MANY COUNTABLE SUPPORT ITERATIONS OF PROPER FORCINGS PRESERVE SOUSLIN TREES

HEIKE MILDENBERGER AND SAHARON SHELAH

ABSTRACT. We show that many countable support iterations of proper forcings preserve Souslin trees. We establish sufficient conditions in terms of games and we draw connections to other preservation properties. We present a proof of preservation properties in countable support iterations in the so-called Case A that does not need a division into forcings that add reals and those who do not.

0. Introduction

This work is related to Juhász’ question [14]: “Does Ostaszewski’s club principle imply the existence of a Souslin tree?” We recall the club principle (also written ♠): There is a sequence \(\langle A_\alpha : \alpha \text{ a limit ordinal } < \omega_1 \rangle \) with the following properties: For every countable limit ordinal \(\alpha \), \(A_\alpha \) is cofinal in \(\alpha \) and for any uncountable \(X \subseteq \omega_1 \) there are stationarily many \(\alpha \) with \(A_\alpha \subseteq X \). Such a sequence is called a ♠-sequence. The club principle was introduced in [15].

Partial positive answers are known: Let \(M \) denote the ideal of meagre sets. In every model of the club principle and \(\text{cov}(M) > \aleph_1 \) by Miyamoto [5, Section 4] there are Souslin trees. Brendle showed [5, Theorem 6]: In every model of the club principle and \(\text{cof}(M) = \aleph_1 \) there are Souslin trees. In this paper we give examples of models satisfying the club principle, the existence of Souslin trees, \(\text{cov}(M) = \aleph_1 \) and \(\text{cof}(M) = \aleph_2 \) (i.e., neither of the sufficient conditions mentioned above holds).

Assume that we start with a ground model satisfying ♦\(\omega_1 \) and that we force with a proper countable support iteration \(\langle P_\alpha, Q_\beta : \alpha \leq \kappa, \beta < \omega_2 \rangle \) of length \(\omega_2 \). For this scenario in [12] we showed: If the single step forcings are suitable forcings from [16] (with finite or countable \(H(n) \), see Section 2.1), then the final model will satisfy the club principle. Note that the assumption of the diamond in the ground model is actually not necessary.
since after \(\omega_1 \) iteration steps of any forcing with two incompatible conditions with countable support \(\diamondsuit_{\omega_1} \) holds anyway [11, Ch. 7, Theorem 8.3] and the length of our iterations is \(\omega_2 \).

Let us look at the countable support iteration of length \(\omega_2 \) of Miller forcing: According to the mentioned result, after \(\omega_1 \) many steps we get \(\diamondsuit_{\omega_1} \) and therefore a Souslin tree in the intermediate extension. Lemma 2.1. together with the results in Section 4 show that any countable support iteration of Miller forcing preserves Souslin trees. Hence after \(\omega_2 \) many iteration steps there is a Souslin tree. Moreover by [12] the club principle holds. It is known that in the Miller model \(d = \aleph_2 \) (and hence \(\text{cof}(\mathcal{M}) = \aleph_2 \)) and \(\text{cov}(\mathcal{M}) = \aleph_1 \). A countable support iteration of length \(\omega_2 \) of Blass–Shelah forcing gives another model of \(d = \aleph_2 \) and \(\text{cov}(\mathcal{M}) = \aleph_1 \) and the club principle. Blass–Shelah forcing is not \(\omega \)-Cohen preserving (see Def. 3.1) and increases the splitting number (see [3, Prop. 3.1]). Besides these two particular examples, the main technical work in this paper is a study of the preservation of Souslin trees.

We refer the reader to [2] for the definitions of cardinal characteristics, and to [12] for reading about the the club principle. For background about properness we refer the reader to [22] and the more detailed introductions in [6, 1]. In forcing notions, \(q > p \) means that \(q \) is stronger than \(p \). The paper is organised as follows:

In Section 1 we give some conditions on a forcing in terms of games that imply that the forcing is \((T,Y,S)\)-preserving. A special case of \((T,Y,S)\)-preserving is preserving the Souslinity of an \(\omega_1 \)-tree.

In Section 2 we show that for some tree-creature forcings from [16] the player COM has a winning strategy in one of the games from Section 1. Hence these forcings preserve Souslin trees. Without the games, we show that some linear creature forcings from [16] are \((T,Y,S)\)-preserving. There are non-Cohen preserving examples.

For the wider class of non-elementary proper forcings we show in Section 3 that \(\omega \)-Cohen preserving for certain candidates implies \((T,Y,S)\)-preserving.

In Section 4 we give a less general but hopefully more easily readable presentation of a result from [22, Chapter 18, §3]: If all iterands in a countable support iteration are proper and \((T,Y,S)\)-preserving, then also the iteration is \((T,Y,S)\)-preserving. This is a presentation of the so-called Case A in which a division in forcings that add reals and those who do not is not needed.

1. A sufficient condition for \((T,Y,S)\)-preserving

We introduce two games \(\mathcal{G}^\iota(\mathbb{P}, p) \), \(\iota = 1, 2 \), that are games about the completeness of the notion of forcing \(\mathbb{P} \) above \(p \). Similar games appear in \([17, 19, 18]\). We let \(\mathbf{G}_\mathbb{P} = \{ (\mathbf{p}, p) : p \in \mathbb{P} \} \) be the standard name for a \(\mathbb{P} \)-generic filter. If it is clear which \(\mathbb{P} \) is meant we write just \(\mathbf{G} \).
Definition 1.1. Let P be a notion of forcing and $p \in P$. We define the games $\mathcal{D}^i(P, p)$, $i = 1, 2$. The moves look the same for both games, and only in the winning conditions they are different.

1. The game $\mathcal{D}^1(P, p)$ is played in ω rounds. In round n, player COM chooses an $\ell_n \in \omega \setminus \{0\}$ and a sequence $\langle p_{n,\ell} : \ell < \ell_n \rangle$ of conditions $p_{n,\ell} \in P$ and then player INC plays $q_{n,\ell} : n < \ell_n$ such that $p_{n,\ell} \leq q_{n,\ell}$. After ω rounds, COM wins the game iff there is $q \geq p$ such that for each n,

$$\{q_{n,\ell} : \ell < \ell_n\} \text{ is predense above } q.$$

2. The game $\mathcal{D}^2(P, p)$ is played in ω rounds that look exactly like the rounds in $\mathcal{D}^1(P, p)$. After ω rounds, COM wins the game iff for every infinite $u \subseteq \omega$ there is $q_u \geq p$ such that

$$q_u \forces (\exists n \in u)(\exists \ell < \ell_n)(q_{n,\ell} \in G).$$

Definition 1.2. For $i = 1, 2$, we say P has property Pr^i and write $Pr^i(P)$ iff for every $p \in P$, in the game $\mathcal{D}^i(P, p)$ the player COM has a winning strategy.

We fix a sufficiently large regular cardinal χ. We write $H(\chi)$ for the set of sets of hereditary cardinality less than χ, and let $H(\chi) = (H(\chi), \in, <^*_\chi)$ with a well-order $<^*_\chi$.

Definition 1.3. Let $\alpha(*)$ be an uncountable ordinal. Let $S \subseteq [\alpha(*)]^{\omega}$ be stationary, let $i = 1, 2$, and let P be a forcing. Then $Pr^i_S(P)$ denotes the following property: For every sufficiently large χ and every countable $N \prec H(\chi)$ with $P \in N$, and $N \cap \alpha(*) \in S$, for every $p \in P \cap N$ player COM has a winning strategy in the game $\mathcal{D}^i(N, p)$. The game $\mathcal{D}^i(N, p)$ is defined like the $\mathcal{D}^i(P, p)$ except that we require that every initial segment of a play is in N.

$Pr^i(P)$ implies $Pr^i_S(P)$ for any S, and $Pr^1(P)$ implies $Pr^2(P)$.

Lemma 1.4. In all the games any winning strategy for COM can be modified by playing at each stage a larger number ℓ_n and stronger conditions, that is, the resulting function is a winning strategy for COM as well.

Definition 1.5. Let $S \subseteq [\alpha(*)]^{\omega}$ be stationary. P is S-proper if for any $N \prec H(\chi)$ such that $N \cap \alpha(*) \in S$, for every $p \in P \cap N$ there is $q \geq p$ that is (N, P)-generic. q is (N, P)-generic means: For any $D \in N$, if D is dense in P then $q \forces G \cap D \neq \emptyset$.

Definition 1.6. (1) A forcing P is $^\omega\omega$-bounding if for every P-name f for a function from ω to ω and for any p, there are $g \in ^\omega\omega$ and $q \geq p$, $q \in P$, such that $q \forces \forall n f(n) \leq g(n)$.

(2) A forcing P is almost $^\omega\omega$-bounding if for every name f for a function from ω to ω, for any $A \subseteq \omega$ and any $p \in P$ there are $q \geq p$ and $g \in ^\omega\omega$ such that $q \forces (\exists n \in A)(f(n) \leq g(n))$.

Lemma 1.7.

(1) If \(\Pr^1_\mathbb{S}(\mathbb{P}) \), then \(\mathbb{P} \) is \(\mathcal{S} \)-proper, and \(\mathbb{P} \) is \(\omega^\omega \)-bounding.

(2) If \(\Pr^2_\mathbb{S}(\mathbb{P}) \), then \(\mathbb{P} \) is \(\mathcal{S} \)-proper, and \(\mathbb{P} \) is almost \(\omega^\omega \)-bounding.

Remark 1.8. The reverse implications do not hold: The NNR forcing from [22, Ch. IV] is a counterexample to both, as Theorem 1.17 will show.

Proof. We prove (2). Item (1) is proved similarly. Let \(f \) be a \(\mathbb{P} \)-name for a function from \(\omega \) to \(\omega \). Fix a winning strategy \(\mathbf{st} \) for COM in \(\mathcal{O}^2(\mathbb{P}, p) \).

Let \(\mathbb{P}, f, \mathbf{st} \in N < \mathcal{H}(\chi), N \cap \alpha(*) \in \mathcal{S}, p \in \mathbb{P} \cap N \). Let \(\langle T_k : k < \omega \rangle \) be a list of the \(\mathbb{P} \)-names in \(N \) of ordinals. In round \(n \), INC plays such that for every \(\ell < \ell_n \), \(q_{n, \ell} \) forces a value to \(f(i) \) for \(i \leq n \) and a value to \(t_i \) for \(i < n \). Let \(g(n) \) be the maximum of the values forced to \(f(n) \) by \(q_{n, \ell} \), \(\ell < \ell_n \). Fix an infinite \(u \subseteq \omega \) and let \(q_u \) witness that COM wins. Then \(q_u \) is \(N \)-generic: Let \(\tau_k \) be a \(\mathbb{P} \)-name in \(N \) for an ordinal. Then \(q_u \) forces that here are infinitely many \(k' > k, k' \in u \) and \(\ell \in \omega \) that \(q_{k', \ell} \in G \). This \(q_{k', \ell} \) decides \((\tau_m)_{m < k'} \) in \(N \) and forces \(f(k') \) to be some value less than \(g(k') \). \(\dashv \)

Remark 1.9. Sacks forcing satisfies \(\Pr^1 \). COM can fix \(\ell_n = 2^n \cdot \ell_{n-1} \) and play the restrictions of \(q_{n-1,i} \), \(i < \ell_{n-1} \), to the members of its \(n \)-th splitting front as \(p_{n,i} \), \(i < \ell_n \).

The following versions of the games that work for all starting points in a countable model simultaneously are interesting for themselves. However, 1.10 and 1.11 will not be used in the sequel so that a reader who is mainly interested in preserving Souslin trees can skip them.

Definition 1.10. Let \(N \prec \mathcal{H}(\chi) \). We define a game \(\mathcal{O}^i(N, \mathbb{P}) \): The moves are as in \(\mathcal{O}^i(N, \mathbb{P}, p) \). The winning conditions read for \(i = 1 \): For every \(p \in \mathbb{P} \cap N \) there is a \(q \geq p \) such that for all but finitely many \(n \), \(\{ q_{n, \ell} : \ell < \ell_n \} \) is predense above \(q \). For \(i = 2 \): For every \(p \in \mathbb{P} \cap N \) and infinite \(u \) there is a \(q_u \geq p \) as in \(\mathcal{O}^2(\mathbb{P}, p) \).

Lemma 1.11. If \(\Pr^i_\mathbb{S}(\mathbb{P}) \) and \(N \cap \alpha(*) \in \mathcal{S} \), then COM has a winning strategy in \(\mathcal{O}^i(N, \mathbb{P}) \).

Proof. Let \(N \cap \mathbb{P} = \{ p_j : j < \omega \} \). Let \(\mathbf{st}_j \) be a strategy for COM in \(\mathcal{O}^i(N, \mathbb{P}, p_j) \).

Let in the \(n \)-th move strategy \(\mathbf{st}_j \) tell COM to choose \(\langle p_{j,n} : \ell < \ell_{j,n} \rangle \). Then COM moves in \(\mathcal{O}^i(N, \mathbb{P}) \) by letting \(\ell_n = \sum_{j \leq n} \ell_{j,n} \) and \(p_n = p_{0,n} \cdots p_{j,n} \cdots p_{n,n} \).

Now we describe Souslin trees.

Definition 1.12. (1) An \(\omega_1 \)-tree is a tree of size \(\omega_1 \) with at most countable levels and height \(\omega_1 \).

(2) Let \((T, <_T) \) be a tree. We let \(T_{<_T s} = \{ t \in T : t < s \} \), and let \(T_{\leq_T s}, T_{>_T s} \) be defined analogously.
(3) Let \((T, <_T)\) be a tree. Then we write \(T_\alpha\) for \(\{s \in T : (T_{<_T}s, <_T) \cong \alpha\}\) and call \(T_\alpha\) the \(\alpha\)-th level of \(T\).

(4) Moreover, we require that the trees are normal i.e., for every node \(t\) on level \(\alpha < \omega_1\) for every \(\omega_1 > \beta > \alpha\) there are \(t'' \neq t' >_T t\) on level \(\beta\).

Definition 1.13. A Souslin tree is an \(\omega_1\) tree that has no uncountable chains and no uncountable antichains.

A notion of forcing \(P\) preserves any Souslin tree if it preserves any normal Souslin tree. This is seen as follows: Let \(T\) be a Souslin tree. We let \(A = \{t \in T : T_{>_T}t\) is at most countable and \(t\) is minimal with the property\}. Since \(T\) is a Souslin tree, \(A\) is at most countable. We let \(T' = T \setminus A\). \(T'\) is a Souslin tree in \(V^P\) iff \(T\) is a Souslin tree in \(V\).

Let \(T\) be a normal \(\omega_1\)-tree. Let \(b\) be a cofinal branch. By normality, there are cofinally many \(\alpha < \omega_1\) such that there are \(t_\alpha \in b \cap T_\alpha\) and \(t'_\alpha >_T t_\alpha\), \(t'_\alpha \not\in b\). Then these \(t'_\alpha\) form an antichain. So \(T\) is Souslin iff it does not have any uncountable antichain.

Definition 1.14. We conceive a normal \(\omega_1\)-tree \((T, <_T)\) without cofinal branches as a forcing notion. A stronger condition is higher up in the tree. For \(\delta \in \omega_1\), we let \(Y(\delta) \subseteq T_\delta\). Let \(Y = \bigcup \{Y(\delta) : \delta \in \omega_1\}\) and reversely, given \(Y \subseteq T\), we let \(Y(\delta) = \{t \in Y : t \in T_\delta\}\). Some of the \(Y(\delta)\) may be empty. Let \(S \subseteq [\omega_1]^\omega\) be stationary.

We say \(T\) is \((Y, S)\)-proper iff \(Y \subseteq T\) and for every sufficiently large \(\chi\) for every countable \(N < H(\chi)\) with \(\{T, S\} \subseteq N\) and \(N \cap \omega_1 \in S\), \(\delta = N \cap \omega_1\), for \(t \in Y(\delta)\), \(T_{<_T}t := \{s : s <_T t\}\) is \((N, T)\)-generic.

The definition gets stronger the larger \(Y\) is. For characterising Souslin trees \(Y\) is taken to be a union of stationarily many level of the tree. Another application is gotten by taking \(Y(\delta) \neq \emptyset\) for stationarily many \(\delta\). The following known lemma, which is [22, Claim 3.9 B], characterises normal Souslin trees.

Lemma 1.15. Let \((T, <_T)\) be a normal \(\omega_1\)-tree. The following are equivalent:

1. \(T\) is Souslin.
2. \(T\) is \((Y, S)\)-proper for every stationary \(S \subseteq [\omega_1]^\omega\) and for every \(Y\) of the form \(\bigcup_{\delta \in W} T_\delta\), such that \(W \subseteq \{\sup(a) : a \in S\}\) stationary.
3. \(T\) is \((Y, S)\)-proper for some stationary \(S \subseteq [\omega_1]^\omega\) and for some \(Y\) of the form \(\bigcup_{\delta \in W} T_\delta\), such that \(W \subseteq \{\sup(a) : a \in S\}\) stationary.

Proof. (1) implies (2): Let \(T\) be a Souslin tree and let \(N < H(\chi)\) with \(T \subseteq N, N \subseteq S\). Let \(\delta = N \cap \omega_1 \in W\). We show that every node \(t\) on level \(\delta\) is \((N, T)\)-generic. Let \(I \in N\) be dense in \(T\). Now let in \(N\), \(I' \subseteq I\) be a maximal antichain in \(T\). \(N \models "I'\) is countable", so \(I' \subseteq N\). Now \(\{s \in T : (\exists r \in I')(r \leq_T s)\} \cap \{s \in T : s <_T t\} \neq \emptyset\), since otherwise \(I' \cup \{t\}\)
is an antichain, in contradiction to the fact that by $N \prec H(\chi)$ the set $I' \in N$ is also a maximal antichain in T in the sense of $H(\chi)$ and in the sense of V.

(3) implies (1). We fix S and Y as in (3). We consider the case that $A \subseteq T$ is an uncountable maximal antichain and take $N \prec H(\chi)$ with $T, A \in N, N \in S, \delta = N \cap \omega_1 \in W = \{ \delta \in \omega_1 : Y(\delta) = T_\delta \}$. Then A is dense in T in N. However, since A is uncountable, there is $t' \in A \setminus N$. Let $t = t' \upharpoonright \delta \in T_\delta$. The node t is incompatible with every $a \in A \cap N$, so t cannot lie above an $a \in A \cap N$, so $T_{<\tau}t$ is not (N, T)-generic.

Definition 1.16. We say \mathbb{P} is (T, Y, S)-preserving iff the following holds:

Let $S \subseteq \omega_1$ be stationary. There is $x \in H(\chi)$, for every countable $N \prec H(\chi)$ with $\{ x, Y, T, \mathbb{P}, S \} \subseteq N$ and $p \in \mathbb{P} \cap N$: if $N \cap \omega_1 = \delta, N \cap \omega_1 \in S$, and for every $t \in Y(\delta)$, $\{ s : s <_T t \}$ is (N, T)-generic, then there is $q \geq_p p$ such that q is (N, \mathbb{P})-generic and

$$q \Vdash \forall t \in Y(\delta) \{ \{ s : s <_T t \} \text{ is } (N[G_\mathbb{P}], T)\text{-generic}. \}

We remark that the quantifier “for every countable $N \prec H(\chi)$ with $\{ x, Y, T, \mathbb{P}, S \} \subseteq N$ and $p \in \mathbb{P} \cap N$” can be weakened and that the particular choice of $x \in H(\chi)$ is not essential, see [1, Theorem 2.13]

In Section 4 we show that “T is (Y, S)-proper” is preserved by countable support iterations of proper iterands if each iterand preserves it. Since we are mainly interested in countable support iterations (because of the club principle), we can focus onto the question: Which iterands preserve “T is (Y, S)-proper”?

A sufficient criterion is given by $\Pr_3^2(\mathbb{P})$.

