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Abstract. Suppose that A = A=* > R, and we are considering a theory T. We give a
criterion on T which is sufficient for the consistent existence of A** universal models of
T of size A for models of T of size < A", and is meaningful when 2" 5 A+t In fact,
we work more generally with abstract elementary classes. The criterion for the consistent
existence of universals applies to various well known theories, such as triangle-free graphs
and simple theories.

Having in mind possible applications in analysis, we further observe that for such A,
for any fixed w > A* regular with 4 = *", it is consistent that 2* = 1 and there is
no normed vector space over QQ of size < u which is universal for normed vector spaces
over Q of dimension A* under the notion of embedding # which specifies (a, b) such that
[1h()|1/11x]] € (a, b) for all x.

0. Introduction.

We study the existence of universal models for certain natural theories, which are
not necessarily first order. This paper is self-contained, and it continues Saharon
Shelah’s [Sh 457] and [Sh 500]. An example of a theory to which our results can be
applied is the theory of triangle-free graphs, or any simple theory (in the sense of
[Sh 93]). For T a theory with a fixed notion of an embedding between its models,
we say that a model M* of T is universal for models of T' (of size 1) if every model
M of T of size A, embeds into M*. We similarly define when a family of models
is jointly universal for models of size A. More generally, we consider universals in
an abstract elementary class, see Definition 19.

Two well known theorems on the existence of universal models for first order
theories T (see [ChKe]) are
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1. Under GC H, there is a universal model of T" of cardinality A for every A > |T|.
2. If 2<* = A > |T|, then there is a universal model of T of cardinality A.

Without the above assumptions, it tends to be hard for a first order theory to have
a universal model, see [Sh 457] for a discussion and further references.

Although the problem of the existence of universal models for first order the-
ories (i.e. elementary classes of all models of such a theory) is the one which has
been studied most extensively, there are of course many natural theories which are
not first order. To approach such questions, we view the problem from the point of
view of abstract elementary classes, which were introduced in [Sh 88] (in §1 we
recall the definitions), and in a more specialized form earlier by Bjarni J6nsson,
see [ChKe]. Such classes will be throughout denoted by /C, and if A is a cardinal,
the family of elements of /C which have size A will be denoted by /C;.

In [Sh 457] S. Shelah introduced the notion of an approximation family and
studied abstract elementary classes with a “simple” (here called “workable”, to
differentiate them from simple theories in the sense of [Sh 93]) A-approximation
family. One of the results mentioned in [Sh 457] is that for A an uncountable car-
dinal satisfying A = A <%, it is consistent that every abstract elementary class K
which has a workable A-approximation family, has an element of size A which
is universal for the elements of K which have size A, i.e. K;+. Although the main
idea of the proof there was correct, there were many incorrect details and omissions
that made the proof and theorem incorrect as stated. In this paper we give a some-
what different proof of this result, and we also deal with & = 8. Our results give a
precise criterion for a class to be amenable to the theorem about consistency of the
existence of a small family of models in /C,+ that are universal for C;+. Among
the classes which satisfy this criterion are the class of triangle-free graphs under
embeddings (as shown in [Sh 457]) or in fact the elementary class of models of any
simple theory, as shown in [Sh 500].

A complete definition of a A-approximation family K, is given in §1, but let
us try to give an intuitive idea here. The easiest way to look at this is to say that K,
is a forcing notion whose generic gives an element of Ky +. A natural example is to
take a theory 7', consider the class of all its models N of size AT (with universe a
subset of the ordinals < A1), and define K. ap as the set of all M of size < A which
are an elementary submodel to some such N, the order being <. So, for example,
the union of an elementary chain of elements in K is an element of K.

As we wish to use approximation families as forcing notions, we are led to
discuss the closure and the chain condition. Kj is said to be (< A)-smooth, if every
chain of length < A has a least upper bound. All A-approximation families con-
sidered here satisfy this condition. There are indications that such an assumption
is necessary for the universality results we wish to obtain, as if smoothness fails
strongly there are no universals, see [GrSh 174].

As we intend to iterate with (< A)-supports, our chain condition has to be a
strong version of AT -cc, so to be preserved under such iterations. The one we use
is *i from [Sh 288], which is also the one used in [Sh 457]. This condition is a
weakening of “stationary AT-cc”. We recall the definition at the beginning of §2.
The question now becomes which A-approximation families yield such a chain con-
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dition. We call such approximation families workable. This notion is defined in §1.
In [Sh 457] it is shown that triangle free graphs and the theory of an indexed family
of independent equivalence equations have workable A-approximation families.

In [Sh 500] and elsewhere, S. Shelah expresses the view that the existence of
universal models has relevance to the general problem of classifying unstable the-
ories. With this in mind, we can consider a theory as “simple” if it has a workable
approximation family. In [Sh 93], another meaning of “simplicity” is considered: a
theory is called simple if it does not have the tree property. In [Sh 500] it was shown
that complete simple first order theories of size < A have workable approximation
families in A. This can be understood as showing that all simple theories behave
“better” with respect to the universality than the linear orders do, as it is known
by [KjSh 409] that when GC H fails, linear orders can have a universal in only a
“few” cardinals. The hope of finding dividing lines via the existence of universal
models is also realized for some non-simple theories, as it was shown by S. Shelah
in [Sh 457] that some non-simple theories have workable approximation families,
like the triangle-free graphs and the theory of an indexed family of independent
equivalence relations, as simplest prototypes of non-simple theories. In [Sh 500],
S. Shelah introduced a hierarchy NSOP,, for 3 < n < o with the intention of en-
capturing by a formal notion the class of first order theories which behave “nicely”
with respect to having universal models. Our research here continues [Sh 457].

We now give an idea of the proof of the positive consistency results. Details
are explained in §1 and §2. The idea is that through a (< A)-supports iteration
of (< A)-complete forcing we obtain the situation under which to every workable
strong A-approximation family K, there corresponds a tree of elements of K. If
K p approximates K and K is nice enough, then the models in this tree are organized
so that the entire tree can be amalgamated to a model in C; +. Along the iteration we
also make sure that every element of /Cy + can be embedded into a model obtained as
the union of one branch of such a tree. There are AT trees used for every approx-
imation family, so the universal model obtained has size A™". Every individual
forcing used in the iteration has *5, but the proof of this for A > R requires us to
introduce an auxiliary step in the forcing.

In §3 we give a consistency result showing that with the same assumptions on
AT as above it is consistent that there is no universal normed vector space of size A,
even under a rather weak notion of embedding. We note that negative consistency
results relevant to the universality problem tend to be much easier to obtain than
the positive ones, especially as far as the first order theories are concerned.

We finish this introduction by giving more remarks on related results, and some
conventions used throughout the paper.

The pcf theory of S. Shelah has proved to be a useful line of approach to the
negative aspect of the problem of universality. This approach has been extensively
applied by Menachem Kojman and S. Shelah (e.g. to linear orders [KjSh 409]), and
later by each of them separately (M. Kojman on graphs [Kj], S. Shelah on Abelian
groups [Sh 552] e.g). See [Sh 552] for the history and more references. One of the
ideas involved is to use the existence of a club guessing sequence to prove that no
universals exist. A related result of Mirna DZamonja in [DZ1] deals with uniform
Eberlein compacta, and in [DZ2] she shows how the universality axioms presented
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in this paper can be applied to that class. Among the positive universality results,
let us quote a paper by Rami Grossberg and S. Shelah [GrSh 174], in which it is
shown that e.g. the class of locally finite groups has a universal model in any strong
limit of cofinality 8¢ above a compact cardinal. This paper is also the first reference
to the consideration of the universality spectrum as a useful dividing line in model
theory.

Further positive consistency results appear e.g in S. Shelah’s [Sh 100] where
the consistent existence of a universal linear order at 8| with the negation of C H
is shown, and in S. Shelah’s [Sh 175], [Sh 175a] where the consistency of the exis-
tence of a universal graph at A for which there is « satisfyingx =« = < A <2 =
cf(2°), is proved. The latter result was continued by Alan Mekler in [Me], where
[Sh 175] was extended to a larger class of models.

Relating to our negative consistency result, the problem of universality has
been extensively studied in functional analysis, most often for classes of Banach
spaces. Probably the earliest result here is one of Stefan Banach himself in [Ba]
in which he showed that C[0, 1] is isometrically universal for separable Banach
spaces. Another well known result is that of Wiestaw Szlenk, showing that there
is no universal separable reflexive Banach space, [Sz]. Jean Bourgain expanded on
these ideas to build a body of work. The combinatorial approach to the problem of
universality in spaces coming from functional analysis is used in Stevo Todorcevié’s
[To].

Model theory as an approach to study of Banach spaces has been extensively
used, for example by Jean-Louis Krivine in [Kr] and C. Ward Henson in [He]. See
Jacques Stern’s [St] for an account on the early history of this interaction and [Io1]
for a more recent history. Of the work of this area which is being currently carried
on, we mention a systematic attempt to a classification theory for Banach spaces
by José Iovino, see e.g [102], [T03], which also give historical remarks.

Convention 01. (1) We make the standard assumption that the family of forcing
names that we use is full, i.e. if p IF “(3x)[@(x)]”, then there is a name t such that
pIF“lep@)]”.
(2) If k = cf(k) < «, we let

se g <o of(B) = k).
(3) x is throughout assumed to be a large enough regular cardinal. <; stands for
a fixed well ordering of the set of all sets hereditarily of size < x, namely H(x).
(4) lub stands for the “least upper bound”, i.e. M is the lub of a set M in the order <
iff it is its unique least upper bound, which means that M is an upper bound of M
and for every M* such that YN € M) [N < M*], we have M < M*.
(5) For a model M, we use | M| to denote the underlying set of M, and hence ||M ||
to denote the cardinality of |M|.

