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Abstract. Suppose that λ = λ<λ ≥ ℵ0, and we are considering a theory T . We give a
criterion on T which is sufficient for the consistent existence of λ++ universal models of
T of size λ+ for models of T of size ≤ λ+, and is meaningful when 2λ+

> λ++. In fact,
we work more generally with abstract elementary classes. The criterion for the consistent
existence of universals applies to various well known theories, such as triangle-free graphs
and simple theories.

Having in mind possible applications in analysis, we further observe that for such λ,
for any fixed µ > λ+ regular with µ = µλ+

, it is consistent that 2λ = µ and there is
no normed vector space over Q of size < µ which is universal for normed vector spaces
over Q of dimension λ+ under the notion of embedding h which specifies (a, b) such that
||h(x)||/||x|| ∈ (a, b) for all x.

0. Introduction.

We study the existence of universal models for certain natural theories, which are
not necessarily first order. This paper is self-contained, and it continues Saharon
Shelah’s [Sh 457] and [Sh 500]. An example of a theory to which our results can be
applied is the theory of triangle-free graphs, or any simple theory (in the sense of
[Sh 93]). For T a theory with a fixed notion of an embedding between its models,
we say that a model M∗ of T is universal for models of T (of size λ) if every model
M of T of size λ, embeds into M∗. We similarly define when a family of models
is jointly universal for models of size λ. More generally, we consider universals in
an abstract elementary class, see Definition 19.

Two well known theorems on the existence of universal models for first order
theories T (see [ChKe]) are
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902 M. Džamonja, S. Shelah

1. Under GCH , there is a universal model of T of cardinality λ for every λ > |T |.
2. If 2<λ = λ > |T |, then there is a universal model of T of cardinality λ.

Without the above assumptions, it tends to be hard for a first order theory to have
a universal model, see [Sh 457] for a discussion and further references.

Although the problem of the existence of universal models for first order the-
ories (i.e. elementary classes of all models of such a theory) is the one which has
been studied most extensively, there are of course many natural theories which are
not first order. To approach such questions, we view the problem from the point of
view of abstract elementary classes, which were introduced in [Sh 88] (in §1 we
recall the definitions), and in a more specialized form earlier by Bjarni Jónsson,
see [ChKe]. Such classes will be throughout denoted by K, and if λ is a cardinal,
the family of elements of K which have size λ will be denoted by Kλ.

In [Sh 457] S. Shelah introduced the notion of an approximation family and
studied abstract elementary classes with a “simple” (here called “workable”, to
differentiate them from simple theories in the sense of [Sh 93]) λ-approximation
family. One of the results mentioned in [Sh 457] is that for λ an uncountable car-
dinal satisfying λ = λ<λ, it is consistent that every abstract elementary class K
which has a workable λ-approximation family, has an element of size λ++ which
is universal for the elements of K which have size λ+, i.e. Kλ+ . Although the main
idea of the proof there was correct, there were many incorrect details and omissions
that made the proof and theorem incorrect as stated. In this paper we give a some-
what different proof of this result, and we also deal with λ = ℵ0. Our results give a
precise criterion for a class to be amenable to the theorem about consistency of the
existence of a small family of models in Kλ+ that are universal for Kλ+ . Among
the classes which satisfy this criterion are the class of triangle-free graphs under
embeddings (as shown in [Sh 457]) or in fact the elementary class of models of any
simple theory, as shown in [Sh 500].

A complete definition of a λ-approximation family Kap is given in §1, but let
us try to give an intuitive idea here. The easiest way to look at this is to say that Kap
is a forcing notion whose generic gives an element of Kλ+ . A natural example is to
take a theory T , consider the class of all its models N of size λ+ (with universe a
subset of the ordinals < λ+), and define Kap as the set of all M of size < λ which
are an elementary submodel to some such N , the order being ≺. So, for example,
the union of an elementary chain of elements in Kap is an element of K.

As we wish to use approximation families as forcing notions, we are led to
discuss the closure and the chain condition. Kap is said to be (<λ)-smooth, if every
chain of length < λ has a least upper bound. All λ-approximation families con-
sidered here satisfy this condition. There are indications that such an assumption
is necessary for the universality results we wish to obtain, as if smoothness fails
strongly there are no universals, see [GrSh 174].

As we intend to iterate with (< λ)-supports, our chain condition has to be a
strong version of λ+-cc, so to be preserved under such iterations. The one we use
is ∗ε

λ from [Sh 288], which is also the one used in [Sh 457]. This condition is a
weakening of “stationary λ+-cc”. We recall the definition at the beginning of §2.
The question now becomes which λ-approximation families yield such a chain con-
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On the existence of universal models 903

dition. We call such approximation families workable. This notion is defined in §1.
In [Sh 457] it is shown that triangle free graphs and the theory of an indexed family
of independent equivalence equations have workable λ-approximation families.

In [Sh 500] and elsewhere, S. Shelah expresses the view that the existence of
universal models has relevance to the general problem of classifying unstable the-
ories. With this in mind, we can consider a theory as “simple” if it has a workable
approximation family. In [Sh 93], another meaning of “simplicity” is considered: a
theory is called simple if it does not have the tree property. In [Sh 500] it was shown
that complete simple first order theories of size < λ have workable approximation
families in λ. This can be understood as showing that all simple theories behave
“better” with respect to the universality than the linear orders do, as it is known
by [KjSh 409] that when GCH fails, linear orders can have a universal in only a
“few” cardinals. The hope of finding dividing lines via the existence of universal
models is also realized for some non-simple theories, as it was shown by S. Shelah
in [Sh 457] that some non-simple theories have workable approximation families,
like the triangle-free graphs and the theory of an indexed family of independent
equivalence relations, as simplest prototypes of non-simple theories. In [Sh 500],
S. Shelah introduced a hierarchy NSOPn for 3 ≤ n ≤ ω with the intention of en-
capturing by a formal notion the class of first order theories which behave “nicely”
with respect to having universal models. Our research here continues [Sh 457].

We now give an idea of the proof of the positive consistency results. Details
are explained in §1 and §2. The idea is that through a (< λ)-supports iteration
of (< λ)-complete forcing we obtain the situation under which to every workable
strong λ-approximation family Kap there corresponds a tree of elements of Kap. If
Kap approximates K and K is nice enough, then the models in this tree are organized
so that the entire tree can be amalgamated to a model in Kλ+ . Along the iteration we
also make sure that every element of Kλ+ can be embedded into a model obtained as
the union of one branch of such a tree. There are λ++ trees used for every approx-
imation family, so the universal model obtained has size λ++. Every individual
forcing used in the iteration has ∗ε

λ, but the proof of this for λ > ℵ0 requires us to
introduce an auxiliary step in the forcing.

In §3 we give a consistency result showing that with the same assumptions on
λ+ as above it is consistent that there is no universal normed vector space of size λ+,
even under a rather weak notion of embedding. We note that negative consistency
results relevant to the universality problem tend to be much easier to obtain than
the positive ones, especially as far as the first order theories are concerned.

We finish this introduction by giving more remarks on related results, and some
conventions used throughout the paper.

The pcf theory of S. Shelah has proved to be a useful line of approach to the
negative aspect of the problem of universality. This approach has been extensively
applied by Menachem Kojman and S. Shelah (e.g. to linear orders [KjSh 409]), and
later by each of them separately (M. Kojman on graphs [Kj], S. Shelah on Abelian
groups [Sh 552] e.g). See [Sh 552] for the history and more references. One of the
ideas involved is to use the existence of a club guessing sequence to prove that no
universals exist. A related result of Mirna Džamonja in [Dž1] deals with uniform
Eberlein compacta, and in [Dž2] she shows how the universality axioms presented
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904 M. Džamonja, S. Shelah

in this paper can be applied to that class. Among the positive universality results,
let us quote a paper by Rami Grossberg and S. Shelah [GrSh 174], in which it is
shown that e.g. the class of locally finite groups has a universal model in any strong
limit of cofinality ℵ0 above a compact cardinal. This paper is also the first reference
to the consideration of the universality spectrum as a useful dividing line in model
theory.

Further positive consistency results appear e.g in S. Shelah’s [Sh 100] where
the consistent existence of a universal linear order at ℵ1 with the negation of CH

is shown, and in S. Shelah’s [Sh 175], [Sh 175a] where the consistency of the exis-
tence of a universal graph at λ for which there is κ satisfying κ = κ<κ < λ < 2κ =
cf(2κ), is proved. The latter result was continued by Alan Mekler in [Me], where
[Sh 175] was extended to a larger class of models.

Relating to our negative consistency result, the problem of universality has
been extensively studied in functional analysis, most often for classes of Banach
spaces. Probably the earliest result here is one of Stefan Banach himself in [Ba]
in which he showed that C[0, 1] is isometrically universal for separable Banach
spaces. Another well known result is that of Wiesław Szlenk, showing that there
is no universal separable reflexive Banach space, [Sz]. Jean Bourgain expanded on
these ideas to build a body of work. The combinatorial approach to the problem of
universality in spaces coming from functional analysis is used in Stevo Todorčević’s
[To].

Model theory as an approach to study of Banach spaces has been extensively
used, for example by Jean-Louis Krivine in [Kr] and C. Ward Henson in [He]. See
Jacques Stern’s [St] for an account on the early history of this interaction and [Io1]
for a more recent history. Of the work of this area which is being currently carried
on, we mention a systematic attempt to a classification theory for Banach spaces
by José Iovino, see e.g [Io2], [Io3], which also give historical remarks.

Convention 01. (1) We make the standard assumption that the family of forcing
names that we use is full, i.e. if p � “(∃x)[ϕ(x)]”, then there is a name τ˜ such that
p � “[ϕ(τ˜ )]”.
(2) If κ = cf(κ) < α, we let

Sα
κ

def= {β < α : cf(β) = κ}.
(3) χ is throughout assumed to be a large enough regular cardinal. <∗

χ stands for
a fixed well ordering of the set of all sets hereditarily of size < χ , namely H(χ).
(4) lub stands for the “least upper bound”, i.e. M is the lub of a set M in the order ≤
iff it is its unique least upper bound, which means that M is an upper bound of M
and for every M∗ such that (∀N ∈ M) [N ≤ M∗], we have M ≤ M∗.
(5) For a model M , we use |M| to denote the underlying set of M , and hence ||M||
to denote the cardinality of |M|.

1. Approximation families.

Definition 11. [Sh 457] Given λ an infinite cardinal, and u1, u2 ⊆ λ+.
A function h : u1 → u2 is said to be lawful iff it is 1-1 and for all α ∈ u1 we

have h(α) + λ = α + λ.
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On the existence of universal models 905

Notation 12. (1) For A ⊆ λ+, let

ι(A)
def= min{δ : A ⊆ δ & λ|δ}.

If M is a model, we let ι(M)
def= ι(|M|).

(2) In the following, we shall use the notation M � δ for M � τι(M∩δ) � δ (the
meaning of τ and M will be described in the following definition).

(3) Ev
def= {2β : β < λ+}.

Remark 13. The notion of divisibility of ordinals used here is that λ|δ means that
δ = λ · ξ [not δ = ξ · λ] for some ξ . The intuition behind the definition of a lawful
function is that one regards λ+ as partitioned into blocks of length λ, and then a
function is lawful iff it acts by permuting within each block. Then the function ι(A)

simply measures how far the blocks go that meet A.

Definition 14. [Sh 457] Let λ be an infinite cardinal.

(1) Pair Kap = (Kap, ≤Kap) is a weak λ-approximation family iff for some (not
necessarily strictly) increasing sequence2

τ̄ = 〈τi : i < λ+ & λ|i〉
of finitary vocabularies, each of size ≤ λ we have
(a) Kap is a set partially ordered by ≤Kap , and such that

M ∈ Kap �⇒ M is a τι(M)-model.

(b) If M ∈ Kap, then |M| ∈ [λ+]<λ and M ≤Kap N �⇒ M ⊆ N .
(c) If M ∈ Kap and λ|δ, then M � δ ∈ Kap and M � δ ≤Kap M . Also3,

∅ = M � 0 ∈ Kap. If M, N ∈ Kap and λ|δ, while M ≤Kap N , then
M � δ ≤Kap N � δ.

(2) With Kap as in (1), a function h is said to be a Kap-isomorphism from M to N iff
Dom(h) = M, Rang(h) = N are both in Kap, and h is a τι(M)-isomorphism.

(3) A weak λ-approximation family (Kap, ≤Kap) is said to be a strong λ-approxi-
mation family iff in addition to (a)–(c) above, it satisfies:
(d) [Union] Suppose that i∗ < λ.

If M̄ = 〈Mi : i < i∗〉 is a ≤Kap -increasing sequence in Kap, then we have
that

⋃
i<i∗ Mi is an element of Kap, and it is the ≤Kap -lub of M̄ .