Theorem 1.17. Assume $\alpha(\ast) = \omega_1$ and $S \subseteq \omega_1$ is stationary. Let T be an ω_1-tree and $Y \subseteq T$. If $\Pr_3^2(\mathbb{P})$, then \mathbb{P} is (T, Y, S)-preserving.

Proof. Assume $N \prec H(\chi), N \cap \omega_1 \in S, N \cap \omega_1 = \delta$, and $\mathbb{P} \in N, p \in N \cap \mathbb{P}$, and assume for every $t \in Y(\delta), \{ s : s <_T t \}$ is (N, \mathbb{P}, p)-generic. Let $x = \mathbf{st}$ for a winning strategy \mathbf{st} for player COM in $\mathcal{O}^2(N, \mathbb{P}, p)$. We show that there is a q as required in the previous definition.

Let $Y = \{ t^\delta_k : k < \gamma_\delta, \delta \in W \}$ for suitable $\gamma_\delta \leq \omega$. Let $\{ T_n : n \in \omega \}$ list the \mathbb{P}-names of open dense sets in the forcing T that are in N and let $\{ T_n : n \in \omega \}$ list the open dense sets in \mathbb{P} in N. Now we take a play $\langle T_n, \gamma_n : n \in \omega \rangle$ in which COM plays according to \mathbf{st}. INC plays in every round n in every $i < \ell_n$ the condition $q_{n,i}$ so strong that $q_{n,i} \in \bigcap r < n T_r$ and such that for every $k < n$ there is $t_{i,n,k} <_T t^\delta_k$ such that

$q_{n,i} \Vdash \mathbb{P} t_{i,n,k} \in \bigcap_{k' < n} T_{k'}.$

Why can INC play like this? Given $i < \ell_n$ and a starting point q', for $k < n$ he can strengthen $q_{n,i} \geq q'$ so that $q_{n,i} \Vdash \mathbb{P} t_{i,n,k} \in \bigcap_{k' < n} T_{k'}$ for a suitable $t_{i,n,k} <_T t^\delta_k$. Since $\{ s : s <_T t^\delta_k \}$ is (N, T)-generic, there is such a
\[t_{i,n,k} < T_t \delta, t_{i,n,k} \in \mathcal{J}. \] Now he repeats this for each \(k < n \). Since \(\bigcap_{k' < n} \mathcal{I}_{k'} \) is (forced by the weakest conditions to be) open dense in the forcing \(T \), the set \(\mathcal{J} = \{ s \in T \cap N : q \not\Vdash \mathcal{I}_{k'} \} \) is dense in \(T \) in the ground model (before forcing with \(\mathbb{P} \)).

COM wins the play because he played according to the strategy. So for every \(u \), in particular for \(u = \omega \), there is \(q_u \geq p \) such that
\[(1.1) \quad q_u \Vdash (\exists^\infty n \in u)(\exists \ell_n)(q_{n,\ell} \in G_{\mathbb{P}}). \]
Let \(k \in \omega \) and \(q' \geq q_u \) be given. Then there is \(q'' \geq q' \) and \(n \geq k \) such that \(q'' \Vdash n \in u \). So there is \(i < \ell_n, q'' \Vdash q_{n,i} \in G_{\mathbb{P}} \) and hence
\[(1.2) \quad q'' \Vdash \bigcap_{k' < n} \mathcal{I}_{k'} \land t_{i,n,k} \leq T_t \delta. \]
Now we unfreeze \(k \) and combine the equations (1.1) and (1.2) and thus get
\[q_u \Vdash (\forall k < \omega)(T_{<\tau} t^\delta_k \text{ is } (N[G_{\mathbb{P}}], T)-\text{generic.}) \]
From \(q_{n,i} \in \bigcap_{r<n} \mathcal{J}_r \) we also get that \(q_u \) is \((N, \mathbb{P}) \)-generic. \(\dashv \)

Corollary 1.18. If \(T \) is a Souslin tree, \(\mathcal{S} \) is stationary, and \(\mathbb{P} \) is a notion of forcing with \(\text{Pr}^2_{\mathcal{S}}(\mathbb{P}) \), then \(T \) is Souslin in \(V^\mathbb{P} \).

Proof. We let \(Y = \bigcup \{ T_\delta : \delta \in \mathcal{S} \} \). By Lemma 1.15 we have: \(T \) is \((Y, \mathcal{S}) \)-proper iff it is a Souslin tree. Now Theorem 1.17 shows the preservation of “\(T \) is \((Y, \mathcal{S}) \)-proper”.

Historical remarks: Our notion of \(\mathcal{S} \)-properness this is called \((\{\mathcal{S}\}, \emptyset, \emptyset) \)-properness in [22, Def. IV, 2.2.]. The notions of \(\omega \)-bounding and almost \(\omega \)-bounding appeared in [21]. A general study of preservation of these and related properties in iterations is in [22, Ch. VII]. A even more extensive study of preservation properties is carried out in Chapter XVIII of [22]. In [22, XVIII 3.9 D] a variant of our definition of \((T, Y, \mathcal{S}) \)-preserving is mentioned.

2. **Many creature forcings \(\mathbb{P} \) preserve Souslin trees**

We begin this section with a proof that Miller forcing hat \(\text{Pr}^2 \). Then we look at other creature forcings. We give a short self-contained introduction to creatures in general. In the third subsection we consider tree creatures and give sufficient conditions for \(\text{Pr}^1 \) and \(\text{Pr}^2 \). In the fourth subsection we are concerned with linear creatures. For these forcings we have not found strategies in our games. However, some forcings of this kind preserve Souslin trees for other reasons.
2.1. A game on the Miller forcing. Conditions in the Miller order are superperfect trees $p \subseteq \omega < \omega$. A tree is called superperfect iff for any node $\eta \in p$ there is $q \geq \eta$ that has infinitely many immediate successors in p. Here \geq denotes the end extension of finite sequences. Stronger conditions are perfect subtrees.

Miller forcing answers our question about the consistency of the club principle together with the existence of a Souslin tree and $\text{cov}(M) = \aleph_1$ and $\text{cof}(M) = \aleph_2$, since it is well-known [4, 24, 20] that in the Miller model $\text{cov}(M) \leq u = \aleph_1$ and $\text{cof}(M) \geq 2 = \aleph_2$. The "Miller model" means any countable support iteration of Miller forcing over a ground model of CH.

The Miller conditions such that each splitting node has infinitely many immediate successors are dense in the Miller order. From now on we work only with such conditions. For $r \in \mathbb{P}$ let $rt(r)$ be the trunk, that is the shortest η such that $\text{succ}_{r}(\eta) = \{\eta^* n : \eta^* n \in r\}$ is infinite.

Theorem 2.1. Miller \mathbb{P} forcing has $\text{Pr}^2(\mathbb{P})$.

Proof. We assume that all moves of both players in the game $\mathcal{G}^2(\mathbb{P}, p)$ below have infinite splitting in each splitting node. Let $v \subseteq \omega \rightarrow \omega$. We let $\text{dcl}(v) = \{\eta \upharpoonright k : \eta \in v, k < \lg(\eta)\}$ be the downwards closure of v. A set v is a tree iff $v = \text{dcl}(v)$.

We describe a strategy st for COM in $\mathcal{G}^2(\mathbb{P}, p)$. On the side after the n-th move COM chooses a finite set of nodes v_n that are among the splitting nodes of INC's previously chosen conditions. COM play so that the sequence $(\mathcal{M}_n, v_n : n \in \omega)$ has the following properties:

1. For $n \geq 1$, given v_{n-1}, COM chooses $\ell_n = |v_{n-1}|$ and for $\eta \in v_{n-1}$, $\eta = rt(q_{n', \ell})$ for some $n' < n$, $\ell < \ell_{n'}$ he lets

 $m(\eta, n) = \min\{k : \eta k \in q_{n', \ell} \setminus \text{dcl}(v_{n-1})\}$.

Since the $q_{n', \ell}$ is a Miller condition and each $\eta \in v_{n-1}$ is a splitting node of $q_{n', \ell}$ for some $n' < n$ and $\ell < \ell_{n'}$ and v_{n-1} is finite, for each $\eta \in v_{n-1}$, $m(\eta, n)$ is defined. Let $\{\eta^*_n : \ell < \ell_n\}$ enumerate v_{n-1} and let $\eta^*_n = rt(q_{n', \ell})$. Now COM chooses $p_{n, \ell} = q_{n', \ell}^* m(\eta, n)$.

2. INC plays $q_{n, \ell} \geq p_{n, \ell}$.

3. Now COM chooses his new helper: $v_n = v_{n-1} \cup \{rt(q_{n, \ell}) : \ell < \ell_{n}\}$, and the round is finished. Indeed, $\ell_{n+1} = 2\ell_n$ and $\ell_0 = 1$, but this is not important.

The strategy st is a winning strategy for COM: Let $u \subseteq \omega$ be infinite. By induction on $n \in u$ we choose $s_n \subseteq v_n \setminus v_{n-1}$. If $n = \min(u)$, then $s_n \subseteq v_n \setminus v_{n-1}$ is a singleton. For $n > \min(u)$, let

$s_n = s_{\max(u \setminus u n)} \cup \{\eta \in v_n \setminus v_{n-1} : \nu = \preceq \max\{q \in v_n : q \leq \eta\} \in s_{\max(u \setminus u n)}\}$.
Lastly we let
\[q_n = \{ q : (\exists n \in u)(\exists \eta \in s_n)(q \subseteq \eta) \}. \]

By definition, \(q_n \) is a tree. It is a Miller tree, since for every \(n \in u \), for every \(\eta \in s_n \), \(\eta \) is a splitting node in \(q_n \) since \(\eta = rt(q_n, \ell) \in v_n \setminus v_{n-1} \). We show that for this pair \((n, \ell)\), an infinite subset of \(succ_{q_n}(\eta) \) is a subset of \(succ_{q_n}(\eta) \):

For any \(k > n \) and there is \(\nu \supseteq \eta^< m(\eta, k) \), such that \(\nu \in v_k \setminus v_{k-1} \), by the choice of \((v_k : k \in \omega) \). For such a \(\nu \) we have \(max_\mathbb{C}(\nu \setminus s_n) = \eta \in s_n \subseteq s_{\mathbb{C}(w^\mathbb{C}(k))} \). If \(k \in u \), then \(\nu \in s_k \).

Moreover \(q_n \Vdash \exists x \in u (\exists \ell < \ell_n)(q_{n, \ell} \in \mathbb{G}_\mathbb{P}) \): Suppose that not. Let \(r \geq q_n \) be a Miller condition such that \(r \Vdash \forall n \geq k \to (\forall \ell < \ell_n)(q_{n, \ell} \notin \mathbb{G}_\mathbb{P}) \). By strengthening \(r \), we may assume that \(rt(r) \in s_n \) for some \(n \geq k \), so \(r \geq q_{n, \ell} \) for some \(\ell < \ell_n \). This is a contradiction. \(\neg \)

The properties \(Pr^1 \) and \(Pr^2 \) hold for tree-creature forcings with the lim norm or the lim-sup norm. We explain this now.

2.2. Forcings with (tree) creatures. Now we give more examples. In order to describe the relevant properties we give a brief review of the definitions to forcings with creatures. This concept is explained in the book [16], and it is divided into two main streams: one kind of creature forcing is forcing with creatures such that the conditions are written in an \(\omega \)-sequence like Blass–Shelah forcing [3]. Another example of a forcing with \(\omega \)-sequences of creatures is the (historically first) creature forcing in [21] that forces \(b < s \). The other stream is forcing with tree creatures. For historical reasons the first kind is often just called “creature forcing” and the second kind is called “tree creature forcing”. In this subsection we give a very short introduction to the main concepts.

Let \(H : \omega \to \mathcal{H}(\omega_1) \) be a function such that \((\forall n)(|H(n)| \geq 2 \land 0 \in H(n)) \).

Definition 2.2. Let \(\chi \) be a regular cardinal. A triple \(t = (nor[t], val[t], dis[t]) \) is a weak creature for \(H \), \(\chi \) if the following hold:

(a) \(nor[t] \in \mathbb{R}^{\geq 0} \cup \{ \infty \} \),

(b) \(val[t] \) is a non-empty subset of
\[\{(x, y) \in \bigcup_{m_0 < m_1 < \omega} \prod_{i < m_0} H(i) \times \prod_{i < m_1} H(i) : x < y \} \],

(c) \(dis[t] \in \mathcal{H}(\chi) \).

The family of weak creatures for \(H \) and \(\chi \) is denoted by \(WCR[H] \).

We omit the parameter \(\chi \) since in the following \(dis[t] \) is constant or empty.

Definition 2.3. We say \(H \) is finitary if \(H(n) \) is finite for each \(n \), we say \(H \) is of countable character if \(H(n) \) is at most countable for every \(n \). We say \(K \subseteq WCR[H] \) is finitary if \(H \) is finitary and for every \(t \in K \), \(val[t] \) is finite.
By our choice of $H: \omega \rightarrow H(\omega_1)$ all the creatures in the following will be of countable character.

Definition 2.4. Let $K \subseteq \text{WCR}[H]$.

1. A function $\Sigma: [K]^{\leq \omega} \rightarrow \mathcal{P}(K)$ is called a sub-composition operation on K if the following holds:

 a) (Transitivity:) if $S \in [K]^{\leq \omega}$ and for each $s \in \Sigma(S_s)$ for some $S_s \in \text{dom}(\Sigma)$, then $\Sigma(S) \subseteq \Sigma(\bigcup_{s \in S} S_s)$.

 b) We write $\Sigma(r)$ for $\Sigma(\{r\})$. $r \in \Sigma(r)$ for each $r \in K$ and $\Sigma(\emptyset) = \emptyset$.

2. In the situation described above (K, Σ) is called a weak creating pair.

Definition 2.5. Let (K, Σ) be a weak creating pair for H.

1. For a weak creature $t \in K$ we define its basis with respect to (K, Σ) as $\text{basis}(t) = \{w \in \bigcup_{m<\omega} \prod_{i<m} H(i) : (\exists s \in \Sigma(t))(\exists u)((w, u) \in \text{val}(s))\}$.

2. For $w \in \bigcup_{m<\omega} \prod_{i<m} H(i)$ and $S \in [K]^{\leq \omega}$ we define the set $\text{pos}(w, S)$ of possible extensions of w from the point of view of S as $\text{pos}(w, S) = \{u : (\exists s \in \Sigma(S))(\langle w, u \rangle \in \text{val}(s))\}$, and a sequence $0 < \ell_1 < \cdots < \ell_{m-1} < \lg(u)$ such that $u \mid \ell_1 \in \text{pos}^*(w, S_0)$ and $u \mid \ell_2 \in \text{pos}^*(u \mid \ell_1, S_1), \ldots, u \in \text{pos}^*(u \mid \ell_{m-1}, S_{m-1})$.

2.3. **Tree creatures.** From now on we specialise on tree creatures. They have the special property that $\text{val}(t)$ has just one root.

Definition 2.6. (1) A quasi tree (T, \triangleleft_T) is a set of finite sequences, ordered by initial segment, and there is a \triangleleft_T smallest element $\text{rt}(T)$, called the root of T.

2. A quasi tree is called a tree if it is closed under initial segments. If T is a quasi tree we denote its closure under initial segments by $\text{dcl}(T)$.

3. We define the set of immediate successors of η in T, the restriction of T to η, the splitting points of T and the maximal points of T by

 \[\text{succ}_T(\eta) = \{\nu \in T : \eta \triangleleft_T \nu \land \neg(\exists \rho \in T)(\eta \triangleleft_T \rho \triangleleft_T \nu)\}, \]
 \[T[\eta] = \{\nu \in T : \eta \triangleleft_T \nu\}, \]
 \[\text{split}(T) = \{\eta \in T : |\text{succ}_T(\eta)| \geq 2\}, \]
 \[\text{max}(T) = \{\nu \in T : \neg(\exists \rho \in T)(\nu \triangleleft_T \rho)\}. \]
(4) The n-th level of T is
\[T_n = \{ \eta \in T : \eta \text{ has } n \triangleright \text{-predecessors} \} \]

(5) A branch of T is a maximal subset of T that is linearly ordered by \triangleright. The set of infinite branches through T is
\[\lim(T) = \{ \eta : \eta \text{ is an } \omega \text{-sequence and } (\exists k) (\eta \upharpoonright k \in T) \} \]

A quasi tree is well-founded if there are no infinite branches through it.

(6) A subset F of a quasi tree T is called a front of T if every infinite branch of T and every finite branch of T passes through this set, and the set consists of \triangleright-incomparable elements.

Definition 2.7. (1) A weak creature $t \in WCR[H]$ is a tree creature if $\text{dom}(\text{val}[t])$ is a singleton $\{ \eta \}$ and no two distinct elements of $\text{range}(\text{val}[t])$ are \triangleright-comparable (so also not compatible as finite partial functions since every $\eta \in \text{range}(\text{val}[t])$ has as a domain some $n \in \omega$). TCR[H] is the family of all tree creatures for H.

(2) $\text{TCR}_\eta[H] = \{ t \in \text{TCR}[H] : \text{dom}(\text{val}[t]) = \{ \eta \} \}$.

(3) A sub-composition operation Σ on $K \subseteq \text{TCR}[H]$ is a tree-composition (and then (K, Σ) is called a tree-creating pair for H) if the following holds:

\[(*) \quad \text{If } S \subseteq [K]^{\leq \omega} \text{ and } \Sigma(S) \neq \emptyset, \text{ and } S = \{ s_\nu : \nu \in \hat{T} \} \text{ for some well-founded quasi tree } \hat{T} \subseteq \bigcup_{n<\omega} \prod_{i<n} H(i) \text{ and if for each finite sequence } \nu \in \hat{T}, s_\nu \in \text{TCR}_\nu[H] \text{ and for } \nu \in \hat{T} \setminus \max(\hat{T}), \text{ range}(\text{val}[s_\nu]) = \text{succ}_\rho(\nu) \text{ and if } t \in \Sigma(\{ s_\nu : \nu \in \hat{T} \}) \text{ then } t \in \text{TCR}_{\text{rt}(\hat{T})}[H] \text{ and } \]
\[\text{range}(\text{val}[t]) \subseteq \bigcup \{ \text{range}(\text{val}[s_\nu]) : \nu \in \max(\hat{T}) \}. \]

We write $\Sigma(s_\nu : \nu \in \hat{T})$ instead of $\Sigma(\{ s_\nu : \nu \in \hat{T} \})$. If $\hat{T} = \{ \text{rt}(\hat{T}) \}$, $t = s_{\text{rt}(\hat{T})} \in \text{TCR}_\text{rt}(\hat{T})[H]$ then we will write $\Sigma(t)$ instead of $\Sigma(s_\nu : \nu \in \hat{T})$.

So for a tree creating pair, if $t \in \text{TCR}_\eta[H]$, then $\text{basis}(t) = \{ \eta \}$ and $\text{pos}_\eta(\eta, \{ t \}) = \text{successor}(\eta) = \text{range}(\text{val}[t])$. We write only $\text{pos}_\eta(t)$ for $\text{pos}_\eta(\eta, \{ t \})$.

The next definition introduces requirements on the norms of the creatures in a condition. We focus on the limsup condition and the lim condition. To speak in a uniform way about both variants, we introduce a parameter e, and $e = 0$ stands for the limsup case, and $e = 1$ stands for the lim case.

Definition 2.8. Let (K, Σ) be a tree-creating pair for H, such that there are $t \in \text{TCR}_\eta[H] \cap K$ of arbitrary high norm.