1. Approximation families.

Definition 11. [Sh 457] Given X an infinite cardinal, and uy, us < A%,
A function h : uy — uy is said to be lawful iff it is 1-1 and for all @ € u; we
have h(a) + A = o + A.
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Notation 12. (1) For A € A7, let
LA mings: A €8 & Al5).

If M is a model, we let (M) = ((|M]).
(2) In the following, we shall use the notation M [ § for M [ T, mns) | 8 (the

meaning of T and M will be described in the following definition).
def

B)Ev = {28: B <A™}

Remark 13. The notion of divisibility of ordinals used here is that A|§ means that
6 =A-&[noté =& - A] for some &. The intuition behind the definition of a lawful
function is that one regards A" as partitioned into blocks of length A, and then a
function is lawful iff it acts by permuting within each block. Then the function ¢(A)
simply measures how far the blocks go that meet A.

Definition 14. [Sh 457] Let A be an infinite cardinal.

(1) Pair Kap = (Kap, <k,,) is @ weak A-approximation family iff for some (not

necessarily strictly) increasing sequence”

T={(g:i<AT &Ali)

of finitary vocabularies, each of size < A we have
(a) Kap is a set partially ordered by <k,,, and such that

M € Koy = M is a t,(y)-model.

(b)If M € Kqp, then |M| € [AT]~* and M <g,, N = M C N.
(c)If M € Ky and A|S, then M | 8 € Kap and M | § <k, M. Also’,
9 =M1]|0e Ky If M|N € Kyp and 1|5, while M <Kup N, then
MT§ Skyp N [ 4.
(2) With Kyp asin (1), a function h is said to be a K,py-isomorphism from M to N iff
Dom(h) = M, Rang(h) = N are both in Kap, and h is a t,(u)-isomorphism.
(3) A weak A-approximation family (Kap, <k,,) is said to be a strong A-approxi-
mation family iff in addition to (a)—(c) above, it satisfies:
(d) [Union] Suppose that i* < \.
IfM = (M;:i<i*isa <k, -increasing sequence in Kap, then we have
that | J; _j« M; is an element of Kp, and it is the <K,p-lub of M.
(e) [End extension/Amalgamation] If 0 < § < AT is divisible by A, and
Moy, M1, My € Ky are such that My | § = My <Ky M and |M;| C 4,
then M| and M> have a <Ky upper bound M3 such that M3 | § = M.
If My, My, M, § are as above and M1, M> < M, then there is M3 < M
such that M3 > My, My and M3 | § = M;.

2 For the applications mentioned in this paper, in the following definitions readers can
restrict their attention to the situation of 7; = 1, for all i.

3 The following contradicts the usual notation of model theory of forbidding empty mod-
els, as in such a situation we cannot interpret individual constants. However, the meaning of
? we use is clear.
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(f) [Local Cardinality] For o < AT, the set {M € Ky @ M| € a} has
cardinality < A.

(g) [Uniformity] For My, My € Kap, we call h : My — M> a lawful isomor-
phism iff h is a lawful function and a K yp-isomorphism. We demand
(@) if M € Kup and h is a lawful mapping from |M| onto some u < A7,

then for some M' € K, we have that |M'| = u and h is a lawful
7| m|-isomorphism from M onto M.
(B) lawful Kqp-isomorphisms preserve <g,.

(h) [Density] For every B in A", and M € Kap, there is M e Kap such that
M <k,, M'and B € |M'|.

(i) [Amalgamation] Assume M) € Ky forl < 3 and My <Kup M forl =1, 2.
Then for some lawful function f and M € Kap, we have My <k, M,
the domain of f is My, the restriction f | |My| is the identity, and f is a
fKap-embedding of My into M, i.e. f(M>) <Kup M. If M\ N My = My, we
can assume that f = id.

Remark 15. (1) There is no contradiction concerning vocabularies in (g)(«) of Def-
inition 14(3): if K, is a weak A-approximation family, while M € K,, and h is a
lawful mapping from | M| onto some u, then ¢ (1) = ¢(|M]) (so saying that h gives
rise to a Kyp-isomorphism makes sense).

[Why? Letting § def sup(u), if y < 8, we can find ¢ € |M| such that h(x) €
(y, 6). Hence

y<y4+Ai<h(a)+i=aoa+r<sup(|M]).

So, 8 < sup(|M]), and the other side of the inequality is shown similarly.]
QIfM=(M;:i<i*isa <k,p-increasing sequence, and A[3, then (M; [ § :
i <i*)is <k,p-increasing, by Definition 14(1)(c), and ifi* <A,

Ui 1o =dJmr1s

i<i* i<i*
is the <k, -lubof (M; [ §: i < i*), by (3)(d) in Definition 14.
(3) Suppose M; forl < 3 are as in Definition 14(3)(i) (amalgamation). Then we can
without loss of generality assume that M | Ev = M| [ Ev, as clearly there is a law-
ful mapping g : M — M™ extending id s, for some M* with M* | Ev = M; [ Ev.
(4) Suppose that My, M| and M> are as in Definition 14(3)(e) (end extension/amal-
gamation). Then we can assume M3 C ((M>), as by Definition 14(1)(c) we can
replace M3 by M3 | t«(M>).

Notation 16. Suppose that K,, is a weak A-approximation family and 7 is a se-
quence of vocabularies as in Definition 14(1)(a). We say that K,y is written in
T.

Definition 17. [Sh 457]

(1) Let (Kap, <k,,) be a weak A-approximation family and I'  Kap. We say that
[ is (< A)-closed iff for every <k, -increasing chain of size < X of elements
of T, the lub of the chain is in T.
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(2) Suppose that (Kap, <k,,) is a weak A-approximation family. We let

() ' is a (< A)-closed subset of Kp,
@) I is <Kup -directed,
K =K _,[Keypl = {T : (iii) for cofinally many g < 1" we have
(AM €)@y € IMDu(y) = ()
(e.gy =B)

We let Kmg = Kmd[Kap] o

(ivy(M el &M <k, M1) =
@My € T)3h lawful)[h : M| — M,
embedding over M
VVMel&N<M = NeT

ek 4:

(3)If Kup is as above and o < AT, we define K;d[Kg‘p] as the set of I' C Kyp such
that
()M el' = M| Ca,
(b) T satisfies (i) —(ii) from (2) above.
Similarly for Kmd[Kg‘p].
Claim 18. Suppose that I' € King[Kap], while N e 'and b : N — M is a lawful
embedding. Then there is N’ € T" and a lawful embedding g : M — N’ such that
for x € N we have g(h(x)) = x.

Proof of the Claim. There is a lawful isomorphism f : M — M’ forsome M’ > N
such that f(h(x)) = x for all x € N. Then by (iv) in the definition of K,q, there
is N’ € T and a lawful embedding g’ : M’ — N’suchthat g’ | N =idy.

Let g : M — N’ be given by letting g(x) = g'(f(x)), so g is a lawful
embedding and for x € N we have g(h(x)) = g'(f(h(x)) = g'(x) = x. %13

Definition 19. (/) IC = (K, <ic) is an abstract elementary class iff K is a class of
models of some fixed vocabulary T = txc and <y =< is a two place relation on
K, satisfying the following axioms:

Ax 0: If M € K, then all t-models isomorphic to M are also in K. The relation
<k is preserved under isomorphisms,

AxL: If M <k N, then M is a submodel of N,

Ax II: <k is a partial order on K,

Ax III, IV: The union of a <k -increasing continuous chain M of elements of K is
an element of K, and the lub of M under <,

AxV: If M; <k N forl € {0, 1} and My is a submodel of M1, then My <x M,

Ax VI: There is a cardinal k such that for every M € KC and A C |M|, there is
N <g M such that A C |N| and ||N|| < « - (|A| + 1). The least such « is
denoted by LS(K) and called the Lowenheim-Skolem number of K.
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(2) If A is a cardinal and KC an abstract elementary class, we denote by KC), the
Sfamily of all elements of IC whose cardinality is ).

(3) For K an abstract elementary class, and A a cardinal, we say that K, has a
universal iff there is M* € K, such that for all M € K; we have that some M’
which is isomorphic to M satisfies M' <x M*. Such M* is called universal for
K.

(4) Suppose that K is an abstract elementary class. We shall say that a member M
of K is <ygc-embeddable in a member N of K iff there is an isomorphism between
M and some M' € K satisfying M' <xc N.

(a) KC is said to have the joint embedding property iff for any M1, M> € K, there
is N € IKC such that My, M, are <jc-embeddable into N.

(b) K is said to have amalgamation iff for all My, M, My € K and <y -embed-
dings g : My — M, for | € {1,2}, there is N € K and <ic-embeddings
fi: M;j — N such that fi o g1 = f20 ga.

Similar definitions are made to describe when KC,_has the joint embedding property
or amalgamation.

Convention 110. We shall only work with abstract elementary classes which have
the joint embedding property and amalgamation.

Note 111. The following notes are not hard and the proofs are to be found in [Sh 88].
We include them here for the reader’s convenience.

(1) Suppose that K is an abstract elementary class. If M = (M; : i < §)isa
<i-increasing chain (not necessarily continuous), then | J; _s M; is the <x-lub of
M.

[Why? Prove this by induction on §. The nontrivial case is when § is a limit.
Define for i < § a model N; to be M; if i is non-limit, and | J,;_; M otherwise.
Now N = (N; : i < §8) is increasing continuous and | J; _s Ni = |J;_s M; is the
lub of N, hence of 1\_4.]

(2) If K is an abstract elementary class, K is closed under unions of <y-directed
subsets, and the union of a <y -directed subset of K is the <y-lub of it.

