £ ^ ' . 

Now let zl'0 be a Pi+1-name for a countable subset of C\{i + 1) such that 

V,+1
 ll_p5+1 supp(f0) = zT0. 

Because #04) = a < 2cmacml < exp(2~*/7i) for every i > k, we can use Lemma 1G 
in V®< to find H, q, I such that 

H is a P4-name for a function from Tk to /i, 
A is a P^-name for a countable subset of K, 

qeQt, P\i\\-Piq<kp(^, 
P t £ lr-Pt (« n T«> lhQ< T' = ff(t)Vt e « n T,), 

pr« l r - P , («H- Q .2 l ' uJ ' 0 £ l ) . 
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Now consider the pair (H,qn Tk). This can be regarded as a P?-name for a 
member of Al = ATk x 0>Tk, and ax = #(A1) = 2cac, so 

2c""'acr"2 = 22cm"ac""' < 2cmacm" < exp(2"7^)V i > k. 

The inductive hypothesis, therefore, tells us that there are p\ <Knitk p \ £, 
H*: T^ni -* ATk, F*\ Tk

ni -• 0>Tk, and a countable D £ K such that 

Pi is (K n £, /c)-fixed, 

p T \hPi H = H*(u) & ^ n Tt = F*(u) 

for every u e U(p,; K n £, fc), and 

PJ H-P< I C D . 

At this point we observe that 

Pi lr-ps (<7
 lhQ? supp(r0) £ £>). 

Now the only difference between Pi + i * P' and P? is that, for members of the 
former, their supports have to be regarded as Pi+x -names for countable subsets of 
(, and these are not always reducible to countable ground-model sets. But in the 
present case this difficulty does not arise, and we have a px e P? defined by saying 
that Pi K = Pi, Pi t £ l hp? Pi(£) = 4, and p^ \ n \Y-Pt> p^n) = r0{rf) for £ < n < C; 
then supp(Pi) £ suppd^) u {£} u(D r\Q is countable. 

Consequently, pt e P; is well defined, and now, setting H{u~t) = H*(u)(t) for 
u e T f n « , t e T t , 

Pi ^K.k P, Pi l(_p ^ £ A 
U(pt; X,fc) = {u~f: u e U(px; Kn£,k),te F*(u)}, 

p(,,r,ll-pcT = H(v)VveU(p1;K,fc)> 

and finally, 

PT \ Z IU, Pi(£) nTk = F*(u)Vu e U( P l ; X n £,/c)," 

so that p2 is (K, /c)-fixed, and the induction proceeds. 
IN. LEMMA. Suppose £ < K, (Kk~)keN is an increasing sequence of finite subsets 

of C, <pk\ eN is a sequence in P?; suppose that 

P2k+2 ^Kk,k+l Plk+l ^Kk,kPlk 

for every keN and that [JkeN supp(pj s \JkeN Kk. Then there isap e Pc suc/i t/iat 
p<pk far every keM, supp(p) £ ( J ^ Kt and 

p t £ lhP{ p(£) n T , = p2k + 1 nTkVkeN,ZeKk, 

P \ £ II-P, P(£) ̂  7i+i = Pik + i n r t t l V t e N , ^ Kt + 1 , 

so t/iaf 

V(p;Kk,k) = V(p2k + 1;Kk,k) and U(p; Xk,/c + 1) 2 U(pfc + 2; K„/c + 1) 

for every keM. 
PROOF. For each £ < ( choose p(<̂ ) such that 

v. n-P4 m) = n p*«)-
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An easy induction on £ shows that p \ £ e P{ for every £ < (; for if £ e CVUteN ̂ *» 
then 

1 P , H - P , P ( 5 ) = T = 1 Q , , 

while if fc e N and £ e Kk, then 

so that by Lemma 1H, 

pKU-p>sp(£)eG<;&P(£)n r* + i =P2k + i^Tk + 1 =p2k + 2^Tk + i 
&p(i)nTk = p2k + lnTk. 

It follows at once that U(p; Kk,k)^U(p2k + 1; Kk,k),U{p; Kk,k + 1)^ 
U(p2fc+2; Kk,k + l)for every Its N. D 

lO. LEMMA. Suppose that 0 < ( < K, a is a P^-name for a member of Y\ke^nk, 
and p € Pc. Then we can find a p and sequences <,Kk}keM, (HkykeM such that 

p e Pc, p < p; 
(,Kk}keN is an increasing sequence of subsets of (, #(Kk) < k + 1 for every k, 

K0 = {0}; 
sapp(p)^\Jk€NKk; 
p is (Kk, k)-fixed and (Kk, k + I)-fixed for every k; 
Hk is a function from Tf +1 to nk for every k; 
p<0) lhPc ff(fc) = Hk(u) whenever k e N and u e U(p; Kt, /c + 1). 