(1) We define the forcing notion $Q^\text{tree}_e(K, \Sigma)$ for $e = 0, 1$ by letting $p = \langle t_\eta : \eta \in T \rangle \in Q^\text{tree}_e(K, \Sigma)$:
Usually the conditions on the norm imply that

\[(a) \ T \subseteq \bigcup_{n<\omega} \prod_{i<n} H(i) \text{ is a non-empty quasi tree with } \max(T) = \emptyset, \text{ and} \]

\[(b) \ t_\eta \in \text{TCR}_{[\eta]} H \cap K \text{ and } \text{pos}^*(t_\eta) = \text{succ}_T(\eta), \text{ and} \]

\[(c) \text{ in the lim case } (e = 1) \text{ we require for } \eta \in \text{lim}(T), \]

\[\lim(\text{nor}[t_\eta|k] : k < \omega, \eta | k \in T) = \infty. \]

In the limsup case \((e = 0)\) we require for \(\eta \in \text{lim}(T)\) the sequence

\[\limsup(\text{nor}[t_\eta|k] : k < \omega, \eta | k \in T) = \infty. \]

We define the forcing order \(\leq \leq_{\text{tree}}^K\) by \(\langle t^1_\eta : \eta \in T^1 \rangle \leq \langle t^2_\eta : \eta \in T^2 \rangle\)

iff \(T^2 \subseteq T^1\) and for each \(\eta \in T^2\) there is a quasi tree \(T_{0,\eta} \subseteq (T^1)^{[\eta]}\)

such that \(\text{dcl}(T_{0,\eta})\) is well-founded and \(t^2_\eta \in \Sigma\{\{t^1_\nu : \nu \in T_{0,\eta}\}\}\. \text{ If} \)

\(t = \langle t_\eta : \eta \in T \rangle\) then we write \(\text{rt}(p) = \text{rt}(T)\) and \(T^p = T \) and \(t^p_\eta = t_\eta\)

etc.

\[(2) \text{ If } p \in \mathbb{Q}_e^{\text{tree}}(K, \Sigma) \text{ then we let } p^{[\eta]} = \langle t^p_\nu : \nu \in (T^p)^{[\eta]} \rangle \text{ for } \eta \in T^p. \]

We write \(\text{succ}_e(\eta)\) for \(\text{succ}_{T^p}(\eta)\). The prominent real added by \(\mathbb{Q}_e^{\text{tree}}(K, \Sigma)\), \(e = 0, 1\), is \(W\) with

\[\|W \|_{\mathbb{Q}_e^{\text{tree}}(K, \Sigma)} = \bigcup \{\text{rt}(p) : p \in \mathbb{G}_{\mathbb{Q}_e^{\text{tree}}(K, \Sigma)}\}. \]

Usually the conditions on the norm imply that \(W\) is forced to be not in \(V\).

Definition 2.9. Let \((K, \Sigma)\) be a tree-creating pair \(p \in \mathbb{Q}_e^{\text{tree}}(K, \Sigma), e = 0, 1\). A set \(A \subseteq T^p\) is called an \(e\)-thick antichain if it is an antichain in \((T^p, \leq)\) and for every condition \(q \geq p \) the intersection \(A \cap \text{dcl}(T^q)\) is not empty.

Proposition 2.10. \((1)\) Let \(e = 0, 1\). \(\mathbb{Q}_e^{\text{tree}}\) is a partial order. Each \(e\)-thick antichain \(A \) in \(T^p\) gives a maximal antichain \(\{p^{[\eta]} : \eta \in A\}\) in \(\mathbb{Q}_e^{\text{tree}}\) above \(p\). Every front of \(T^p\) is an \(e\)-thick antichain in \(T^p\).

\[(2) \text{ We define} \]

\[F^m_n(p) = \{\eta \in T^p : \text{nor}[t^p_\eta] > n \text{ and} \]

\[|\{\eta' \in T^p : \eta' \prec \eta \text{ and } \text{nor}[t^p_\eta] > n\}| = m\} . \]

Each \(F^m_n(p)\) is a front of \(T^p\) and an \(e\)-thick antichain of \(T^p\) for \(e = 0, 1\).

\[(3) \text{ If } K \text{ is finitary and } \text{dcl}(T^p) \text{ is well-founded, then every front of } T^p \text{ is finite.} \]

\[(4) p \leq p^{[\eta]} \in \mathbb{Q}_e^{\text{tree}} \text{ and } \text{rt}(p^{[\eta]}) = \eta. \]

Proof. See [16, Prop. 1.3.7].

Now the forcings notions with the normed trees let us define strengthenings of the forcing order \(\leq\) that are natural candidates for Axiom A (a definition can be found, e.g., in [2, Def. 7.1.1]).

Definition 2.11. Let \((K, \Sigma)\) be a tree-creating pair and let \(p, q \in \mathbb{Q}_0^{\text{tree}}(K, \Sigma)\).
Suppose that Proposition 2.12.

(1) For the limsup case, we define \leq^0_n for $n < \omega$ by

$$p \leq^0_q \text{ if } p \leq q \text{ and } \rt(p) = \rt(q),$$

$$p \leq^{n+1}_q \text{ if } p \leq^0_q \text{ and if } q \in F^n(p) \text{ and } \nu \in T^q \text{ and } \nu \leq \eta \text{ then } \nu \in T^q$$

and $t^p_\nu = t^q_\nu$.

(2) For the lim case we define \leq^1_n for $n < \omega$ by

$$p \leq^1_q \text{ if } p \leq q \text{ and } \rt(p) = \rt(q),$$

$$p \leq^{n+1}_q \text{ if } p \leq^1_q \text{ and if } q \in F^n(p) \text{ and } \nu \in T^q \text{ and } \nu \leq \eta \text{ then } \nu \in T^q$$

and $t^p_\nu = t^q_\nu$ and

$$\{(\eta, t^n_\eta) : \eta \in T^q \land \nor[t^n_\eta] \leq n\} \subseteq \{(\eta, t^p_\eta) : \eta \in T^p\}.$$

Note that $t^p_\nu = t^q_\nu$ means also that the immediate successors of ν in p coincide with the immediate successors of ν in q.

Proposition 2.12. Suppose that $e = 0, 1$, $p_n \in Q^\text{tree}[K, \Sigma]$ and for $n \in \omega$, $p_n \leq^e_{n+1} p_{n+1}$. Then the limit condition $p = \lim_{n \to \omega} p_n$ is defined by $T^p = \cap_{n \in \omega} T^{p_n}$ and for $\eta \in \cap_{n \in \omega} T^{p_n}$ we take the creature $t^p_\eta = \cap_{n \in \omega} t^{p_n}_\eta$ (note that this is actually a finite intersection since the descending sequence $t^{p_n}_\eta$, $n \in \omega$ eventually becomes constant) into p. Then $p \in Q^\text{tree}[K, \Sigma]$ and $p \geq^e_{n+1} p_n$ for each n.

Proposition 2.13. Let $p \in Q^\text{tree}[K, \Sigma]$, $n < \omega$, and let $A \subseteq T^p$ be an antichain in T^p such that $(\forall \eta \in A)(\exists \nu \in F^n(p))(\nu \triangleleft \eta)$. Assume that for each $\eta \in A$ we have a condition $q_\eta \in Q^\text{tree}[\eta, \Sigma]$ such that $p[q_\eta] \leq^e_0 q_\eta$ and

$$\text{if } e = 1 \text{ then } (\forall \eta \in A)(\forall \nu \in T^{q_\eta})(\nu \geq \eta \land \nor(t^{q_\eta}_\nu) \leq n) \rightarrow t^{p_\eta}_\nu = t^{q_\eta}_\nu).$$

Then there exists $q \in Q^\text{tree}[K, \Sigma]$ such that $p \leq^e_{n+1} q$, $A \subseteq T^q$, $q[n] = q_\eta$ for $\eta \in A$ and if $\nu \in T^q$ is such that there is no $\eta \in A$ with $\eta \leq \nu$ then $\nu \in T^q$ and $t^{p_\eta}_\nu = t^{q_\eta}_\nu$.

Since we repeatedly use the construction from Proposition 2.13 in a reordered setting for the lim case, we name it:

Definition 2.14. We call the q constructed from p, A and q_η, $\eta \in A$, as in the previous proposition:

$$q = p \upharpoonright \{\nu \in T^p : (\forall \eta \in A)(\forall \nu \in T^{q_\eta})(\nu \geq \eta \land \nor(t^{q_\eta}_\nu) \leq n) \rightarrow t^{p_\eta}_\nu = t^{q_\eta}_\nu\} \sum_{\eta \in A} q_\eta.$$

When we use this expression we assume that the conditions on p, A, q_η, $\eta \in A$, as given in the proposition are fulfilled.

Definition 2.15. A tree-creating pair (K, Σ) is t-omittory if for each system $(s_\nu : \nu \in \bar{T})$ such that $\dcl(\bar{T})$ is a well-founded tree and $\rt(s_\nu) = \nu$ and $\pos^*(s_\nu) = \text{succ}_T(s_\nu)$ for $\nu \in \bar{T}\setminus\text{max}(\bar{T})$ and for every $\nu_0 \in \bar{T}$ such that $\pos^*(s_{\nu_0}) \subseteq \bigcup\{\text{range}(\text{val}[s_{\nu}]) : \nu \in T\}$ there is $s \in \Sigma(s_\nu : \nu \in \bar{T})$ such that

$\nor[s] \geq \nor[s_{\nu_0}] - 1$ and $\pos^*(s) \subseteq \pos^*(s_{\nu_0})$.
Note that t-omittoriness implies that the domain of Σ contains $(s_\nu : \nu \in \check{T})$ for all well-founded subtrees \check{T}. A suitable equivalent formulation of Miller forcing is t-omittory.

Now there is an important construction we want to recall and use in the proofs of Lemma 2.17 and of Prop. 2.18 and of Theorem 2.19.

Lemma 2.16. Let $e = 0,1$ and let (K, Σ) be t-omittory. If $p \leq q$ then there is $r \in \mathbb{Q}^\text{tree}_e(K, \Sigma)$ such that $p \leq^* r$ and $\text{dcl}(T') \subseteq \text{dcl}(T''')$ and $t'^e = t'^q$ for $\nu \in T'' - \{\nu(T'')\}$ and $\text{rt}(q) \in \text{dcl}(T'')$ and $\text{nor}(t'^e_{\text{rt}(q)}) \geq \text{nor}(t'^q_{\text{rt}(q)}) - 1$.

Proof. We let $\eta = \text{rt}(q)$ and let T' be a well-founded quasi tree such that $(\forall \nu \in T'')(\text{succ}T''(\nu) = \text{pos}^e(t'^q))$ and $\text{rt}(T'') = \eta$ and $t'^q \in \Sigma(t'^q : \nu \in T'')$. Let $T'' = \{\text{rt}(p)\} \cup \{\nu \in T'' : \nu < \eta \} \cup \{\eta\}$. T'' is a well-founded quasi tree and we may apply t-omitting to $(t'^q : \nu < \eta : \nu \in T'') \cup \{t'^q\}$ and η. Thus we get $t'^e_{\text{rt}(p)} \in \Sigma(\{t'^q : \nu < \eta, \nu \in T'' \} \cup \{t'^q\})$ such that $\text{pos}^e(t'^e_{\text{rt}(p)}) \subseteq \text{pos}^e(t'^q)$ and $\text{nor}(t'^e_{\text{rt}(p)}) \geq \text{nor}(t'^q_{\text{rt}(q)}) - 1$. Note that by transitivity of Σ, $t'^e_{\text{rt}(p)} \in \Sigma(t'^q : \nu \in T'' \cup T'')$. For $\nu \in T''$ such that $(\exists \nu' \in \text{pos}^e(t'^e_{\text{rt}(p)}))(\nu \supseteq \nu')$ let $t'^e_{\text{rt}(p)} = t'^q$.

Lemma 2.17. Suppose that (K, Σ) is a finitary t-omittory tree-creating pair. Then $\mathbb{Q}^\text{tree}_1(K, \Sigma)$ is dense in $\mathbb{Q}^\text{tree}_0(K, \Sigma)$.

Proof. Given a $p \in \mathbb{Q}^\text{tree}_0(K, \Sigma)$, we repeatedly use Lemma 2.16 to change it into a stronger condition in $\mathbb{Q}^\text{tree}_1(K, \Sigma)$.

Proposition 2.18.

1. Suppose that (K, Σ) is a finitary t-omittory tree-creating pair. Then player COM has a winning strategy in $\mathcal{D}(\mathbb{Q}^\text{tree}_1(K, \Sigma), p)$.

2. Suppose that (K, Σ) is a finitary creating pair that is t-omittory. Then player COM has as winning strategy in $\mathcal{D}(\mathbb{Q}^\text{tree}_0(K, \Sigma), p)$.

Proof. By Lemma 2.17 we need to prove only (2). We describe a strategy st for COM in $\mathcal{D}(\mathbb{F}, p)$. The play will be $(\overline{p}_n, q_n : n \in \omega)$. This time we let $v_n = \{\text{rt}(q_{n, \ell}) : \ell < \ell_n\}$. COM plays so that the play has the following properties:

1. $\ell_0 = 1, p_0, 0 = p_0, 0 \geq p_0, 0, v_0 = \{\text{rt}(q_0, 0)\}$.

2. $v_n \cap v_{n-1}$ is a subset of some nodes $q_{n, \ell}$ of $q_{n, \ell}$, $\ell \leq \ell_n$. In contrast to the proof of Theorem 2.1, now $v_n \cap v_n = \emptyset$ and we only need to look at the $q_{n, \ell}$ from the previous round.

3. COM lets for $\eta \in v_{n-1}, \eta = q_{n, \ell} = \text{rt}(q_{n-1, \ell})$ for some $\ell < \ell_{n-1}$, $F(n, \eta) = a$ front in $\{\zeta : \text{rt}(q_{n-1, \ell}) : \zeta \in T^{q_{n-1, \ell}} - \text{dcl}(v_{n-1}), \text{nor}(t'^e_{\text{rt}(q_{n-1, \ell})} > n\}$. Since the $q_{n-1, \ell}, \ell \leq \ell_{n-1}$, are tree conditions with pairwise incomparable roots and each $\eta \in v_n$ is a node of $q_{n-1, \ell}$ for some $\ell < \ell_{n-1}$ and v_{n-1} is finite, for each $\eta \in v_{n-1}$, (η, n) is defined. Now COM chooses
for each $\eta \in v_{n-1}$, with $\eta = rt(q_{n-1,\ell})$, for each $\zeta \in F(\eta, n)$, and for each $\rho \in \text{range}(\text{val}[t_{\zeta}^{|q_{n-1,\ell}|}])$,
\[p_{n,\eta, \rho} = (q_{n-1,\ell})[\rho]. \]

COM lets ℓ be the sum of these finite cardinalities of the fronts $F(n, \eta)$ for all $\eta \in v_{n-1}$, of all ρ’s for all $\zeta \in F(\eta, n)$ and rearranges his move as
\[
\{ p_{n, \ell} : \ell < \ell_n \} = \{ p_{n,\eta, \rho} : \eta = \eta_n^\ell \in v_{n-1}, \ell < \ell_n, \zeta \in F(\eta, n),
\rho \in \text{range}(\text{val}[t_{\zeta}^{|q_{n-1,\ell}|}]) \}.
\]

(3) INC plays $q_{n, \ell} \geq p_{n, \ell}$.

Now we prove $Pr^1(\mathbb{P})$. We let
\[q = (q : q \in \text{range}(\text{val}[t_{\zeta}^{|q_{n-1,\ell}|}]) : n \in \omega, \ell < \ell_n, \zeta \in F(\eta, n)). \]

By definition, q is a quasi tree. It is a condition since we have by Prop. 2.13 that there is a sequence $\langle q_n : n < \omega \rangle$ such that $q_0 = q$, $q_{n+1} = q_n \upharpoonright \{ \eta : \forall \nu \triangleright \eta \nu \not\in \bigcup_{\ell < \ell_n} F_n(\eta, n') \} \setminus \sum_{\eta \subseteq \bigcup_{\ell < \ell_n} F_n(\eta, n')} F_n(\eta, n')(q)[\eta]$. We consider $q' \geq q$ and assume q' forces that $\{ q_{n, \ell} : \ell < \ell_n \}$ is not dense. By the tree omnitorrness, we can find $q'_n \geq q'$, q_n as in Lemma 2.16 such that $\text{pos}(t_{\eta}^{q'_n}) \subseteq \text{pos}(t_{\eta}^{q_n})$ for each $\eta \in T''^\ell_n$. Then $q'_n \models (\exists \ell < \ell_n)(q_{n, \ell} \in G^\ell_n)$ holds since a subset of $\{ rt(q_{n, \ell}) : \ell < \ell_n \}$ is a front in T''^ℓ_n.

\[\square \]

Theorem 2.19. Suppose that $\bigcup_{m<\omega} H(m)$ is countable and (K, Σ) is a tree creating pair for H that is t-omittary. Then the forcing COM has a winning strategy in $\mathcal{O}^2(K, \Sigma, p)$.

Proof. We show that there is a strategy for COM in $\mathcal{O}^2(\mathbb{P}, p)$. This time he plays a tuple as a side move that is more complex than the one in Theorem 2.1. We let $F(n, \eta)$ and $\text{val}[t_{\zeta}^{|q_{n-1,\ell}|}]$ be as in the proof of Proposition 2.18. Now both of them are infinite. So in order to visit them all, we organise the induction so that we at stage n we visit all the finitely many previous stages again and add just one node $\zeta(n, \eta)$ of each previous $F(n', \eta)$, $n' < n$, $\eta = \eta_n^\ell = rt(q_{n', \ell'}) \in v_n$ for a specific $n' < n$ and $\ell' < \ell_n$, and we add one node $\rho(n, \eta)$ of $\text{val}[t_{\zeta(n, \eta)}]$. Again $\ell_n = 2^n$. Both kinds of tasks, the $F(n', \eta)$ and the $\text{val}[t_{\zeta(n, \eta)}]$ will now appear as the fronts $I_{x, \eta}$ in the construction below.

We describe a strategy st for COM in $\mathcal{O}^2(\mathbb{P}, p)$.

First, let $\langle q_k^x : k < \omega \rangle$ list $\text{dcl}(T^p)$.

We say $x = (v_x, p_x, I_x)$ is an expanded state in $\mathcal{O}^2(\mathbb{P}, p)$ if x consists of

(a) $v = v_x$ a finite, non-empty set of splitting nodes of p with sufficiently high norm that has a root, $rt(v_x)$, such that $v \in v_x \rightarrow rt(v_x) \preceq v$,
(b) a tuple of conditions $\vec{F}_x = (p_{x, \eta} : \eta \in v_x)$ such that $p \leq p_{x, \eta}$, $\eta = \rho(p_{x, \eta})$ and $\text{nor}(t_{\eta}^{p_{x, \eta}}) > 1$,

c) a tuple $\vec{I} = \vec{F}_x = (I_{x, \eta} : \eta \in v_x)$ of fronts such that $I_{x, \eta} \subseteq \text{dcl}(T^{p_{x, \eta}}) \setminus \{\eta\}$ is a front in $p_{x, \eta}$, it can be taken the direct successors of η in $\text{dcl}(T^{p_{x, \eta}})$,

d) if $\eta \in v_x$ and $\eta \triangleleft \nu \in I_{x, \eta}$ and $\eta \triangleleft \rho \triangleleft \nu$ then $\rho \notin v_x$.

For two expanded states x, y, we say $y \in \text{succ}(x)$ if

(a) $v_x \subseteq v_y$ and $\text{rt}(v_x) = \text{rt}(v_y)$, $(v_y \setminus v_x) \cap \text{dcl}(v_x) = 0$,

(b) $\vec{F}_x = \vec{F}_y \upharpoonright v_x$,

(c) $\vec{I}_x = \vec{I}_y \upharpoonright v_x$,

(d) if $\eta \in v_x \setminus v_y$ then $\text{nor}(t_{\eta}^{p_{x, \eta}}) \geq |v_x|$,

(e) if $\eta \in v_x$ and $k < \omega$ is minimal such that $g_k^\eta \in I_{x, \eta}$ and $(-\exists \rho)(g_k^\eta \triangleleft \rho \triangleleft v_y)$ then $(\exists \rho)(g_k^\eta \triangleleft \rho \triangleleft v_y)$.