[Why? By induction on «, we prove that for any D C K which is <jc-directed
and has size k, the <y-lub of D is | JD. For k < Ry, this is clear. If « is a
limit > R, let (k, : @ < cf(x)) be cofinal increasing to «, each «, regular, and
D = U(ch(,() Dy, where each D, is <y-directed and has size «,, and D, ’s are
C-increasing. Now apply the induction hypothesis and (1). If « = AT, then we can
find (Dy : o < AT) increasing to D, each <x-directed and of size < A.]

i<é$

j<i

Definition 112. Suppose that IC is an abstract elementary class with tic = t, and
K.p is a weak [strong] A-approximation family written in

(ti: i < AT & Ali),
such that

(1) For all i, we have T C 1,
2)MeKyp = M[|Tek,
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(3)M <k, N = M [t =<kN|tand
(4) For every M € K with ||M|| < X there is N € Ky, such that

M is <y -embeddable into N | t.

We say that K, tends to [strongly] A-approximate K.
We may just say “Kgp tends to approximate K7 if the rest is clear from the
context.

Observation 113. Suppose that K, is a strong A-approximation family which tends
to approximate K and I' € K_ ;. Then

(1) Mr defined by letting

MrE M
MeTl

is an element of K and for every M € I we have M [ T <x Mr, and in fact
Mr is the <y-lubof {M [t : M €T}
(2) Forevery I', T'* € K_;[Kyp] such that ' € I'*, we have M <jc Mr~.

[Why? (1) As {M [ t: M € I'}is <y-directed.
(2) By (1) and Note 111(2).]

Notation 114. Suppose that an approximation family K, tends to approximate /C,
while I' € K_ ;. If we write Mr, we always mean the model obtained from I' as in
Observation 113.

Definition 115. Let K, be a strong A-approximation family which tends to A-
approximate K and let K be a subclass of K, +. Assume

(x) For every M* € K, there is T € K aKapl with {{M| : M € T'} a club of
[Ev]=<* such that for some M’ isomorphic to M*, we have M' <y M.

Then we say that K, approximates C.

Claim 116. Suppose that

(DA =«

(2) K is an abstract elementary class,

(3) LS(K) < « and K has amalgamation,

4T C <t (A1) ordered by < (i.e. being an initial segment) is a tree with each
level of size < AT,

(5) For n € T we have M,, € K, so that

n<dv — Mr;SICMU,

6)n € T = ||M17|| =K.
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Then there are M* = M*[7T] € K and (g, : n € 7) such that

(A) For all n € 7 we have that g, is a K-embedding from M, into M*,
B)n=v = g < g,
©) IM*|| < x-27F.

(The intended use of this claim is when k = A.)

Proof of the Claim. For i* < AT, let T | i* # Ll <yt

By induction on i* < the height of 7', we prove that M*[7 | i*]and (g! 8y 1 ME
T | i*) can be defined to satisfy (A)-(C) with 7 [ i* in place of 7 and M*[T [i]
in place of M*, and so that

i <i* = M[T [il <k M*[T |i],

meTli&i<i'] = g <g.

i* = 0. Trivial.

i*=i+1.Letlev;(7T) ={n; : j < j* < AT} For simplicity in notation we
assume that j* is a limit > 0, the other cases are similar. By induction on j we build
(M;‘ : j < j*)sothat My = M*[T | i]and My, M <k M* py while ||M;.k|| =
k, and Mg‘ =U j<s MJ’.‘ for § a limit. We use amalgamatlon and the induction

hypothesis to obtain (B). Namely, to define Mj* 1» letfirst M;_ def UM, : v <nj)

and g; o U{gf) : v < n;}, which is well defined by the induction hypothesis.
Hence g; : M; — Mj <x M* is a <g-embedding, as is id : M/ — M,,. Using
amalgamation, we can find M 41 € K and <g-embeddings f : M* — M]*H
and gy, : My, > M} T+ such that fogji=gn I M} By Ax 0 of Def1n1t10n 19,

without loss of generahty we have f = id. By Ax VI of the same Definition, we

can also assume that ||M;‘+1|| < k.Now let M*[T | i*] def U, M*

. j<j*
i* alimit. M*[T] =, _» M*[T | il].
*116

Observation 117. With the notation of Claim 116, if p is a branch of 7, then M =
(My : n €T & n < p)isa=<g-increasing chain of K. Hence U M is the <j-lub
of M, and so | J M is <x-embeddable into M*[T].

Definition 118. For a strong A-approximation family K., we say that it is work-
able iff for every I' € K _,[Kyp] such that M € ' = |M| C Ev, for all
81 <& € Sﬁ the following holds:

Suppose that for | € {1, 2} we are given (M, N;) such that

(i) M; €T,

(i) M; <K‘i N; € Kap,

(iii) |Ni| N {Zﬂ B <ty =M
(iv) N1]| C 82,

(v) N1 [81=Na2 [,
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(vi) Some h is a lawful K .p-isomorphism from N1 | T(81) onto N2 | 1(82) mapping
M onto M»,
(vii) h | (N1 [ 81) is the identity.

Then there are M € I" and N € K, with M < N, and g for | € {1, 2} such that
My <M <Nandgisa §Kap-embedding of Ny into N, with g; | M; = idy,. In
addition, IN|N {28 : B < AT} = |M|and g | (N; | &) is fixed.

Note 119. For those familiar with definitions in [Sh 457], we emphasize that smooth-
ness was assumed throughout. That is, our definition of Kjp is less general than
the one in [Sh 457], and any strong A-approximation family in the sense of our
Definition 17 automatically satisfies the condition which in [Sh 457] was called
smoothness.

2. Universals in A*.

Definition 21. [Sh 546] Suppose that A > Rq is a cardinal and ¢ < A a limit
ordinal. A forcing notion Q satisfies x5 iff player I has a winning strategy in the
following game *5[Q]:

Moves: The play lasts ¢ moves. For { < &, the {-th move is described by:

Player I: If ¢ # 0, I chooses (qf 2 i < AT such that qi{ € Qand qf > p? for all
& < ¢, as well as a function fr : AT — AT which is regressive on C¢ N S)):+
for some club C; of VY. If ¢ = 0, we let qf o @o and f; be identically 0.

Player II: Chooses (p’ : i < A%) such that qf < pf e Qforalli < AT

1

The Outcome: Player I wins iff:
For some club E of AT, foranyi < j € EN Sﬂ,

/\f;(i):f;(j) — [{p;: ¢ <g}U{p§ . ¢ < &} has an upper bound in Q).

C<e

We say that E C m{<s Cy is a witness that I won.
(2) A winning strategy for Lin +5[Q] is a function St= (St, St*) such that in any

play
(tgf s i <2y footpf ri <2 ¢ <)
in which we have for all ¢, i
af =St () j <2 g <o) fo=se(py i <ah g <),
I wins.

i.e. a winning strategy for I depends only on the moves of Il and f; and C; can be defined from (( pi i<ty

§<¢).
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Fact 22. [Sh 546] Suppose that A > Ry is a cardinal satisfying A<* = A, and & < A
a limit ordinal.

(1) If P is a forcing notion satisfying ={, then P satisfies A*-cc.

(2) Suppose that P is the result of an iteration of (< A)-complete forcing satisfying
5. Then P is (< A)-complete and satisfies *; .

Proof of the Fact. (1) Suppose that p = (p; : i < AT) is a sequence of elements
of P, and consider a game of *}[P] in which II plays p as the first move, and I
plays according to a winning strategy. At the end of the game, let E be a club of A™
witnessing that I won, and leti < j bein E N S)’}Jr such that for all { < ¢ we have
that f; (i) = f;(j), which exists as these functions are regressive. We in particular
obtain that p; and p; are compatible in P.

(2) We refer the reader to [Sh 546].

Theorem 23. Suppose that the following are satisfied in a universe Vy of set theory:

(A)Ro <A =r<F <At =24 <22 < < = pu*,

(B) R* is the forcing notion which adds . many Cohen subsets (p} : o < ) to
A1 by conditions of size < A.

(C)T = <At (A1) of Vo, ordered by “being an initial segment”,

(D) If A > Ko, we are given a limit ordinal ¢ < .

. def
Thenin V = VOR* for some P we have

(a) P is a forcing notion of cardinality p,

(b) P is (< M)-complete and AV -cc (and if A > R, P satisfies *i),

(c)In VP we have \<* = ) and 2* = I ",

(do) If ». = Ro, then M A(Ry) holds in V',

(di) If & > Vo, then the following holds in VF: if Q is a (< A)-complete forc-
ing notion of cardinality < k and satisfies %5, and if we are given a family
(Z;:j< AT} of dense subsets of Q, then for some directed G € Q we have
that GNZIj # @ forall j < AT,

(e)In VP ifK = Kap is a workable strong \-approximation family, then we can
find

(Apg=(AP:neT): p<a™™
such that
(i) For every B < ATV and n € T we have Ag c K;‘élg(") is <fc,,-directed,
and also for n < v € T, we have that
AP =M | (-1gi) : M e al),
(ii) For any At -branch p of T and B < AT, we have

Jta? - n <o} e K 4lKap),
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(iii) Forany I' € Kmd[Kap], for some g < ATT we have that My is isomorphi-
cally embeddable into MU N for some At -branch p of T withp € V
i<at Bpi

(for the notation see 114),
HInVP ifK ap IS a workable strong A-approximation family and I~ is an element
of K _4[Kapl such that M € '™ = |M| C BEv, then there is I' € K[ Kyp]
such thatI'” CT.