PROOF. Using Lemma 1M, we can find sequences (pkykeN, (.Kk}kef>i, and 
<Hk}keN such that 

p = p0,K0 = {0}; 
# ( K t + 1 ) < H U l + 1 2 K t ; 
P2k + i ^Kk,kP2k*P2k+i is(Kt,/c)-fixed; 
Hk- TkXi -» "t is a function; 

P2* + 2^K,<,lc+lP2*+l,P2k + 2iS(Kfc,fc+ Infixed, 

pS+2 "I-PC ffW = ^(«)Vu e U(p2, + 2; Kt,fc + 1) 
for every fc e N. Furthermore, we may do this in such a way that [jkeM Kk includes 
UkeNsuPP(Pk)- We n e ed , of course, to know that the nk are rapidly increasing; 
specifically, that 

2^+1 <exp(2-V?i)Vi>/c 

(when choosing p2* + i) a n d that 

2 « i „ ^ + . < exp(2-*-Vy,)V i > k + 1 

(when choosing p2 k + 2) , where we write ck = #(Tt). But as ck :£ rii<*2"', this is a 
consequence of lE(a)(i) and (iii). 

Armed with the sequences <pt>t 6^, (Kk}keN we may now use Lemma IN to 
find a p as described there. Because p2* + i is (Kk,k)-fixed and U(p; Kk,k)^ 
U(p2t + 1; Xk,fe) we must have equality here, and p is (Kk,k)-fixed for every /c e N. 
Similarly, p is (Xfc,fc + l)-fixed for every k. Moreover, if u e U(p; Kk,k + 1) = 
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V(p2k+2; Kk,k + 1) we have p0" < p g + 2 , so that 

p<»> lhP? <x(fc) = Hk(a) 

as required. D 
IP. LEMMA. Suppose that £ < K, p e P?, fc e N, K e [C]<c° and V is a nonempty 

subset of U(p; X, fe). TTien we have a pt = \fV€.yp
{v) defined (up to <-equivalence in 

Pc) by saying 
iftet;\K,thenpl(Z) = p(Z); 
if £e K, then 

(PI r £)<u) «-•>« P I ( O = u (p«) ^ T<": 3 v e v * « * "»«* * r e + 1 = «"t} 
/or u 6 {v f £: v e V}. Now px < p, and if £ < (, t e p ^ ) , rank(l) > fc, we shall have 

Pi \ £ ll->? suc(t) n p t ( 0 = suc(t) n p(£); 

so if ^ < £, i > k, then we have 

Pi t £ ^ <5,-(PiO > -MPO-
/ / p2 < Pi, there is some v e V such that p2 is compatible with p<

1
v> = p<v). If k < I e N, 

K c L e K ] < 0 , t f e n 

U( P l ; L, /) = {w: w e U(p; L,/), 3 v e V such that v(£) < w($) V £ e K}, 

and pjw) = p<w) for every w e U(px; L, /); consequently, px is (L, l)-fixed if p is. 
PROOF. The proof requires only a careful reading of the definitions. • 
REMARK. Note that 1G-1P are based just on the fact that Q is a p.o. set of 

rapidly branching trees; the exact definition of 'rapidly branching' in 1 E(c) is rele
vant only to some of the detailed calculations. Similar ideas may be found in [1] 
and [7]. 

1Q. Construction: part 3. (a) Set X = \\k€Mnk. Then X, with its product topol
ogy, is a compact metric space. Let ju be the natural Radon probability on X, the 
product of the uniform probabilities on the factors. 

(b) For each k e N, set lk = r(lnnt)
2"|. Take Wk^nkx nk such that #(Wk) < 

2~k~lnk and whenever / e [nk~]lk and J0,..., Jtk-i are disjoint members of [nk]
sk, 

there are i e / and j < lk such that {i} x Jj c wk. (This is possible by Lemma IB 
and lE(a)(iv).) Set Wk = W'k\j {(i,i): i < nk}. 