(e) [End extension/Amalgamation] If 0 < δ < λ+ is divisible by λ, and
M0, M1, M2 ∈ Kap are such that M2 � δ = M0 ≤Kap M1 and |M1| ⊆ δ,
then M1 and M2 have a ≤Kap -upper bound M3 such that M3 � δ = M1.
If M0, M1, M2, δ are as above and M1, M2 ≤ M , then there is M3 ≤ M

such that M3 ≥ M1, M2 and M3 � δ = M1.

2 For the applications mentioned in this paper, in the following definitions readers can
restrict their attention to the situation of τi = τ0 for all i.

3 The following contradicts the usual notation of model theory of forbidding empty mod-
els, as in such a situation we cannot interpret individual constants. However, the meaning of
∅ we use is clear.
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906 M. Džamonja, S. Shelah

(f) [Local Cardinality] For α < λ+, the set {M ∈ Kap : |M| ⊆ α} has
cardinality ≤ λ.

(g) [Uniformity] For M1, M2 ∈ Kap, we call h : M1 → M2 a lawful isomor-
phism iff h is a lawful function and a Kap-isomorphism. We demand
(α) if M ∈ Kap and h is a lawful mapping from |M| onto some u ⊆ λ+,

then for some M ′ ∈ Kap we have that |M ′| = u and h is a lawful
τι|M|-isomorphism from M onto M ′.

(β) lawful Kap-isomorphisms preserve ≤Kap .
(h) [Density] For every β in λ+, and M ∈ Kap, there is M ′ ∈ Kap such that

M ≤Kap M ′ and β ∈ |M ′|.
(i) [Amalgamation] Assume Ml ∈ Kap for l < 3 and M0 ≤Kap Ml for l = 1, 2.

Then for some lawful function f and M ∈ Kap, we have M1 ≤Kap M ,
the domain of f is M2, the restriction f � |M0| is the identity, and f is a
≤Kap -embedding of M2 into M , i.e. f (M2) ≤Kap M . If M1 ∩M2 = M0, we
can assume that f = id.

Remark 15. (1) There is no contradiction concerning vocabularies in (g)(α) of Def-
inition 14(3): if Kap is a weak λ-approximation family, while M ∈ Kap and h is a
lawful mapping from |M| onto some u, then ι(u) = ι(|M|) (so saying that h gives
rise to a Kap-isomorphism makes sense).

[Why? Letting δ
def= sup(u), if γ < δ, we can find α ∈ |M| such that h(α) ∈

(γ, δ). Hence

γ < γ + λ ≤ h(α) + λ = α + λ < sup(|M|).
So, δ ≤ sup(|M|), and the other side of the inequality is shown similarly.]
(2) If M̄ = 〈Mi : i < i∗〉 is a ≤Kap -increasing sequence, and λ|δ, then 〈Mi � δ :
i < i∗〉 is ≤Kap -increasing, by Definition 14(1)(c), and if i∗ < λ,

⋃

i<i∗
(Mi � δ) = (

⋃

i<i∗
Mi) � δ

is the ≤Kap -lub of 〈Mi � δ : i < i∗〉, by (3)(d) in Definition 14.
(3) Suppose Ml for l < 3 are as in Definition 14(3)(i) (amalgamation). Then we can
without loss of generality assume that M � Ev = M1 � Ev, as clearly there is a law-
ful mapping g : M → M∗ extending idM1 for some M∗ with M∗ � Ev = M1 � Ev.
(4) Suppose that M0, M1 and M2 are as in Definition 14(3)(e) (end extension/amal-
gamation). Then we can assume M3 ⊆ ι(M2), as by Definition 14(1)(c) we can
replace M3 by M3 � ι(M2).

Notation 16. Suppose that Kap is a weak λ-approximation family and τ̄ is a se-
quence of vocabularies as in Definition 14(1)(a). We say that Kap is written in
τ̄ .

Definition 17. [Sh 457]

(1) Let (Kap, ≤Kap) be a weak λ-approximation family and � ⊆ Kap. We say that
� is (< λ)-closed iff for every ≤Kap -increasing chain of size < λ of elements
of �, the lub of the chain is in �.
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(2) Suppose that (Kap, ≤Kap) is a weak λ-approximation family. We let

K−
md = K−

md[Kap]
def=






� :

(i) � is a (< λ)-closed subset of Kap,

(ii) � is ≤Kap -directed,

(iii) for cofinally many β < λ+ we have
(∃M ∈ �)(∃γ ∈ |M|)ι(γ ) = ι(β)

(e.g.γ = β)






.

We let Kmd = Kmd[Kap]
def=






� ∈ K−
md :

(iv) (M ∈ � & M ≤Kap M1) �⇒
(∃M2 ∈ �)(∃h lawful)[h : M1 → M2

embedding over M]
(v) M ∈ � & N ≤ M �⇒ N ∈ �






.

(3) If Kap is as above and α < λ+, we define K−
md[Kα

ap] as the set of � ⊆ Kap such
that
(a) M ∈ � �⇒ |M| ⊆ α,
(b) � satisfies (i) –(ii) from (2) above.

Similarly for Kmd[Kα
ap].

Claim 18. Suppose that � ∈ Kmd[Kap], while N ∈ � and h : N → M is a lawful
embedding. Then there is N ′ ∈ � and a lawful embedding g : M → N ′ such that
for x ∈ N we have g(h(x)) = x.

Proof of the Claim. There is a lawful isomorphism f : M → M ′ for some M ′ ≥ N

such that f (h(x)) = x for all x ∈ N . Then by (iv) in the definition of Kmd, there
is N ′ ∈ � and a lawful embedding g′ : M ′ → N ′ such that g′ � N = idN .

Let g : M → N ′ be given by letting g(x) = g′(f (x)), so g is a lawful
embedding and for x ∈ N we have g(h(x)) = g′(f (h(x)) = g′(x) = x. �18

Definition 19. (1) K = (K, ≤K) is an abstract elementary class iff K is a class of
models of some fixed vocabulary τ = τK and ≤K=≤K is a two place relation on
K , satisfying the following axioms:

Ax 0: If M ∈ K , then all τ -models isomorphic to M are also in K . The relation
≤K is preserved under isomorphisms,

Ax I: If M ≤K N , then M is a submodel of N ,
Ax II: ≤K is a partial order on K ,
Ax III, IV: The union of a ≤K -increasing continuous chain M̄ of elements of K is

an element of K , and the lub of M̄ under ≤K ,
Ax V: If Ml ≤K N for l ∈ {0, 1} and M0 is a submodel of M1, then M0 ≤K M1,
Ax VI: There is a cardinal κ such that for every M ∈ K and A ⊆ |M|, there is

N ≤K M such that A ⊆ |N | and ||N || ≤ κ · (|A| + 1). The least such κ is
denoted by LS(K) and called the Löwenheim-Skolem number of K.
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(2) If λ is a cardinal and K an abstract elementary class, we denote by Kλ the
family of all elements of K whose cardinality is λ.
(3) For K an abstract elementary class, and λ a cardinal, we say that Kλ has a
universal iff there is M∗ ∈ Kλ such that for all M ∈ Kλ we have that some M ′
which is isomorphic to M satisfies M ′ ≤K M∗. Such M∗ is called universal for
Kλ.
(4) Suppose that K is an abstract elementary class. We shall say that a member M

of K is ≤K-embeddable in a member N of K iff there is an isomorphism between
M and some M ′ ∈ K satisfying M ′ ≤K N .

(a) K is said to have the joint embedding property iff for any M1, M2 ∈ K, there
is N ∈ K such that M1, M2 are ≤K-embeddable into N .

(b) K is said to have amalgamation iff for all M0, M1, M2 ∈ K and ≤K-embed-
dings gl : M0 → Ml for l ∈ {1, 2}, there is N ∈ K and ≤K-embeddings
fl : Ml → N such that f1 ◦ g1 = f2 ◦ g2.

Similar definitions are made to describe when Kλ has the joint embedding property
or amalgamation.

Convention 110. We shall only work with abstract elementary classes which have
the joint embedding property and amalgamation.

Note 111. The following notes are not hard and the proofs are to be found in [Sh 88].
We include them here for the reader’s convenience.
(1) Suppose that K is an abstract elementary class. If M̄ = 〈Mi : i < δ〉 is a
≤K-increasing chain (not necessarily continuous), then

⋃
i<δ Mi is the ≤K-lub of

M̄ .
[Why? Prove this by induction on δ. The nontrivial case is when δ is a limit.

Define for i < δ a model Ni to be Mi if i is non-limit, and
⋃

j<i Mj otherwise.

Now N̄ = 〈Ni : i < δ〉 is increasing continuous and
⋃

i<δ Ni = ⋃
i<δ Mi is the

lub of N̄ , hence of M̄ .]
(2) If K is an abstract elementary class, K is closed under unions of ≤K-directed
subsets, and the union of a ≤K-directed subset of K is the ≤K-lub of it.

[Why? By induction on κ , we prove that for any D ⊆ K which is ≤K-directed
and has size κ , the ≤K-lub of D is

⋃
D. For κ ≤ ℵ0, this is clear. If κ is a

limit > ℵ0, let 〈κα : α < cf(κ)〉 be cofinal increasing to κ , each κα regular, and
D = ⋃

α<cf(κ) Dα , where each Dα is ≤K-directed and has size κα , and Dα’s are
⊆-increasing. Now apply the induction hypothesis and (1). If κ = λ+, then we can
find 〈Dα : α < λ+〉 increasing to D, each ≤K-directed and of size ≤ λ.]

Definition 112. Suppose that K is an abstract elementary class with τK = τ , and
Kap is a weak [strong] λ-approximation family written in

〈τi : i < λ+ & λ|i〉,
such that

(1) For all i, we have τ ⊆ τi ,
(2) M ∈ Kap �⇒ M � τ ∈ K,
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On the existence of universal models 909

(3) M ≤Kap N �⇒ M � τ ≤K N � τ and
(4) For every M ∈ K with ||M|| < λ there is N ∈ Kap such that

M is ≤K -embeddable into N � τ.

We say that Kap tends to [strongly] λ-approximate K.
We may just say “Kap tends to approximate K” if the rest is clear from the

context.

Observation 113. Suppose that Kap is a strong λ-approximation family which tends
to approximate K and � ∈ K−

md. Then

(1) M� defined by letting

M�
def=

⋃

M∈�

M � τ

is an element of K and for every M ∈ � we have M � τ ≤K M� , and in fact
M� is the ≤K-lub of {M � τ : M ∈ �}.

(2) For every �, �∗ ∈ K−
md[Kap] such that � ⊆ �∗, we have M� ≤K M�∗ .

[Why? (1) As {M � τ : M ∈ �} is ≤K-directed.
(2) By (1) and Note 111(2).]

Notation 114. Suppose that an approximation family Kap tends to approximate K,
while � ∈ K−

md. If we write M� , we always mean the model obtained from � as in
Observation 113.

Definition 115. Let Kap be a strong λ-approximation family which tends to λ-
approximate K and let K+ be a subclass of Kλ+ . Assume

(∗) For every M∗ ∈ K+, there is � ∈ K−
md[Kap] with {|M| : M ∈ �} a club of

[Ev]<λ such that for some M ′ isomorphic to M∗, we have M ′ ≤K M� .

Then we say that Kap approximates K+.

Claim 116. Suppose that

(1) λ ≤ κ ,
(2) K is an abstract elementary class,
(3) LS(K) ≤ κ and Kκ has amalgamation,
(4) T ⊆ <λ+

(λ+) ordered by � (i.e. being an initial segment) is a tree with each
level of size ≤ λ+,

(5) For η ∈ T we have Mη ∈ K, so that

η � ν �⇒ Mη ≤K Mν,

(6) η ∈ T �⇒ ||Mη|| = κ .
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910 M. Džamonja, S. Shelah

Then there are M∗ = M∗[T ] ∈ K and 〈gη : η ∈ T 〉 such that

(A) For all η ∈ T we have that gη is a K-embedding from Mη into M∗,
(B) η ≤ ν �⇒ gη ⊆ gν ,
(C) ||M∗|| ≤ κ · λ+.

(The intended use of this claim is when κ = λ.)

Proof of the Claim. For i∗ ≤ λ+, let T � i∗ def= T ∩ <i∗λ+.
By induction on i∗ ≤ the height of T , we prove that M∗[T � i∗] and 〈gi∗

η : η ∈
T � i∗〉 can be defined to satisfy (A)-(C) with T � i∗ in place of T and M∗[T � i]
in place of M∗, and so that

i ≤ i∗ �⇒ M∗[T � i] ≤K M∗[T � i∗],

[η ∈ T � i & i ≤ i∗] �⇒ gi
η ≤ gi∗

η .

i∗ = 0. Trivial.
i∗ = i + 1. Let levi (T ) = {ηj : j < j∗ ≤ λ+}. For simplicity in notation we

assume that j∗ is a limit > 0, the other cases are similar. By induction on j we build
〈M∗

j : j < j∗〉 so that M∗
0 = M∗[T � i] and Mηj

, M∗
j ≤K M∗

j+1, while ||M∗
j || =

κ , and M∗
δ = ⋃

j<δ M∗
j for δ a limit. We use amalgamation and the induction

hypothesis to obtain (B). Namely, to define M∗
j+1, let first M ′

j

def= ⋃{Mν : ν � ηj }
and gj

def= ∪{gi
ν : ν � ηj }, which is well defined by the induction hypothesis.