Once we prove the theorem, we shall be able to draw the following
Conclusion 24. Suppose that V satisfies
NOSK:)\<A<)\+:2A<2)\+§K<M=/¢LK,

and if . > Ko, we are given a limit ordinal ¢ < A. Then there is a cofinality and
cardinality preserving forcing extension V* of V which satisfies

(1) For every abstract elementary class IC for which there is a workable \-approx-
imation family K, which approximates K, and such that LS(K) < A, there are
AT elements {My, : o < AT} of K+ which are jointly universal for K, +,

()W <2h =<2 =2 = p=p~,

(3)(a) In the case .. = Ro: M A(Ry) holds,

(3)(b) In the case A > Ry: if Q is a (< A)-complete forcing notion of cardinality
< k, satisfying %5, and we are given a family {Z; : j < AT} of dense subsets
of O, then for some directed G C Q we have that G N1L; # @ forall j < AT

(4) If K is an abstract elementary class with LS(K) < A and K is a subclass of
ICy+ for which there is a workable strong A-approximation family K., which
approximates K, and such that for every tree T of the form from Claim 116 in
which every M, is the union of < A elements of Kap we have that M*[T] € KT,
then there are )™ elements (Mg, : a < AT} of KT which are jointly universal
for KT.

Remark 25. The informal plan of the proof of the theorem and the conclusion is as

follows. The purpose of forcing with R* is to make 27 = w and add p branches
through 7. Then P will be an iteration of AT blocks of u steps each. Hence

P=(Py Qp:a=<itt g <ith

and for each B8 we have QOp = (Qf, Bf 2 i <u,j < p). Each R’3 will be one of
four possible kinds (three in case A = Rg). Let us first describe the situation when
A > Ro.

At kind 1 coordinates we shall be taking care of the form of Martin’s Axiom
given in (d) of the Theorem. Each kind 2 coordinate B’f *1 takes a workable strong

A-approximation family K,p from VP8 and a family of < u elements of Kap[Kmdl
and introduces a tree of elements of K, indexed by 7, which gives Ag as in
(e)(i)-(ii) of the Theorem. This tree will also have the property that for every I' €
Kop[KmalN V P8 there is a branch p of 7 with p € V and a tree T whose elements

are pairs (N, h) with N € I" and & an embedding from N into M., Aﬁ 10 ordered
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by extension. Then for some B’ € (B, A*™T), there will be a forcing of the third kind
that will introduce a branch through T and so have (e)(iii) of the Theorem.

At the remaining coordinates, for a workable strong A-approximation family K
introduced at some earlier stage, we embed M- for some I'™ € K, into Mr for
some I' € Kq.

If A = Ry, the forcing is easier because we do not need a strong chain condition
in order to be able to iterate. So the kind two coordinates, which satisfy ccc but not
the stronger analogue of it needed if A > R, are simplified and guarantee (e)(i)-(iii)
immediately. This eliminates the need for kind three coordinates.

To get the conclusion for a given KC as in (1), recall from §1 that for every
B < ATT there is a model M; in /C,+ such that for every branch p of 7, the
model read along the branch in the tree indexed by A g, embeds into M;. As Ky
approximates K (see Definition 115), for every M € K, there is '™ € K, (and
of the kind required by the Theorem) such that M embeds into M-. From the
Theorem, there is I' € Kyng such that M- embeds into Mr. This I is in VP for
some B < ATT, and hence some Bﬁ 1 will guarantee that M embeds into M.

The proof of the Conclusion is given after the proof of the Theorem, close to
the end of the section.

Proof of the Theorem. Let R* be as in the statement of the Theorem, and let V =
VR Thenin V we clearly have 8g < A = 2<% while 2* = AT, p g u and the
cardinalities and cofinalities of Vj are preserved.

Let (f : a < w) list the A" -branches of 7 in V.

We make some easy observations:

Note 26. (1) It suffices to prove the conclusion weakened by requiring each Q being
considered in (d)1, to have the set of elements some ordinal < «.

(2) By renaming, each K, considered in the theorem can be assumed to have its
vocabulary included in H(1 ™).

Definition 27. We define P as Py++ in the iteration
P=(Py,Qp:a<rt B<ath),
where
() Pisa (< A)-support iteration.
(B) For each B < A+, in VP8 we have that Qg is Qﬁ in the iteration
0 =(0f Rl :i<pj<m),

where: B
(i) the iteration in QP is made with (< 1)-supports,
(ii) for each j < u one of the following occurs:

Case 1. Bf isa Qf -name of a (< X)-complete forcing notion which satisfies
#5 if L > R, and 15 ccc if A = Rg; and whose set of elements is some ordinal
< K.
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Case 2. For some Pg-name of a workable A-approximation family K fp j abbre-
i P
viated as K, and elements {T'y = 1“{3’/ o< pjof KIK ?  we have that R= @f

B
is defined as follows. We work in V7#*¢i For M € K we let

WM (o y 411 MLy Ay + 1) 8.

Subcase 2A. A = Rq. The elements of R are conditions of the form

p:(up,(M,f: neul),b? (ch: aeb?), (Ny, hl): aebl ech)),

oc L

where

(a)[closure under intersections]u = u? € [T1=% is closed under intersections

(b)neu = M§ e K & |M}| < x-1g(n),

(c)Ifn < v are both in u, then MY = ML | » -1g(n),

(d) [w—closure]n cu&pe w[Mp] = n|Beuy,

(e) b? € [u]=*, cb e [AT1=* for a € bP,

(fla For o € bp L e ck wehavefa [ ¢ € u, NOH e Iy andh,“isa
lawful embedding from NO” into Mp (and hence |N01[7 J € A and

h(NOl,L) <K Mp; “),

(g)a Ifa € b and 1 < 15 € ¢, then Noﬁ“ = N(f,tz [ A-1 andhgitl = hg,tz i
NE,,.

The order in R is given by letting p < q iff

(i) u? < uf,
(ii) for n € u? we have M,’,’ <K Mg,
(iii) bP C b4,
(iv) for a € bP, we have ck < cl,
(v)a for a € bP, 1 € ck we have Noﬁ[ < NO({,L and hi, | Noﬁt =hl..
Subcase 2B. A > Ry. The elements of R are conditions of the form
p =l MP.bP & df ., (N hyg, v)
where
o MP = (M} : neup),
.c£_<c5: a € bP)
odl, =dl, : aebl iech),
e (N, +=(N? .k’ ):Tedl ,aebl iech)
o, o0,V e, T s
and
(a)-(e) from Subcase 2A hold,
(f)B fora € bP, 1 € cg we have d(f,[ e A<,
(h) for @ € bP, 1 € c§ we have f¥ |« € u andfor each Y € di, we have
Np vy €l and ho“T : Np Y Mfo,F is a lawful embedding (and

hencelNLY|C)L landha[T( LY)_ f*fi)’
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(j)ifa € bP and 1| < 13 € ck while Y € df,,, then

hl’

(NoﬁlLT [)\,.Ll,hg’u"r [A-1) = (NP )

a,u, Y

for some Y’ € db,,.
The order in R is given by letting p < q iff (i)-(iv) from Subcase 2A hold and
(v)g fora € bP, 1 € k. e dé’,t we have N;L’T < Ngl - and h(’;’[’T -
hZ’[’Y,for some Y’ € di,.
If G is R-generic, then we let forn € T

Ag’j:{M,f:peG&neup}.

Case 3. If L = R, this case does not occur. If 1 > Ry, then we are given o <
and a Pg-name K = K,p ;j of a workable A-approximation family such that for
some j' < j we have had K, j = Kgp, ; and the forcing Bf, was defined by

Pﬁ*Qf/*B

B B
Case2.InV 7", let G be the generic of Rf, over VPﬁ*~Q.i’ and let R? def

{(N.h): @peG)Eech)@Y edl )N h) = (NL, . hl, )]}
ordered by (N1, h1) < (Na, hp) iff Ny < Ny and hy = hy | Ny.
Case 4. For some Pg * ~Q’7 -names of a workable A-approximation family K =

Iffp’j and amember '™ = rt;,j of K[ K 4p] such that

I- “{IM|: M e~} C[Ev]™”

Py Q)
we have (working in VF# Qf)
R={(M,N): MNeK&M=N|Ev&MeT"}
ordered by
(My, Ni) < (M2, No) iff [M1 < M3 and Ny < N2].

Discussion 28. We now prove a series of Claims which taken together imply the
Theorem. These Claims are formulated for 8 < A™™, j < w and are proved by
induction on B and j. Let us fix 8 < AT and j < p and assume that we have

]
arrived at the induction step for (8, j). We work in vE*2) andlet R = R? .

Claim 29. Suppose R is defined by Case 2 of Definition 27.

(1) If p € R, then for any n € u? and C C u” a chain with | JC = 7, we have
M) =Ml :vec)

(2) Forevery n € T and v € [A*t]<* such that v C A - lg(n), the set

Tow E{peR:neu’ &vc M)

is a dense open subset of R.
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(3) Suppose that p € R is given and that for some n € u” we are given M > M,I,’
with |M| C A -1g(n). Then there is ¢ > p with M} = M.

(4) Suppose that L > ¥p and that p € R, @ < p and (Ny, k1), (N3, hy) are such
that for some (1, &, € c§ and Y; € df,, we have

(N1, hi) = (NJ, |, ) forl e {1,2},

Oltl T

while
hi [ (N1 N N2) =ha [ (N1 N N).
Then

D={g=p: FecH3AY ed! )/\Ng”r NGy ey 200 1)
1e{1,2}

is dense above p.
(5) Suppose that A > 8o and & < w. Then for every N € I'y, the setof all p € R
such that for some ¢, Y we have N(ZL’T > N is dense.

Proof of the Claim. (1) Obvious.
(2) Clearly J,,, is open, we shall show that it is dense. Given p € R, we shall
define g € 7, , with ¢ > p. We do the definition in several steps.
StepI.LetudgupU{n}U{nﬁv v eul}.

For o0 € u we define M, as follows. If for some v € u? we have o < v, then

let M, def M, | (A-1g(o)). Once this has been done, we have 0 = n ¢ u” and we
let

,7difU{M rTteu & T dnl

It has to be checked that this definition is valid, in particular that M, is well defined
for o for which there are v # v, both in u” with o < vy N vy. As u? is closed

under intersections, we have in this case that v def v Ny isin u? and
MP T (- 1gw) = MP =M T (k- 1g(v)),

and hence M,; is well defined. Observe also that u is closed under intersections and
that

odteu = My =M [ (}-1g(0)),

while clearly 1 € u. Also note that if n € u” we have u = u” and M, = MZ for
o € u.