Write R for 

{(x,y): x,yeX, (x(k),y(k)) e Wk Vfc e IM, {k: x(k) = y(k)} is finite}; 

then R is negligible for the product measure of X x X. For r e N, write Rr for 
the set 

{(x, <>>«>,<,):* e X , ( x , t t ) e K V i < r } s * x X ' . 

We shall frequently wish to interpret the formulae for the sets X, Rr in Vv; when 
doing so we will write rX~1, r / ? r

n . 
(c) Write 

^ = \<Lk)keN: L t £ n,Vfe e N, n #(**)/«* > o i . 
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Again we shall wish to distinguish between the ground-model set if and a corre
sponding P-name r ifn . 

(d) For each k e N, let <Pk be the P-name for a subset of nk defined (up to equiv
alence) by saying that 

p Ihp <Pk = Ck(t) 

whenever rank(t) > k and p(0) s T(t). (Here Ck{t) is the feth factor of t, as described 
in lE(b).) Let %, W be P-names for the subsets of rX'] given by 

lp-lhp >pk = {a:ae rX^, a(i) e<P^i>k}, ¥ = (J Wk. 
keN 

Then we have 
lp Ihp #(<Z>J > (1 - 2-fc-1)ntV/c e IM, 

so that 
l p ll-p

 r ^ ( f ) = 1. 

1R. MAIN LEMMA. If reM and D s l ' is a (ground-model) set such that 
Dn([\ke!>iLky ^ 0 for every (ground-model) sequence (LkykeN e if, then for every 
(ground-model) sequence (Lk}keN e if, 

I p l r - p y n n ^ E 1 " * , " 1 " 1 

PROOF, (a) Let <Lk>fe£(^ e if, let a be a P-name such that 

1P Ihp a e f n f ] Lt , 

and let p e P. Write D' for Dn(\\ksNLk)
T. Let k0>r,Pi<p be such that 

p t Ihp <T e Wko. By Lemma lO, we have a p2 < px, an increasing sequence <Kt>keN 

of finite subsets of K, and a sequence <Ht>te^ of functions such that 
p2 is (Kk, fe)-fixed and (Kk,k + l)-fixed for every keM; 
pf Ihp <j(k) = Hk(u) whenever ueU(p2; Kk,k + \),ke N; 

U k e ^ ^ 2 s u P P ( P 2 ) ; 
0 e K0, #(Kk) < k + 1 for every k e N. 

(b) For k> k0, let Zk be the cartesian product set n'k, and take Wk to be 

{(i,z): i < nk, z e Z t , (i,z(./)) e H^V; < r}. 

Set stk = 3*>nk\{0\ and Jk = ^ W f < ) \ { 0 } ; define = k̂ on Tk as in Lemma 1C, 
taking lk and Kk (with the order induced by that of K) in place of / and m there. 

For each u e U(p2; Kk,k) set 

,TH = { c : u * c e U ( p 2 ; K t , / c + l ) } e T t , 

where for u e Tf, c e (3?nk)
K we write 

u'c = <u(0 x c(£)>^eK. 

By Corollary ID, we may find for each such u a w„ < nk and a set Ja c nt such that 
# ( J J < r/t and 

dt/ier there is a ST = k̂ J^, such that Ht(iTc) = wu for every c e 3T 
or for every z e (nlk\./I1)

r there is a 2T = t̂ ^ , such that (Hk(u*c),z) e Wk, 
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that is, 

(Hk(u*c),z(j))eWkVj<r, 

for every c e 5 ! 
Set 

4 = {wu:ueU(p2;K„/c)}, Jk = \J{Jm: u e U(p2; K„/c)}, 

so that 

#(/*) < #(U(p2; Kk,k)) < #(Tf-) < f n 2"Y+1, 

#(-4)</c//n2"'Y+1^2-x, 

by lE(a)(vi). 
(c) Let ki > max(fc0,1) be such that 

Sk(p2(0)) > 2, Jk£ Lk 

for every k> fcj. Take any v* e U(p2; -Kfct _ i, /cj), and set p3 = p2
v '• Then p3 is 