COM chooses on the side after the n-th move $x_n \geq x_{n-1}$ such the play $(\vec{F}_n, \vec{I}_n, x_n : n \in \omega)$ has the following properties:

(0) $t_0 = 1$, $p_0,0 = p$, $q_{0,0} \geq p$, $\text{rt}(q_{0,0}) = \eta$, now COM chooses $\nu \in T_{q_{0,0}}$ such that $\text{nor}(t_{\nu}^{q_{0,0}}) > 1$ and $v_{x_0} = \{\nu\}$ $p_{x_0, \nu} = q_{0,0}^\nu$, $I_{x_0, \eta} = \text{dcl}(T_{q_{0,0}}(\nu))$,

(1) In the n-th move COM first lets for $\eta \in v_{x_{n-1}}$,

$$k_{n, \eta} = \min\{k \in \omega : g_k^\eta \in I_{x_{n-1}, \eta} \land (-\exists \rho)(g_k^\eta \triangleleft \rho \triangleleft v_{x_{n-1}})\}.$$
COM makes the move $\vec{F}_n = (p_{x_{n-1}, \eta} : \eta \in v_{x_{n-1}})$. Then INC makes moves $(q_{n, \eta}^\eta : \eta \in v_{x_{n-1}})$ so $p_{x_{n-1}, \eta} \leq q_{n, \eta}^\eta$ and $g_k^\eta \triangleleft \rho \leq \text{rt}(q_{n, \eta}^\eta)$.

(2) Now on the side COM chooses $(\nu^\eta_n : \eta \in v_{x_{n-1}})$ such that $(\nu^\eta_n \in T_{q_{n, \eta}}^\eta)$ and $\text{nor}(t_{\nu}^{q_{n, \eta}^\eta}) > |v_{x_{n-1}}| = 2^{n-1}$ and $g_k^\eta \triangleleft \rho \leq |v_{x_{n-1}}|$.

(3) COM defines x_n with the following properties:

$$v_{x_n} = v_{x_{n-1}} \cup \{\nu^\eta_n : \eta \in v_{x_{n-1}}\},$$

$$p_{x_n, \nu} = \begin{cases} p_{x_{n-1}, \nu} & \text{if } \nu \in v_{x_{n-1}}; \\
(q_{n}^\eta)^{\nu} & \text{if } \eta \in v_{x_{n-1}} \land \nu = \nu^\eta_n, \end{cases}$$

$$I_{x_n, \nu} = \begin{cases} I_{x_{n-1}, \nu} & \text{if } \nu \in v_{x_{n-1}}; \\
\text{succ}_{q_n^\eta}(\nu^\eta_n) & \text{if } \eta \in v_{x_{n-1}} \land \nu = \nu^\eta_n. \end{cases}$$

Now the round is finished.

Now we prove $\text{Pr}^2(\vec{F})$. Let $(\vec{F}_n, \vec{I}_n, x_n : n < \omega)$ be a play in which COM uses \vec{F} and let $u \subseteq \omega$ be infinite. We show how to define u_n.

For $m_1 < m_2 < \omega$ we define a function f_{m_1, m_2} as follows

$$\text{dom}(f_{m_1, m_2}) = \{\nu : (\exists \eta \in v_{x_{m_1}})(\nu \in I_{x_{m_1, \eta}} \land (\exists \rho \in v_{x_{m_2}})(\nu \leq \rho))\}$$
and for \(\nu \in \text{dom}(f_{m_1,m_2}) \) we let \(f_{m_1,m_2}(\nu) \in v_{x_{m_2}} \) be such that \(\nu \land f(\nu) \) and
\((\exists \rho)(f_{m_1,m_2}(\nu) \land \rho \in v_{x_{m_2}})\), that is, \(f_{m_1,m_2}(\nu) \) is \(\prec \)-maximal.

Next we choose \(w_{u,n} \) by induction on \(n \in u \) such that \(w_{u,n} \subseteq v_{x_{n}} \).

Case 1: \(n = \min(u) \). We let \(\eta \in v_{x_{n}} \) be \(\prec \)-maximal and let \(w_{u,n} = \{ \eta \} \).

Case 2: \(n \in u, n > \min(u) \). \(m = \max(u \cap n) \),

\[w_{u,n} = w_{u,m} \cup \{ f_{m,n}(\nu) : (\exists \eta \in w_{u,m})(\nu \in I_{x_{m},\eta} \land (\exists \rho)(\nu \leq \rho \in v_{x_{n}})) \} \].

We define \(q_{n} \in \mathbb{P} \) by induction on \(n \) such that by \(T^{q_{n}} \subseteq \text{dcl}(\bigcup_{m<n} w_{u,m}) \). For \(\zeta \in T^{u} \) we let \(f_{m,n}(\nu) = \zeta \) and set \(\text{pos}(t_{\zeta}^{q_{n}}) \subseteq \text{pos}(t_{\zeta}^{\text{dcl}(\bigcup_{m<n} w_{u,m})}) \).

Note that \(\text{dcl}(\bigcup_{m<n} w_{u,m}) \) is a tree without maxima since \((\forall m < n)(m, n \in u \rightarrow (\forall \eta \in w_{u,m})(\exists \nu \in I_{x_{m},\eta})(\exists \rho = f(\nu))) \). We show:

\[(\circ) \quad q_{n} \models (\exists \nu \in u) (Q^{n}_{\eta} : \eta \in w_{u,n}) \text{ is predense}. \]

Since \(w_{u,n} \subseteq v_{x_{n}} \) from \((\circ) \) we get \(q_{n} \models (\exists \nu \in u)(\exists \ell < \ell_{n})(\Delta\in w_{u,n} \in G_{\mathbb{P}}) \).

Suppose that \((\circ) \) is false. Let \(r \models q_{n} \) be a condition such that \(r \models (\forall \nu \in u)(n \geq k \rightarrow (\forall \eta \in w_{u,k})(Q^{n\cdot i}_{\eta} \notin \Gamma_{\mathbb{P}})) \). Now we use \(t \)-omittoriness.

By strengthening \(r \) according to Lemma 2.16, we may assume that \(rt(r) \in w_{u,n} \) for some \(n \geq k \), so, by our construction of \(q_{u} \), \(r \geq Q^{n\cdot i}_{\eta} \) for some \(\eta \in w_{u,n} \). This is a contradiction.

Definition 2.20. Let \((K, \Sigma) \) be a tree-creating pair for \(H, k < \omega \).

1. A tree creature \(t \in K \) is called \(k \)-big if \(\text{nor}[t] > 1 \) and for every function \(h: \text{pos}(t) \rightarrow k \) there is \(s \in \Sigma(t) \) such that \(h \upharpoonright \text{pos}(s) \) is constant and \(\text{nor}[s] \geq \text{nor}[t] - 1 \).

2. We say \((K, \Sigma) \) is \(k \)-big if every \(t \in K \) with \(\text{nor}[t] > 1 \) is \(k \)-big.

Although \(t \)-omittoriness does not literally imply bigness, it gives an analogue of bigness if the function \(h \) from Definition 2.20(1) colours the second but highest level of a tree of possibilities, since this level corresponds to the top level of the tree \(\hat{T} \) in the definition of \(t \)-omittoriness. So every tree-creature forcing construction performed with bigness can also be done with \(t \)-omittoriness. This sheds some light on the the conditions in [16, Lemma 2.3.6 and Theorem 2.3.7].

Remarks: The definitions are taken from [16, Chapters 1–3]. Lemma 2.19 is an analogue to the result that for linear creatures various kinds of limits of norms give the same notion of forcing under a suitable condition on finitariness and omittoriness [16, Prop. 2.1.3]. Proposition 2.18 adds an intermediate step to the implication that for finitary \(t \)-omittory pairs \((K, \Sigma) \) the forcing notion \(Q_{0}^{t}(K, \Sigma) \) is \(\omega \)-bounding (see [16, Conclusion 3.1.1]).

Theorem 2.19 is a strengthening of the implication: If \(\bigcup_{m<\omega} H(m) \) is countable and \((K, \Sigma) \) is a tree creating pair for \(H \) that is \(t \)-omittory, then the forcing \(Q_{0}^{t}(K, \Sigma) \) is almost \(\omega \)-bounding (which is [16, Theorem 4.3.9]).
2.4. The case of linear creature forcings. In this section we look at a second main kind of creature forcings, namely forcings with ω-sequences of creatures. This kind is sometimes just called creature forcing, for historic reasons. The best-known examples are Blass–Shelah forcing [3] and the forcing from [21].

Blass–Shelah forcing [3] fulfills the conditions of the next theorem. The assumptions resemble the assumptions made in Prop. 2.18 and Theorem 2.19. Under these conditions, the various limit conditions on the divergence of norms coincide: $Q^\omega_\omega(K,\Sigma)$ and $Q^\omega_\omega(K,\Sigma)$ are equivalent forcings by [16, Prop. 2.1.3]. We first recall these families of notions of forcing:

Definition 2.21. Suppose that (K,Σ) is a weak creating pair for H and $C(no)$ is a property of ω-sequences of weak creatures from K (i.e., $C(no)$ is a subset of K^ω). We define the forcing notion $Q_{C(no)}(K,\Sigma)$. Conditions are pairs (w,T) such that for some $k_0 < \omega$,

(a) $w \in \prod_{i < k_0} H(i)$.

(b) $T = \langle t_i : i < \omega \rangle$ where

(i) $t_i \in K$ for each i.

(ii) $w \in \text{basis}(t_i)$ for some $i < \omega$, and for each finite set $I_0 \subseteq \omega$ and $u \in \text{pos}(w,\{t_i : i \in I_0\})$ there is $i \in \omega \setminus (\max(I_0) + 1)$ such that $u \in \text{basis}(t_i)$.

(c) the sequence $\langle t_i : i < \omega \rangle$ satisfies the conditions $C(no)$.

The order is given by $(w_1,T^1) \leq (w_2,T^2)$ if and only if for some disjoint sets $S_0, S_1, \ldots \subseteq \omega$ we have $w_2 \in \text{pos}(w_1,\{t^1_\ell : \ell \in S_0\})$ and $t^2_\ell \in \Sigma(\{t^1_\ell : \ell \in S_{i+1}\})$ for each $i < \omega$ where $T^i = \langle t^i_\ell : i < \omega \rangle$.

If $p = (w,T)$ we let $w^p = w$ and $T^p = T$ and if $T^p = \langle t_i : i < \omega \rangle$ then we let $t^p_i = t_i$. We may write $(w,t_0,t_1\ldots)$ instead of (w,T) when $T = \langle t_i : i < \omega \rangle$.

If (K,Σ) is a weak creating pair and $C(no)$ is a property of sequences of elements of K then $Q_{C(no)}$ is a forcing notion. Now we explain what properties $C(no)$ are meant in (c) of the previous definition.

Definition 2.22. For a weak creature t let us denote

$$m^t_{dn} = \min\{\lg(u) : u \in \text{dom}(\text{val}(t))\}$$

We introduce the following basic properties of sequences of weak creatures which may serve as $C(no)$

($s\infty$) A sequence $\langle t_i : i < \omega \rangle$ satisfies $C^{s\infty}(no)$ if and only if

$$\forall i < \omega (\text{nor}(t_i) > \max\{i, m_{dn}(t_i)\}).$$

(∞) A sequence $\langle t_i : i < \omega \rangle$ satisfies $C^\infty(no)$ if and only if

$$\lim_{i \to \infty} \text{nor}(t_i) = \infty.$$
\((\omega^\infty) \) A sequence \(\langle t_i : i < \omega \rangle \) satisfies \(C^{\omega^\infty}(\text{nor}) \) if and only if

\[
\limsup_{i \to \infty} \text{nor}(t_i) = \infty.
\]

The forcing notions corresponding to the above properties for a weak creating pair \((K, \Sigma) \) will be denoted by \(Q_{\omega^\infty}(K, \Sigma) \), \(Q_\infty(K, \Sigma) \), \(Q_{\omega^\infty}(K, \Sigma) \).

Adding more properties to a weak creature gives an \(H \)-creature:

Definition 2.23. Let \(t \) be a weak creature for \(H \).

1. If there is \(m < \omega \) such that \(\forall (u, v) \in \text{val}[t], \lg(u) = m \), then this unique \(m \) is called \(m^t_{\text{dn}} \).
2. If there is \(m < \omega \) such that \(\forall (u, v) \in \text{val}[t], \lg(v) = m \), then this unique \(m \) is called \(m^t_{\text{up}} \).
3. If both \(m^t_{\text{dn}} \) and \(m^t_{\text{up}} \) are defined then \(t \) is called an \((m^t_{\text{dn}}, m^t_{\text{up}}) \)-creature of just a creature.
4. \(\text{CR}_{m^t_{\text{dn}}, m^t_{\text{up}}} \) \(H \) \(= \{ t \in \text{WCR}[H] : m^t_{\text{dn}} = m_{\text{dn}}, m^t_{\text{up}} = m_{\text{up}} \} \). The set \(\text{CR}[H] = \bigcup_{m_{\text{dn}} < m_{\text{up}} < \omega} \text{CR}_{m^t_{\text{dn}}, m^t_{\text{up}}} \) \(H \) is called the set of \(H \)-creatures.

Definition 2.24. Suppose that \(K \subseteq \text{CR}[H] \) and \(\Sigma \) is a subcomposition operation on \(K \). We say that \(\Sigma \) is a composition on \(K \) and we say \((K, \Sigma) \) is a creating pair for \(H \) if

1. if \(S \in [K]^{\omega} \) and \(\Sigma(S) \neq \emptyset \) then \(S \) is finite and for some enumeration \(S = \{ t_0, \ldots, t_{m-1} \} \) we have \(m^t_{\text{up}} = m^{t_{i+1}}_{\text{dn}} \) for \(i < m - 1 \), and
2. for each \(s \in \Sigma(t_0, \ldots, t_{m-1}) \) we have \(m^s_{\text{dn}} = m^t_{\text{dn}} \) and \(m^s_{\text{up}} = m^t_{\text{up}} \).

Definition 2.25. Let \((K, \Sigma) \) be a creating pair and \(C(\text{nor}) \) be a property of \(\omega \)-sequences of creatures. The forcing notion \(Q_{\text{C}(\text{nor})}(K, \Sigma) \) is a suborder of \(\bigcup_{\Sigma \in \text{C}(\text{nor})} (K, \Sigma) \) consisting of these conditions \((w, t_0, t_1, \ldots) \) for which additionally \(\forall i \in \omega, m^{t_i}_{\text{up}} = m^{t_{i+1}}_{\text{dn}} \).

Definition 2.26. Let \((K, \Sigma) \) be a weak creating pair for \(H \).

1. For \(t \in K \), \(m_0 \leq m^t_{\text{dn}} \), \(m^t_{\text{up}} \leq m_1 \) we define the creature \(s = t \upharpoonright [m_0, m_1] \) by

\[
\begin{align*}
\text{nor}[s] &= \text{nor}[t], \\
\text{val}[s] &= \{ \langle w, u \rangle \in \prod_{i < m_0} H(i) \times \prod_{i < m_1} H(i) : \langle v | m^t_{\text{dn}}, u | m^t_{\text{up}} \rangle \in \text{val}[t] \land \\
&\quad w < u \land (\forall i \in [m_0, m^t_{\text{dn}}) \cup [m^t_{\text{up}}, m_1))(u(i) = 0) \}. \end{align*}
\]

Note that \(t \upharpoonright [m_0, m_1] \) is well-defined only if \(\text{val}[s] \neq \emptyset \) and then \(m^s_{\text{dn}} = m_0 \) and \(m^s_{\text{up}} = m_1 \).

2. The creating pair \((K, \Sigma) \) is omittory if it has the following properties:
\((o_1) \) If \(t \in K \) and \(u \in \text{basis}(t) \) then \(u \rightarrow 0_{(m_{dn}^t, m_{up}^t)} \in \text{pos}(u, t) \) but there is \(v \in \text{pos}(u, t) \) such that \(v \upharpoonright (m_{dn}^t, m_{up}^t) \neq 0_{(m_{dn}^t, m_{up}^t)} \).

\((o_2) \) For every \((t_0, \ldots, t_{n-1}) \) sequence of \((K, \Sigma) \)-creatures, if for every \(i < n \), \(m_{dn}^{t_{i+1}} = m_{up}^{t_i} \) then for every \(i < n \), \(t_i \uparrow (m_{dn}^{t_0}, m_{up}^{t_{n-1}}) \in \Sigma(t_0, \ldots, t_{n-1}) \).

\((o_3) \) If \(t, t \uparrow (m_0, m_1) \in K \) then for every \(u \in \text{basis}(t \uparrow (m_0, m_1)) \) and \(v \in \text{pos}(u, t \uparrow (m_0, m_1)) \) we have
\[
v(n) \neq 0 \land n \in [\lg(u), \lg(v)] \rightarrow n \in [m_{dn}^{m_0}, m_{up}^{m_1}].
\]

Note that \((o_1) \) implies that in the cases relevant for \((o_2) \) the creature \(t \uparrow (m_{dn}^{m_0}, m_{up}^{m_1}) \) is well defined.

Definition 2.27. An omitter creating pair \((K, \Sigma) \) is omitter-big if for every \(k < \omega \) there is \(m < \omega \) such that if \(t \in K \), \(\text{nor}(t) > m \), \(u \in \text{basis}(t) \), \(c : \text{pos}(u, t) \rightarrow \{0, 1\} \) then there is \(s \in \Sigma(t) \) such that \(\text{nor}(s) \geq k \) and \(c \upharpoonright \text{pos}(u, s) \} \{0_{(m_{dn}(m_{up}(m_1))}\) is constant. We call \(m \) an omitter big witness for \(k \).

Definition 2.28. \((K, \Sigma) \) is finitary, that means every \(c^P \) has a finite range and \(\Sigma(S) \neq \emptyset \) only for finite subsets \(S \subseteq K \) and also \(\Sigma(c_0, \ldots, c_{n-1}) \) is finite.

If \(p = (\eta^p, c^p_0, c^p_1, \ldots) \) is a condition and \(n \in \omega \), and \(\nu \in \text{pos}(\eta^p, c^p_0, \ldots, c^p_{n-1}) \) then we let \(p[\nu] = (\nu, c^p_n, c^p_{n+1}, \ldots) \).

Theorem 2.29. Assume \(P = Q^\omega_{\text{w}\infty}(K, \Sigma) \) is finitary and omitter-big and is omitter-big. Then \(Q \) is \((T, Y, S)\)-preserving.

Proof. Assume that \(\chi \geq 2^\omega \) and \(N \prec H(\chi) \) is countable and that \(P \in N \), \(P \in N \cap P \), \(T, S, Y \in N \). Let \(\delta = N \cap \omega_1 \) and \(N \cap \omega_1 \in S \). Let \(T \) be \((Y, S)\)-proper. Assume that \(p = (\eta^p, c^p_0, c^p_1, \ldots) \).

We show that there is \(q \geq p \) that is \((N, [p])\)-generic and such that for every \(t \in Y(\delta) \),
\[
q \upharpoonright T_{< \delta}^t \text{ is } (N|P^t), T\)-generic.
\]

Now we use the Axiom A structure: We enumerate all the \(P \)-names \(T \in N \) for dense sets in \(T \) as \(\{T_n : n < \omega \} \), all the \(J \in N \) that are dense in \(P \) as \(\{J_n : n < \omega \} \) and all the \(t \in Y(\delta) \) a \(\{t_n : n < \omega \} \). We choose \(p_n \) by induction on \(n \in (n, \omega) \) such that
\[
\begin{align*}
(\text{a}) & \quad p_n \in P \cap N, \\
(\text{b}) & \quad p_n \leq p_{n+1}, \\
(\text{c}) & \quad p_n^* = p, \\
(\text{d}) & \quad \text{for some countable } J_n^* \subseteq J_n \ J_n^* \text{ is predense above } p_{n+1}, \\
(\text{e}) & \quad \text{if } k > n \geq n, \text{ then nor}(c_n) \geq n, \\
(\text{f}) & \quad (\eta^n, c^n_0, c^n_1, \ldots, c^n_{n-1}) = (\eta^{p_{n+1}}, c^n_0, c^n_1, \ldots, c^n_{n-1}).
\end{align*}
\]
(g) if \(\nu \in \pos(p^n, c^{p^0}_0, c^{p^1}_1, \ldots, c^{p^n}_{n-1}) \) and there are \(q \geq p_n \) and \(s \in T \) satisfying \((\ast)_{n,\nu,p^n,q,s}\) below, then \((\ast)_{n,\nu,p^n,p^{m+1}_n,s}\).