Step II. For o € u, we find M, with My >k, My and v N A -lg(o) C M|,
while |M/ | C 1-1g(o) and such that foro < 7 € u we have M, = M, | 1-1g(o).
This is done by induction on Ig(c). Coming to o, if o = [ J{t € u : 7 < o}, let

M, &ef UM, : v € u & T < o}. Suppose otherwise and let

- lg@: reu &t aoland M E | JIM,: v eu & T <o),
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Since M, | 8 < M’ by the inductive assumptions, by the axiom of end amalgam-
ation in K,, we have that M" and M, are compatible and have a common upper
bound M(/,/ with the property A - 1g(0) 2 |M;| and such that for r € u witht < o,
we have that M, | A -lg(o) = M.. IfvNA-lgo) C |M,|let M, = M,.
Otherwise, let f, be a lawful embedding of M, into M, with f, | 8 = id and
(M\8)N(M,\8) = @, while [M | 2 (vNA-lg(o))\ M,, . Applying amalgamation
to M;, M:,N we can find M(/r as required.

Step II1. Now for o € u let M? < M . Let

uqdéfuu{a [B:oecu& B ewMll

Foro € uf, let M def M. if o € u, and otherwise let MI = Me | (n-1g(0)) for
any T € u witho J 7.
Subcase A. h = Rg. Let

g€ Wl (MY o eud), b, (el aebP), (ND, L) : a bl iech).

Subcase B. A > ¥y. Let

q def W, (M : o eul), bl (] aebl), (d] :aebl tech), (N, ).

It is easily seen that g is as required.

(3) All coordinates of g will be the same as the corresponding coordinates of p,
with the possible exception of u” and (MY : o € u?). Letu = u”. For o € u we
define M > M/ by induction on lg(c). The inductive hypothesis is that if o < 7,
then M = M | A - 1g(o). The proof is similar to that of of Step II of (2). Coming
to o, let  and M’ be defined as there. If o <I 1, then we let M = M | A - 1g(0),
and we have M > ME by the choice of M.

Otherwise, let v = o N n, and hence v € u# and 1g(v) < 1g(o). We have that

MI=M7]r-1g(n) = MP =MP | x-lg(o).

Hence we can find M2 > M? with M2 [A-lg(v) = Ml by end amalgamation.
Once the induction is done, we define u? exactly as in the Step III of (2), and

define M{ for o € u? accordingly.

(4) Let r > p, we shall find ¢ € D with ¢ > r. For some ¢}, ¢5,, Y|, T} we have

N < N;'L/l T and N» < N;,L/Z,Tﬁ’ and similarly for /1, hy. For simplicity of nota-

tion, we assume ¢; = ¢ and Y] = Y; for [ € {1,2}. Let t = max{iy, (2} and let

n=f¥uLetM & M;,, which is well defined. Hence 1 and h are lawful
embeddings of N1 and N, into M’ respectively.

First define a lawful isomorphism go from M’ onto some M; such that for
x € N; we have g(hj(x)) = x for [ € {1, 2}. This is possible because 4 and &,
agree on N1 N N>. Hence we have that Ny € I"'and Ny < M. AsT' € Knyg,
there is a lawful embedding g1 : M| — M> for some M, € I" such that g is the
identity on Nj. Without loss of generality, again as I' € Kpq, we can assume that
|M3| C Ad
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Now let g5 be a lawful isomorphism between M, and M3 suchthat g, | Ny = id
and g>(g1(x)) = x for x € N,. Then N; < M3, so we can find M4 € T and a
lawful embedding g3 : M3 — My over M3. Then N1, No < My4. Without loss of
generality we have |[M4| C X - ¢. Finally, there is a lawful isomorphism g between
My and some M such that g [ N; = h; forl € {1,2}and M’ < M. By (3) we can
find ¢’ > r such that M 9 — M. We shall define g > g’ so that all the coordinates
of g are the same as the corresponding coordinates of ¢/, except that we in addition
choose some

T e\l Ul s, jewMi

andletN T—M4,wh11ehO“Y—gWeletN T—M4[)»-jf0rjew[M4],

and sunllarly for hq .- Then g is as required.
(5) Similar to (4), usmg (3) and (4). %29

Claim 210. (1) If A > R, then R is a < A-complete forcing.

(2) If R was defined by one of the Cases 3-4 or by Case 2 and A = R, then every
increasing sequence in R of length < X has a least upper bound.

(3) Suppose R was defined by Case 2. Then, for every o < u

U 2%, € KnalKapal
y<at

holds in v "#*€7*k} 1n addition. UliMl: M e, _;+ A } =+

If (n; : i <i* <) isa <-increasing sequence of elements of 7,and M; €

B.J P B.J

Ay fori < i*, then |, _;« M; € AG
Proof of the Claim. (1) If R is defined by Case 1, this follows by the definition of
that case. For Cases 3-4 the conclusion follows by (2). We give the proof for Case
2. We deal with the situation A > 8. The other case is trivial and in that case we
actually obtain the existence of lubs.

Suppose that § = {(g; : i < i* < A) is an increasing sequence in R. With-
out loss of generality, i* is a limit ordinal. Let b &ef (Ui <+ b% and for o € b let
o = Ulcd 1 i <i* & a € b} Letu = |J;_;»u’ and for every n € u let

qi
M') = Ui<i*,neu‘1i M’] . )
Let = |i*|,ands0 0 < A.Fora € band ¢ € ¢, T € |J;_; dd', we let

(Nay,0-i+7s B 0i47) = (NJ T hq’t )
if this is defined. Let
dy,={0-i+7Y:i<i"and Ny, g.;+r well defined}.
Let

q=(u,(My:neu),b,(cy: a€b), (dy,: a€b,iecy), (N,
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where (N: h)q = ((No.i, x> haux): Y €dy,,t € cq,a € b). Itis easily seen that
q is an upper bound of all g; (although not a least upper bound, which may not
exist).

(2) The Case 2, Subcase A = Ny is trivial. We distinguish Cases 3 and 4, according
to Definition 27.

Suppose that § = {(g; : i < i* < 1) is an increasing sequence in R. We shall
define the Iub g of g.

Case 3. Let j/ < j,a < p and G be as in the definition of the forcing and let
gi = (N;, h;) and p; € G fori < i* be such that « € b” and for some (; € ch and
Y; € d, we have

(Nis hi) = (NJ' v by )
Without loss of generality, i* is a limit ordinal. As we know by (1) of the induction
hypothesis that R’

j/
i
v ey letn=J{veul: v filandlet M = J{M, : veu’ &v I [}

Letting N = |J; _;« N; and h = | J; _;« h; we obtain that A is a lawful embedding
from N into M. As Iy € K, by the (< A)-closure of I', we obtain N € T['y.
Consider the set D defined by

is (< A)-complete, there is p € G with p > p; foralli < i*.In

lgzp:neu! &M >M & Grec)3BY edl )N, =N &hl, =h}.

B
Note that D € V' #*9/ as all forcings involved are (< X)-closed by the induction
hypothesis.

Subclaim 211. D is dense above p in the forcing Rf,.

Proof of the Subclaim. Let r > p be given. For every v € u” with v < f* we have
M) > MY Henceif n € u” we have M, = (M : v < n} > M.By Claim 29(2)
we can without loss of generality assume that this is the case. Let u¢ = u and for
veul let M = M},

Let ¢ = 1g(n), and hence |M| C X - ¢. Further let cd = ¢, U {t}. Let T be such
that Y ¢ Uz’gt d;,/ and for ¢/ < ¢ with ¢ € ¢ let

(N(Z,L’,T’ hg,l’,T) B (N r A [/’ h r A L/),

We complete the definition of ¢ in the obvious fashion. Hence ¢ > r and g € D.

*211

By the Subclaim it follows that there is ¢ € G N D, and this ¢ witnesses that
(N, h) € R. Obviously, (N, h) is the lub of ((N;, h;) : i < i*).
Case 4. If ((M;, N;) : i < i* < A) is increasing in R then clearly (| J
Uj <i* Nj) is the lub.
(3) We first prove the second statement. So, let (n; : i < i*) be as in the Claim.

M;

i<i*

Without loss of generality, i * is a limit ordinal. Let n = U; <« ni- Fori < i* let
pi € G = GR,s be such that n; € u? and M; = M,f,.i. Let p be an upper bound of
j



Sh:614

On the existence of universal models 921

(pi = i < i*) with p € G, which exists by (1). Now let ¢ € G be such that n € u?
and p < ¢, which exists by Claim 29. Note that we have Ml = Ui<i* M,?l.. Let
now r be defined by " = u” U {n}, and for v € u? we have M| = MP, while
M = Ui<i* M;. We also redefine ¢4, d,,, and (N: h)q to accommodate the fact
that we have shrunk u?, for example by using the corresponding coordinates of p.
This gives us a well defined condition . We now claim that r < g. We only need
to show that M,” < M,? , which follows by Definition 14 (1)(c). As G is generic,
and g € G, wehaver € G.

For the first statement, suppose that M; (i < i* < A) are in UV <t A’;*r and

let y; for i < i* be such that M; € A% Let n; & £ 1y fori < i*. Let

def

n = |UJ; ;= ni- Now proceed as above. This proves that Uy<x f‘;jf isa (< X)-

closed subset of K, and it is equally easy to see that it is directed. To see that
UM - M e U+ Af] } = AT, apply Claim 29, and this of course implies
that (iii) of Definition 17(2) ho]ds

K210

Notation 212. The upper bound g of ¢ that is constructed as in the proof of Claim
210(1) will be called a canonical upper bound (cnub) of g.