(Xt, fc)-fixed and (Kk,k + l)-fixed for every k>kx, and 

5 u = { c : u ' c 6 U ( p 3 ; ^ , / c + l ) } 

whenever k > kt,u eU(p 3 ; Kt,fc). 
(d) We have 

p3lhpCT(0 = H1.(vf)Vi<fc1, 

where vf is that member of Tf^ such that vf(^) < v*(f/) for every >; e /Cf. Set 
ît = {-?4(v*)} f°r fc < ki, L'k = Lk\Jk for k>kt; then f l * ^ #(L'k)/nk > 0, because 

n*6N #(Lk)/nk > 0 and £*SN #(Jk)/nk < oo. So there p a z e Z) n ( n k e f ^ U ) r s !>'. 
Writing zk = <z(j)(/c)>J<r for fc G M, we have zt e (wn\^)r for k > kx, and 

p3\\-p(a{k),zk)e Wk 

for /c < fcl5 because (i, i) e W* for i < nk. 
(e) For each fc > /cl5 u e U(p3; Xt,/c) choose ^"J, = k̂ ^ e Tt such that 

ei't/ier Hk(u*c) = vvu e 4 for every c e ^ 
or (Hk(u*c), zt) e Ŵ  for every c e .^"j,. 

Define <^X>t l ,<pkX>f e l by 
P*, = P 3 > 
5S = {uAc: u 6 V(pk; Kk, k), c e 3T'n), 
Pk+i = \f{Pl;h-veyk} 

for every k > kt, as in Lemma IP. An easy induction on k shows that 

f'm = {c:u\eV(pk+l;Kk,k + l)} 

whenever u e V(pk; Kk,k), k > kx, that pk is (Kh/)-fixed and {K,,l + l)-fixed when
ever fej < k < I, and that pk

y) = p(
3
v) whenever kt <k<l and v e U(pt; K,,l) u 

U(pk; K,,/ + 1). Also supp(pt) £ Uiew^/ f o r e v e r v k ^ fcr 
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(f) It is likewise easy to see that, for k > k1; 

pk+i ^K, 
pk+i 11 Ir-p, pk+1tf) nTk = pk{Q n TtV£ < K, 
pk + 1\Z lhP? p t + i(£) n suc(t) = Pn(^) n suc(t) V t e pk+i{0 n 7j- unless i = k and 

lhp ff(k) e 4 or (a{k),zk) e V^. 
(g) On the other hand, if k > kx and t, e Kk, 

pk + l\H lhP? dp({C: t x C e pk+l(Z)}) > dp({C: txCe p\(£)})/2/t 

V t e p t + 1 (^ )nT t . 

To see this, take any q <p~k+i\ £ and t such that 

q lhp? t e pk + i^) n rk = pk(£) n Tk. 

We may suppose that v0 e £fk is such that q < p^vo) f <̂  = p{
k+\ \ £ = qt. Now pk+1 is 

(Kk, k + l)-fixed, so there must be a t' > t such that 

q1 lh>? t 'e Tk+1npk+1{£). 

There is accordingly a vt 6 ^ such that v0 T £ = vi I" £ anc* vi(£) = t'- Express Vj as 
u'Cj where u £ U(pt; Kk, /c) and c^e $~'a. Of course, u(£) = t. 

Now 

^ lr-P< { C : i x C e pk+!«)} 2 {c«): c £ ^ ; , c f £ = ct t £}, 

<h lhp< {C: t x C e pk(£)} = {c(£): c e iT , c f £ = ct f £}, 

because p t and pfe + 1 are both (Kk,k + l)-fixed, while v0 \ £ = (u f ̂ Hcj f 0- But 
because &~'u = t̂ ^ , 

dp({c(£): c e ^ , c f £ = C l f {}) > dp({c(£): c e ^H, c \ £, = c t r £})/2/t. 

So we get 

9 < «! lhP4 dp({C: t x C e pk + M)}) * dp({C: £ x C e pt(0})/2It. 

Since q and r are arbitrary, we have the result, 
(h) Because yk\n{2lk) < Tk (by lE(a)(v)), 

Pk+1 ^Kk,k Pk 

for every k> k1. Also, supp(pk) £ UieN ^i f°r e v e r y k > kt. By Lemma IN, there 
is a p4 e P such that p4 < pk for every k > kx. Moreover, we may take it that 

p*(o) = n A w 

(as in Lemma 1H), so that 

5i(P*(0)) ^ 5,(p3(0)) - y,ln(2/£) > 1 

whenever i> ky. Note that for k > k1; 

p4 Ihp a(k) e lk or (<x(k), zfc) e H^, 

while for k < k1( 

p4lhp(ff(k),zk)£ Wk. 
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(i) Now define p5 e P by setting 
T'i = Tiu{z(j){i):j<r}VieJ*, 
p5(0) = {f.te p4(0), Ci(t) n fj = 0 whenever kt < i < rank(t)}, 
p5(£) = p4(£) ifO<Z<K. 