Here we use

\[
\begin{align*}

\nu &\in \pos(p^0, c^0_0, c^0_1, \ldots, c^0_{n-1}) \land \\
\eta^0 &= \nu \land \\
q &\geq (\nu, c^p_0, \ldots) \geq p \land \\
\nu \nleq_T t_n \land \\
q &\nleq s \in \bigcap_{k<n} \mathcal{I}_k.
\end{align*}
\]

There is no problem in carrying this induction as \(\mathcal{P} \) is finitary and omittory.

In the end we let

\[
p_\omega = \lim_{n \rightarrow \omega} n = (\eta^n, c^{p_n}_0, c^{p^0}_1, \ldots, c^{p_n}_{n-1}, c^{p_{n+1}}_n, c^{p_{n+2}}_{n+1}, \ldots).
\]

By \(f \), \(p_\omega \) is \((N, \mathcal{P})\)-generic. Now we strengthen \(p_\omega \) once more to get a condition \(p_{\omega+1} \geq p_\omega \) that forces that every \(t \in Y(\delta) \) is \((N[\mathcal{G}_x], T)\)-generic. This strengthening is carried out as follows:

Now for \(n < \omega \) we let \(C_n = \pos(p^n, c^{p_0}_0, c^{p_1}_1, \ldots, c^{p_n}_{n-1}) \). So \(C = \bigcup_{n<\omega} C_n \) is a tree. We colour this tree in two colours: \(c: C \rightarrow \{\text{yes}, "\text{no}\} \) for \(\nu \in C \), \(c(\nu) = "\text{yes}\", \) iff for some \(s <_T t, (\ast)_{n,\nu,p^n,p_\omega[\nu],s} \) and no otherwise. If \(n \leq n_1 < n_2 \) and \(\nu_1 \in C_{n_1} \) and \(\nu_1 < \nu_2 \) and \(c(\nu_1) = \text{yes} \), then \(c(\nu_2) = \text{yes} \), since \(p_\omega[\nu_1] \leq p_\omega[\nu_2] \).

Now by [16, Theorem 2.2.6] we have the following consequence of omittor-big: There is \(p_{\omega+1} \geq p_\omega \) such that the following holds: If \(\nu_i \in C_{n_i}, n_1 < n_2, \) and \(\nu_i \in \{rt(q) : p_{\omega+1} \leq q\} \) and \(\nu_1 < \nu_2 \) then \(c(\nu_1) = c(\nu_2) \).

We check that the uniform colour is “yes”. Suppose for a contradiction that \((\forall \nu \in \eta)^{p_{\omega+1}}(c(\nu) = \text{no}) \). We let \(p_{\omega+2} = (\nu_1, c^{p_1}_1, c^{p_0}_{m_1}, \ldots) \geq p_{\omega+1} \) for a suitable \(m_1 \) with \(m_1 \in C \). So there are \(s < t_{m_1} \) and \(q \geq p_{\omega+2} \) with \(q \nleq s \in \bigcap_{k<m_1} \mathcal{I}_k. \) As \(\mathcal{I}_k, k < m_1 \), are dense subsets of \((T,<_T)\) that have names in \(N \) there is such a pair \((s, q)\). Now \(c(\text{rt}(q)) = \text{yes} \). So the uniform colour cannot be “no”.

We recall Blass–Shelah forcing in order to see that it fulfils the conditions of the previous theorem.

Definition 2.30. We define a depth function on \(\{A \subseteq [\omega]^\omega : 2 \leq |A| < \omega\} \) as follows:

\[
\begin{align*}
\text{dp}(A) &\geq 0, \text{ always}, \\
\text{dp}(A) &\geq 1, \text{ if } A \neq \emptyset, \\
\text{dp}(A) &\geq n + 2, \text{ if for every set } X \subseteq \omega \text{ one of the following conditions holds} \\
&\text{dp}(\{a \in A : a \subseteq X\}) \geq n + 1, \\
&\text{or } \text{dp}(\{a \in A : a \subseteq \omega \setminus X\}) \geq n + 1.
\end{align*}
\]
Definition 2.31. Blass–Shelah forcing is $Q_{*\Sigma}(K, \Sigma)$ with the following creating pair (K, Σ): We let $H(m) = 2$ for $m \in \omega$. A creature $t \in CR[H]$ is in K if $m^t_{dn} + 2 < m^t_{up}$ and there is a sequence $(A^t_u : u \in \prod_{i < m^t_{dn}} H(i))$ such that for every $u \in \prod_{i < m^t_{dn}} H(i)$ the following holds:

(a) A^t_u is a non-empty family of subsets of $[m^t_{dn}, m^t_{up})$ such that each member of A^t_u has at least 2 elements,

(b) $(u, v) \in \text{val}(t)$ iff $u \neq v$ and $\{i \in [m^t_{dn}, m^t_{up}) : v(i) = 1\} \in A^t_u \cup \{\emptyset\}$

(c) for some sufficiently fast increasing sequence $\bar{\gamma} = \langle \gamma_n : n < \omega \rangle$ we have the following strong versions of bigness and halving: First, we require:

- γ_n is in $\Sigma(c_0, \ldots, c_n)$ for every $n < \omega$.
- in every condition p, $i(c^0_p) < i(c^1_p) < i(c^2_p) < \ldots$,
- for every $c \in K$ and n we have $|\{(f, c^0_n, \ldots, c^p_n) : p \in \mathbb{P} \wedge c^p_{n-1} = c\}| \leq k_{i(c)}$.

Now for such a sequence $\bar{\gamma}$ and function i we require:

(a) $\text{nor}(c) \in \{n : n \leq k_{i(c)}, m \leq k_{i(c)!!}\}$,

(b) for every $p \in \mathbb{P}$, $n \in \omega$, $|\text{pos}(f^p, c^0_p, \ldots, c^p_{n-1})| \leq k_{i(c^p_n)}$,

(c) (bigness) for every $p \in \mathbb{P}$, $n \in \omega$, $d : \text{pos}(f^p, c^0_p, \ldots, c^p_n) \rightarrow k_{i(c^p_n)}$ there is $c \in \Sigma(c^p_n)$ such that $\text{nor}(c) \geq \text{nor}(c^p_n) - \frac{1}{k_{i(c^p_n)}}$ and for every $g \in \text{pos}(f, c^0_p, \ldots, c^p_{n-1})$, $d \upharpoonright \text{pos}(g, c)$ is constant,

(d) (halving with gluing) if $p \in \mathbb{P}$, $m(\ast) < \omega$ then we can find $q \in \mathbb{P}$ with the following properties

- $p \leq q$,
- $f^p = f^q$.
Proof. Assume that \(P(Y, t) \) is proper.

We show that there is a transfinite sequence \(\mathcal{I} = (I_0, I_1, \ldots) \) of \(\mathcal{P} \)-names \(\mathcal{I} \in \mathcal{N} \) for dense sets in \(T \) and \(t \in Y(\delta) \) as \(\{ (I_n, t_n) : n < \omega \} \), all the \(\mathcal{I} \) \(\in \mathcal{N} \) that are dense in \(\mathcal{P} \) as \(\{ J_n : n < \omega \} \), each object appearing infinitely often in each enumeration.

We choose \((p_n, m_n) \) by induction on \(n \in \omega \) such that

(a) \(p_n \in \mathcal{P} \cap \mathcal{N} \),
(b) \(p_n \leq p_{n+1} \),
(c) \(m_n \leq m_{n+1} < \omega, \ m_0 = 0 \),
(d) \(p_n \models (\exists t < t_n)(t \in \bigcap_{k \leq n} I_k) \),
(e) \(p_0 = p \),
(f) \(p_n \in J_n \),
(g) \(f^{p_n} = f^p \),
(h) \(m_n \geq \min\{ m > m_{n-1} : (\forall r \geq m)(\text{nor}(c_{m-1}) \geq n + 1) \} \),
(i) if \(m < m_n \), then \(c_m = c_m^{p_n} \).

If we succeed then we can take the fusion

\[
q = (f^{p_0}c_0^{p_0}, \ldots, c_{m_0-1}^{p_0}, c_{m_0}^{p_1}, \ldots, c_{m_1-1}^{p_1}, \ldots)
\]
and by (h) and (i), \(q \) fulfils the norm conditions and hence \(q \in \mathbb{P} \), and obviously \(q \geq p \).

So suppose that \(p_n \) and \(m_n \) have been defined we are to define \(p_{n+1} \).

Let \(i_n = i(c_{m_n}^{p_n}) \) and let \(\{g_\ell : \ell < \ell_n\} \) list \(pos(f^{p_n}, c_0^{p_n}, \ldots, c_{m_n-1}^{p_n}) \). By the conditions on \(\mathbb{P} \), we have \(\ell_n \leq k_i \).

Now we choose \(p_{n,\ell} \) by induction on \(\ell < \ell_n \) such that

(a) \(p_{n,\ell} \in \mathbb{P} \cap N \),

(b) \(p_{n,0} = p_n \),

(c) \(f^{p_n} = f^{p_{n,\ell}} \),

(d) if \(m < m_n \) then \(c_m^{p_n} = c_m^{p_{n,\ell}} \),

(e) if \(m \geq m_n \) then \(\text{nor}(c_{m,\ell}^{p_{n,\ell}}) \geq n + 1 - \frac{1}{c_{m_n}} \),

(f) if there is \(q = (g_\ell, c_m^{p_n}, c_{m+1}^{p_n}, \ldots) \geq p_{n,\ell} \) such that \(q \in \mathcal{I}_n \) then \(c_\ell^q = c_{j+1,\ell}^{p_{n,\ell}+\frac{1}{2}} \) for \(j \geq m_n \); otherwise we apply halving to \((g_\ell, c_m^{p_n}, c_{m+1}^{p_n}, \ldots) \) and get \(q \) as in the halving with gluing, and let again \(c_\ell^q = c_{j+1,\ell}^{p_{n,\ell}+\frac{1}{2}} \) for \(j \geq m_n \).

(g) if there is \(q = (g_\ell, c_m^{p_n}, c_{m+1}^{p_n}, \ldots) \geq p_{n+1,\ell} \) such that \(q \models (\exists t \in T)(t < t_n \land t \in \mathcal{J}_n) \) then \(c_\ell^q = c_{j+1,\ell}^{p_{n+1,\ell}+\frac{1}{2}} \) for \(j \geq m_n \); otherwise we apply halving to \((g_\ell, c_m^{p_n}, c_{m+1}^{p_n}, \ldots) \) and get \(q \) as in the halving with gluing, and let again \(c_\ell^q = c_{j+1,\ell}^{p_{n+1,\ell}+\frac{1}{2}} \) for \(j \geq m_n \).

It is easy to carry on the induction. In the end we let \(p_{n+1} = p_{n,\ell_n} \). Now we have to show that for each \(\mathcal{I} \) and each \((t, \mathcal{J}) \) (that appear under infinitely many indices) after finitely many of these \(n \) where e.g. \(\mathcal{I}_n = \mathcal{I} \), in items (f) and (g) the first alternative will be applied. This is because of the strong version of bigness. We colour \(pos(c^p, c_0^{p_n}, \ldots, c_{m_n-1}^{p_n}, c_m^{p_n}) \) by \(\{0,1\} \) assigning \(c(\tilde{g}) = 1 \) if there is \(q \) with \(f^q = \tilde{g} \) (no conditions on the rest) and \(q \in \mathcal{I} \) (in the case of (g): and \(q \models (\exists t')(t' < t \land t' \in \mathcal{J}) \)). For every \(\tilde{g} \in pos(c^p, c_0^{p_n}, \ldots, c_{m_n-1}^{p_n}) \) there is a uniform colour. Now we go one level back: For “most” of the \(\tilde{g} \in pos(c^p, c_0^{p_n}, \ldots, c_{m_n-1}^{p_n}) \), their uniform colour is the same, and for most of the most of the next level and so on. So we get back to the root. Its colour is at some time \(n \) the colour 1, since otherwise we succeed in constructing the fusion \(p_\omega \) that has no extension in \(\mathcal{I} \) or no extension in \(\{r \in \mathbb{P} : r \models (\exists t' < t)(t' \in \mathcal{J})\} \), so \(\mathcal{J}^* = \{s \in T : s \not\geq t \lor p_\omega \models s \not\in \mathcal{J}\} \) is dense in \(T \) and witnessing that \(T \) is not \((\mathcal{S},\mathcal{Y})\) proper. In any case this is a contradiction. So we get \(c_{m_n}^p \) with large norm and colour 1 and are done.

There are \(\ell_n \) substeps and in each step we lose maximally \(\frac{1}{k_n} \) of \(\text{nor}(c_{m_n}^{p_n}) \) so in the end it is still large enough for a fusion.

\(-\)
3. A sufficient condition for \((T, Y, S)\)-preserving for nep forcings

The property of preserving Cohen generic reals over countable elementary submodels proved to be a useful property of forcings. Preserving Cohen reals is slightly stronger than preserving non-meager sets (see [16, Section 3.2]). Preserving Cohen reals is preserved in countable support iterations [22, Ch. XVIII, 3.10]. In this section we show that a relative of this property, namely “\(\mathbb{P}\) preserves \(\omega\) Cohen reals over countable elementary submodels and over certain transitive models called candidates”, guarantees that \(\mathbb{P}\) preserves Souslin trees. The candidates will replace the elementary \(N \prec H(\chi)\). When a forcing notion \(\mathbb{P}\) has also for these non-elementary countable models suitable generic conditions then \(\mathbb{P}\) is called “nep” – non-elementary proper. There are many versions of this definition: We can specify which candidates are considered and which conditions are imposed on genericity.

A standard reference to non-elementary proper forcing is [23].

Let \(N \prec H(\chi)\). \(x \in \omega\omega\) is called Cohen over \(N\), if for every comeager \(G_\delta\)-set \(C \subseteq \omega\omega\) with code in \(N\), \(x \in C\). For Borel codes see [8, Section 25, p.504]. We recall the the original definition for proper forcing with elementary submodels, [16, Def. 3.2.1].

Definition 3.1. (1) Let \(\mathbb{P}\) be a proper forcing notion. We say \(\mathbb{P}\) is \(\omega\)-Cohen preserving iff the following holds: For every \(N \prec H(\chi)\) such that \(\mathbb{P} \in N\), for every \(p \in \mathbb{P} \cap N\) for every \(\{x_n : n \in \omega\}\) such that every \(x_n\) is a Cohen real over \(N\), there is an \((N, \mathbb{P})\)-generic condition \(q \geq p\) such that \(q \Vdash (\forall n \in \omega)(x_n \text{ is Cohen over } N[G_{\mathbb{P}}])\).

(2) \(\mathbb{P}\) is Cohen preserving iff the above holds for just one Cohen real.

By [22, Ch. XVIII, 3.10] also \(\omega\)-Cohen preserving is preserved in countable support iterations. Cohen forcing itself is Cohen preserving, whereas random forcing is not, since the ground model reals are a meager set in the extension. For creature forcings [16, Ch. 3] gives some structural properties on the building blocks of the forcing that imply Cohen preserving.

The notion “nep” — non-elementary proper — was introduced and investigated in [23] and it is actually a reach family of notions with many parameters. We give a short introduction to our instance of nep. Our presentation is a compromise between at least covering all the creature forcings from [16] and many technicalities. Explanations and useful work with nep forcings can also be found in [10].

In one respect we introduce more technique than needed for the creature forcings from [16]: We like to allow a parameter \(\mathcal{B}\) with domain \(|\mathcal{B}| \subseteq H(\omega_1)\) and countable signature.

Why are we so interested in allowing definitions with parameters \(\mathcal{B}\)? In the light of the theorem in this section, an interesting question is to consider
to which extent forcings specialising Aronszajn trees (by finite approximations, by countable approximation as in [13] or by uncountable conditions as in the NNR forcing from [22, Ch. V, §6]) are nep. Here are some partial answers:

In all ground models in which then NNR does not add reals it is ω-Cohen preserving. However, as our Theorem 3.11 shows, NNR is not ω-Cohen preserving in other models $M[G]$, where G collapses ω_1 of M or it is not nep in the strong sense required in the theorem. The NNR forcings are defined with Aronszajn trees as parameters in the definition. An Aronszajn with its tree order tree can be written as a subset of $H(\omega_1)$ and so still is a parameter allowed in size in the definitions of nep we give.

The forcings from [13] add a real that makes the ground model meager (this is not yet published work by Mildenberger and Shelah), and hence they are not Cohen preserving.

Definition 3.2. (1) A fragment ZFC^* is an $L(\in)$-theory extending ZC^-, ZFC without replacement and without the power set axiom.

(2) Let K be a class of notions of forcing. We say ZFC^* is K-good, if \mathbb{P} is a forcing notion in K and $\mathbb{P}(\|\mathbb{P}\|)$ exists then the forcing \mathbb{P} preserves ZFC^*.

Now let T be a fragment of ZFC and K be a definable class of forcing notions or a set of forcings. Then by using the definability of $\vdash_{\mathbb{P}}$ for $\mathbb{P} \in K$ [11, Ch. VII, §4] and adding successively the requirements $\vdash_{\mathbb{P}} \varphi$ for φ in the previous stage we get a fragment $T_1 \supseteq T$ that $M \models T_1$ ensures $M[G_{\mathbb{P}}] \models T$. Now we iterate and take the union. This need not be a finite fragment anymore. So in practice, in order to get consistency relative to ZFC we take $\text{ZFC}^* = \text{ZC}^-$. Then for every uncountable regular κ, $(H(\kappa), \in) \models \text{ZFC}^*$.

Now if no forcing in K collapses κ to ω or to a singular cardinal, ZFC^* is K-good.

We fix $\lambda = (2^{\|H(\omega_1)\|})^+$, $\chi = \|H(\lambda)\|^+$ the set $K = \{\text{Levy}(\aleph_0, \lambda) : \lambda \text{ regular uncountable cardinal}, \lambda < \chi\}$ of notions of forcing.

Definition 3.3. A theory $\text{ZFC}^* \subseteq \text{ZFC}$ is called normal if the following holds:

For every sufficiently large regular χ, $H(\chi) \models \text{ZFC}^*$.

We assume that the forcing \mathbb{P} is defined by formulas $\varphi_0(x)$ and $\varphi_1(x,y)$ that describe $x \in \mathbb{P}$ and $x \leq_{\mathbb{P}} y$. The formulas are in a countable language $\tau \subset H(\omega)$ and use a parameter $\mathfrak{B} \subseteq H(\omega_1)$. We let $\check{\varphi} = (\varphi_0, \varphi_1)$ for the description of \mathbb{P} and $\leq_{\mathbb{P}}$. In the stronger form of nep that is called “explicit nep” we have $\check{\varphi} = (\varphi_0, \varphi_1, \varphi_2)$ with φ_0 and φ_1 in the same roles, whereas the additional first order formula φ_2 describes predense sets.