Hence gj : M ′
j → M∗

0 ≤K M∗
j is a ≤K-embedding, as is id : M ′

j → Mηj
. Using

amalgamation, we can find M∗
j+1 ∈ K and ≤K-embeddings f : M∗

j → M∗
j+1

and gηj
: Mηj

→ M∗
j+1 such that f ◦ gj = gηj

� M ′
j . By Ax 0 of Definition 19,

without loss of generality we have f = id. By Ax VI of the same Definition, we

can also assume that ||M∗
j+1|| ≤ κ . Now let M∗[T � i∗]

def= ⋃
j<j∗ M∗

j .
i∗ a limit. M∗[T ] = ⋃

i<i∗ M∗[T � i].
�116

Observation 117. With the notation of Claim 116, if ρ is a branch of T , then M̄ =
〈Mη : η ∈ T & η � ρ〉 is a ≤K-increasing chain of K. Hence

⋃
M̄ is the ≤K-lub

of M̄ , and so
⋃

M̄ is ≤K-embeddable into M∗[T ].

Definition 118. For a strong λ-approximation family Kap we say that it is work-
able iff for every � ∈ K−

md[Kap] such that M ∈ � �⇒ |M| ⊆ Ev, for all

δ1 < δ2 ∈ Sλ+
λ the following holds:

Suppose that for l ∈ {1, 2} we are given (Ml, Nl) such that

(i) Ml ∈ �,
(ii) Ml ≤Kap Nl ∈ Kap,
(iii) |Nl | ∩ {2β : β < λ+} = |Ml |,
(iv) |N1| ⊆ δ2,
(v) N1 � δ1 = N2 � δ2,
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(vi) Some h is a lawful Kap-isomorphism from N1 � τ(δ1) onto N2 � τ(δ2) mapping
M1 onto M2,

(vii) h � (N1 � δ1) is the identity.

Then there are M ∈ � and N ∈ Kap with M ≤ N , and gl for l ∈ {1, 2} such that
Ml ≤ M ≤ N and gl is a ≤Kap -embedding of Nl into N , with gl � Ml = idMl

. In
addition, |N | ∩ {2β : β < λ+} = |M| and gl � (Nl � δl) is fixed.

Note 119. For those familiar with definitions in [Sh 457], we emphasize that smooth-
ness was assumed throughout. That is, our definition of Kap is less general than
the one in [Sh 457], and any strong λ-approximation family in the sense of our
Definition 17 automatically satisfies the condition which in [Sh 457] was called
smoothness.

2. Universals in λ+.

Definition 21. [Sh 546] Suppose that λ > ℵ0 is a cardinal and ε < λ a limit
ordinal. A forcing notion Q satisfies ∗ε

λ iff player I has a winning strategy in the
following game ∗ε

λ[Q]:
Moves: The play lasts ε moves. For ζ < ε, the ζ -th move is described by:

Player I: If ζ �= 0, I chooses 〈qζ
i : i < λ+〉 such that q

ζ
i ∈ Q and q

ζ
i ≥ p

ξ
i for all

ξ < ζ , as well as a function fζ : λ+ → λ+ which is regressive on Cζ ∩ Sλ+
λ

for some club Cζ of λ+. If ζ = 0, we let q
ζ
i

def= ∅Q and fζ be identically 0.

Player II: Chooses 〈pζ
i : i < λ+〉 such that q

ζ
i ≤ p

ζ
i ∈ Q for all i < λ+.

The Outcome: Player I wins iff:
For some club E of λ+, for any i < j ∈ E ∩ Sλ+

λ ,

∧

ζ<ε

fζ (i) = fζ (j) �⇒ [{pζ
i : ζ < ε} ∪ {pζ

j : ζ < ε} has an upper bound in Q].

We say that E ⊆ ⋂
ζ<ε Cζ is a witness that I won.

(2) A winning strategy for I in ∗ε
λ[Q] is a function St= (St∗, St∗) such that in any

play

〈
〈qζ

i : i < λ+〉, fζ , 〈pζ
i : i < λ+〉 : ζ < ε

〉

in which we have for all ζ, i

q
ζ
i = St∗(i,

〈
〈pξ

j : j < λ+〉 : ξ < ζ
〉
), fζ = St∗(

〈
〈pξ

j : j < λ+〉 : ξ < ζ
〉
),

I wins.
i.e. a winning strategy for I depends only on the moves of II and fζ and Cζ can be defined from 〈〈pξ

j : j < λ+〉 :

ξ < ζ 〉.
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Fact 22. [Sh 546] Suppose that λ > ℵ0 is a cardinal satisfying λ<λ = λ, and ε < λ

a limit ordinal.
(1) If P is a forcing notion satisfying ∗ε

λ, then P satisfies λ+-cc.
(2) Suppose that P is the result of an iteration of (< λ)-complete forcing satisfying
∗ε

λ. Then P is (< λ)-complete and satisfies ∗ε
λ.

Proof of the Fact. (1) Suppose that p̄ = 〈pi : i < λ+〉 is a sequence of elements
of P , and consider a game of ∗ε

λ[P ] in which II plays p̄ as the first move, and I
plays according to a winning strategy. At the end of the game, let E be a club of λ+

witnessing that I won, and let i < j be in E ∩ Sλ+
λ such that for all ζ < ε we have

that fζ (i) = fζ (j), which exists as these functions are regressive. We in particular
obtain that pi and pj are compatible in P .
(2) We refer the reader to [Sh 546].

Theorem 23. Suppose that the following are satisfied in a universe V0 of set theory:

(A) ℵ0 ≤ λ = λ<λ < λ+ = 2λ < 2λ+ ≤ κ < µ = µκ ,
(B) R∗ is the forcing notion which adds µ many Cohen subsets 〈ρ∗

α : α < µ〉 to
λ+ by conditions of size ≤ λ.

(C) T = <λ+
(λ+) of V0, ordered by “being an initial segment”,

(D) If λ > ℵ0, we are given a limit ordinal ε < λ.

Then in V
def= V R∗

0 for some P we have

(a) P is a forcing notion of cardinality µ,
(b) P is (< λ)-complete and λ+-cc (and if λ > ℵ0, P satisfies ∗ε

λ),

(c) In V P we have λ<λ = λ and 2λ = 2λ+ = µ,
(d0) If λ = ℵ0, then MA(ℵ1) holds in V P ,
(d1) If λ > ℵ0, then the following holds in V P : if Q is a (< λ)-complete forc-

ing notion of cardinality < κ and satisfies ∗ε
λ, and if we are given a family

{Ij : j < λ+} of dense subsets of Q, then for some directed G ⊆ Q we have
that G ∩ Ij �= ∅ for all j < λ+,

(e) In V P , if K = Kap is a workable strong λ-approximation family, then we can
find

〈�̄β = 〈�β
η : η ∈ T 〉 : β < λ++〉

such that
(i) For every β < λ++ and η ∈ T we have �

β
η ⊆ K

λ·lg(η)
ap is ≤Kap-directed,

and also for η � ν ∈ T , we have that

�β
η = {M � (λ · lg(η)) : M ∈ �β

ν },

(ii) For any λ+-branch ρ of T and β < λ++, we have

⋃
{�β

η : η � ρ} ∈ K−
md[Kap],
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(iii) For any � ∈ Kmd[Kap], for some β < λ++ we have that M� is isomorphi-
cally embeddable into M⋃

i<λ+ �
β

ρ�i

for some λ+-branch ρ of T with ρ ∈ V

(for the notation see 114),
(f) In V P , if Kap is a workable strong λ-approximation family and �− is an element

of K−
md[Kap] such that M ∈ �− �⇒ |M| ⊆ Ev, then there is � ∈ Kmd[Kap]

such that �− ⊆ �.

Once we prove the theorem, we shall be able to draw the following

Conclusion 24. Suppose that V satisfies

ℵ0 ≤ λ = λ<λ < λ+ = 2λ < 2λ+ ≤ κ < µ = µκ,

and if λ > ℵ0, we are given a limit ordinal ε < λ. Then there is a cofinality and
cardinality preserving forcing extension V ∗ of V which satisfies

(1) For every abstract elementary class K for which there is a workable λ-approx-
imation family Kap which approximates K, and such that LS(K) ≤ λ, there are
λ++ elements {Mα : α < λ++} of Kλ+ which are jointly universal for Kλ+ ,

(2) ℵ0 ≤ λ<λ = λ < 2λ = 2λ+ = µ = µκ ,
(3)(a) In the case λ = ℵ0: MA(ℵ1) holds,
(3)(b) In the case λ > ℵ0: if Q is a (< λ)-complete forcing notion of cardinality

< κ , satisfying ∗ε
λ, and we are given a family {Ij : j < λ+} of dense subsets

of Q, then for some directed G ⊆ Q we have that G ∩ Ij �= ∅ for all j < λ+,
(4) If K is an abstract elementary class with LS(K) ≤ λ and K+ is a subclass of

Kλ+ for which there is a workable strong λ-approximation family Kap which
approximates K+, and such that for every tree T of the form from Claim 116 in
which every Mη is the union of ≤ λ elements of Kap we have that M∗[T ] ∈ K+,
then there are λ++ elements {Mα : α < λ++} of K+ which are jointly universal
for K+.

Remark 25. The informal plan of the proof of the theorem and the conclusion is as
follows. The purpose of forcing with R∗ is to make 2λ+ = µ and add µ branches
through T . Then P will be an iteration of λ++ blocks of µ steps each. Hence

P = 〈Pα, Q
˜ β : α ≤ λ++, β < λ++〉

and for each β we have Q
˜ β = 〈Qβ

i , R˜
β
j : i ≤ µ, j < µ〉. Each R˜

β
j will be one of

four possible kinds (three in case λ = ℵ0). Let us first describe the situation when
λ > ℵ0.

At kind 1 coordinates we shall be taking care of the form of Martin’s Axiom
given in (d) of the Theorem. Each kind 2 coordinate R˜

β+1
j takes a workable strong

λ-approximation family Kap from V Pβ and a family of ≤ µ elements of Kap[Kmd]
and introduces a tree of elements of Kap indexed by T , which gives �̄β as in
(e)(i)-(ii) of the Theorem. This tree will also have the property that for every � ∈
Kap[Kmd]∩V Pβ , there is a branch ρ of T with ρ ∈ V and a tree T whose elements

are pairs (N, h) with N ∈ � and h an embedding from N into M⋃
i<λ+ �

β

ρ�i , ordered
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by extension. Then for some β ′ ∈ (β, λ++), there will be a forcing of the third kind
that will introduce a branch through T and so have (e)(iii) of the Theorem.

At the remaining coordinates, for a workable strong λ-approximation family K

introduced at some earlier stage, we embed M�− for some �− ∈ K−
md into M� for

some � ∈ Kmd.
If λ = ℵ0, the forcing is easier because we do not need a strong chain condition

in order to be able to iterate. So the kind two coordinates, which satisfy ccc but not
the stronger analogue of it needed if λ > ℵ0, are simplified and guarantee (e)(i)-(iii)
immediately. This eliminates the need for kind three coordinates.

To get the conclusion for a given K as in (1), recall from §1 that for every
β < λ++ there is a model M∗

β in Kλ+ such that for every branch ρ of T , the

model read along the branch in the tree indexed by �̄β , embeds into M∗
β . As Kap

approximates K (see Definition 115), for every M ∈ K, there is �− ∈ K−
md (and

of the kind required by the Theorem) such that M embeds into M�− . From the
Theorem, there is � ∈ Kmd such that M�− embeds into M� . This � is in V Pβ for
some β < λ++, and hence some R˜

β+1
j will guarantee that M� embeds into M∗

β .
The proof of the Conclusion is given after the proof of the Theorem, close to

the end of the section.

Proof of the Theorem. Let R∗ be as in the statement of the Theorem, and let V =
V R∗

. Then in V we clearly have ℵ0 ≤ λ = λ<λ, while 2λ = λ+, 2λ+ = µ and the
cardinalities and cofinalities of V0 are preserved.

Let 〈f ∗
α : α < µ〉 list the λ+-branches of T in V .

We make some easy observations:

Note 26. (1) It suffices to prove the conclusion weakened by requiring each Q being
considered in (d)1, to have the set of elements some ordinal < κ .
(2) By renaming, each Kap considered in the theorem can be assumed to have its
vocabulary included in H(λ+).