Of course, we must check that p5(0), as so defined, belongs to Q0 = Q, but because 
<5fc(p4(0)) > 1 for k > kY, we have 

dp({C: t x C e p4(0)}) > exp(l/yt) > 2 ^ Q 2 " ' Y + 1 + 2k > 2#(T'k) 

for every k>kx,te p4(0) n Tk, using lE(a)(vii). Of course p5(0) n Ttl _ x = p4(0) n 
T̂ j _ x = {v*(0)}, so every element of p5(0) has a successor in p5(0), and also 

a£(p5(0))S>at(p4(0))-7,ln2 

for i> kt. (Here at last is the key step which depends on using dp in our measure 
of 'rapidly branching' given in lE(d).) Thus, p5(0) 6 Q and p5 e P. But also 

p 5 l h P ^ n / i = 0V/c> /c 1 , 

so that 

p5 Ihp <x(/c) $ 4 , a(/c) # z(y)(k) V j < r, (<r(/c), z j e 1% 

for /c > fcj. Finally, 

Pjlr-p^zje1"/?,"1, <7er/?r"
1-1[D']; 

as p5 < p and p, <x are arbitrary, 

l p l r - P « P n n ^ S r * , " , " 1 [ i > ' ] , 

as claimed. D 
IS. THEOREM. For eac/i c e N , 

1P Ihp if D, <= r ^ H and A n n ^ / 0 V < U 6 N e r ^ , i < c , 

t t enV<L 4 > l 6 N 6^ 3 < X l ) ( < r € n (D i n [ ] Lt] 
i ' < r \ keW / 

such that (xj, x;) e
 rRn V i < j < r. 

PROOF. Induce on r. If r = 0 the result is trivial. For the inductive step to r + 1, 
take P-names At for subsets of rXn such that 

l p l h p ^ n \\Lk^0^{Lk)keNe^^,i<r. 

Take a P-name £ for a member of rJS?n. Because members of J? can be coded by 
simple sequences, we may suppose that fi is a P^-name for some a < K (U(e)). The 
inductive hypothesis tells us that 

l P l h p V < L , X e f , e
r ^ 3 < x i > i < r e n f 4 n n ^ N ) 

i<r\ ksM J 

such that (Xj,xt) e rR'} if i < j < r. 
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Next using U(c)-(e), we can find a /? e K\OL and a P^-name A for a subset of rXr _ l 

such that 

ip ihp A <= n 4 , 

V, If—IP-JB (*;, *,-) e r K n W whenever <x,>,<r e J , i < j < r, 

where we write r- • •~lW to indicate that we are interpreting some formula in Vp". 
Now we remark that, by U(b), P can be regarded, for forcing purposes, as an 

iteration Pf* P', where P ' is a P^-name for a p.o. set with the same definition, 
interpreted in Vp', as P was in the ground model. So we may use Lemma 1R in 
Vpi> to say that 

IP, Ih., (V II-P- <Fin n n £ £ H ^ " 1 ^ n (]12)1), 

using the notation fw to indicate which version of the P-name f we are trying 
to use. Moving to Vp for a moment, we have l>~"//</,) = 1 and rfi'l(Y\^) > 0, so 

1P lhP 3 / e INI, >>-i(«p{» n n fi) > 0. 

Also, of course, every f j^ ' n [ ] 2 can be regarded (in Vv) as the product of a se
quence belonging to r J ? n . By the original hypothesis on Ar, 

l P l h P / l r n
, P ( ' , ) n n 2 # 0 . 

We can, therefore, find a P-name ar for a member of Ar n f w n fl £, and now 
further P^-names ah for i < r, such that 

V II-P <*«>«<, e ^ n (J] £)r, K , <*,>«,) e r«rn. 

But, of course, we now have 

IP Ihp < O i s , 6 11(4 n n s)> (^. «i) G r * n V i < j < r. 

As <4>;<r, £ are arbitrary, this shows that the induction proceeds. • 

§2. Pointwise compact sets of measurable functions. We turn now to the ques
tions in analysis which the construction in §1 is designed to solve. We begin with 
some definitions and results taken from [9]. 