Definition 3.4. We call $(\check{\varphi}, \mathfrak{B}, \text{ZFC}^*)$ a definition of a forcing. We call M a $(\check{\varphi}, \mathfrak{B}, \text{ZFC}^*)$-candidate if M is a countable transitive ZFC^* model and $\mathfrak{B} \subseteq M$.
This is a simplification, since we say transitive. The evaluation of \mathbb{P} over countable transitive models shall give relevant information about its forcing behaviour in \mathbb{V}. Hence it is natural to require $\mathbb{P} = \bigcup_{M} \{ M | \mathbb{P}_M \}$, where $\mathbb{P}_M = \mathbb{P} \cap M$. From the requirement that \mathbb{P}_M is upwards absolute we get $\mathbb{P}_M = \mathbb{P} \cap M$. Then only $\mathbb{P} \subseteq H(\omega_1)$ can fulfill the natural requirement. Fortunately many well-known useful forcings with conditions of size ω have $\mathbb{P} \subseteq H(\omega_1)$. However already iterations of small iterands (i.e., with names in $H(\omega_1)$) of lengths $\geq \omega_2$ are not $\subseteq H(\omega_1)$ anymore. As a technical means to handle this situation one can use ord-hc candidates. $M \models \text{ZFC}^*$ instead of transitive models. We refer the reader to [23] and [9], and we will work here only with transitive models.

In the next section, we show that (T, Y, S)-preserving is an iterable property. So it is enough to give a sufficient criterion for (T, Y, S)-preserving just for one nep iterand. Iterands usually are small and we do not lose any of the creature forcings.

Definition 3.5. If M is a candidate then $G \subseteq \mathbb{P}_M = \{ p \in M : M \models \varphi_0(p) \}$ is (M, \mathbb{P})-generic if for all $A \in M$, if $M \models \text{“} A \subseteq \mathbb{P} \text{ is a maximal antichain} \text{”}$, then $|G \cap A| = 1$. (The incompatibility in \mathbb{P} might be not absolute, so $G \cap A \neq \emptyset$ is not enough.) q is called (M, \mathbb{P})-generic if for all $A \in M$ such that $M \models \text{“} A \text{ is a maximal antichain, } q \models |G \cap A| = 1 \text{”}$.

Definition 3.6. Let K be a class of forcings. $(\varphi, \mathcal{B}, \text{ZFC}^*)$ is called a K-$(\varphi, \mathcal{B}, \text{ZFC}^*)$-definition of a nep forcing if the following holds in \mathbb{V} and in all extensions of \mathbb{V} by members of K:

(a) φ_0 defines the set of elements of \mathbb{P} and φ_0 is upwards absolute from candidates to \mathbb{V}, in \mathbb{V} and in all $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidates,

(b) φ_1 defines the quasi ordering $\leq_{\mathbb{P}}$ in \mathbb{V} and in every $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidate, φ_1 is upwards absolute from candidates to \mathbb{V}, in \mathbb{V} and in all $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidates,

(c) if M is a $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidate and $p \in \mathbb{P}_M$ then there is an (M, \mathbb{P})-generic $q \geq p$.

We isolate a property:

(\forall) If M_1 is a $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidate and $M_1 \models \text{“} M_0 \text{ is a $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidate and } p \in \mathbb{P}_{M_0} \text{”}$ then then there is $q \in \mathbb{P}_{M_1}$, $q \geq p$ such that $M_1 \models \text{“} q \text{ is (M_0, \mathbb{P})-generic} \text{”}$ and such that in \mathbb{V}, q is (M_0, \mathbb{P})-generic.

In the following we show that (\forall) follows from quite natural strengthenings of the notion of non-elementary properness. Many well-known forcings are non-elementary proper in one of these strong variants.

Definition 3.7. We add the adverb “explicitly”, so say “$(\varphi, \mathcal{B}, \text{ZFC}^*)$ is called a $(\varphi, \mathcal{B}, \text{ZFC}^*)$-definition of an K-explicitly nep forcing” if $\varphi = (\varphi_0, \varphi_1, \varphi_2)$ and (φ_0, φ_1) are as in Definition 3.6 and additionally

(b) We assume φ_2 is an $(\omega + 1)$-place relation that is upward absolute from $(\varphi, \mathcal{B}, \text{ZFC}^*)$-candidates. $\varphi_2(p_i : i \leq \omega)$ says $\{p_i : i \leq \omega\} \subseteq \mathbb{P}$
and \(\{ p_i : i < \omega \} \) is a predense antichain above \(p_\omega \) not just in \(V \) but in every \((\overline{\varphi}, \mathcal{B}, \text{ZFC}^+) \)-candidate which satisfies \(\varphi_2(p_i : i \leq \omega) \). In this situation we say \(\{ p_i : i < \omega \} \) is explicitly predense above \(p_\omega \).

(c) We add to (c) in the definition of nep: There is \(q \geq p \) with the following property: If \(N \models I \) is a predense antichain above \(p \), so \(I \in N \) then for some list \(\langle p_i : i < \omega \rangle \) of \(I \cap N \) we have \(\varphi_2(\langle p_i : i < \omega \rangle \upharpoonright q) \). We then say “\(q \) is explicitly \((N, \mathbb{P}) \)-generic above \(p \).”

In our proof \(K \) contains also the Levy collapse, so not only mild forcings. So as soon as the definition of the forcing \(\mathbb{P} \) is sensitive to cardinals, \(K \)-nep becomes a strong requirement. Think for example again of the forcing specialising a normal Aronszajn tree: After collapsing, the Aronszajn tree is just a perfect tree \(\subseteq \omega^{<\omega} \).

So finally to get \((\diamondsuit) \) we need even more than explicitly nep:

Definition 3.8. (1) A \((\overline{\varphi}, \mathcal{B}, \text{ZFC}^+) \)-definition of a forcing notion \(\mathbb{P} \) is called straight nep if it is \(K \)-explicitly nep and in addition For \(\ell < 3 \) the formula \(\varphi_\ell \) is of the form

\[
(\exists t)(t \in H(\omega_1) \land (\exists s)((s \in t \lor s = t) \land \psi_\ell^\mathbb{P}(\bar{x}, s))],
\]

where in the formula \(\psi_\ell^\mathbb{P} \) the quantifiers are of the form \((\exists s' \in s) \) and the atomic formulae are \(x \in y \), “\(x \) is an ordinal”, “\(x < y \) are ordinals” and those of \(\mathcal{B} \).

(2) We say very straight if it is straight and in addition

(1) Suppose that \(\mathbb{P} \) is a forcing of one of the following types:

(a) \(\mathbb{P}^{\text{tree}}(K, \Sigma) \) for some finitary tree creating pair \((K, \Sigma) \) that is \(t \)-omittary without a condition on the norm for \(e = 0 \) and \(2 \)-big in the case of \(e = 1 \) (this covers Sacks forcing).

(b) the Blass–Shelah forcing notion.
Suppose Definition 3.10. \bar{N} over \bar{q} there is

Theorem 3.11. Suppose \bar{N} over \bar{q} there is

Then \mathbb{P} is an explicitly nep very straight forcing notion with a Souslin definition (see [23, Def. 1.9]).

(2) Suppose that \mathbb{P} is a forcing of one of the following types:

(a) $Q_{\tau,\omega}^\mathbb{P}(K, \Sigma)$ for some countable tree creating pair (K, Σ) that is t-omittary without a condition on the norm (see Def. 2.15) for $e = 0$ and 2-big in the case of $e = 1$ (this Miller forcing and Laver forcing).

(b) $Q_{\tau,\omega}^\mathbb{P}(K, \Sigma)$ for some countable growing pair (K, Σ). This covers the Mathias forcing notion. (K, Σ) is called growing if for any sequence (t_0, \ldots, t_{n-1}) with $m_{dn}^{t_i} = m_{up}^{t_{i-1}}$ for $i < n$ there is $t \in \Sigma(t_0, \ldots, t_{n-1})$ such that $\text{nor}(t) \geq \max_{i<n} \text{nor}(t_i)$.

Then \mathbb{P} is an explicitly nep very straight forcing notion.

For a proof see ([16, Proposition 3.2]).

Definition 3.10. Suppose \mathcal{B} is a model with domain $\subseteq \mathcal{H}(\omega_1)$, \mathbb{P} is an $(\bar{\varphi}, \mathcal{B}, ZFC^*)$ definition of a nep forcing. \mathbb{P} is called ω-Cohen preserving for $(\bar{\varphi}, \mathcal{B}, ZFC^*)$-candidates, iff the following holds: If N is a $(\bar{\varphi}, \mathcal{B}, ZFC^*)$-candidate and for each n, $x_n \in \omega \omega$ is a Cohen real over N and $p \in \mathbb{P}^N$ then there is $q \in \mathbb{P}$, $q \geq p$ that is (N, \mathbb{P})-generic and $q \Vdash (\forall n)(x_n$ is a Cohen real over $N \upharpoonright \mathcal{G}_\mathbb{P}$).

For proper forcings that are given by a definition $(\bar{\varphi}, \mathcal{B}, ZFC^*)$ this is a strengthening of Def. 3.1, since for countable $M < H(\chi)$, the transitive collapse is a candidate.

So finally we can state the main theorem in this section:

Theorem 3.11. Suppose \mathcal{B} is a model with domain $|\mathcal{B}| \subseteq H(\omega_1)$ and countable signature, the definition $(\bar{\varphi}, \mathcal{B}, ZFC^*)$ of \mathbb{P} is explicitly very straightly nep, ZFC^* is normal and K-good. Suppose that \mathbb{P} is ω-Cohen preserving for $(\bar{\varphi}, \mathcal{B}, ZFC^*)$-candidates. Then \mathbb{P} is (T, Y, S)-preserving for all triples (T, Y, S).

Proof. Let $\lambda \geq 2^{H(\omega_1)}$ be large enough such that $(\forall \lambda') (\lambda' < \lambda \Rightarrow (\mathcal{H}(\lambda') \models ZFC^*)$. Let $\lambda_1 = |\mathcal{H}(\lambda)|$, and let $\chi > \lambda_1 \geq \lambda$. Let $N' \prec \mathcal{H}(\chi)$ be countable such that $\{\lambda_1, p, S, T, \bar{\varphi}, \mathcal{B}\} \subseteq N'$. Our aim is to show that N' is as in Def. 1.16.

Let N be the Mostowski collapse of N' and say $\pi^{N'}: N' \rightarrow N$ is the collapsing function. Let $\delta = N' \cap \omega_1$. So $N \models \delta = \mathbb{N}_1$. Assume that $N' \cap \omega_1 \in S$.

We let $\mathbb{R} = \text{Levy}(\mathfrak{N}, \pi(\lambda_1))^N$.

Claim 1: In \mathcal{V}, there is g such that
(a) g is \mathbb{R}-generic over N,
(b) if $t \in \pi^N(Y(\delta))$ then $\pi^N(T_{<t})$ is $\pi(T)$-generic over $N[g]$.

Proof: \mathbb{R} is a forcing notion in N and hence in \mathcal{V}. Let g_1 be generic over \mathcal{V} not just over N. We first show that g_1 would be as desired, were it in \mathcal{V}. In $\mathcal{V}[g_1]$, let $t \in \pi^N(Y(\delta))$. We show that $\pi^N(T_{<t})$ is generic over $N[g_1]$. Let $I \subseteq N[g_1]$ be a subset of $\pi(T_{<t})$ such that $N[g_1] \models I$ is dense and open in the forcing $\pi((T, \triangleleft_T))$. By the forcing theorem there is $p \in g_1 \cap \mathbb{R}$ such that $N \models p \forces \forall \nu \in I$ is dense and open. Assume towards a contradiction that $\mathcal{V} \models [p \forces \pi(T_{<t}) \cap I = \emptyset]$.

The set
$$I^* = \{ q \in \text{Cohen} : (\exists \nu \in \pi^N(T_{<t}))(q \not\forces \nu \notin I) \}$$
is dense and open in the Cohen poset, since \mathbb{R} is just Cohen forcing, and the iteration of two Cohen forcings is equivalent to the iteration in the reversed order. So there is $\nu \in \pi^N(T_{<t})$ and there is $q \geq p$ such that $q \forces \nu \in I$ which is a contradiction.

Now g_1 is not in \mathcal{V}. The requirements on g_1 have only quantifiers bounded by sets and hence are absolute for transitive models
$$(\forall D \in N)(D \text{ dense in } \text{Levy}(\mathfrak{N}, \pi(\lambda_1))^N) \rightarrow D \cap g_1 \neq \emptyset) \land$$
$$(\forall t \in \pi(Y(\delta))(\forall D \in N[g_1]) \text{ that are dense in } \pi(T))((\exists s \in \pi(T_{<t}) \cap D)).$$

So “there is such a g with these properties” is a Σ_1 sentence with parameters in \mathcal{V} that is true in $\mathcal{V}[g_1]$. By absoluteness, it is true also in \mathcal{V}.

Let $t \in Y \cap \pi^N(T)$ be given. Note that $\pi^N(T) = T_{<t}$. By the assumption that T is (Y, S)-proper, and hence after the Levy collapse, $\pi(T_{<t})$ is $(N, \pi^N(T))$-generic. Let $M = N[g]$ with a g as in the claim. Then $\pi^N(T_{<t})$ is also $(M, \pi^N(T))$-generic by the choice of g. M is a candidate since \mathbb{P} is nep in the condition of the theorem and as $\mathbb{R} \in K$.

Now we use that \mathbb{P} is ω-Cohen preserving for the $(\hat{\alpha}, \mathfrak{B}, \text{ZFC}^*)$-candidate M. We choose a dense embedding $h : (\omega^{<\omega}, <) \rightarrow \pi^N(T, \triangleleft_T), h \in N[g]$. Note the $N[g]$ thinks that $\pi^N(T)$ is countable, since \mathbb{R} collapses $\pi^N(\omega_1) < \pi^N(\lambda_1)$ from N to ω. So in $N[g]$ the Cohen forcing $(\omega^{<\omega}, <)$ and $\pi^N(T, \triangleleft_T)$ are equivalent. We let $\eta_1 \in \omega^\omega$ be such that $n < \omega \rightarrow h(\eta_1 \restriction n) < t$. So η is Cohen over M iff $\pi^N(T_{<t})$ is $(M, \pi^N(T))$ generic, and this holds also for extensions of M since there is the isomorphism h in them. Since $\pi^N(T_{<t})$ is $(M, \pi^N(T))$-generic, η_1 is Cohen generic over M. Now we use that \mathbb{P} is Cohen preserving for the candidate M. So there is $q \geq \pi(p)$ that is (M, \mathbb{P})-generic and $q \forces (\forall t \in \pi^N(Y(\delta))((\eta_1 \text{ is Cohen over } M[G_{\mathbb{P}}]))$.

(3.1) $q \forces (\forall t \in \pi(Y(\delta)))(\pi(T_{<t}))$(3.1) is $(M[G_{\mathbb{P}}], \pi(T))$-generic

and q is (M, \mathbb{P})-generic.
Now we get from the latter

\[(3.2) \quad (\exists q_3 \geq \pi(p))(q_3 \Vdash "(\forall t \in \pi(Y(\delta)))
\pi(T_{<T_t}) \text{ is } (N[G_P], \pi(T))-\text{generic}"
\text{ and } q_3 \text{ is } (N, \mathbb{P})-\text{generic}). \]

Why? We use nep again. We take \(\chi_1\) such that \(N \models (\chi_1\text{ is sufficiently large such that }\mathcal{P}(\mathbb{P}) \in H(\chi_1)\) and \(\chi_1\) is sufficiently small so that \(2^{\chi_1}\) exists). Let \(N_1 = N \upharpoonright H(\chi_1)^N\). In \(N\), \(N_1\) is a candidate.

By (\(\diamondsuit\)) there is \(q_1 \geq \pi(p)\), \(q_1 \in N \subseteq M\), \(N \models "\pi(p) \leq q_1\) and \(q_1\) is \((N_1, \mathbb{P})\)-generic” and \(q_1 \geq \pi(p)\) also in \(V\) and \(q_1\) is \((N_1, \mathbb{P})\)-generic also in \(V\).

We claim: \(q_1\) is as required in the first half of (3.2), that is: For any \(T \in M[G_P]\) that has a \(\mathbb{P}\)-name in \(N\) and is (forced by the weakest condition to be) a dense set in \(\pi(T_{<T})\) in the sense of \(M[G_P], q_1 \Vdash (\forall t \in \pi(Y(\delta)))(T \cap \pi(T_{<T_t}) \neq \emptyset)\). All \(T \in N\) that are \(\mathbb{P}\)-names for dense sets in \(\pi(T_{<T})\) have names \(T \in N_1\). Now we argue in \(N\): For any \(q_2 \geq q_1, q_2 \in M\), there is \(q \geq q_2, q\) is \((M, \mathbb{P})\)-generic and \(q \Vdash (\forall t \in \pi(Y(\delta)))(T \cap \pi(T_{<T_t}) \neq \emptyset)\), as we have shown above, in Equation (3.1), proved for \(q_1\) instead of \(\pi(p)\) and proved in \(N \models ZFC^*\) instead of in \(H(\chi)\) and \(V\). Then \(q \Vdash \pi^N(T_{<T_t}) \cap I \cap N_1 \neq \emptyset \) since \((\pi^N(T_{<T_t}))^N[G_P] = (\pi(T_{<T_t}))^M[G_P] \subseteq N_1\). So \(q \Vdash \pi^N(T_{<T_t}) \cap I \cap N \neq \emptyset\) and hence \(\pi^N(T_{<T_t})\) is \((N[G_P], \mathbb{P})\)-generic. Since \(N\) is elementary equivalent to \(H(\chi)\), also in \(V\) we have: For every \(t \in \pi^N(Y(\delta))\), for every \(I \in M[G]\) that has a \(\mathbb{P}\)-name in \(N\) and is a dense set in \(\pi^N(T_{<T})\), \(q_1 \Vdash (\forall t \in \pi(Y(\delta)))(T \cap \pi(T_{<T_t}) \neq \emptyset)\). So \(q_1\) has the property required of \(q_2\) in (3.2).

Now we use nep again and find \(q_3 \geq q_1\) that is \((N, \mathbb{P})\)-generic. So \(q_3\) witnesses that (3.2) is proved. Now after taking the reverse image of the Mostowski collapse (the nep forcing \(\mathbb{P}\) is moved from model to model by just taking its interpretation) we have \(q_4 \geq p\) such that

\[q_4 \Vdash (\forall t \in Y(\delta))T_{<T_t} \text{ is } (N'[G_P], T)-\text{generic}" \text{ and } q_4 \text{ is } (N', \mathbb{P})-\text{generic}.\]

\[\dashv\]

Remark 3.12. In the special case that the \(Y \cap T_\delta\) is a singleton (or empty) for all \(\delta \in S\), we need only a weaker form of Cohen preserving, with one Cohen generic \(\eta\). In this special case “\(T\) is \((Y, S)\)-proper” implies \(T \upharpoonright \{\sup(a) : a \in S \wedge Y(\sup(a)) \neq \emptyset\}\) has no specialisation, see [22, Ch. IX].

We may also consider the well-known stronger variant of \((Y, S)\)-properness for forcing with finite products of \(T\): If \(N \prec H(\chi)\) and \(\delta = N \cap \omega_1\) and \(N \cap \omega_1 \in S\) and \(t_0, \ldots, t_{n-1}\) are pairwise distinct then \((s \in n(T_{<\delta}) : \bigwedge_{\ell \leq n} s_{<T} t_\ell)\) is \(((n(T_{<\delta}), N)-\text{generic}. Also preserving this kind of \((Y, S)\)-properness in a consequence of \(\omega\)-Cohen-preserving and nep, by the same proof as above. By an analogue of the results of the next section, this preservation property is iterable.
The following theorem is similar to Theorem 1.17, and in the case of nep forcing it strengthens Theorem 1.17 by adding the intermediate step in the implication \(\text{Pr}_z^2(\mathbb{P}) \rightarrow \mathbb{P} \) is \(\omega \)-Cohen preserving \(\rightarrow \mathbb{P} \) is \((T,Y,S)\)-preserving.

Theorem 3.13.
(1) If \(\text{Pr}_z^2(\mathbb{P}) \), then \(\mathbb{P} \) is \(\omega \)-Cohen preserving.