Definition 27. We define P as Pλ++ in the iteration

P̄ = 〈Pα, Q
˜ β : α ≤ λ++, β < λ++〉,

where

(α) P̄ is a (< λ)-support iteration.
(β) For each β < λ++, in V Pβ we have that Qβ is Q

β
µ in the iteration

Q̄β = 〈Qβ
i , R˜

β
j : i ≤ µ, j < µ〉,

where:
(i) the iteration in Q̄β is made with (< λ)-supports,
(ii) for each j < µ one of the following occurs:

Case 1. R˜
β
j is a Q

β
j -name of a (< λ)-complete forcing notion which satisfies

∗ε
λ if λ > ℵ0, and is ccc if λ = ℵ0; and whose set of elements is some ordinal

< κ .
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Case 2. For some Pβ -name of a workable λ-approximation family K˜
β
ap,j , abbre-

viated as K˜ , and elements {�α = �
β,j
α : α < µ} of KV

Pβ

md , we have that R˜ = R˜
β
j

is defined as follows. We work in V
Pβ∗Q

˜
β
j . For M ∈ K we let

w[M]
def= {γ, γ + 1 : M ∩ [λγ, λ(γ + 1)) �= ∅}.

Subcase 2A. λ = ℵ0. The elements of R are conditions of the form

p = 〈up, 〈Mp
η : η ∈ up〉, bp, 〈cp

α : α ∈ bp〉, 〈(Np
α,ι, h

p
α,ι) : α ∈ bp, ι ∈ cp

α 〉〉,

where
(a)[closure under intersections] u = up ∈ [T ]<λ is closed under intersections
(b) η ∈ u �⇒ M

p
η ∈ K & |Mp

η | ⊆ λ · lg(η),
(c) If η � ν are both in u, then M

p
η = M

p
ν � λ · lg(η),

(d) [w-closure] η ∈ u & β ∈ w[Mp
η ] �⇒ η � β ∈ u,

(e) bp ∈ [µ]<λ, c
p
α ∈ [λ+]<λ for α ∈ bp,

(f)A For α ∈ bp, ι ∈ c
p
α we have f ∗

α � ι ∈ u, N
p
α,ι ∈ �α and h

p
α,ι is a

lawful embedding from N
p
α,ι into M

p

f ∗
α �ι (and hence |Np

α,ι| ⊆ λ · ι and

h(N
p
α,ι) ≤K M

p

f ∗
α �ι),

(g)A If α ∈ bp and ι1 < ι2 ∈ c
p
α , then N

p
α,ι1 = N

p
α,ι2 � λ · ι1 and h

p
α,ι1 = h

p
α,ι2 �

N
p
α,ι1 .

The order in R is given by letting p ≤ q iff

(i) up ⊆ uq ,
(ii) for η ∈ up we have M

p
η ≤K M

q
η ,

(iii) bp ⊆ bq ,
(iv) for α ∈ bp, we have c

p
α ⊆ c

q
α ,

(v)A for α ∈ bp, ι ∈ c
p
α we have N

p
α,ι ≤ N

q
α,ι and h

q
α,ι � N

p
α,ι = h

p
α,ι.

Subcase 2B. λ > ℵ0. The elements of R are conditions of the form

p = 〈up, M̄p, bp, c̄p
α , d̄p

α,ι,
¯(N, h)

p

α,ι,ϒ 〉

where
• M̄p = 〈Mp

η : η ∈ up〉,
• c̄

p
α = 〈cp

α : α ∈ bp〉
• d̄

p
α,ι = 〈dp

α,ι : α ∈ bp, ι ∈ c
p
α 〉,

• ¯(N, h)
p

α,ι,ϒ = 〈(Np
α,ι,ϒ , h

p
α,ι,ϒ) : ϒ ∈ d

p
α,ι, α ∈ bp, ι ∈ c

p
α 〉

and
(a)-(e) from Subcase 2A hold,
(f)B for α ∈ bp, ι ∈ c

p
α we have d

p
α,ι ∈ [λ]<λ,

(h) for α ∈ bp, ι ∈ c
p
α we have f ∗

α � ι ∈ u and for each ϒ ∈ d
p
α,ι we have

N
p
α,ι,ϒ ∈ �α and h

p
α,ι,ϒ : N

p
α,ι,ϒ → M

p

f ∗
α �ι is a lawful embedding (and

hence |Np
α,ι,ϒ | ⊆ λ · i and h

p
α,ι,ϒ(N

p
α,ι,ϒ) ≤ M

p

f ∗
α �i),
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(j) if α ∈ bp and ι1 < ι2 ∈ c
p
α while ϒ ∈ d

p
α,ι2 , then

(N
p
α,ι2,ϒ

� λ · ι1, h
p
α,ι2,ϒ

� λ · ι1) = (N
p

α,ι1,ϒ ′ , h
p

α,ι1,ϒ ′)

for some ϒ ′ ∈ d
p
α,ι1 .

The order in R is given by letting p ≤ q iff (i)-(iv) from Subcase 2A hold and
(v)B for α ∈ bp, ι ∈ c

p
α , ϒ ∈ d

p
α,ι we have N

p
α,ι,ϒ ≤ N

q

α,ι,ϒ ′ and h
p
α,ι,ϒ ⊆

h
q

α,ι,ϒ ′ for some ϒ ′ ∈ d
q
α,ι.

If G is R-generic, then we let for η ∈ T

�β,j
η = {Mp

η : p ∈ G & η ∈ up}.
Case 3. If λ = ℵ0, this case does not occur. If λ > ℵ0, then we are given α < µ

and a Pβ -name K˜ = K˜ ap,j of a workable λ-approximation family such that for

some j ′ < j we have had K˜ ap,j ′ = K˜ ap,j and the forcing R˜
β

j ′ was defined by

Case 2. In V
Pβ∗Q

˜
β

j ′ ∗R˜
β

j ′ , let G be the generic of R
β

j ′ over V
Pβ∗Q

˜
β

j ′ and let R
β
j

def=

{(N, h) : (∃p ∈ G)(∃ι ∈ cp
α )(∃ϒ ∈ dp

α,ι)[(N, h) = (N
p
α,ι,ϒ , h

p
α,ι,ϒ)]}

ordered by (N1, h1) ≤ (N2, h2) iff N1 ≤ N2 and h1 = h2 � N1.

Case 4. For some Pβ ∗ Q
˜

β
j -names of a workable λ-approximation family K˜ =

K˜
β
ap,j and a member �˜

− = �˜
−
β,j of K−

md[K˜ ap] such that

�
Pβ∗Q

˜
β
j

“{|M| : M ∈ �˜
−} ⊆ [Ev]<λ”

we have (working in V Pβ ∗ Q
˜

β
j ),

R = {〈M, N〉 : M, N ∈ K & M = N � Ev & M ∈ �−}

ordered by

〈M1, N1〉 ≤ 〈M2, N2〉 iff [M1 ≤ M2 and N1 ≤ N2].

Discussion 28. We now prove a series of Claims which taken together imply the
Theorem. These Claims are formulated for β < λ++, j < µ and are proved by
induction on β and j . Let us fix β < λ++ and j < µ and assume that we have

arrived at the induction step for (β, j). We work in V
Pβ∗Q

˜
β
j and let R = R

β
j .

Claim 29. Suppose R is defined by Case 2 of Definition 27.
(1) If p ∈ R, then for any η ∈ up and C ⊆ up a chain with

⋃
C = η, we have

M
p
η = ⋃{Mp

ν : ν ∈ C}.
(2) For every η ∈ T and v ∈ [λ+]<λ such that v ⊆ λ · lg(η), the set

Jη,v
def= {p ∈ R : η ∈ up & v ⊆ |Mp

η |}
is a dense open subset of R.
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(3) Suppose that p ∈ R is given and that for some η ∈ up we are given M ≥ M
p
η

with |M| ⊆ λ · lg(η). Then there is q ≥ p with M
q
η = M .

(4) Suppose that λ > ℵ0 and that p ∈ R, α < µ and (N1, h1), (N2, h2) are such
that for some ι1, ι2 ∈ c

p
α and ϒl ∈ d

p
α,ιl we have

(Nl, hl) = (N
p
α,ιl ,ϒl

, h
p
α,ιl ,ϒl

) for l ∈ {1, 2},
while

h1 � (N1 ∩ N2) = h2 � (N1 ∩ N2).

Then

D = {q ≥ p : (∃ι ∈ cq
α)(∃ϒ ∈ dq

α,ι)
∧

l∈{1,2}
N

q
α,ι,ϒ ≥ N

p
α,ιl ,ϒl

, h
q
α,ι,ϒ ⊇ h

p
α,ιl ,ϒl

}

is dense above p.
(5) Suppose that λ > ℵ0 and α < µ. Then for every N ∈ �α , the set of all p ∈ R

such that for some ι, ϒ we have N
p
α,ι,ϒ ≥ N is dense.

Proof of the Claim. (1) Obvious.
(2) Clearly Jη,v is open, we shall show that it is dense. Given p ∈ R, we shall
define q ∈ Jη,v with q ≥ p. We do the definition in several steps.

Step I. Let u
def= up ∪ {η} ∪ {η ∩ ν : ν ∈ up}.

For σ ∈ u we define Mσ as follows. If for some ν ∈ up we have σ � ν, then

let Mσ
def= Mν � (λ · lg(σ )). Once this has been done, we have σ = η /∈ up and we

let

Mη
def=

⋃
{Mτ : τ ∈ u & τ � η}.

It has to be checked that this definition is valid, in particular that Mσ is well defined
for σ for which there are ν1 �= ν2 both in up with σ � ν1 ∩ ν2. As up is closed

under intersections, we have in this case that ν
def= ν1 ∩ ν2 is in up and

Mp
ν1

� (λ · lg(ν)) = Mp
ν = Mp

ν2
� (λ · lg(ν)),

and hence Mσ is well defined. Observe also that u is closed under intersections and
that

σ � τ ∈ u �⇒ Mσ = Mτ � (λ · lg(σ )),

while clearly η ∈ u. Also note that if η ∈ up we have u = up and Mσ = M
p
σ for

σ ∈ u.
Step II. For σ ∈ u, we find M ′

σ with M ′
σ ≥Kap,α Mσ and v ∩ λ · lg(σ ) ⊆ |M ′

σ |,
while |M ′

σ | ⊆ λ · lg(σ ) and such that for σ � τ ∈ u we have M ′
σ = M ′

τ � λ · lg(σ ).
This is done by induction on lg(σ ). Coming to σ , if σ = ⋃{τ ∈ u : τ � σ }, let

M ′
σ

def= ⋃{M ′
τ : τ ∈ u & τ � σ }. Suppose otherwise and let

δ
def=

⋃
{λ · lg(τ ) : τ ∈ u & τ � σ } and M ′ def=

⋃
{M ′

τ : τ ∈ u & τ � σ }.
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Since Mσ � δ ≤ M ′ by the inductive assumptions, by the axiom of end amalgam-
ation in Kap we have that M ′ and Mσ are compatible and have a common upper
bound M

′′
σ with the property λ · lg(σ ) ⊇ |M ′′

σ | and such that for τ ∈ u with τ � σ ,
we have that M

′′
σ � λ · lg(σ ) = M ′

τ . If v ∩ λ · lg(σ ) ⊆ |M ′′
σ | let M

′
σ = M

′′
σ .

Otherwise, let fσ be a lawful embedding of M
′′
σ into M

′′′
σ with fσ � δ = id and

(M
′′′
σ \δ)∩(M

′′
σ \δ) = ∅, while |M ′′′

σ | ⊇ (v∩λ·lg(σ ))\M
′′
σ .Applying amalgamation

to M
′′
σ , M

′′′
σ we can find M

′
σ as required.

Step III. Now for σ ∈ u let M
q
σ

def= M ′
σ . Let

uq def= u ∪ {σ � β : σ ∈ u & β ∈ w[Mq
σ ]}.

For σ ∈ uq , let M
q
σ

def= M ′
σ if σ ∈ u, and otherwise let M

q
σ = M

q
τ � (λ · lg(σ )) for

any τ ∈ u with σ � τ .
Subcase A. λ = ℵ0. Let

q
def= 〈uq, 〈Mq

σ : σ ∈ uq〉, bp, 〈cp
α : α ∈ bp〉, 〈(Np

α,ι, h
p
α,ι) : α ∈ bp, ι ∈ cp

α 〉〉.
Subcase B. λ > ℵ0. Let

q
def= 〈uq, 〈Mq

σ : σ ∈ uq〉, bp, 〈cp
α : α ∈ bp〉, 〈dp

α,ι : α ∈ bp, ι ∈ cp
α 〉, ¯(N, h)

p〉.
It is easily seen that q is as required.
(3) All coordinates of q will be the same as the corresponding coordinates of p,
with the possible exception of up and 〈Mp

σ : σ ∈ up〉. Let u = up. For σ ∈ u we
define M

q
σ ≥ M

p
σ by induction on lg(σ ). The inductive hypothesis is that if σ � η,

then M
q
σ = M � λ · lg(σ ). The proof is similar to that of of Step II of (2). Coming

to σ , let δ and M ′ be defined as there. If σ � η, then we let M
q
σ = M � λ · lg(σ ),

and we have M
q
σ ≥ M

p
σ by the choice of M .