2 A. DEFINITIONS, (a) Let (X, I, n) be a probability space. Write i?° = &°(Z) £ Ux 

for the set of Z-measurable real-valued functions on X. Let %p be the topology of 
pointwise convergence, the usual product topology, on Ux. Let %m be the (non-
HausdoriT, non-locally convex) topology of convergence in measure on JS?°, de
fined by the pseudometric 

p(f,g) = 

for f,ge£e°. 

min(\f(x) - g(x)\,l)n(dx) 
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(b) A set A £ Ux is stable if whenever a < /? in U, E e Z and \iE > 0 there are 
k, I > 1 such that 

Ht+l{(x,y): x e £ \ y e El,3fe A, /(x(i)) < a & /(y(;)) > 

j J V i < f c , j < / } 

< (/i£)k+', 

where we write n*+l for the usual product outer measure on X*1 x X1. (See [9,9-1-1].) 
2B. Stable sets. Suppose that (X,Z,n) is a probability space and that A ^ Ux 

is a stable set. 
(a) If (X, Z, fi) is complete, then A c JSf°(27). ([9, §9.1].) 
(b) The Xp-closure of A in Ux is stable. 
(c) If A is bounded above and below by members of J*?°, then its convex hull 

is stable ([9, 11-2-1]). 
(d) If A £ <£ ° (as in (a)), then %m \ A, the subspace topology on A induced by 

Zm, is coarser than Zp \ A. ([9, 9-5-2].) 
For more about stable sets, see [9] and [10]. 
2C. Pettis integration. Let (X, Z, fi) be a probability space and B a (real) Banach 

space. 
(a) A function 4>: X -> B is scalarly measurable if g(p: X -» U is ^-measurable 

for every g e B*, the continuous dual of B. 
(b) In this case, <f> is Pettis integrable if there is a function 0: Z -*• B such that 

gcj) dfi exists = g(0£) V E e Z,g e B*. 

(c) If 4>: X -> B is bounded and scalarly measurable, then 

is !Xp-compact. In this case 4> is Pettis integrable iff 

/ ' f-A 

is %v \ ^-continuous for every E e Z([9,4-2-3]). In particular (by 2B(d)), <t> is Pettis 
integrable if A is stable. 

2D. The rivals. Write nL for Lebesgue measure on [0,1], and ZL for its domain. 
Consider the following two propositions: 

(*) [0,1] is not the union of fewer than c closed negligible sets; 

(t) there are sequences (nkykeM, (.Wk}keN such that 

nk>2\ Wk^nkxnk, #(Wk) < 2~kn2
kV k e N; 

taking X = l\keNnk, fithe usual Radon probability on X, 

R = {(x,y): x,yeX, (x(k),y(k)) eWkVkeN, {k: x(k) = y(k)} is finite}, 

then whenever D s X, [i*D = 1 and r e N there are x0,..., xr € D such that 
{xj,Xi) e R whenever i < j < r. 

Evidently (*) is a consequence of CH, while in the language of §1, l p lr-p (f), since 
this is a slightly weaker version of Theorem IS. 
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Thus, both (*) and (f) are relatively consistent with ZFC. Consequences of (*) 
are explored in [9], where it is called Axiom L. We list a few of them in 2E below. 
Our purpose in this paper is to show that (f) leads to a somewhat different world. 

2E. THEOREM. Assume (*). Write if0 for ^°{XL). 
(a) / / A E J?0 is separable and compact for Xp, it is stable. 
(b) / / A £ £C° is separable and compact for Xp, its closed convex hull in Ul0Ai 

lies within £C°. 
(c) If AS: if0 is separable and compact for Xp, then Xm \ A is coarser than Xp\ A. 
(d) / / (Y, S, T, v) is a separable compact Radon measure space and f: [0,1 ] x Y-* U 

is measurable in the first variable and continuous in the second, then it is measurable 
for the (completed) product measure \iL x v. 

(e) / / <£„>„6M is a stochastically independent sequence of measurable subsets of 
[0,1], with lim„_XlnEn — 0 but 'ZneN(iiEn)

k = oo for every keN, then there is an 
ultrafilter ?F onN such that 

l i m „ ^ £„ = {x: {n: x e £„} e #"} 

is nonmeasurable. 
PROOF, (a) See [9, 9-3-l(b)]. (b) Use (a) and 2B(c). (c) Use (a) and 2B(d). (d) Use 

(a) and [9, 10-2-1]. (e) Observe that, writing jEn for the characteristic function of 
£„, the set {#£„: n e N} is not stable, and use (a). • 

2F. THEOREM. Assume (f). 
(a) There is a bounded Pettis integrable function 4>: [0,1] -» /°° such that 

{gcp: g e (/°°), \\g\\ < 1} is not stable in ^°(IL). 
(b) There is a separable convex Xp-compact subset of if °(I'L) which is not stable. 
PROOF. (We write P° for the Banach space of bounded real sequences.) Take 

( % ) I E N , (Wk)keM, X, \x, R from the statement of (f). Because ([0,1] ,^J is isomor
phic, as measure space, to {X, y), we may work with X rather than with [0,1]. Write 
I for the domain of ft, i f ° = £e°(I). 