Note 213. The same proof given above shows that if R’? is defined by Case 2 of

Pf;*Q *R

Definition 27 and n € 7, then in V ~J we have that A’S 7 is an element of

K [K2 ], where Ky = K&/

Claim 214. If 1 > R, then R satisfies *5.
If A = Rg, then R satisfies ccc.

Proof of the Claim. We distinguish various cases of Definition 27.

Case 1. R is defined by Case 1 of Definition 27. The conclusion follows by the
assumptions.

Case 2. (main case) R = Rf is defined by Case 2 of Definition 27. As Subcase
B is more difficult, we start by it. _

Subcase B. A > Rg. Let K = Kfp’], and let us follow the rest of the nota-
tion of Definition 27 as well. By our assumptions we have |7| = A" and by
Claim 210, the equality (A\*)<* = AT holds. Also, for every j < A* we have that
K% (MeK: |M|C j)has cardinality < A.

We first define several auxiliary functions. Let g§ : 7 — AT be a bijection and
let

gt =2
be a 1-1 function.

Subclaim 215. There is a function g5 : K — A such that for every N1, N, € K
we have

8 (N1) = g5(N2) & B € wINiINw[N2] = Ny [ AB = N2 [ AB.
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Proof of the Subclaim. For N € K define
def
o[N] = {Ay : y e w[N]}U|N],

EINTE min{c <A: B#y €olN] = giB) [ #g () [ ¢h

—  def
En = {g{(B) | EIN]: B € o[N]}.
Note that £[ N] is well defined because gf is 1-1 and |o[N]| < A.
Fora < AT, let g, : a — A be one to one. For N € K let 2 be a model with
universe included in Ey such that the function

B g1 (B) [ §[N]

is an isomorphism from N onto 2. Let <y be a well ordering of Ey such that
B gT(,B) [ £[N]is an isomorphism from (o[ N], <) onto (Ey, <un). Let

RN € (g1 (B) 1 EIN1, g1(») | £IN1, &, (B)) : B < ¥ both in o[ NT).

Notice that (i, j, k1), (i, j, k2) € RN —= ki =k by the choice of £[N]. Let
H* : H(L) — X be one to one, which exists as A<* = A. We define
def -
g5(N) = H*((EIN], En, Ay, <n, RV)).

Clearly g5 is a well defined function from K to A. Let us show that it has the required
properties.

Suppose g5(N1) = g5(N2) and B* € w[Ni] N w[N3]. Firstly, we have that
E[N1] = £[ N3] = & and the functions

fi: Br>gi(B) [ §[Ni]for B € o[N1]

and

2 B> g (B) [ E[N2] for B € o[N2]

are one to one and onto the same set By, = Ey, = E. Furthermore, both f; and
f> are order preserving and <y, =<y,. Hence there is a one to one <-preserving
function g : o[N1] — o[Na] given by g(B) = f3 ' (f1(B))

We claim that for every § € w[N1] N w[N>2] we have g(A8) = AB. Namely
suppose not, say g(Af) = y and AB < y.Then f2(¢(AB)) = f2(y) > f2(Ap), and
hence fi(A8) > f2(AB), which means that g7 (A8) | & >n; g7 (AB) | £, a contra-
diction. A similar contradiction can be obtained by assuming that g(A8) < AB.

If y € N | A8* then g(y) < g(AB*) = AB*. By the definition of g we have
giy) I § = g (g(y)) I & Hence, AB*,g(y) € o[N2] and g(y) < AB*. So
(8T (e() 1 & 8 (AB*) 1 &, gap+(8(¥))) € RN2 = RN As also

(&5 () 1 & 8 (ABY) T £, gap+(¥)) € RN,
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we have that g,g+(g(y)) = gxg*(y) and hence g(y) = y. In particular y € o[N>].
As we have y € Ny, we have gi(y) [ £ € 2y,, and hence g{(8) [ £ = gf(y) |
& =gi(g(y)) | & forsome § € N>. As& = £[N;], wehave that § = g(y) =y, so
y € N2 [ AB™.

This argument shows that Ny | AB* C N [ AB*, and it can be shown similarly
that Ny | AB8* = N, | AB™ as sets and as models. %215

For p € R,let (n(p, i) : i < i(p)) list u? with no repetitions, and let £(p) be
the minimal £ < A such that

(g1 (gomp, ) & i <i(p))

is without repetitions (which exists as g and gj are 1-1 and ((n(p, i) : i <i(p))
is without repetitions). Let

g R— 1

be such that for p, g € R with g5(p) = g5(q) we have

(@) i(p) =i(q),
(b) the mapping defined by sending n(p, i) — n(q, i) preserves

99 ¢

v = D)7 v Ny =7, =0 Ny = )7,

(©) &(p) =§(q),

(d)fori < i(p) wehave g7 (g5(n(p, 1)) [ &(p) = g1 (gx(n(g, 1)) I &(p) (recall
that |*>2| = 1),
(e) fori < i(p) we have g;(M)f(p’i)) = gik(MZw‘i)).

The existence of such a function can be shown by counting.

Subclaim 216. If g5(p) = g5(¢), then the mapping sending n(p, i) to n(q, i) for
i <i(p) =1i(q), is the identity on u?” Nu9.

Proof of the Subclaim. Suppose that n € u” N uf. Let i be such that n = n(p, i).
Letting £ © £(p) = £(q),we have

gi(gom) 1 & =gl (go(n(g.i)) [ €.

By the definition of £ and the fact that n € u?, we must have n(q, i) = 1. %216

Let us also fix a bijection
F:oax™™(AT) —» a7
and let C be a club of A such that for every j € S f N C we have
B<i&ue’(jI™ = F(B.uw) <.

We describe a winning strategy for Iin *}[R]. Given 0 < ¢ < & and suppose that

(g5 o s <2y fo. (pl o s <a®): & <)
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have been played so far and I has played according to the strategy. By Claim 210(1),
we can let player I choose qf as a cnub of pf : & < ¢). Next we describe the

choice of f;. Let C; &' ¢ and define g¢ which to an ordinal j € S){‘+ assigns

(83(}). wiM! 102 i <iGg)).

¢

J
@5
Then let

def At
f;— = (Fog;) r(C{ mS)\ )UOA+\(C{ﬁSi‘+)'

Let us check that this definition is as required. It follows from the choice of C that
each f; is regressive on C¢ N Sfr. Let E C C be aclub of A such that

¢

. . . . . q. .
JeENS) &' <jl = (V¢ <e&)(Vi <i(g}) lwim o 1< 1
j/v

Suppose that j’ < j € EN S} are such that

N £eG) = £ ()

r<e

We define an upper bound to
{pj: ¢ <ehUip): ¢ <e)

As we have q§ +l > p§ forall < eands < AT, and ¢ is a limit ordinal, it suffices
to define an upper bound to

{q§,1§<8}u{q§:§<8}.

We first define ¢; as a cnub of {qf 1 ¢ < e}forl € {j’, j}, and we shall now describe

¢
an upper bound r of g and g ;. Notice that u® = | J,_, ul forl € {j', j}.
Let

f g, . _ )
u S Ui UnNv:neul &veuli}.
Clearly |u| < X and u is closed under intersections. For n € u, let

def . q°
M, = MY | x-1g(n)

foranyl € {j', j}, ¢ <eandv € wil for which n < v.

Subclaim 217. For n € u the model M, is well defined and [M,| € A - 1g(n). For
every [ € {j, j'} for which n € u¥ we have M;' = M,).
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Proof of the Subclaim. Firstly, note that for any n € u we have n < v for some

V€ Ule U §<Su IC Suppose n < vy, vy for some vy, vp € Ul€ 1<e uqlc
fl (z

such that v, € uq’k for k € {1, 2}, and M,,,’1 [ A-lg(n) # M [ A-lg(n). By

taking the larger of ¢1, {2, we may assume that {1 = & = ¢. By the closure under

intersections, we can also assume that [} # [, so without loss of generality we

have I} = j' and [ = j. Let 8 < lg(n) be minimal such that

q[-/ qq
My Th-B#M; [L-p.
C {
By the minimality of 3, We have 8 = y + 1 for some y € w[M ] N w[MU2 1. As
&
J € Ewehavethatw[ ’ 1€ j,soy € w[MUZJ]ﬂj As fr (j) = fr(j'), thereis
a5

veus suchthatforsomez < 1(q )= 1(q ,)wehavevz = 1’](6]/,1) V= n(q )
4 . 4, 7t
and w[MUZ,’] Nj= w[M,,'/ 1N j'. Hence we have g;(Mv" ) = 8§(Mv{)» and as

¢ ¢ ¢ ¢
q. q: q. q: .
y. B € wiM,” 1N w[M,! ], we have M, | A8 = M,} | 8. We have not arrived
at a contradiction yet, as we do not know the relationship between v and vy.

¢

g
As B < lg(n), we have p = v, | ,3 =, | B. Since B € w[M,’ ], we have
p=v | B € uqf and similarly p € u% . Let o be such that p = n(q ’,, 0). By
Subclaim 215 we have p = n(q I 0). Since we have p < v, by the choice of g3,

¢
we have p < v.So p < vy Nv,and as we have vy Nv € uq/’, we obtain

C ¢ ¢ ¢

q/ qJ

M, [0 =M, | Algp) = My | Mlg(p) = Mil | Mlg(p) = Myl | AB.

a contradiction. This proves the first part of the statement. If n € u and [ € {j, j'}
is such that n € u?, then we have M, = M 4 as is clear from the definition. *217

Now we let

urdzequ{w[Mg]: o € u},

and define M for o € u” accordingly, which is done as in Step III of the Proof of
Claim 29(2).