Otherwise, let ν = σ ∩ η, and hence ν ∈ u and lg(ν) < lg(σ ). We have that

Mq
ν = M � λ · lg(η) ≥ Mp

ν = Mp
σ � λ · lg(σ ).

Hence we can find M
q
σ ≥ M

p
σ with M

q
σ � λ · lg(ν) = M

q
ν by end amalgamation.

Once the induction is done, we define uq exactly as in the Step III of (2), and
define M

q
σ for σ ∈ uq accordingly.

(4) Let r ≥ p, we shall find q ∈ D with q ≥ r . For some ι′1, ι
′
2, ϒ

′
1, ϒ

′
2 we have

N1 ≤ Nr
α,ι′1,ϒ

′
1

and N2 ≤ Nr
α,ι′2,ϒ

′
2
, and similarly for h1, h2. For simplicity of nota-

tion, we assume ι′l = ιl and ϒ ′
l = ϒl for l ∈ {1, 2}. Let ι = max{ι1, ι2} and let

η = f ∗
α � ι. Let M ′ def= Mr

η , which is well defined. Hence h1 and h2 are lawful
embeddings of N1 and N2 into M ′ respectively.

First define a lawful isomorphism g0 from M ′ onto some M1 such that for
x ∈ Nl we have g(hl(x)) = x for l ∈ {1, 2}. This is possible because h1 and h2
agree on N1 ∩ N2. Hence we have that N1 ∈ � and N1 ≤ M1. As � ∈ Kmd,
there is a lawful embedding g1 : M1 → M2 for some M2 ∈ � such that g1 is the
identity on N1. Without loss of generality, again as � ∈ Kmd, we can assume that
|M2| ⊆ λι.
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Now let g2 be a lawful isomorphism between M2 and M3 such that g2 � N1 = id
and g2(g1(x)) = x for x ∈ N2. Then N2 ≤ M3, so we can find M4 ∈ � and a
lawful embedding g3 : M3 → M4 over M3. Then N1, N2 ≤ M4. Without loss of
generality we have |M4| ⊆ λ · ι. Finally, there is a lawful isomorphism g between
M4 and some M such that g � Nl = hl for l ∈ {1, 2} and M ′ ≤ M . By (3) we can

find q ′ ≥ r such that M
q ′
η = M . We shall define q ≥ q ′ so that all the coordinates

of q are the same as the corresponding coordinates of q ′, except that we in addition
choose some

ϒ ∈ λ \ (dq ′
α,ι ∪

⋃
{dq

α,j : j ∈ w[M4]}

and let Nq
α,ι,ϒ = M4, while h

q
α,ι,ϒ = g. We let Nq

α,j,ϒ = M4 � λ ·j for j ∈ w[M4],

and similarly for h
q
α,j,ϒ . Then q is as required.

(5) Similar to (4), using (3) and (4). �29

Claim 210. (1) If λ > ℵ0, then R is a < λ-complete forcing.
(2) If R was defined by one of the Cases 3-4 or by Case 2 and λ = ℵ0, then every
increasing sequence in R of length < λ has a least upper bound.
(3) Suppose R was defined by Case 2. Then, for every α < µ

⋃

γ<λ+
�

β,j

f ∗
α �γ ∈ K−

md[Kap,α]

holds in V
Pβ∗Q

˜
β
j ∗R˜

β
j . In addition,

⋃{|M| : M ∈ ⋃
γ<λ+ �

β,j

f ∗
α �γ } = λ+.

If 〈ηi : i < i∗ < λ〉 is a �-increasing sequence of elements of T , and Mi ∈
�

β,j
ηi

for i < i∗, then
⋃

i<i∗ Mi ∈ �
β,j⋃

i<i∗ ηi
.

Proof of the Claim. (1) If R is defined by Case 1, this follows by the definition of
that case. For Cases 3-4 the conclusion follows by (2). We give the proof for Case
2. We deal with the situation λ > ℵ0. The other case is trivial and in that case we
actually obtain the existence of lubs.

Suppose that q̄ = 〈qi : i < i∗ < λ〉 is an increasing sequence in R. With-

out loss of generality, i∗ is a limit ordinal. Let b
def= ⋃

i<i∗ bqi and for α ∈ b let
cα = ⋃{cqi

α : i < i∗ & α ∈ bqi }. Let u = ⋃
i<i∗ uqi and for every η ∈ u let

Mη = ⋃
i<i∗,η∈uqi M

qi
η .

Let θ = |i∗|, and so θ < λ. For α ∈ b and ι ∈ cα , ϒ ∈ ⋃
i<i∗ d

qi
α,ι we let

(Nα,ι,θ ·i+ϒ, hα,ι,θ ·i+ϒ) = (N
qi

α,ι,ϒ , h
qi

α,ι,ϒ )

if this is defined. Let

dα,ι = {θ · i + ϒ : i < i∗ and Nα,ι,θ ·i+ϒ well defined}.
Let

q = 〈u, 〈Mη : η ∈ u〉, b, 〈cα : α ∈ b〉, 〈dα,ι : α ∈ b, ι ∈ cα〉, ¯(N, h)
q〉
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where ¯(N, h)
q = 〈(Nα,ι,ϒ , hα,ι,ϒ) : ϒ ∈ dα,ι, ι ∈ cα, α ∈ b〉. It is easily seen that

q is an upper bound of all qi (although not a least upper bound, which may not
exist).
(2) The Case 2, Subcase λ = ℵ0 is trivial. We distinguish Cases 3 and 4, according
to Definition 27.

Suppose that q̄ = 〈qi : i < i∗ < λ〉 is an increasing sequence in R. We shall
define the lub q of q̄.

Case 3. Let j ′ < j , α < µ and G be as in the definition of the forcing and let
qi = (Ni, hi) and pi ∈ G for i < i∗ be such that α ∈ bp and for some ιi ∈ c

p
α and

ϒi ∈ d
p
α,ι we have

(Ni, hi) = (N
pi

α,ιi ,ϒi
, h

pi

α,ιi ,ϒi
).

Without loss of generality, i∗ is a limit ordinal. As we know by (1) of the induction
hypothesis that Rβ

j ′ is (< λ)-complete, there is p ∈ G with p ≥ pi for all i < i∗. In

V
Pβ∗Q

˜
β

j ′ let η = ⋃{ν ∈ up : ν � f ∗
α } and let M = ⋃{Mν : ν ∈ up & ν � f ∗

α }.
Letting N = ⋃

i<i∗ Ni and h = ⋃
i<i∗ hi we obtain that h is a lawful embedding

from N into M . As �α ∈ Kmd, by the (< λ)-closure of �α we obtain N ∈ �α .
Consider the set D defined by

{q ≥ p : η ∈ uq & Mq
η ≥ M & (∃ι ∈ cq

α)(∃ϒ ∈ dq
α,ι)N

q
α,ι,ϒ = N & hq

α,ι = h}.

Note that D ∈ V
Pβ∗Q

˜
β

j ′ as all forcings involved are (< λ)-closed by the induction
hypothesis.

Subclaim 211. D is dense above p in the forcing R
β

j ′ .

Proof of the Subclaim. Let r ≥ p be given. For every ν ∈ up with ν � f ∗
α we have

Mr
ν ≥ M

p
ν . Hence if η ∈ ur we have Mr

η = ⋃{Mr
ν : ν � η} ≥ M . By Claim 29(2)

we can without loss of generality assume that this is the case. Let uq = u and for
ν ∈ uq let M

q
ν = Mr

ν .
Let ι = lg(η), and hence |M| ⊆ λ · ι. Further let c

q
α = cr

α ∪ {ι}. Let ϒ be such
that ϒ /∈ ⋃

ι′≤ι d
r
α,ι′ and for ι′ ≤ ι with ι′ ∈ c

q
α let

(N
q

α,ι′,ϒ , h
q

α,ι′,ϒ ) = (N � λ · ι′, h � λ · ι′).

We complete the definition of q in the obvious fashion. Hence q ≥ r and q ∈ D.
�211

By the Subclaim it follows that there is q ∈ G ∩ D, and this q witnesses that
(N, h) ∈ R. Obviously, (N, h) is the lub of 〈(Ni, hi) : i < i∗〉.
Case 4. If 〈〈Mi, Ni〉 : i < i∗ < λ〉 is increasing in R then clearly 〈⋃i<i∗ Mi,

∪i<i∗Ni〉 is the lub.
(3) We first prove the second statement. So, let 〈ηi : i < i∗〉 be as in the Claim.

Without loss of generality, i∗ is a limit ordinal. Let η
def= ⋃

i<i∗ ηi . For i < i∗ let
pi ∈ G = G

R
β
j

be such that ηi ∈ upi and Mi = M
pi
ηi

. Let p be an upper bound of
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〈pi : i < i∗〉 with p ∈ G, which exists by (1). Now let q ∈ G be such that η ∈ uq

and p ≤ q, which exists by Claim 29. Note that we have M
q
η = ⋃

i<i∗ M
q
ηi

. Let
now r be defined by ur = up ∪ {η}, and for ν ∈ up we have Mr

ν = M
p
ν , while

Mr
η = ⋃

i<i∗ Mi . We also redefine cα, dα,ι and ¯(N, h)
q

to accommodate the fact
that we have shrunk uq , for example by using the corresponding coordinates of p.
This gives us a well defined condition r . We now claim that r ≤ q. We only need
to show that Mr

η ≤ M
q
η , which follows by Definition 14 (1)(c). As G is generic,

and q ∈ G, we have r ∈ G.
For the first statement, suppose that Mi (i < i∗ < λ) are in

⋃
γ<λ+ �

β,j

f ∗
α �γ and

let γi for i < i∗ be such that Mi ∈ �
β,j

f ∗
α �γ . Let ηi

def= f ∗
α � γi for i < i∗. Let

η
def= ⋃

i<i∗ ηi . Now proceed as above. This proves that
⋃

γ<λ+ �
β,j

f ∗
α �γ is a (< λ)-

closed subset of Kap and it is equally easy to see that it is directed. To see that
⋃{|M| : M ∈ ⋃

i<λ+ �
β,j

f ∗
α �γ } = λ+, apply Claim 29, and this of course implies

that (iii) of Definition 17(2) holds.
�210

Notation 212. The upper bound q of q̄ that is constructed as in the proof of Claim
210(1) will be called a canonical upper bound (cnub) of q̄.

Note 213. The same proof given above shows that if R˜
β
j is defined by Case 2 of

Definition 27 and η ∈ T , then in V
Pβ∗Q

˜
β
j ∗R˜

β
j we have that �

β,j
η is an element of

K−
md[Kλ·lg(η)

ap ], where Kap = K
β,j
ap .

Claim 214. If λ > ℵ0, then R satisfies ∗ε
λ.

If λ = ℵ0, then R satisfies ccc.

Proof of the Claim. We distinguish various cases of Definition 27.
Case 1. R is defined by Case 1 of Definition 27. The conclusion follows by the

assumptions.
Case 2. (main case) R = R

β
j is defined by Case 2 of Definition 27. As Subcase

B is more difficult, we start by it.
Subcase B. λ > ℵ0. Let K = K

β,j
ap , and let us follow the rest of the nota-

tion of Definition 27 as well. By our assumptions we have |T | = λ+ and by
Claim 210, the equality (λ+)<λ = λ+ holds. Also, for every j < λ+ we have that

K � j
def= {M ∈ K : |M| ⊆ j} has cardinality ≤ λ.

We first define several auxiliary functions. Let g∗
0 : T → λ+ be a bijection and

let

g∗
1 : λ+ → λ2

be a 1-1 function.