(2) Assume \(\alpha(*) = \omega_1 \) and \(S \subseteq [\omega_1]^{\omega} \) is stationary. If \(\text{Pr}_z^2(\mathbb{P}) \), then \(\mathbb{P} \) is \(\omega \)-Cohen preserving for Cohen reals over \(N \) with \(N \cap \omega_1 \in \mathcal{S} \).

Proof (1): Assume \(N < H(\chi) \), \(N \cap \omega_1 \in \mathcal{S} \), \(N \cap \omega_1 = \delta \), and \(\mathbb{P} \in N \), \(p \in N \cap \mathbb{P} \), and assume for every \(i < \omega \), \(x_i \) be Cohen generic over \(N \). Let \(x = \text{st} \) for a winning strategy \(\text{st} \) for player COM in \(\mathcal{D}^2(N,\mathbb{P},p) \). We show that there is a \(q \) as required.

Let \(\{\mathcal{I}_k : k \in \omega\} \) list all \(\mathbb{P} \)-names in \(N \) of comeager sets and let \(\{\mathcal{J}_n : n \in \omega\} \) list all the dense sets in \(\mathbb{P} \) in \(N \). Now take a play \(\langle \langle p_n,q_n : n \in \omega \rangle \rangle \) in which COM plays according to \(\text{st} \). By Lemma 1.4 COM can strengthen his moves and still wins. COM plays in every round \(n \) in every part \(p_{n,\ell}, \ell < \ell_n \), so strong that \(p_{n,\ell} \in \bigcap_{r<n} \mathcal{J}_r \) such that for every \(i < n \)

\[
p_{n,\ell} \Vdash_{\mathbb{P}} x_i \in \bigcap_{k<n} \mathcal{I}_k.
\]

Such \(p_{n,\ell} \) exist for the following reason: Since \(\bigcap_{k<n} \mathcal{I}_k \) is (forced by the weakest condition to be) comeagre, for every \(n \in \omega \), the set \(\mathcal{J}_n = \{ s \in \mathbb{C} : \{ q \in \mathbb{P} : q \Vdash_{\mathbb{P}} [s] \cap \bigcap_{k<n} \mathcal{I}_k = \emptyset \} \) is dense and open in \(\mathbb{P} \) and dense in the Cohen forcing \(\mathbb{C} \) in the ground model. The Cohen real \(x_i \) fulfils \(x_i \in \mathcal{J}_n \). So for every \(i \), \(\{ q \in \mathbb{P} : q \Vdash_{\mathbb{P}} x_i \notin \bigcap_{k<n} \mathcal{I}_k \} \) is dense in \(\mathbb{P} \).

COM wins the play because he played according to the strategy. So for every \(u \), in particular for \(u = \omega \), there is \(q_u \geq p \) such that

\[
q_u \Vdash (\exists \infty n \in u)(\exists \ell < \ell_n)(p_{n,\ell} \in \mathbb{G}_\mathbb{P}).
\]

Let \(k \in \omega \) and \(q' \geq q_u \) be given. Then there is \(q'' \geq q' \) and \(n \geq k \) such that \(q'' \Vdash n \in u \). So there is \(i < \ell_n, q'' \Vdash q_{n,i} \in \mathbb{G}_\mathbb{P} \) and hence

\[
q'' \Vdash_{\mathbb{P}} x_k \in \bigcap_{k' < n} \mathcal{I}_{k'}.
\]

Now we unfreeze \(k \) and combine the equations (3.3) and (3.4) and thus get

\[
q_u \Vdash (\forall k < \omega)(x_k \in (N[\mathbb{G}_\mathbb{P}],T)-\text{generic}).
\]

From \(q_{n,i} \in \bigcap_{r<n} \mathcal{J}_r \) we also get that \(q_u \) is \((N,\mathbb{P})\)-generic.

Remark 3.14. \(\omega \)-Cohen preserving is not a necessary condition for preserving Souslin trees: By [23, Lemma 3.1], Blass–Shelah forcing is nep in the strong form that is used in Theorem 3.11. Blass–Shelah forcing is not Cohen preserving. This follows from the fact that the generic real is not split by any real in the ground model (see [3]). Hence the ground model is meagre after Blass Shelah forcing. So Blass-Shelah forcing is not positivity preserving for the meagre ideal in the sense of [10, Def. 3.1]. So by [10, Lemma 5.6]
is it not true positivity preserving [10, Def. 5.5]. Now by [10, Lemma 5.8]
Blass-Shelah does not preserve the Cohen genericity. So it is a nep forcing
not covered by Theorem 3.11. Nevertheless Blass–Shelah preserves Souslin
trees by Theorem 2.32.

4. Preserving the Souslinity of an ω_1-tree

The topic of the section is the preservation of properties of notions of
forcing in countable support iterations. We return to the ω_1-trees and the
properties of (T, Y, S) from the first section. In this section we give a self-
contained proof of the following theorem:

Theorem 4.1. Let $(P_\alpha, Q_\beta : \alpha \leq \gamma, \beta < \gamma)$ be a countable support iteration
of proper forcings. Suppose that T is a Souslin tree in V and that for every
$\alpha < \gamma$, in V_{P_α}, Q_α “T is Souslin”. Then T is Souslin in V_{P_γ}.

By Lemma 1.15 T is Souslin in V_{P_γ} iff T is (Y, S)-proper for a stationary
$S \subseteq [\omega_1]^\omega$ and $Y = \bigcup\{T_{\text{sup}(a)} : a \in S\}$. So Theorem 4.1 is a special case of
the following theorem ([22, Ch. XVIII, Conclusion 3.9 F]):

Theorem 4.2. Let $(P_\alpha, Q_\beta : \alpha \leq \gamma, \beta < \gamma)$ be a countable support iteration
of proper forcings. Suppose that T is an ω_1-tree that is (Y, S)-proper
and that for every $\alpha < \gamma$, in V_{P_α}, Q_α is (T, Y, S)-preserving. Then P_γ is
(T, Y, S)-preserving and T is (Y, S)-proper in V_{P_γ}.

The proof of Theorem 4.2 is not more complex than the proof of Theo-
rem 4.1. It involves preserving unbounded families in certain relations. A
simple similar example is to preserve a \leq^*-unbounded family. The relations
are binary relations on spaces $^a a$ for countable sets a. For the proof of The-
orem 4.2 we need that the union of all considered a covers ω_1. For each fixed
a, $^a a$ is just a copy of the Baire space $^\omega\omega$, which means a has the discrete
topology and $^a a$ carries the product topology. We consider \aleph_1 different sets
a, and on each fixed a we work with countably many relations $R_{a, a}$, $a \in a$.

Let $S \subseteq [\omega_1]^\omega$. Let for $a \in S$, $g_a \in ^a a$ and for $a \in a$, $R_{a, a} \subseteq ^a a \times ^a a$ be a
relation.

We assume that a fixed g_a, the sets

\[\{ f \in ^a a : f R_{a, a} g_a \} \]

are closed in $^a a$. We will see that open relations do not harm since they are
the union of countably many closed relations. Let $N < (H(\chi), \in, <)$. Now
suppose that we have a collection \mathcal{G} of g_a’s such that

\[(\forall f \in N \cap ^a a) \bigvee_{a \in a} g_a \in \mathcal{G} \]

Is there a (N, P, p)-generic condition such that q forces that q forces (4.2)
holds for $f \in N[G]$? Suppose the answer is positive for each iterand, what
can be said about the countable support limit?
The proof of the iteration theorem in its basic form uses only that
\[\{ f \in {}^a a : fR_{\alpha,a}g_a \} \]
is closed for each \(R_{\alpha,a}, g_a \). There is an example of relations \(R_{\alpha,a}, g_a \), such that \((\bar{R}, S, \bar{g}) \) preserving coincides with \((T, S, Y) \)-preserving.

The reader can jump ahead to Definition 4.9 to see what particular \(a, g_a \) and \(R_{\alpha,a} \) we use for the proof of Theorem 4.2. We let
\[\alpha(*) = \bigcup \mathcal{S} = \omega_1 \]

We point to the sources in [22]: Our presentation belongs to Case (b) from [22, Ch. XVIII, Context 3.1]. Within this Case (b) we focus onto the Possibilities (also sometimes called “Cases” there) A and C in [22, Ch. XVIII, Def. 3.3, 3.4]. From Def. 4.9 one reads off that in the triple \((\bar{R}, S, \bar{g}) \) describing \((T, Y, S) \)-preservation has closed and open relations \(\bar{R} \). So for the relevant relations \(\bar{R} \), preservation for Possibility A and for Possibility C are equivalent, see Lemma 4.11.

In our presentation in contrast to [6, 2], \(\bar{R} \) is of size \(\omega_1 \) and \(\alpha(*) = \omega_1 \). The widely known presentations of iteration theorems for the relations on the real numbers [6, 2] have usually countably many relations and the equivalent to \(\alpha(*) \) is \(\omega \). The relations we preserve are still on the Baire space and its topology matters for all the considered possibilities. However, there is for each \(a \in S \) an incarnation \({}^a a \) of the Baire space. Moreover, since \(a = N \not\in N \) names \(f \in N \) for functions \(f: \text{dom}(f) \to \omega_1 \) such that \(a \subseteq \text{dom}(f) \), \(f(x) \in a \) for \(x \in a \) now necessarily are names for functions with larger domains. This does not cause problems, since the evaluation will be always on \(a \).

Note that we change one Definition, namely [22, Ch. XVIII, Def. 3.4]. So our version of “\((\bar{R}, S, \bar{g}) \)-preserving for Possibility A” has not been named in the definitions in the book nor anywhere else. Namely items (iv) and (vi) of Def. 4.5 are new.

However, this Def. 4.5 is the one used in the proof of the preservation theorem for the limit case in [22, Ch. XVIII, Theorem 3.6]. Our Possibility A here and the proofs here (which are the ones from the book with some additional explanations) do not need the distinction whether reals are added or not. The original definition of Possibility A in the book works as well, however, the proofs are longer. There are two proofs based on the old definition: For forcings that add reals the technique is much shorter ([6]) than for the general case that was proved later by Goldstern and Kellner [7]. Our proof given here is short and works in the general case.

The letter \(\mathbb{Q} \) now stands for an iterand. We let \((2^{[\mathbb{Q}]}^+)^+ < \chi, S \subseteq [\omega_1]^{<\omega_1} \) be stationary, usually the elements of \(S \) are of the form \(N \cap [\omega_1] \) for a countable \(N \prec \mathcal{H} (\chi) \). In the language of [22], we have for \(a \in S \), \(d[a], c[a] = a \not\in a \) and we are in Case (b) of [22, Ch. XVIII, Context 3.1], \(d[a] \not\in a \), and \(d'[a] = c'[a] = \omega_1 \). We will not mention the functions \(c, d, c', d' \) henceforth since they are fixed. We stay with our special case of \(S \) and \(\alpha(*) = \omega_1 \). So
we cut down a lot in comparison to the rich Section 3 of Chapter XVIII of [22]. On the other hand, we add numerous proofs to claims that are written there without a proof.

Definition 4.3. (0) \(N \) is \((\bar{R}, S, g)\)-good means: \(a := N \cap \bigcup S \in S \), and for every \(f \in N \), \(f : \bigcup S \to \bigcup S \) with \(a \subseteq \text{dom}(f) \) for some \(\beta \in a \cap \alpha(\ast) \) we have \(f \upharpoonright a \in R_{\beta,a} \).

(1) We say \((\bar{R}, S, g)\) covers in \(V \) iff for sufficiently large \(\chi \) for every \(x \in H(\chi)V \) there is a countable \(N < H(\chi) \) to which \((\bar{R}, S, g)\) and \(x \) belong such that \(N \) is \((\bar{R}, S, g)\)-good.

(2) Let \(S \) be stationary. We say \((\bar{R}, S, g)\) fully covers in \(V \) iff for some \(x \in H(\chi) \), for every countable \(N < H(\chi) \) to which \((\bar{R}, S, g)\) and \(x \) belong and which fulfills \(N \cap \bigcup S \in S \) we have that \(N \) is \((\bar{R}, S, g)\)-good.

Definition 4.4. (1) We say \((\bar{R}, S, g)\) strongly covers in Case A iff it covers in \(V \) and each \(R_{\alpha,a} \) is a closed or an open binary relation on \(a^a \).

We assume from now on that for \(\alpha \in a \), \(a \in S \),

\[\{ f : a \to a : f R_{\alpha,a} \} \]

is closed. This is sufficient.

(2) We say \((\bar{R}, S, g)\) strongly covers in Case C iff it covers in \(V \) and in addition for each \(a \in S \) in any forcing extension (or at least for any forcing extension in by a forcing in a family of forcings we are interested in) of \(V \) player II has a winning strategy in the following game: In the \(n \)-th move player I chooses \(N_n, H_n \) such that

(a) \((N_n, \in \restriction N_n) \) is a countable not necessarily transitive model of \(ZFC^- \), \(N_n \cap \bigcup S = a \in S \), \(a, S, g, \bar{R} \in N_n, \ell < n \to N_\ell \subseteq N_n \) and \(N_n \models (\bar{R}, S, g) \) covers, and \(f \in N_n \to (f \upharpoonright a) R_{\alpha,a} \).

(b) \(H_n \subseteq \{ \langle f_0, \ldots, f_\ell \rangle : \) for some finite \(d \subseteq \omega_1 \), \((\forall \ell < n)(f_\ell \in \restriction d) \omega_1 \rangle \) and \(H_n \subseteq N_n \) is not empty,

(c) if \(\langle f_0, \ldots, f_{n-1} \rangle \in H_n \) and \(d \subseteq \text{dom}(f_0) \) is finite then \(\langle f_0 \upharpoonright d, \ldots, f_{n-1} \upharpoonright d \rangle \in H_n \),

(d) if \(\langle f_0, \ldots, f_{n-1} \rangle \in H_n \) and \(\text{dom}(f_0) \subseteq d \), \(d \subseteq \omega_1 \) then for some \(\langle f'_0, \ldots, f'_{n-1} \rangle \in H_n \) we have \(\text{dom}(f'_\ell) = d \) and \(f_\ell \subseteq f'_\ell \),

(e) \(m < n \) and \(\langle f_0, \ldots, f_{n-1} \rangle \in H_n \to \langle f_0, \ldots, f_{m-1} \rangle \in H_m^* \) (see below).

Player II chooses \(\langle f_0, \ldots, f_{n-1} \rangle \in H_n \cap N_n \), \(f_\ell \supseteq f_m^\ell \) for \(\ell \leq m < n \). Finally, the definition \(H_n^* = \{ \langle f_0, \ldots, f_{n-1} \rangle \text{ for each } \ell \text{ the functions } f_\ell, f_m^\ell \text{ are compatible} \} \) completes the induction step.

In the end player II wins if for every \(m < \omega \), \(\bigcup_{n \geq m} f_m^\ast \) is a function with domain \(a \) and \(\bigvee_{\alpha \in a} \bigcup_{m \geq n} f_m^\ast R_{\alpha,a} \).
If $R_{\alpha,a}$ is open then we can write $R_{\alpha,a} = \bigcup_{n \in \omega} R_{\alpha,n,a}$ where each $R_{\alpha,n,a}$ is closed and use $\omega_1 = \alpha(\ast) = \omega(\ast)$, $R'_{\omega_1+n,a} = R_{\alpha,n,a}$ and work with the closed relations $R'_{\beta,n}$, $\beta < \alpha(\ast)$.

As we already mentioned, we changed the following definition in Possibility A in comparison to the definition [22, Ch. XVIII, Def. 3.4] in the book, so that it is fitting to the proof in the book. The items (iv) and (vi) are changed.

Definition 4.5. We say Q is (\bar{R},S,g)-preserving for Possibility A iff the following holds for any χ, χ_1, N, $p \in Q \cap N$, $k < \omega$: Assume

\[(\ast)\]

(i) χ_1 is large enough and $\chi > 2^{\chi_1}$,

(ii) $N < H(\chi)$ is countable, $N \cap \bigcup S = a \in S$, and $Q,S,g,\chi_1 \in N$,

(iii) N is (\bar{R},S,g)-good and $p \in Q \cap N$,

(iv) $k \in \omega$ and for $\ell < k$ we have a Q-name for a function $f_{\ell} \in N$, and $\Vdash_{Q} \text{dom}(f_{\ell}) \supseteq a$,

(v) for $\ell < k$, $m < \omega$, $f_{m,\ell}^*$ is a function from a to a in N,

(vi) for $n < \omega$, $p \leq p_n \leq p_{n+1}$,

(vii) for $x \in \text{dom}(f_{m,\ell}^*)$, $\ell < k$, for every m there is n_0 such that for $n \geq n_0$, $p_n \Vdash f_{\ell}(x) = f_{m,\ell}^*(x)$,

(viii) for $\ell < k$, $m < \omega$, $f_{m,\ell}^* R_{\beta_{\ell}^m,a} g_a$ for some $\beta_{\ell}^m \in a$, $\beta_{\ell}^{m+1} \leq \beta_{\ell}^m$, and $\beta_{\ell}^* = \lim_{m \to \omega} \beta_{\ell}^m$.

(ix) if I is a dense open set of Q and $I \in N$, then for some n, $p_n \in I$.

Then there is $q \geq p$, $q \in Q$ that is (N,Q)-generic and

(a) for $\ell < k$, $q \Vdash (\exists \gamma_\ell \in a, \gamma_\ell \leq \beta_{\ell}^m)(f_{\ell} \upharpoonright aR_{\gamma_\ell,a} g_a)$,

(b) $q \Vdash \text{N}[G_Q]$ is (\bar{R},S,g)-good.

Note that conclusion (a) expresses a sort of directedness: g_a is the same for any $f_{\ell}, \ell < k$. We will use the possibility to work with unboundedly many k in the proof of the preservation of “(\bar{R},S,g)-preserving for Possibility A” for iterations when the cofinality of the iteration length is countable.

Definition 4.6. We say Q is (\bar{R},S,g)-preserving for Possibility C iff the following holds: Assume

\[(\ast)\]

(i) χ_1 is large enough and $\chi > 2^{\chi_1}$,

(ii) $N < H(\chi)$ is countable, $N \cap \bigcup S = a \in S$, and $Q,S,g,\chi_1 \in N$,

(iii) N is (\bar{R},S,g)-good and $p \in Q \cap N$.

Then there is $q \geq p$, $q \in Q$ that is (N,Q)-generic and $q \Vdash \text{N}[G_Q]$ is (\bar{R},S,g)-good.

Lemma 4.7. 1) If (\bar{R},S,g) covers in V and Q is an (\bar{R},S,g)-preserving forcing notion (for any Possibility) then in $V^{\bar{Q}}$, (\bar{R},S,g) still covers.
Proof. (1) Let G be \mathcal{P}-generic over V. $N[G] \prec H(\chi)^{V[G]}$ for N being $(\bar{R}, \mathcal{S}, g)$-good in V is a witness for covering in $V[G]$. For Possibility A, we can take $k = 0$, so (\ast) is vacuously true. Conclusion (b) suffices.

(2) The proof for Possibility A fits the old ([22, Ch. XVIII, Def. 3.4]) and the new definition of Possibility A (4.5). We fix $Q = Q_0 \ast Q_1$, χ, χ_1, N, a, k, f_ℓ, f_ℓ^* for $\ell < k$, $m < \omega$, $p = (q_0^n, q_1^n)$, $p^n = p_n = (q_0^n, q_1^n)$ as in (\ast) of Definition 4.5 Possibility A. We take $p^0 = p$. By condition (vi) of (\ast) for each $n < m < \omega$, $q_0^n \Vdash q_1^n \leq q_1^n$ and hence without loss of generality by clause (ix) of (\ast) by taking different names q_1^n that are above q_0^n the same,

$(\ast)_1 \quad q_0^n \leq q_1^n \leq q_1^n \leq q_1^n$, and

$(\ast)_2 \quad$ for every $x \in a$ or every sufficiently large $n < \omega$, (\emptyset, q_1^n) forces $f_\ell(x)$ to be equal to some specific Q_0-name $f_{n,\ell}^* (x) \in N$ for each $\ell < k$.