We let b = b% U b?/’ and for & € b we let ¢, = =l Uca Forax € b1 € c],
weletd,, =27 : Y ed/JU2Y +1: T € d;{g} and

‘Ij/ .
(N, a { 2rs gy L,zr) (ND” o h T) while
r q.,
(Ngi2v+10 Paor) = (No“ byl )

We have now completed the proof of Subcase B of Case 2 of the Claim.

Subcase A. A = Ry. We have to prove that R satisfies ccc. Let functions
g5 87> &> and g5 be as in the proof of Subcase B, and let the function F' and
the club C be given as in that proof.
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Suppose that we are given a sequence (gy : § < wi) of conditions in R. Let
E C C be a club of w; such that

q;r

JeSy & <] = (Vi<ilq, /NWIMy,

1< h.
Let g be a function that to an ordinal j € Sé’ é assigns

(83(g), (wIMyl, 1N i <ig))

and let

f=(Fog) ENSHUO, sy

Exactly as in Subcase B, it follows that whenever
./ . w1 ./ .
J'<JE€S NE & f(j)=f())

then letting
u=ul’ UutiU{pnv:neuli, veuli

and forn € u
My = MY |- 1gn)

for any I € {j, j'} for which n € u, we obtain a well defined sequence (M, :
n € u) of elements of K with the property that for any / € {j, j'}, n € u? we have
MI < M,.Let S Sk, N E be stationary such that f(;) is fixed for j € S. We

apply the A-system lemmato {b%/ : j € S}and obtain A € [S]*! and b* € [u]<N0
such that for every j # j' € A we have b%/ N b% = b*. If b* = ¢, then for every
j, j' € A, the condition

(u, (My = n €u), b9 UbY (cl: o b)), (NI, hll) o edb? vecl))

is a common upper bound of g and g; where u, (M, : 1 € u) are defined above.
Suppose that |b*| = n* > 0. Using the A-system lemma n* times if nec-

essary, we can find B € [A]™ and for o € b* a set ¢ € [w1]=N such that
aeb*&j<jeB =

(i) ca’ Nea =ck,

(i) min(cg’ \ ¢&) > max{Ac: ¢ € i),

(iii) min(cl \ ¢*) > max{rc: ¢ € e,

(V)L €t = (Nuk.hodt) = (Nas. hih)

def . 9 q; .
and for k < n} = |ck| letting ¢}, 1x be the k-th element of ¢’ , cli respectively,

we have that Noq[j:, and NZka are isomorphic. Let j/ < j € B and let a € b*.
oLk

qy ; . q;
Let N' =J 4y Noy and N; =J _4; NE  while b/, = U 4y hyiandhj =
J t€cy ’ & ] tecy '

J

Ulecq_/ hg’ .. Then N; and N j’ are isomorphic and /& ; and & ; agree on their intersec-
(*3 N v
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tion, while there are §p < §; < 47 divisible by A such that
Nj [ 80=Nj |8 =NjﬂNj/~

with |N}| C 8y and |Nj| € 8 and n = fi | 62 € u. We also have that

N’,Nj € T'. Then h; is a lawful embedding of N; into M, and 4’; is a lawful

embedding of N ; into M;), by the choice of . Similarly to the proof of Claim 29(4),

we can see that q} and g; are compatible, by finding N € I' with N > Ny, Na,

extending g;, g to enlarge M, and then taking an upper bound of the extensions.
Case 3. Suppose that

((gF i <%, fo), (pfci<a®): & <)

have been played so far. By Claim 210 we can have qf be the lub of (qiS € <)
Let (I, : y < A) list the isomorphism types of elements of K. Let F be a bijection

F : A x K x {h: h alawful function with Dom(h) € [)L+]<)‘} — AT,

Let C be a club of A such that for every j € Sfr N C we have
y <hu€ljI & Dom(h) € [j1™ = F((y,u,h) < j.

Let C; = C and define g; which to an ordinal j € S{r assigns

¢ ¢ ¢ ¢
(type(N?7), N 0 j, h% | (N9 N j)).

Then let f; = (F o g) | (C; N SH) U0, 1\ ¢,nsit- Let E € C beaclub of 2.+
A
such that ;
JEENS & j < j = (V¢ < jHINY| < j).

Let (N/, i) be the lub of{(N"f", hf’f") : ¢ < g}and (N, h) the lub of{(N‘ff' , h‘ff') :
¢ < &}. We shall show that (N, i) and (N, h’) are compatible. As N, N’ € Ty,
clearly they are compatible as elements of K. We need to show that # and 1’ agree
on NNN'.

¢
Suppose not and let ¢ < ¢ be the least such that /; and h’g disagree on N %N

¢

N% -such a ¢ exists by the definition of the lub in the forcing. By the choice of E we
¢ ¢ ¢ ¢

have [N?/'| € J and by the choice of f; we have (N N j, ny ! (N N j)) =

¢ ¢ ¢ ¢ ¢ ¢ ¢
(N% nj, h% | (N% N j)).Hence N%' N N% < j" and h?i" and h%i agree on this
intersection, a contradiction. We can also see that N’ and N are isomorphic.

Now let G be as in the Definition 27 Case 3 and let p’ € G witness that
(N', ') € R, while p € G witnesses that (N, h) € R. Let p™ € G be a common
upper bound of p and p’. By Claim 29(4) it follows that

D={ptt=pt: @ecd HATdl)
++ ++
(N,N' <NJ v &hUW Chl 1))

is dense in the forcing R’ giving rise to G, which suffices.
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Now suppose that we are in Case 4 and that

(o 1< 2)-(o 1 <37 <4

have been played so far in the game *; [R]. This is where we get to use the work-
ability of K. As before, we let player I choose qf as the unique least upper bound
of (pf & <) Let qf = (Mf, Nf). Using A = A<*, we can find a regressive
function f; such thatif i < j in S)):+ are such that f; (i) = f;(j), then

@N; |i= Nf Wi
(b) There is a Kap-lsomorphisrn hf j from Nf onto NE mapping Mf onto M;,
and such that /] i (IN{ | N i) is the identity.

At the end, let C € AT be a club such that for every { < e
i<j&jeC = |N/|C

Suppose now thati < j e cn Sﬁ are such that f; (i) = f,(j) forall ¢ < e.
Forleli, j)let M= J, ., M{ and Ny & |, _, N} .Notice that (M, Ny} € R

andthatforevery{ < & we have <M1 ,Nl ) < (M;, Ny).Also observe that |N;| C j

andthatN; [i = N; [ j.Leth =h; e Ug hgj Thenhlsade-lsomorphlsm

from N; onto N mappmg M; onto M, and such that & [ (JV;| N Q) is the identity.
By the deflmtlon of workability, we can find (M, N) € R which is stronger than
both (M;, N;) and (Mj, Nj).

K214

Claim 218. Suppose that R is given by Case 4 of Definition 27. Then, keeping the

Y.
notation of Def 27, in V#*2i*E) we have

F'={N": 3N = NYGM)[(M,N) € Grl} € Kma[Kapl},

B
. . P, .
where G is R-generic over V'7? Q).

Proof of the Claim. We verify that I" satisfies the required properties (i)-(v) from
Definition 17. As (v) is obvious, we check (i)-(iv). By Claim 210(2)

R is a (< X)-complete forcing,

hence I is (< A)-closed, and so it satisfies (i). Property (ii) follows by genericity.
Given B < A7 such that the requirement of (iii) of Definition 17(2) holds for
B
'™ (I'” comes from the definition of R by Case 4), arguing in v we shall
show that

T (M. NyeR: @y e |NDIB+A=y+Al)
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is dense in R. So let (M, N) € R be given. Let M’ € I'” be > M and such that
for some y with y + A = B+ A we have y € |[M’|. Since N | Ev = M, we can
apply amalgamation to N, M, M’ to find N >k, N with M" < N’. By Remark
15 (3), we can assume that N’ | Ev = M’. Hence (M’, N’y € RN T is as required,
showing (iii).

To show (iv), suppose N € I' and N <k, N " after we have forced by R. As
the forcing with R is (< A)-closed, we have N’ € Vpﬁ*gf and N <k, N’ holds.
Let M be such that (M, N) € Gg.Now observe that by amalgamation and Remark
15(3), the set

{({M,N"y: (@lawful h)[h : N’ — N” embedding over M]}
is dense in R above (M, N). %213

This finishes the inductive proof.

Claim 219. Tt is possible to define the iteration P so that in V? we have

(1) If A > Ry then for every (< A)-complete forcing notion Q which satisfies *§
and has the set of elements some ordinal < « and for every 8 < AT large
enough we have Bﬁ = Q for some j < pu. If A = Ry, the analogous statement
holds with ccc forcing in place of (< A)-complete *; forcing,

(2) For every workable strong A-approximation family K and a family I' = {T'y, :
a < u} of elements of Kpg, and for every B < ATT large enough, there
is j < w such that Rf is given by Case 2 of Definition 27 using K, '™ as
parameters.

(3) If A > Ry, then for every K, T, B, j as in (2), for every o < pu, there is

B’ > B such that R? / is defined by Case 3 of Definition 27 using Iy, and B as
parameters.

(4) For every workable strong A-approximation family K and '™ € K_;[K]such
that ( J{|M| : M € '} C By, for every j large enough there is 8 < AT such

that Rf is defined by Case 4 of Definition 27 using I' ™ as a parameter.

Proof of the Claim. We use the standard bookkeeping. As the forcing is (< A)-
closed, any workable strong A-approximation family K € V* appears at some
stage and does not gain any new members later. Also notice that being in K_; and

- B, AP
Koma is absolute between V¥ and vFio; containing I' for I' C K. %219

*23
This finishes the proof of the Theorem.

Remark 220. Applying the usual proof of the consistency of MA + —CH if we
assume in Theorem 23 that V satisfies

0 <k = 0> <«,

we can drop the assumptions |Q| < « from (d) in the conclusion of Theorem 23.
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Proof of the Conclusion. Let V* & yr , where P is an iteration satisfying the
requirements listed in Claim 219.