Subclaim 215. There is a function g∗
2 : K → λ such that for every N1, N2 ∈ K

we have

g∗
2(N1) = g∗

2(N2) & β ∈ w[N1] ∩ w[N2] �⇒ N1 � λβ = N2 � λβ.
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Proof of the Subclaim. For N ∈ K define

o[N ]
def= {λγ : γ ∈ w[N ]} ∪ |N |,

ξ [N ]
def= min{ζ < λ : β �= γ ∈ o[N ] �⇒ g∗

1(β) � ζ �= g∗
1(γ ) � ζ },

�N
def= {g∗

1(β) � ξ [N ] : β ∈ o[N ]}.
Note that ξ [N ] is well defined because g∗

1 is 1-1 and |o[N ]| < λ.
For α < λ+, let gα : α → λ be one to one. For N ∈ K let AN be a model with

universe included in �N such that the function

β �→ g∗
1(β) � ξ [N ]

is an isomorphism from N onto AN . Let <N be a well ordering of �N such that
β �→ g∗

1(β) � ξ [N ] is an isomorphism from (o[N ], <) onto (�N, <N). Let

RN def= {(g∗
1(β) � ξ [N ], g∗

1(γ ) � ξ [N ], gγ (β)) : β < γ both in o[N ]}.
Notice that (i, j, k1), (i, j, k2) ∈ RN �⇒ k1 = k2 by the choice of ξ [N ]. Let
H∗ : H(λ) → λ be one to one, which exists as λ<λ = λ. We define

g∗
2(N)

def= H∗(〈ξ [N ], �N, AN, <N, RN 〉).
Clearly g∗

2 is a well defined function from K to λ. Let us show that it has the required
properties.

Suppose g∗
2(N1) = g∗

2(N2) and β∗ ∈ w[N1] ∩ w[N2]. Firstly, we have that
ξ [N1] = ξ [N2] = ξ and the functions

f1 : β �→ g∗
1(β) � ξ [N1] for β ∈ o[N1]

and

f2 : β �→ g∗
1(β) � ξ [N2] for β ∈ o[N2]

are one to one and onto the same set �N1 = �N2 = �. Furthermore, both f1 and
f2 are order preserving and <N1=<N2 . Hence there is a one to one <-preserving
function g : o[N1] → o[N2] given by g(β) = f −1

2 (f1(β)).
We claim that for every β ∈ w[N1] ∩ w[N2] we have g(λβ) = λβ. Namely

suppose not, say g(λβ) = γ and λβ < γ . Then f2(g(λβ)) = f2(γ ) > f2(λβ), and
hence f1(λβ) > f2(λβ), which means that g∗

1(λβ) � ξ >N1 g∗
1(λβ) � ξ , a contra-

diction. A similar contradiction can be obtained by assuming that g(λβ) < λβ.
If γ ∈ N1 � λβ∗ then g(γ ) < g(λβ∗) = λβ∗. By the definition of g we have

g∗
1(γ ) � ξ = g∗

1(g(γ )) � ξ . Hence, λβ∗, g(γ ) ∈ o[N2] and g(γ ) < λβ∗. So
(g∗

1(g(γ )) � ξ, g∗
1(λβ∗) � ξ, gλβ∗(g(γ ))) ∈ RN2 = RN1 . As also

(g∗
1(γ ) � ξ, g∗

1(λβ∗) � ξ, gλβ∗(γ )) ∈ RN1 ,
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we have that gλβ∗(g(γ )) = gλβ∗(γ ) and hence g(γ ) = γ . In particular γ ∈ o[N2].
As we have γ ∈ N1, we have g∗

1(γ ) � ξ ∈ AN1 , and hence g∗
1(δ) � ξ = g∗

1(γ ) �
ξ = g∗

1(g(γ )) � ξ for some δ ∈ N2. As ξ = ξ [N2], we have that δ = g(γ ) = γ , so
γ ∈ N2 � λβ∗.

This argument shows that N1 � λβ∗ ⊆ N2 � λβ∗, and it can be shown similarly
that N1 � λβ∗ = N2 � λβ∗ as sets and as models. �215

For p ∈ R, let 〈(η(p, i) : i < i(p)〉 list up with no repetitions, and let ξ(p) be
the minimal ξ < λ such that

〈g∗
1(g∗

0(η(p, i))) � ξ : i < i(p)〉
is without repetitions (which exists as g∗

0 and g∗
1 are 1-1 and 〈(η(p, i) : i < i(p)〉

is without repetitions). Let

g∗
3 : R → λ

be such that for p, q ∈ R with g∗
3(p) = g∗

3(q) we have

(a) i(p) = i(q),
(b) the mapping defined by sending η(p, i) �→ η(q, i) preserves

“ν � η”, “¬(ν � η)”, “ν1 ∩ ν2 = ν”, “¬(ν1 ∩ ν2 = ν)”,

(c) ξ(p) = ξ(q),
(d) for i < i(p) we have g∗

1(g∗
0(η(p, i))) � ξ(p) = g∗

1(g∗
0(η(q, i))) � ξ(p) (recall

that |λ>2| = λ),
(e) for i < i(p) we have g∗

2(M
p

η(p,i)) = g∗
2(M

q

η(q,i)).

The existence of such a function can be shown by counting.

Subclaim 216. If g∗
3(p) = g∗

3(q), then the mapping sending η(p, i) to η(q, i) for
i < i(p) = i(q), is the identity on up ∩ uq .

Proof of the Subclaim. Suppose that η ∈ up ∩ uq . Let i be such that η = η(p, i).

Letting ξ
def= ξ(p) = ξ(q),we have

g∗
1(g∗

0(η)) � ξ = g∗
1(g∗

0(η(q, i))) � ξ.

By the definition of ξ and the fact that η ∈ uq , we must have η(q, i) = η. �216

Let us also fix a bijection

F : λ × λ>([λ+]<λ) → λ+

and let C be a club of λ+ such that for every j ∈ Sλ+
λ ∩ C we have

β < λ & u ∈ λ>([j ]<λ) �⇒ F ((β, u)) < j.

We describe a winning strategy for I in ∗ε
λ[R]. Given 0 < ζ < ε and suppose that

〈
(〈qξ

s : s < λ+〉, fξ ), 〈pξ
s : s < λ+〉 : ξ < ζ

〉
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have been played so far and I has played according to the strategy. By Claim 210(1),
we can let player I choose q

ζ
s as a cnub of 〈pξ

s : ξ < ζ 〉. Next we describe the

choice of fζ . Let Cζ
def= C and define gζ which to an ordinal j ∈ Sλ+

λ assigns

(g∗
3(q

ζ
j ), 〈w[M

q
ζ
j

η(q
ζ
j ,i)

] ∩ j : i < i(q
ζ
j )〉).

Then let

fζ
def= (F ◦ gζ ) � (Cζ ∩ Sλ+

λ ) ∪ 0
λ+\(Cζ ∩Sλ+

λ )
.

Let us check that this definition is as required. It follows from the choice of C that
each fζ is regressive on Cζ ∩ Sλ+

λ . Let E ⊆ C be a club of λ+ such that

[j ∈ E ∩ Sλ+
λ & j ′ < j ] �⇒ (∀ζ < ε)(∀i < i(q

ζ

j ′)) [w[M
q

ζ

j ′
η(q

ζ

j ′ ,i)
] ⊆ j ].

Suppose that j ′ < j ∈ E ∩ Sλ+
λ are such that

∧

ζ<ε

fζ (j
′) = fζ (j).

We define an upper bound to

{pζ

j ′ : ζ < ε} ∪ {pζ
j : ζ < ε}.

As we have q
ζ+1
s ≥ p

ζ
s for all ζ < ε and s < λ+, and ε is a limit ordinal, it suffices

to define an upper bound to

{qζ

j ′ : ζ < ε} ∪ {qζ
j : ζ < ε}.

We first define ql as a cnub of {qζ
l : ζ < ε} for l ∈ {j ′, j}, and we shall now describe

an upper bound r of qj ′ and qj . Notice that uql = ⋃
ζ<ε uq

ζ
l for l ∈ {j ′, j}.

Let

u
def= u

qj ′ ∪ uqj ∪ {η ∩ ν : η ∈ u
qj ′ & ν ∈ uqj }.

Clearly |u| < λ and u is closed under intersections. For η ∈ u, let

Mη
def= M

q
ζ
l

ν � λ · lg(η)

for any l ∈ {j ′, j}, ζ < ε and ν ∈ uq
ζ
l for which η � ν.

Subclaim 217. For η ∈ u the model Mη is well defined and |Mη| ⊆ λ · lg(η). For
every l ∈ {j, j ′} for which η ∈ uql we have M

ql
η = Mη.
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Proof of the Subclaim. Firstly, note that for any η ∈ u we have η � ν for some

ν ∈ ⋃
l∈{j ′,j},ζ<ε uq

ζ
l . Suppose η � ν1, ν2 for some ν1, ν2 ∈ ⋃

l∈{j ′,j},ζ<ε uq
ζ
l

such that νk ∈ u
q

ζk
lk for k ∈ {1, 2}, and M

q
ζ1
l1

ν1 � λ · lg(η) �= M
q

ζ2
l2

ν2 � λ · lg(η). By
taking the larger of ζ1, ζ2, we may assume that ζ1 = ζ2 = ζ . By the closure under
intersections, we can also assume that l1 �= l2, so without loss of generality we
have l1 = j ′ and l2 = j . Let β ≤ lg(η) be minimal such that

M
q

ζ

j ′
ν1 � λ · β �= M

q
ζ
j

ν2 � λ · β.

By the minimality of β, we have β = γ + 1 for some γ ∈ w[M
q

ζ

j ′
ν1 ] ∩ w[M

q
ζ
j

ν2 ]. As

j ∈ E we have that w[M
q

ζ

j ′
ν1 ] ⊆ j , so γ ∈ w[M

q
ζ
j

ν2 ] ∩ j . As fζ (j) = fζ (j
′), there is

ν ∈ u
q

ζ

j ′ such that for some i < i(q
ζ
j ) = i(q

ζ

j ′) we have ν2 = η(q
ζ
j , i), ν = η(q

ζ

j ′ , i)

and w[M
q

ζ
j

ν2 ] ∩ j = w[M
q

ζ

j ′
ν ] ∩ j ′. Hence we have g∗

2(M
q

ζ

j ′
ν ) = g∗

2(M
q

ζ
j

ν2 ), and as

γ, β ∈ w[M
q

ζ

j ′
ν ] ∩ w[M

q
ζ
j

ν2 ], we have M
q

ζ

j ′
ν � λβ = M

q
ζ
j

ν2 � λβ. We have not arrived
at a contradiction yet, as we do not know the relationship between ν and ν1.

As β ≤ lg(η), we have ρ
def= ν1 � β = ν2 � β. Since β ∈ w[M

q
ζ

j ′
ν1 ], we have

ρ = ν1 � β ∈ u
q

ζ

j ′ and similarly ρ ∈ u
q

ζ
j . Let o be such that ρ = η(q

ζ

j ′ , o). By

Subclaim 215 we have ρ = η(q
ζ
j , o). Since we have ρ ≤ ν2 by the choice of g∗

3 ,

we have ρ � ν. So ρ � ν1 ∩ ν, and as we have ν1 ∩ ν ∈ u
q

ζ

j ′ , we obtain

M
q

ζ

j ′
ν1 � λβ = M

q
ζ

j ′
ν1 � λ lg(ρ) = M

q
ζ

j ′
ν � λ lg(ρ) = M

q
ζ
j

ν2 � λ lg(ρ) = M
q

ζ
j

ν2 � λβ,

a contradiction. This proves the first part of the statement. If η ∈ u and l ∈ {j, j ′}
is such that η ∈ uql , then we have Mη = M

ql
η , as is clear from the definition. �217

Now we let

ur def= u ∪ {w[Mσ ] : σ ∈ u},
and define Mr

σ for σ ∈ ur accordingly, which is done as in Step III of the Proof of
Claim 29(2).

We let br = bqj ∪ b
qj ′ and for α ∈ b we let cr

α = c
qj
α ∪ c

qj ′
α . For α ∈ b, ι ∈ cr

α

we let dr
α,ι = {2ϒ : ϒ ∈ d

qj ′
α,ι } ∪ {2ϒ + 1 : ϒ ∈ d

qj
α,ι} and

(Nr
α,ι,2ϒ, hr

α,ι,2ϒ) = (N
qj ′
α,ι,ϒ , h

qj ′
α,ι,ϒ ) while

(Nr
α,ι,2ϒ+1, h

r
α,ι,2ϒ+1) = (N

qj

α,ι,ϒ , h
qj

α,ι,ϒ ).

We have now completed the proof of Subcase B of Case 2 of the Claim.
Subcase A. λ = ℵ0. We have to prove that R satisfies ccc. Let functions

g∗
0 , g∗

1 , g∗
2 and g∗

3 be as in the proof of Subcase B, and let the function F and
the club C be given as in that proof.
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Suppose that we are given a sequence 〈qs : s < ω1〉 of conditions in R. Let
E ⊆ C be a club of ω1 such that

j ∈ S
ω1
ℵ0

& j ′ < j �⇒ (∀i < i(q, j ′))(w[M
qj ′
η(qj ′ ,i)] ⊆ j).

Let g be a function that to an ordinal j ∈ S
ω1
ℵ0

assigns

(g∗
3(qj ), 〈w[M

qj

η(qj ,i)] ∩ j : i < i(qj )〉)

and let
f = (F ◦ g) � (E ∩ S

ω1
ℵ0

) ∪ 0
ω1\(E∩S

ω1
ℵ0

)
.