(a) For keN write 

Jk = { / : /£ nk, #(/) < k, (i,j) $ Wk for all distinct i,j e / } . 

For keM,Isnk set 

Hk, = {x :xe X, x(k) el}. 

Let A be 

{XHkl:keN,IeJk}, 

writing xH: X -* {0,1} for the characteristic function of H £ X; let Z be the 2P-
closure of A in Rx. Because A is uniformly bounded, Z is Ip-compact. For £ e E, 
define fE: Z -> U by setting fE(h) = $Eh(x)p.(dx) for he A, fE(u) = 0 for u e Z\A. 
Enumerate A as (,hm}meN, and define 0: X -> f°, 9:1 -> /" by setting 

(j>(x)(m) = hm(x)Mm e N, x e X, 

0(E)(m) = 

We aim to show 
(i) that /I is not stable; 

h„(x)fi(dx)Vm e N, E e I. 
E 
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(ii) that if v is a Radon probability on A' = Z\A then j u(x) v(du) = 0 for \i-
almost every x; 

(iii) fE: Z -* U is continuous for every Eel; 
(iv) 9 is the indefinite Pettis integral of (j>, so that <j) is Pettis integrable; 
(v) K = {g(f>: g e C(Z)*, \\g\\ < 1} includes A and so is not stable, 

ad (i) Suppose that k, I > 1. Take any m > I. Set 

G = {y: y e X1, 3 / e ./„, y(y) e ffm/ Vy < /} 

2 {y: y e X', (y(i)(m), y(;)(m)) £ Wm for distinct i, j < I}. 

Because # (WJ < 2"mn^, rtG > (1 - 2-"1)'2. If y e G, set / = {y(j)(m): j<l}eJm; 
then 

fik{\: x e Xk, x{i)(m) $ /Vi < k} > (1 - n^1/)*. 

So we conclude that 

/i*+,{(x,y): x e X\ y e X', 3 / e ^ , /(x(i)) = OVi < k, f(y(j)) = 1 Vj < /} 

> (1 - 2-m)(2(l - n ^ / f 

(by Fubini's theorem). Because k, I, and m are arbitrary, /I cannot be stable. 
ad (ii) Because each Jm is finite, any member of A' must be of the form %E, where 

E c X and 

x e £ , x ' 6 l , {k: x(k) # x'(fc)} is finite => x' e E. 

Note also that if x,y e £, then (x,)>) ^ R; because either x(k) = y(k) for infinitely 
many k, or there are k, I such that x(k) =£ y(k), I e Jk and x,y both belong to HkI, 
in which case (x(k), y(k)) $ Wk. 

Now let v be a Radon probability on A', and set w{x) = I u(x)v(du) for each xe X, 
so that w belongs to the closed convex hull of A' in Ux. If x,x' are two members of 
X differing on only finitely many coordinates, then u(x) = u(x') for every u e A'; 
consequently w(x) = w(x'). Also 0 < w(x) < 1 for every xe X. 

Take <5 > 0, and set D = {x: w(x) > d}. By the zero-one law, /i*Z) must be either 
0 or 1. Suppose, if possible, that n*D = 1. Let r e H be such that rb > 1. By (f), there 
are x 0 , . . . ,x , e D such that (x},xf) e /? for i < j < r. But in this case £,<,.u(x;) < 1 
for every u e A', while £;<r w(x,) > (r + 1)3 > 1, and w cannot belong to the closed 
convex hull of A'. 

Accordingly n*D must be 0. As 6 is arbitrary, w = 0 a.e. 
ad (iii) Because fE(y.Hkl) < kn^1 for every / e Jk, limm^00/E(/im) = 0 and fE is 

continuous. 
ad (iv) We need to show that 

g(4>(x)) n{dx) exists = g(0(E))V g e (l™)*, Eel. 