(1) Given an abstract elementary class /C in V* such that there is a workable strong
A-approximation family K,, approximating K and such that LS(K) < X and sup-

pose that M € K, +. Let (A g:B< 11T be as in (e) of the conclusion of Theorem

23, for our Kyp. Let ME be as in Claim 116, with M, def U A’,? for n € 7. (Note
that » < v does imply that M,, <g, , M,). We claim that M embeds into M;‘ for
some f.

By the definition of approximation, thereis '™ whichis anelementof K ;[ Kyp],
such that M <x Mpr- and N ¢ ' = |N| € Ev. By Theorem 23(f), there
isI' € Kma[Kap] such that '™ C I, and hence by Observation 113(2), we have
Mp- <x Mr.Let B < AT be such that ', K, € Vg, which is easily seen to
exist. By (e) in the conclusion of Theorem 23 and its proof, there is @ < u such

that Mr is isomorphically embeddable into MU N . By Observation 117, we
fani

<A
have

M <y Mr+ <xc Mr <xx M <k Mj.

Ui<k+ Alj"; N
(2) In addition to what we haye already observed, we need to observe that 2* = uw,
and this is the case because P adds a Cohen subset to A © many times.

(3) Follows from (1) of the Theorem.

(4) This part follows similarly to (1), using the assumptions on K. sk24

Fact 221. Suppose A = A=* > R. Each of the following classes K is an abstract
elementary class for which there is a workable strong A-approximation family
approximating it, and the Lowenheim-Skolem number of /C is < A:

(1) The class of models of 7% , i.e. an indexed family of independent equivalence
relations, with M < N iff M embeds into N,

(2) The class T;, s of triangle free graphs, with the same order as in (1),

(3) The class of models of any simple theory.

[Why? (1) and (2) were proved in [Sh 457], and (3) is proved in [Sh 500].]

3. Consistency of the non-existence of universal normed vector spaces.

Definition 31. Suppose that I is a linear order.
(1) We define a vector space By over Q by

def . .
B = Zaixi a;, €eQ&{i:a ;éO}ﬁmte},
iel
where {x; : i € 1} is a set of variables that serve as a basis for By. The addition
and scalar multiplication is defined in the obvious manner.
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(2) For any I-increasing sequence t € “~ I, we define a functional f; : By — R
by letting

def 1
£OQ ax) = Y In( 1 2) %0
iel I<lg(r)
Let

et (fi: 7€ U "I is I-increasing).

n<w

For x € By we define ||x|| = [1x||; < sup{| f(x)| : f € F}.
Note 32. (1) Functionals f; defined as above are linear.
(2) Forevery x € By, there are only finitely many possible values of f7(x). (Hence,

llxl] = Max{| f(x)| - f € F}.

Claim 33. Suppose that [ and B; are as in Definition 31 and / is infinite. Then B;
is a normed vector space over Q with |By| = ||.

Proof of the Claim. We prove that || — || is a norm on Bj. The triangular inequality
is easily verified. We need to check that for all x € By we have 0 < ||x|| < oo and
[lx]] =0 <= x = 0. The second statement is obvious, by considering sequences
 whose length is 1, and the first follows from Note 32(2). %33

Theorem 34. Suppose that Rg < » = 1<* < AT < p = cf(u) = u*".
Then for some (< \)-complete and T -cc forcing notion P of cardinality u,
we have that P forces

“2* = w and for every normed vector space A over Q of cardinality |A| < p,
there is a normed vector space B over Q of dimension AT (so cardinality 1)
such that there is no vector space embedding h : B — A with the property
that for some ¢ € RT forall x € B

[

%115

C <c” (*)
Proof. We deal with the situation A > R, and the proof for A = Ry is similar but
easier.

Definition 35. (1) We define an iteration

(Po, Qp:a < pu, B <p)

with (< A)-supports such that for all B < | we have that Qg is a Pg-name defined
by

o def {(w,<y): we = & <w is a linear order on w},

ordered by letting (w, <y) < (z, <;) iff w Czand <y = <; [ (W X W).

def
(2)Let P = P,
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Claim 36. (1) For every o < p we have

IFp, “Qa is (< A)-complete and satisfies *3’ .

(2) P is AT-cc, (< A)-complete and IFp “2* = pu”.
B)Fora <

def
1o = 0% Jisw: . 2w) €GoD
is a P, 1-name which is forced to be a linear order on A ™.

Proof of the Claim. (1) The first statement is obvious, we shall prove the second one.
The proof is by induction on «. Given @ < p, by the induction hypothesis we have
in VP« that A<* = A. We work in V f«, and describe the winning strategy of player
I'in the game *?[Qy]. As 1<% = A, we can fix a bijection F which to every triple
(w, <, y), where w € [AT]<* and < is a linear order on w, and y < A7, assigns
an element of 1. We can find a club E of AT such that for every j € S i‘Jr N E and
every relevant triple (w, <, y),

weljl™ &y <j = F(w <,y) <.

Suppose that n < w and
<<‘1{<3 i <AT), fio (pF i <Aty k§n>

have been played so far, and we shall describe how to choose qf“ and f,41. We

let g+ < p!, fori < AT. Suppose that p!' = (w!, <I') € Qq fori < AT. For

j <At lety(j,n) def sup(w;‘ N j). Note that for j € Sf we have y(j, n) < j.
Let C41 def E. Define g+ which to an ordinal j € Sf assigns
W N j, <" @0 )y o).
Then let
def At

Hence f,,1 is regressive on Cy,41 \ {0}.

. i def rdef
At the end of the game, fori < A™ let w! = Up<o wi and <' = U <" Let

n<w —i

C C Ebeaclubsuchthati < j €e C = w' C j.Supposethati < j € CﬁS)’}+
are such that for all n < w we have f,(i) = f,(j). We shall define a condition
p such that p = (z, <;) and z = wi U w/, by amalgamating linear orders. For
x,y € zweletn = n(x,y) be the minimal n such that x, y € w! U w;?, and let
x <; yiff

(i) x,ye w! and x <! y for some [ € {i, j}, or

(i) x € w}' \ w? and y € w;? \ w and for some z € w? Nw! we have x <! zand

7<)y,
(i) y € wl' \ wf; and x € w;? \ w? and (ii) does not hold.

It is easily seen that p is as required.
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(2) That P is AT-cc follows from (1) by the fact that *9 is preserved under
(< A)-support iterations. See [Sh 546]. That IFp “2* = 11" is seen by observing
that every Q, adds a subset to A.

(3) Obvious. %36

Suppose that in V' we have a normed vector space A over Q with [A| < u,
with the universe of A a set of ordinals. Hence for some o < p and a Py-name A
we have that A = Ag. Suppose that h € V¥ is a vector space embedding from By,
into A, satisfying (x) above, for some ¢ € Q. Hence for some p* € P/P, we have
that p* forces over V' the following statement:

“h: B, — Ais anormed vector space embedding satisfying () for ¢.”

Without loss of generality, p* decides the value c of ¢. Let 0 < n* < w be such that
¢ <n*. Lety; fori < AT be the generators of Bj,.Fori < At wefind p; € P/ P,
such that p* < p; and

pi IF “h(x;) = v for some ;.

Let us now work in V%« Let pi(a) = (w;i, <;), for i < AT. Without loss of
generality we have i € w; for all i.

By a A-system argument, noting that A<* = A holds in V', we can find
Y € [A*F]*" such that

(a) for some w* we have that w; Nw; = w*,foralli # j € Y,and <;[ (w* x w*)
is constant,
(b)If i < j are bothin Y, then

sup(w;) < min(w; \ w*), while sup(w*) < min(w; \ w*)
@ YnNnuw*=4¢,
(d) For i < j both in Y, there is an isomorphism %; ; mapping (w;, <;) onto
o

(wj, <;) such that h; ;(i) = j. (Note that i € w; \ w* and j € w; \ w*.)

Observation 37. The series

1
= (+1DIn( +2)

diverges, while the sum

Dingh

(n—l+1)ln(l+2)

is uniformly and strictly bounded by 4.
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Proof of the Observation. The first statement follows by comparison with
/; 100 mdx. The second statement follows from the following estimate:

Zz 1m o m + Xl G R =

[n/2 T Y 1n(1+2) + Zn_ " m =

[n/2 =1 /21 ln3 + Wzn [n/2] } =

m + T (2]+2)(1 + A gy < g mmrry - (L4 In( = [n/21)
ln3 <4

%37

By Observation 37, we can choose m large enough such that
m

1 32
; (T DG 12 =40

=1

Letuschoosei; <---<i, €Y.

Claim 38. We can find ¢’ and ¢” in Qq, both extending all p;, («) for 1 </ < m,
and such that

q' Fo, “li1, ..., im) is increasing in 14"
and
q" ko, “(i1, ... ,in)is decreasing in 1,.”

Proof of the Claim. Notice that forno 1 <!I; <l <m andi € Y do we have that
pi decides the order between i;; and iy, in Iy, by the choice of Y (this is elaborated
below). The proof can proceed by induction on m. The inductive step is as in the
proof of «§’. The only constraint we could have to letting i;, < i, (forg”) orij, < i
(for g”) would be if some z € w* would prevent this, but this does not happen.
For example, if we could not let i, < i, in ¢’ then this would mean that i;, > i,
would have to hold. By the choice of ¥ and since i;, € wi, \ w* and similarly for
i1, this could only be the case if for some z € w* it would hold that ij; >y, 2

while i, Sw;, 2 However, this would contradict item (d) in the choice of Y. %33
2

, def
Backin V" letz = YLy Leta € || X7, 7 vill - Hence

q'IFllzllp, =40,

and so a > 4(n*)?/n* = 4n*. On the other hand,

" 173 99
q" Ik llzll g, <4,

and hence a < 4n™, a contradiction. %34
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