Exactly as in Subcase B, it follows that whenever

j ′ < j ∈ S
ω1
ℵ0

∩ E & f (j ′) = f (j)

then letting
u = u

qj ′ ∪ uqj ∪ {η ∩ ν : η ∈ uqj , ν ∈ uqj }

and for η ∈ u

Mη = Mql
η � λ · lg(η)

for any l ∈ {j, j ′} for which η ∈ uql , we obtain a well defined sequence 〈Mη :
η ∈ u〉 of elements of K with the property that for any l ∈ {j, j ′}, η ∈ uql we have
M

ql
η ≤ Mη. Let S ⊆ S

ω1
ℵ0

∩ E be stationary such that f (j) is fixed for j ∈ S. We

apply the �-system lemma to {bqj : j ∈ S} and obtain A ∈ [S]ℵ1 and b∗ ∈ [µ]<ℵ0

such that for every j �= j ′ ∈ A we have b
q ′
j ∩ bqj = b∗. If b∗ = ∅, then for every

j, j ′ ∈ A, the condition

〈u, 〈Mη : η ∈ u〉, bqj ′ ∪ bqj , 〈cql
α : α ∈ bql 〉, 〈(Nql

α,ι, h
ql
α,ι) : α ∈ bql , ι ∈ cql

α 〉〉

is a common upper bound of qj ′ and qj where u, 〈Mη : η ∈ u〉 are defined above.
Suppose that |b∗| = n∗ > 0. Using the �-system lemma n∗ times if nec-

essary, we can find B ∈ [A]ℵ1 and for α ∈ b∗ a set c∗
α ∈ [ω1]<ℵ0 such that

α ∈ b∗ & j ′ < j ∈ B �⇒
(i) c

qj ′
α ∩ c

qj
α = c∗

α ,

(ii) min(c
qj ′
α \ c∗

α) > max{λι : ι ∈ c∗
α},

(iii) min(c
qj
α \ c∗

α) > max{λι : ι ∈ c
qj ′
α },

(iv) ι ∈ c∗
α �⇒ (N

qj ′
α,ι , h

qj ′
α,ι ) = (N

qj
α,ι, h

qj
α,ι)

and for k < n∗
α

def= |c∗
α| letting ι′k, ιk be the k-th element of c

qj ′
α , c

qj
α respectively,

we have that N
qj ′
α,ι′k

and N
qj
α,ιk are isomorphic. Let j ′ < j ∈ B and let α ∈ b∗.

Let N ′
j = ⋃

ι∈c
q
j ′

α

N
qj ′
α,ι and Nj = ⋃

ι∈c
qj
α

N
qj
α,ι, while h′

j = ⋃

ι∈c
q
j ′

α

h
qj ′
α,ι and hj =

⋃
ι∈c

qj
α

h
qj
α,ι.Then Nj and N ′

j are isomorphic and hj and hj agree on their intersec-

Sh:614



On the existence of universal models 927

tion, while there are δ0 < δ1 < δ2 divisible by λ such that

Nj ′ � δ0 = Nj � δ1 = Nj ∩ N ′
j

with |N ′
j | ⊆ δ1 and |Nj | ⊆ δ2 and η = f ∗

α � δ2 ∈ uqj . We also have that
N ′

j , Nj ∈ �. Then hj is a lawful embedding of Nj into Mη and h′
j is a lawful

embedding of N ′
j into Mη, by the choice of S. Similarly to the proof of Claim 29(4),

we can see that q ′
j and qj are compatible, by finding N ∈ � with N ≥ N1, N2,

extending qj , qj ′ to enlarge Mη and then taking an upper bound of the extensions.
Case 3. Suppose that

〈(〈qξ
i : i < λ+〉, fξ ), 〈pξ

i : i < λ+〉 : ξ < ζ 〉
have been played so far. By Claim 210 we can have q

ζ
i be the lub of 〈qξ

i : ξ < ζ 〉.
Let 〈Iγ : γ < λ〉 list the isomorphism types of elements of K . Let F be a bijection

F : λ × K × {h : h a lawful function with Dom(h) ∈ [λ+]<λ} → λ+.

Let C be a club of λ+ such that for every j ∈ Sλ+
λ ∩ C we have

γ < λ, u ∈ [j ]<λ & Dom(h) ∈ [j ]<λ �⇒ F((γ, u, h)) < j.

Let Cζ = C and define gζ which to an ordinal j ∈ Sλ+
λ assigns

(type(Nq
ζ
j ), N

q
ζ
j ∩ j, h

q
ζ
j � (N

q
ζ
j ∩ j)).

Then let fζ = (F ◦ gζ ) � (Cζ ∩ Sλ+
λ ) ∪ 0

λ+\(Cζ ∩Sλ+
λ )

. Let E ⊆ C be a club of λ+

such that

j ∈ E ∩ Sλ+
λ & j ′ < j �⇒ (∀ζ < j ′)(|Nq

ζ

j ′ | ⊆ j).

Let (N ′, h′) be the lub of {(Nq
ζ

j ′ , h
q

ζ

j ′ ) : ζ < ε} and (N, h) the lub of {(Nq
ζ
j , h

q
ζ
j ) :

ζ < ε}. We shall show that (N, h) and (N, h′) are compatible. As N, N ′ ∈ �α ,
clearly they are compatible as elements of K . We need to show that h and h′ agree
on N ∩ N ′.

Suppose not and let ζ < ε be the least such that hζ and h′
ζ disagree on N

q
ζ

j ′ ∩
N

q
ζ
j -such a ζ exists by the definition of the lub in the forcing. By the choice of E we

have |Nq
ζ

j ′ | ⊆ j and by the choice of fζ we have (N
q

ζ

j ′ ∩ j ′, hq
ζ

j ′ � (N
q

ζ

j ′ ∩ j ′)) =
(N

q
ζ
j ∩ j, h

q
ζ
j � (N

q
ζ
j ∩ j)). Hence N

q
ζ

j ′ ∩N
q

ζ
j ⊆ j ′ and h

q
ζ

j ′ and h
q

ζ
j agree on this

intersection, a contradiction. We can also see that N ′ and N are isomorphic.
Now let G be as in the Definition 27 Case 3 and let p′ ∈ G witness that

(N ′, h′) ∈ R, while p ∈ G witnesses that (N, h) ∈ R. Let p+ ∈ G be a common
upper bound of p and p′. By Claim 29(4) it follows that

D = {p++ ≥ p+ : (∃ι ∈ cp++
α )(∃ϒ ∈ dp++

α,ι )

(N, N ′ ≤ N
p++
α,ι,ϒ & h ∪ h′ ⊆ h

p++
α,ι,ϒ )}

is dense in the forcing R′ giving rise to G, which suffices.
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928 M. Džamonja, S. Shelah

Now suppose that we are in Case 4 and that
〈(〈

q
ξ
i : i < λ+

〉
, fξ

)
,
〈
p

ξ
i : i < λ+

〉
: ξ < ζ

〉

have been played so far in the game ∗ε
λ[R]. This is where we get to use the work-

ability of K . As before, we let player I choose q
ζ
i as the unique least upper bound

of 〈pξ
i : ξ < ζ 〉. Let q

ζ
i = 〈Mζ

i , N
ζ
i 〉. Using λ = λ<λ, we can find a regressive

function fζ such that if i < j in Sλ+
λ are such that fζ (i) = fζ (j), then

(a) N
ζ
i � i = N

ζ
j � j ,

(b) There is a Kap-isomorphism h
ζ
i,j from N

ζ
i onto N

ζ
j mapping M

ζ
i onto M

ζ
j ,

and such that h
ζ
i,j � (|Nζ

i | ∩ i) is the identity.

At the end, let C ⊆ λ+ be a club such that for every ζ < ε

i < j & j ∈ C �⇒ |Nζ
i | ⊆ j.

Suppose now that i < j ∈ C ∩ Sλ+
λ are such that fζ (i) = fζ (j) for all ζ < ε.

For l∈{i, j} let Ml
def= ⋃

ζ<ε M
ζ
l and Nl

def= ⋃
ζ<ε N

ζ
l . Notice that 〈Ml, Nl〉 ∈ R

and that for every ζ < ε we have 〈Mζ
l , N

ζ
l 〉 ≤ 〈Ml, Nl〉. Also observe that |Ni | ⊆ j

and that Ni � i = Nj � j . Let h = hi,j
def= ⋃

ζ<ε h
ζ
i,j . Then h is a Kap-isomorphism

from Ni onto Nj mapping Mi onto Mj , and such that h � (|Ni | ∩ i) is the identity.
By the definition of workability, we can find 〈M, N〉 ∈ R which is stronger than
both 〈Mi, Ni〉 and 〈Mj, Nj 〉.

�214

Claim 218. Suppose that R is given by Case 4 of Definition 27. Then, keeping the

notation of Def 27, in V
Pβ∗Q

˜
β
j ∗R˜

β
j we have

� = {N ′ : (∃N ≥ N ′)(∃M)[〈M, N〉 ∈ GR]} ∈ Kmd[Kap]},

where GR is R-generic over V
Pβ∗Q

˜
β
j .

Proof of the Claim. We verify that � satisfies the required properties (i)-(v) from
Definition 17. As (v) is obvious, we check (i)-(iv). By Claim 210(2)

R is a (< λ)-complete forcing,

hence � is (< λ)-closed, and so it satisfies (i). Property (ii) follows by genericity.
Given β < λ+ such that the requirement of (iii) of Definition 17(2) holds for

�− (�− comes from the definition of R by Case 4), arguing in V
Pβ∗Q

˜
β
j we shall

show that

I def= {〈M, N〉 ∈ R : (∃γ ∈ |N |)[β + λ = γ + λ]}

Sh:614
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is dense in R. So let 〈M, N〉 ∈ R be given. Let M ′ ∈ �− be ≥ M and such that
for some γ with γ + λ = β + λ we have γ ∈ |M ′|. Since N � Ev = M , we can
apply amalgamation to N, M, M ′ to find N ′ ≥Kap N with M ′ ≤ N ′. By Remark
15 (3), we can assume that N ′ � Ev = M ′. Hence 〈M ′, N ′〉 ∈ R ∩ I is as required,
showing (iii).

To show (iv), suppose N ∈ � and N ≤Kap N ′ after we have forced by R. As

the forcing with R is (< λ)-closed, we have N ′ ∈ V
P β∗Q

˜
β
j and N ≤Kap N ′ holds.

Let M be such that 〈M, N〉 ∈ GR . Now observe that by amalgamation and Remark
15(3), the set

{〈M, N ′′〉 : (∃ lawful h)[h : N ′ → N ′′ embedding over M]}
is dense in R above 〈M, N〉. �218

This finishes the inductive proof.

Claim 219. It is possible to define the iteration P̄ so that in V P̄ we have

(1) If λ > ℵ0 then for every (< λ)-complete forcing notion Q which satisfies ∗ε
λ

and has the set of elements some ordinal < κ and for every β < λ++ large
enough we have R˜

β
j = Q for some j < µ. If λ = ℵ0, the analogous statement

holds with ccc forcing in place of (< λ)-complete ∗ε
λ forcing,

(2) For every workable strong λ-approximation family K and a family �̄ = {�α :
α < µ} of elements of Kmd, and for every β < λ++ large enough, there
is j < µ such that R

β
j is given by Case 2 of Definition 27 using K, �− as

parameters.
(3) If λ > ℵ0, then for every K, �̄, β, j as in (2), for every α < µ, there is

β ′ > β such that R
β ′
j is defined by Case 3 of Definition 27 using �α and β as

parameters.
(4) For every workable strong λ-approximation family K and �− ∈ K−

md[K] such
that

⋃{|M| : M ∈ �} ⊆ Ev, for every j large enough there is β < λ++ such
that R

β
j is defined by Case 4 of Definition 27 using �− as a parameter.

Proof of the Claim. We use the standard bookkeeping. As the forcing is (< λ)-
closed, any workable strong λ-approximation family K ∈ V P̄ appears at some
stage and does not gain any new members later. Also notice that being in K−

md and

Kmd is absolute between V P̄ and V
P

β
j ∗Q

˜
β
j containing � for � ⊆ K . �219

�23
This finishes the proof of the Theorem.