It is enough to consider positive linear functionals g of norm 1. For any such g, we 
have a Radon probability v on Z such that 

g«f(hm)\ f(u)v(du) for every / e C(Z), 
z 
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using the Riesz representation of positive linear functionals on C(Z). Set em = v{hm}, 
8 = 1 — £m6Nem = vA'. Then we can find a Radon probability v' on A' such that 

g{<f(hj)mef*) = Z Emf(hJ + £ f(u)v'(du) 

for every / e C(Z). Now an easy calculation (using (ii)) shows that g(d(E)) = 
9{<fE{K)>meN) = T.meNZm$Ehm(x)n{dx) = iE g(4>{x)) yu(rfx) for every Eel. 

ad (v) If m e N, then hm = em(f> e K, where em e (/°°)* is defined by setting 
em(z) = z(m) for every z e /*. This completes the proof of (a). 

(b) The unit ball of (/°°)* is w*-separable, and its continuous image K £ if0 is 
separable, so K witnesses the truth of (b). • 

2G. Further properties of the model. Returning to 1R/1S, we see that the model 
of §1 has some further striking characteristics closely allied to, but not obviously 
derivable from, (f). Consider for instance 

(J) there is a closed negligible set Q s [0, l ] 2 such that whenever D £ [0,1] 
and nfD = 1, then nLQ~1ZD'] = 1; 
{%)' there is a negligible set Q' £ [0, l ] 2 such that whenever C,D c [0,1] and 
(C x D) n Q' = 0, then one of C, D is negligible. 

Then l p lr-p(J). For start by taking gx to be 

{(x,y): x,yeX, (x(k), y(k)) eW^keN}, 

the closure of Rin X x X. Then the argument for IS shows that 

lp Ihp i f D c r p and D n [ ] L ^ 0 V <Lk>,ef, 6
 r £ ^ , 

keM 

then 3 )S < K such that V(/,) s rQ^'l\_D'\. 

Consequently 

1P Ihp if D c rX~\ and r/in*Z) = 1, then r^n(r21"l"1[Z)]) = 1. 

Accordingly we have in Vp the version of (J) in which ([0, l],/iL) is replaced by 
(Z,^). However, there is now a continuous inverse-measure-preserving function 
/ : X ->• [0,1], and taking 

G = { ( / ( 4 / W ) : ( x , y ) 6 f i i } , 

we obtain (J) itself. Evidently (J) implies ($)', taking <2' to be 

{(x + q, y + q'): (x,y) e Q, q, q' are ratiional} n [0, l ] 2 . 

Of course, (*) and (J) are mutually incompatible (the argument for 2E(a) from 
(*), greatly simplified, demolishes (J) also). The weaker form (£)' is incompatible 
with CH or MA, but not with (*), both (J)' and (*) being true in Cohen's original 
model of not-CH (see [3]). 

2H. Problems. The remarkable results quoted in 2E depend on the identifica
tion of separable relatively pointwise compact sets with stable sets ('Axiom F' of 
[9]). In models satisfying (|), this identification breaks down. But our analysis does 
not seem to touch any of 2E(b)-(e). We therefore spell out the obvious problems 
still outstanding. Write £C° for £C°(EL). 
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(a) Is it relatively consistent with ZFC to suppose that there is a separable 
2p-compact set A £ JS? ° such that the closed convex hull of A in R[(U1 does not 
lie within J^°? 

(b) Is it relatively consistent with ZFC to suppose that there is a separable 
Ip-compact set A s if0 such that Xm \ A is not coarser than %p \ A! Does it 
make a difference if A is assumed to be convex? (This question seems first to have 
been raised by J. Bourgain and F. Delbaen.) 

(c) Is it relatively consistent with ZFC to suppose that there are a separable 
compact Radon measure space (Y, S, T, v) and a function / : [0,1] x Y-*U which 
is measurable in the first variable, continuous in the second variable, but not jointly 
measurable for \iL x v? 

(d) Is it relatively consistent with ZFC to suppose that there is a stochastically 
independent sequence (En}n€M in IL such that Enŝ (AiLJEn)'' = °° f°r every keN, 
but iiL(limn->p E„) = 0 for every nonprincipal ultrafilter !F on HI (This question 
is essentially due to W. Moran; see also [9, 9-1-4] for another version.) 

Here we note only that a positive answer to (a) would imply the same answer to 
(c) and that the word 'separable' in (a)-(c) is necessary, as is shown by examples 
3-2-3 and 10-1-1 in [9]. 
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