Remark 220. Applying the usual proof of the consistency of MA + ¬CH if we
assume in Theorem 23 that V satisfies

θ < κ �⇒ θ<λ < κ,

we can drop the assumptions |Q| < κ from (d) in the conclusion of Theorem 23.
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Proof of the Conclusion. Let V ∗ def= V P̄ , where P̄ is an iteration satisfying the
requirements listed in Claim 219.
(1) Given an abstract elementary class K in V ∗ such that there is a workable strong
λ-approximation family Kap approximating K and such that LS(K) ≤ λ and sup-
pose that M ∈ Kλ+ . Let 〈�̄β : β < λ++〉 be as in (e) of the conclusion of Theorem

23, for our Kap. Let M∗
β be as in Claim 116, with Mη

def= ⋃
�

β
η for η ∈ T . (Note

that η � ν does imply that Mη ≤Kap Mν). We claim that M embeds into M∗
β for

some β.
By the definition of approximation, there is�− which is an element ofK−

md[Kap],
such that M ≤K M�− and N ∈ �− �⇒ |N | ⊆ Ev. By Theorem 23(f), there
is � ∈ Kmd[Kap] such that �− ⊆ �, and hence by Observation 113(2), we have
M�− ≤K M� . Let β < λ++ be such that �, Kap ∈ Vβ , which is easily seen to
exist. By (e) in the conclusion of Theorem 23 and its proof, there is α < µ such
that M� is isomorphically embeddable into M⋃

i<λ+ �
β

f ∗
α �i

. By Observation 117, we

have

M ≤K M�∗ ≤K M� ≤K M⋃
i<λ+ �

β

f ∗
α �i

≤K M∗
β.

(2) In addition to what we have already observed, we need to observe that 2λ = µ,
and this is the case because P̄ adds a Cohen subset to λ µ many times.
(3) Follows from (1) of the Theorem.
(4) This part follows similarly to (1), using the assumptions on K+. �24

Fact 221. Suppose λ = λ<λ ≥ ℵ0. Each of the following classes K is an abstract
elementary class for which there is a workable strong λ-approximation family
approximating it, and the Löwenheim-Skolem number of K is ≤ λ:

(1) The class of models of T ∗
feq, i.e. an indexed family of independent equivalence

relations, with M ≤ N iff M embeds into N ,
(2) The class Ttrf of triangle free graphs, with the same order as in (1),
(3) The class of models of any simple theory.

[Why? (1) and (2) were proved in [Sh 457], and (3) is proved in [Sh 500].]

3. Consistency of the non-existence of universal normed vector spaces.

Definition 31. Suppose that I is a linear order.
(1) We define a vector space BI over Q by

BI
def=

{
∑

i∈I

aixi : ai ∈ Q & {i : ai �= 0} finite

}

,

where {xi : i ∈ I } is a set of variables that serve as a basis for BI . The addition
and scalar multiplication is defined in the obvious manner.
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(2) For any I -increasing sequence t̄ ∈ ω>I , we define a functional ft̄ : BI → R

by letting

ft̄ (
∑

i∈I

aixi)
def=

∑

l<lg(t̄)

1

ln(l + 2)
at̄(l).

Let

F
def= {ft̄ : t̄ ∈

⋃

n<ω

nI is I -increasing}.

For x ∈ BI we define ||x|| = ||x||F def= sup{|f (x)| : f ∈ F }.
Note 32. (1) Functionals ft̄ defined as above are linear.
(2) For every x ∈ BI , there are only finitely many possible values of ft̄ (x). (Hence,
||x|| = Max{|f (x)| : f ∈ F }).
Claim 33. Suppose that I and BI are as in Definition 31 and I is infinite. Then BI

is a normed vector space over Q with |BI | = |I |.
Proof of the Claim. We prove that || − || is a norm on BI . The triangular inequality
is easily verified. We need to check that for all x ∈ BI we have 0 ≤ ||x|| < ∞ and
||x|| = 0 ⇐⇒ x = 0. The second statement is obvious, by considering sequences
t̄ whose length is 1, and the first follows from Note 32(2). �33

Theorem 34. Suppose that ℵ0 ≤ λ = λ<λ < λ+ < µ = cf(µ) = µλ+
.

Then for some (< λ)-complete and λ+-cc forcing notion P of cardinality µ,
we have that P forces

“2λ = µ and for every normed vector space A˜ over Q of cardinality |A˜ | < µ,
there is a normed vector space B˜ over Q of dimension λ+ (so cardinality λ+)
such that there is no vector space embedding h : B˜ → A˜ with the property
that for some c˜ ∈ R+ for all x ∈ B˜

1/c˜ <
||h(x)||A˜||x||B˜

< c˜ .” (∗)

Proof. We deal with the situation λ > ℵ0, and the proof for λ = ℵ0 is similar but
easier.

Definition 35. (1) We define an iteration

〈Pα, Q
˜ β : α ≤ µ, β < µ〉

with (< λ)-supports such that for all β < µ we have that Q
˜ β is a Pβ -name defined

by

Q
˜ β

def= {(w˜ , ≤
˜ w) : w˜ ∈ [λ+]<λ & ≤

˜ w is a linear order on w˜ },
ordered by letting (w˜ , ≤

˜ w) ≤ (z
˜
, ≤
˜ z) iff w˜ ⊆ z

˜
and ≤

˜ w = ≤
˜ z � (w˜ × w˜ ).

(2) Let P
def= Pµ.
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Claim 36. (1) For every α < µ we have

�Pα “Q
˜ α is (< λ)-complete and satisfies ∗ω

λ ”.

(2) P is λ+-cc, (< λ)-complete and �P “2λ = µ”.
(3) For α < µ

I˜ α
def= (λ+,

⋃
{≤
˜ w : (w˜ , ≤

˜ w) ∈ G˜ Q
˜

α })
is a Pα+1-name which is forced to be a linear order on λ+.

Proof of the Claim. (1) The first statement is obvious, we shall prove the second one.
The proof is by induction on α. Given α < µ, by the induction hypothesis we have
in V Pα that λ<λ = λ. We work in V Pα , and describe the winning strategy of player
I in the game ∗ω

λ [Qα]. As λ<λ = λ, we can fix a bijection F which to every triple
(w, ≤, γ ), where w ∈ [λ+]<λ and ≤ is a linear order on w, and γ < λ+, assigns
an element of λ+. We can find a club E of λ+ such that for every j ∈ Sλ+

λ ∩ E and
every relevant triple (w, ≤, γ ),

w ∈ [j ]<λ & γ < j �⇒ F((w, ≤, γ )) < j.

Suppose that n < ω and
〈
〈qk

i : i < λ+〉, fk, 〈pk
i : i < λ+〉 : k ≤ n

〉

have been played so far, and we shall describe how to choose qn+1
i and fn+1. We

let qn+1
i

def= pn
i , for i < λ+. Suppose that pn

i = (wn
i , ≤n

i ) ∈ Qα for i < λ+. For

j < λ+, let γ (j, n)
def= sup(wn

j ∩ j). Note that for j ∈ Sλ+
λ we have γ (j, n) < j .

Let Cn+1
def= E. Define gn+1 which to an ordinal j ∈ Sλ+

λ assigns

(wn
j ∩ j, ≤n

j � (wn
j ∩ j), γ (j, n)).

Then let

fn+1
def= (F ◦ gn+1) � (Cn+1 ∩ Sλ+

λ ) ∪ 0
λ+\(Cn+1∩Sλ+

λ )
.

Hence fn+1 is regressive on Cn+1 \ {0}.
At the end of the game, for i < λ+ let wi def= ⋃

n<ω wn
i and ≤idef= ⋃

n<ω ≤n
i . Let

C ⊆ E be a club such that i < j ∈ C �⇒ wi ⊆ j . Suppose that i < j ∈ C∩Sλ+
λ

are such that for all n < ω we have fn(i) = fn(j). We shall define a condition
p such that p = (z, ≤z) and z = wi ∪ wj , by amalgamating linear orders. For
x, y ∈ z we let n = n(x, y) be the minimal n such that x, y ∈ wn

i ∪ wn
j , and let

x ≤z y iff

(i) x, y ∈ wl and x ≤l y for some l ∈ {i, j}, or
(ii) x ∈ wn

i \ wn
j and y ∈ wn

j \ wn
i and for some z ∈ wn

j ∩ wn
i we have x ≤i z and

z ≤j y,
(iii) y ∈ wn

i \ wn
j and x ∈ wn

j \ wn
i and (ii) does not hold.

It is easily seen that p is as required.
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(2) That P is λ+-cc follows from (1) by the fact that ∗ω
λ is preserved under

(< λ)-support iterations. See [Sh 546]. That �P “2λ = µ” is seen by observing
that every Q

˜ α adds a subset to λ.
(3) Obvious. �36

Suppose that in V P we have a normed vector space A over Q with |A| < µ,
with the universe of A a set of ordinals. Hence for some α < µ and a Pα-name A˜we have that A = A˜ G. Suppose that h ∈ V P is a vector space embedding from BIα

into A, satisfying (∗) above, for some c ∈ Q. Hence for some p∗ ∈ P/Pα we have
that p∗ forces over V Pα the following statement:

“h˜ : BI˜ α → A is a normed vector space embedding satisfying (∗) for c˜ .”

Without loss of generality, p∗ decides the value c of c˜ . Let 0 < n∗ < ω be such that
c < n∗. Let x˜ i for i < λ+ be the generators of BI˜ α . For i < λ+ we find pi ∈ P/Pα

such that p∗ ≤ pi and

pi � “h˜ (x˜ i ) = yi” for some yi.

Let us now work in V Pα . Let pi(α) = (wi, <i), for i < λ+. Without loss of
generality we have i ∈ wi for all i.

By a �-system argument, noting that λ<λ = λ holds in V Pα , we can find
Y ∈ [λ+]λ

+
such that

(a) for some w∗ we have that wi ∩wj = w∗, for all i �= j ∈ Y , and <i� (w∗×w∗)
is constant,

(b) If i < j are both in Y , then

sup(wi) < min(wj \ w∗), while sup(w∗) < min(wi \ w∗),

(c) Y ∩ w∗ = ∅,
(d) For i < j both in Y , there is an isomorphism hi,j mapping (wi, <i) onto

(wj , <j ) such that hi,j (i) = j . (Note that i ∈ wi \ w∗ and j ∈ wj \ w∗.)

Observation 37. The series

∑

l≥1

1

(l + 1) ln(l + 2)

diverges, while the sum

n∑

l=1

1

(n − l + 1) ln(l + 2)

is uniformly and strictly bounded by 4.
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Proof of the Observation. The first statement follows by comparison with∫ ∞
1

1
(x+1) ln(x+2)

dx. The second statement follows from the following estimate:

∑n
l=1

1
(n−l+1) ln(l+2)

≤ ∑[n/2]
l=1

1
(n−l+1) ln(l+2)

+ ∑n
l=[n/2]+1

1
(n−l+1) ln(l+2)

≤
1

[n/2]+1

∑[n/2]
l=1

1
ln(l+2)

+ ∑n−[n/2]
l=1

1
l ln(n−l+3)

≤
1

[n/2]+1 · [n/2] · 1
ln 3 + 1

ln([n/2]+2)

∑n−[n/2]
l=1

1
l

≤
1

ln 3 + 1
ln([n/2]+2)

(1 + ∫ n−[n/2]
1

1
x
dx) ≤ 1

ln 3 + 1
ln([n/2]+2)

· (1 + ln(n − [n/2]))

≤ 1
ln 3 + 1

ln 2 + 1 < 4.

�37

By Observation 37, we can choose m large enough such that

m∑

l=1

1

(l + 1) ln(l + 2)
≥ 4(n∗)2.

Let us choose i1 < · · · < im ∈ Y .

Claim 38. We can find q ′ and q ′′ in Qα , both extending all pil (α) for 1 ≤ l ≤ m,
and such that

q ′ �Qα “〈i1, . . . , im〉 is increasing in I˜ α”

and

q ′′ �Qα “〈i1, . . . , im〉 is decreasing in I˜ α.”

Proof of the Claim. Notice that for no 1 ≤ l1 < l2 ≤ m and i ∈ Y do we have that
pi decides the order between il1 and il2 in Iα , by the choice of Y (this is elaborated
below). The proof can proceed by induction on m. The inductive step is as in the
proof of ∗ω

λ . The only constraint we could have to letting il1 ≤ il2 (for q ′) or il2 ≤ il1
(for q ′′) would be if some z ∈ w∗ would prevent this, but this does not happen.
For example, if we could not let il1 ≤ il2 in q ′ then this would mean that il1 ≥ il2
would have to hold. By the choice of Y and since il1 ∈ wil1

\ w∗ and similarly for
il2 , this could only be the case if for some z ∈ w∗ it would hold that il1 ≥wil1

z

while il2 ≤wil2
z. However, this would contradict item (d) in the choice of Y . �38

Back in V Pα , let z
def= ∑m

l=1
1

l+1xil . Let a
def= || ∑m

l=1
1

l+1yil ||A. Hence

q ′ � “||z
˜
||BI

˜ α
≥ 4(n∗)2”,

and so a ≥ 4(n∗)2/n∗ = 4n∗. On the other hand,

q ′′ � “||z
˜
||BI

˜ α
< 4”,

and hence a < 4n∗, a contradiction. �34
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