Since Q_0 is $(\bar{R}, \mathcal{S}, g)$ preserving there is $q_0 \in Q_0$ which is (N, Q_0)-generic and is above q_0^n in Q_0 and forces $N[G_{q_0}]$ to be $(\bar{R}, \mathcal{S}, g)$-good and for some $\gamma_\ell^n \leq \beta_\ell^n$, we have $q_0 \Vdash Q_0 \bigwedge_{\ell < k} f_\ell R_{\gamma_\ell^n} a \mathcal{G}_0$.

Let $G_0 \subseteq Q_0$ be generic over V and $q_0 \in G_0$. We want to apply Definition 4.5 with $N[G_0]$, $q_0^n[G_0]$, $q_1^n[G_0]$, $\langle f_\ell^n[G_0] : n < \omega \rangle$, $\langle f_\ell^n[G_0] : \ell < k \rangle$, $\langle f_{n,\ell}^*[G_0] : \ell < k, n < \omega \rangle$, $\langle \gamma_\ell^n : \ell < k \rangle$, $Q_1[G_0]$ there in (\ast) and check that all the items are fulfilled.

Clause (i) follows from clause (i) for $Q_0 \ast Q_1$.

clause (ii): as q_0 is (N, Q_0)-generic we have $N[G_0] \cap \mathcal{S} = N \cap \mathcal{S} \in \mathcal{S}$.

clause (iii) holds by the choice of q_0 and by conclusion (b) in Definition 4.5 for Q_0.

clause (iv) follows from clause (iv) for $Q_0 \ast Q_1$.

clause (v): if $x \in a$ then there are ℓ and a Q_0-name $\tau \in N$ such that $\Vdash Q_0 \langle q_0^n \rangle_{\tau} f_{m,\ell}^* (x) = \tau \in a_\ell$, as the set of $(r_0, r_1) \in Q_0 \ast Q_1$ such that $r_0 \Vdash Q_0 r_1 \Vdash Q_1 f_{m,\ell}^* (x) = \tau$ for some Q_0-name τ is dense open subset of $Q_0 \ast Q_1$ some (q_0^n, q_1^n) is in it and there is such a τ, by properness w.l.o.g.

clause (vi) follows from clause (v) for $Q_0 \ast Q_1$ and a density argument as in (v). In details: If $N[G_{q_0}] \models I \subseteq Q_1$ is dense and open, then since $I \in N[G_0]$ for some $I' \in I$ we have $\Vdash Q_0 I'$ is a dense open subset of Q_1 and $I'[G_0] = I$. Let $J = \{(r_0, r_1) \in Q_0 \ast Q_1 : \Vdash r_1 \in I'\}$. $J \in N$ is a dense
open subset of \(Q_0 \ast Q_1 \). Hence for every sufficiently large \(\ell \), \((q^0_\ell, q^1_\ell) \in J\) and so \(q^1_\ell[G_0] \in I[G_0] = I\) and we finish.

The proof for Possibility C is particularly easy: We read the definition of \((\bar{R}, S, g)\)-preserving in this case and see that given \(N \prec H(\chi), N \cap \omega_1 \in S\), \(p \in Q_0 \ast Q_1 \cap N, p = (q^0_0, q^1_0)\) there is \(q \geq p, q = (q^0_1, q^1_1)\), that is \(Q_0 \ast Q_1 \)-generic and

\[
(q^0_1, q^1_1) \models_{Q_0 \ast Q_1} N[G_{Q_0} \ast G_{Q_1}[G_{Q_0}]] \text{ is } (\bar{R}, S, g)\text{-good}.
\]

First we take by the hypothesis on \(Q_0 \) a \((N, Q_0)\)-generic condition \(q^1_0 \geq q^0_0 \) such that

\[
q^1_0 \models_{Q_0} N[G_{Q_0}] \text{ is } (\bar{R}, S, g)\text{-good}.
\]

Then we take \(G_{Q_0}, Q_0\)-generic over \(V \) such that \(q^1_1 \in G_{Q_0}\). Now in \(V[G_{Q_0}]\), \(N[G_{Q_0}] \cap \omega_1 \in S\) and hence there is \(q^1_1 \geq q^0_1[G_{Q_0}]\) such that

\[
q^1_1 \models_{Q_1[G_{Q_0}]} N[G_{Q_0} \ast G_{Q_1}[G_{Q_0}]] \text{ is } (\bar{R}, S, g)\text{-good}.
\]

\(\square \)

The following theorem is central.

Theorem 4.8. Suppose that \((\bar{R}, S, g)\) strongly covers in \(V\) for Possibility A (resp. C), and that \(P = \langle P_i, Q_j : i \leq \alpha, j < \alpha \rangle\) is a countable support iteration of proper \((\bar{R}, S, g)\)-preserving forcing notions for Possibility A (resp. C). Then \(P_\alpha\) is a \((\bar{R}, S, g)\)-preserving forcing notion for Possibility A (resp. C) and \((\bar{R}, S, g)\) strongly covers in \(V^{P_\alpha}\) for the respective Possibility.

Proof. We prove by induction of \(\zeta \leq \alpha \) that for every \(\xi \leq \zeta \), \(P_\zeta/P_\xi\) is \((\bar{R}, S, g)\)-preserving for Possibility A (resp. C) in \(V^{P_\xi}\); moreover in Definition 4.5 we can get \(\operatorname{dom}(q) \cap \xi = \zeta \cap N\). For \(\zeta = 0 \) there is nothing to prove, for \(\zeta \) successor we use the previous lemma. So let \(\zeta \) be a limit. We first consider \(cf(\zeta) = \omega\). We fix a strictly increasing sequence \(\langle \zeta_\ell : \ell < \omega \rangle\) with \(\zeta_0 = \xi \) and \(\sup \zeta_\ell = \zeta \).

First we consider Possibility A. We let \(\{ \tau_j : j \in \omega \}\) list the \(P_\zeta\)-names of ordinals which belong to \(N\). Let \(N\) be \((\bar{R}, S, g)\)-good. In the following we use the convention that the first index indicates that we deal with a \(P_\zeta\)-name \(\tau\) or \(f\) (for a \(P_\zeta/P_\xi\)-name) and the second index is for the enumeration of the particular subset of \(N\).

We choose by induction on \(j, k_j < \omega \) such that

(A) \(k_j < k_{j+1}\),

(B) there is a sequence \(\langle \tau_{\ell,j} : \ell < j \rangle\) such that \(\tau_{\ell,j}\) is a \(P_\zeta\)-name and

(\(\alpha \)) \(p_{k_j} \upharpoonright [\zeta_j, \zeta] \models_{P_\zeta} \tau_{j,j}\),

(\(\beta \)) for \(\ell < j \) we have \(p_{k_j} \upharpoonright [\zeta_\ell, \zeta_{\ell+1}] \models_{P_{\zeta+1}} \tau_{\ell+1,j} = \tau_{j,j}\),

(C) if \(j = i + 1, \ell < i \) then \(p_{k_j} \upharpoonright [\zeta_\ell, \zeta_{\ell+1}] \leq p_{k_i} \upharpoonright [\zeta_\ell, \zeta_{\ell+1}]\),
Given k_i, $\langle \tau_{\ell,i} : \ell < i \rangle$ by induction hypothesis the p that fulfill the requirement for $p_{k_{i+1}}$ are dense in $\mathbb{Q} \cap N$, hence by (ix) there is a k_{i+1} such that $p_{k_{i+1}}$ is in that dense set.

Now let $f_\ell, \ell < k$, be given as in (\textit{*}) of Def. 4.5. Let $\{f_j : \ell < j < \omega\}$ list the \mathbb{P}_ζ-names of members on N that are extensions of functions from a to a. For $\ell < k$ let them be the $f_{m,\ell}^*$ as given in (\textit{*}) of Definition 4.5. Since N is $(\mathcal{R}, \mathcal{S}, \mathbf{g})$-good, p_n from above can serve as p_n in (\textit{*}). We will now show how to choose $f_{m,j}^* \in N$, $m < \omega$, $j < \omega$.

Let $h(j,x) < \omega$ be such that $\tau_{h(j,x)} = f_j(x)$. We can now define for $n < \omega$, $j < \omega$, $f_{n,j}^*$ a \mathbb{P}_{ζ_n}-name of a function from a to a. Let $f_{n,j}^*(x) = \tau_{n,h(j,x)}$ if $h(j,x) \geq n$ and $\tau_{h(j,x),h(j,x)}$ if $h(j,x) < n$. So $f_{n,j}^*(x) = f_j(x)$ for $j < k$. So also for the names $f_{m,j}^*(x)$ we have (viii) of the hypothesis (\textit{*}), since (viii) holds objects $f_{m,j}$ from there and the sets

$$\{ f \in {}^\omega a : f R_{\beta,a} \mathbf{g} \}$$

are closed for $\beta \in a$. We choose by induction on n, q_n, α_ℓ^n for $\ell < k + n$ such that

(a) $q_n \in \mathbb{P}_\zeta_n$, dom($q_n$) $\setminus \xi = N \cap \zeta_n$, $q_{n+1} \upharpoonright \zeta_n = q_n$,

(b) q_n is $(N, \mathbb{P}_{\zeta_n})$-generic,

(c) $q_n \Vdash_{\mathbb{P}_{\zeta_n}} N[G_{\mathbb{P}_{\zeta_n}}]$ is $(\mathcal{R}, \mathcal{S}, \mathbf{g})$-good,

(d) $p_0 \upharpoonright \zeta_0 \leq q_0$ in \mathbb{P}_0,

(e) $q_{n+1} \upharpoonright \zeta_n \Vdash_{\mathbb{P}_{\zeta_n}} p_n \upharpoonright [\zeta_n, \zeta_{n+1}] \leq p_{n+1} \upharpoonright [\zeta_n, \zeta_{n+1}]$ (in $\mathbb{P}_{\zeta_{n+1}}/\mathbb{P}_{\zeta_n}$),

(f) for $\ell < k + n$, α_ℓ^n is a \mathbb{P}_{ζ_n}-name of an ordinal in a, $q_{n+1} \Vdash \alpha_\ell^{n+1} \leq \alpha_\ell^n$, $\alpha_\ell^0 \leq \beta_\ell^\zeta$, for $\ell < k$,

(g) for $\ell < k + n$, $q_n \Vdash_{\mathbb{P}_{\zeta_n}} f_{n,j}^* R_{\alpha_\ell^{n+1},a} \mathbf{g} \mathbf{a}$.

The induction step is by the induction hypothesis and by Definition 4.5 Possibility A with $k + n$ in the role of k. In the end we let $q = \bigcup_{n < \omega} q_n$.

We show that q is (N, \mathbb{P}_ζ)-generic and that is satisfies conclusions (a) and (b) of Def. 4.5. Let $q \in G_{\mathbb{P}_\zeta} \subseteq \mathbb{P}_\zeta$, $G_{\mathbb{P}_\zeta}$ be \mathbb{P}_ζ-generic over \mathbf{V}. $G_{\mathbb{P}_\zeta} = G_{\mathbb{P}_\zeta} \cap \mathbb{P}_\zeta$ for $\xi < \zeta$ and $G_{\mathbb{P}_{\zeta_n}} = G_{\mathbb{P}_{\zeta_n}} \cap \mathbb{P}_{\zeta_n}$. Now for each \mathbb{P}_ζ-name τ for an ordinal there is some j such that $\tau = \tau_j$, q_j forces $\tau_{j,j} \in N$ and $p_j \upharpoonright [\zeta_j, \zeta] \forces \tau_{j,j}$. $p_j \upharpoonright [\zeta_j, \zeta] \leq q$ by (d) and (e). So q forces $\tau_j = \tau_{j,j}$ and $q \Vdash \tau_j \in N \cap On$, so q is (N, \mathbb{P}_ζ)-generic.

For each ℓ, $\langle \alpha_\ell^n : \ell \leq n < \omega \rangle$ is not increasing by (f) and hence eventually constant, say with value α_ℓ^ζ. If $x \in a$, $j < \omega$, then for $n > h(j,x)$, $p_n \Vdash f_j(x) = f_{n,j}^*(x)$. So for every finite $b \subseteq a$, $\langle (f_{n,j}^* \upharpoonright b)[G_{\mathbb{P}_{\zeta_n}}] : n < \omega \rangle$ is eventually constant, equal to $\langle f_j \upharpoonright b[G_{\mathbb{P}_\zeta}] \rangle$. By (g), for sufficiently large n,
(1) $q \Vdash_{\mathbb{P}_\zeta} (f_j \upharpoonright b)[G_{\zeta \neg \zeta}] = (f_{n,j} \upharpoonright b)[G_{\zeta \neg \zeta}]$ and

(2) $q_n \Vdash f^*_n[\mathbb{G}_{\zeta \neg \zeta}] R_{\alpha^n_j,a} \mathbb{G}_a$ and

(3) $\alpha^n_j = \alpha^n_j$.

Since $R_{\alpha^n_j,a}$ is closed, and $(f^*_n \upharpoonright b)[\mathbb{G}_{\zeta \neg \zeta}] : b \subseteq a, b$ finite converges to f_j, we get $q \Vdash_{\mathbb{P}_\zeta} f_j R_{\alpha^n_j,a} \mathbb{G}_a$. This finishes the proof of (b), that $q \Vdash_{\mathbb{P}_\zeta} N[\mathbb{G}_{\zeta \neg \zeta}]$ is $(\bar{R}, \bar{S}, \bar{g})$-good. Now for (a) note that for there is $\ell < k$, $p_n \Vdash \alpha^\ell_n \leq \alpha^\ell_n[\mathbb{G}_{\zeta \neg \zeta}] \leq \beta^\ell_n$. Thus we finished the proof for the limit of countable cofinality for Possibility A.

Again the proof for possibility C is short. Let $(f_\ell : \ell < \omega)$ enumerate the \mathbb{P}_ζ-names $f : \omega_1 \rightarrow \omega_1$ with $f \in N$. Let $\langle \tau_n : n < \omega \rangle$ list the \mathbb{P}_ζ-names of ordinals which belong to N. We choose by induction on n, p_n, q_n, H_n, $\langle f^n_\ell : \ell \leq n \rangle$ such that

(a) $q_n \in \mathbb{P}_\zeta$, $\text{dom}(q_n) \setminus \xi \subseteq N \cap \zeta_n$, $q_{n+1} \upharpoonright \zeta_n = q_n$,

(b) q_n is $(N[\mathbb{G}_{\zeta \neg \zeta}], \mathbb{P}_\zeta)$-generic,

(c) $q_n \Vdash N[\mathbb{G}_{\zeta \neg \zeta}]$ is $(\bar{R}, \bar{S}, \bar{g})$-good,

(d) p_n is a \mathbb{P}_ζ-name of a member of $\mathbb{P}_\zeta \cap N$, $q_n \Vdash_{\mathbb{P}_\zeta} p_n \upharpoonright \zeta_n \in \mathbb{G}_{\zeta \neg \zeta}$,

(e) H_n is a \mathbb{P}_ζ-name, $H_n = \{\langle g_0, \ldots, g_{n-1} \rangle : d \subseteq a$ is finite and $p_n \Vdash_{\mathbb{P}_\zeta/\mathbb{G}_{\zeta \neg \zeta}} \langle f_0 \upharpoonright d, \ldots, f_{n-1} \upharpoonright d \rangle \neq \langle g_0, \ldots, g_{n-1} \rangle\}$,

(f) f^m_ℓ is a \mathbb{P}_ζ-name such that

$q_n \Vdash_{\mathbb{P}_\zeta} \langle f^m_\ell : \ell < n \rangle \in H_n$ and for every $m \leq n$ we have $p_{n+1} \Vdash_{\mathbb{P}_\zeta/\mathbb{P}_\zeta} \bigwedge_{\ell < m} f^m_\ell \supseteq f^m_\ell$.

(g) $q_n \Vdash_{\mathbb{P}_\zeta} p_{n+1}$ forces a value to τ_n.

There is no problem to carry out the definition and we still have the freedom to choose $(f^m_\ell : \ell < \omega)$. For this we use the winning strategy from possibility C of Definition 4.4 choosing there the n-th move of player I as $N_n = N[\mathbb{G}_{\zeta \neg \zeta}]$ and

$H_n[\mathbb{G}_{\zeta \neg \zeta}] = \{\langle g_0, \ldots, g_{n-1} \rangle : \text{for some finite } d \subseteq a \text{ we have} g_\ell \in d_{\omega_1} \text{ for } \ell < n \text{ and} p_n[\mathbb{G}_{\zeta \neg \zeta}] \Vdash_{\mathbb{P}_\zeta/\mathbb{G}_{\zeta \neg \zeta}} \langle f_0 \upharpoonright d, \ldots, f_{n-1} \upharpoonright d \rangle \neq \langle g_0, \ldots, g_{n-1} \rangle\}$

so the n-th move is defined in $\mathbb{V}^{\mathbb{P}_\zeta}$ according to the winning strategy for $\mathbb{P}_{\zeta \neg \zeta}$. We can work in $\mathbb{V}^{\text{Levy}(\mathbb{P}, (2^{\mathbb{P}(\zeta)})^+)$. Now of course while playing the universe changes but as the winning strategy is absolute there is no problem.

We let $q = \bigcup q_n$. In the end player II wins, that means for every $m < \omega$, $\bigcup_{n \geq m} f^m_n$ is a function which has domain a and $\bigcup_{n \geq m} f^m_n R_a g_a$. By the choice of players I’s moves for every $m < \omega$, $q \Vdash_{\mathbb{P}_\zeta} f^m_n = \bigcup_{n \geq m} f^m_n$. So N is
(R, S, g)-good. Moreover, also for Pα player II has a winning strategy in the game: It is just the winning strategy sketched above. If I plays a proper, non-empty subset of the Hn from Definition 4.4 then II takes an n-tuple from the subset according to his winning strategy in Vf∈m. Thus we finish the limit step of countable cofinality.

Now we continue to look at Possibility C:
If cf(ζ) > N0, suppose an initial part of the game (Nn, Hn, ⟨fℓn : ℓ ≤ n⟩ : n ≤ m) for Pζ is played. We choose ξ < ζ such these finitely many names for countable objects are Pt-names. One can collapse all objects and thus get them into H(ω₁) and hence they are hereditarily countable and then [3, Lemma 5.13] is applicable and such a ξ exists. Now player II can play according to the strategy for Pζ. Then player I moves and we choose a new ξ for catching the longer initial segment of the game. In the end II wins, since Pζ ⊆ Pζ for all the ξ’s on the way and each f ∈ N[Gζ], : a → a also appears at some stage ξ < ζ, so we know then N[Gζ] is (R, S, g)-good.

In the case of Possibility A, all the Pt-names f ∈ N for functions in "a" and the fℓ, ℓ < k, are Pt-names for a ξ < ζ.

Definition 4.9. Now fix (T, Y, S) as in Section 1. Assume that S ⊆ [ω₁]ω stationary and δ = sup(a) for a ∈ S. Y ⊆ T is given, and we fix an enumeration of it as follows: Y(δ) = {tδn : n < γδ} ⊆ Tδ and γδ is finite or ω. Now we choose Rα,a and gα by defining f : a → a : fRα,a(gα) for sup(a) = δ as
(a) α = 0 and f(0) ∈ γδ and f⁻¹[1] ∩ {s ∈ T_{<δ} ∩ α : 0 < T s < T tδf(0)} ≠ ∅, or
(b) 0 < α < δ and f(0) ∈ γδ and f⁻¹[1] ∩ {s ∈ T_{<δ} ∩ α : tδf(0)↾α ≤ s} = ∅
(c) f(0) /∈ γδ.
Rα,a is a countable union of closed relations, so Possibility A applies.

Lemma 4.10. 1) If T is (Y, S)-proper, then (R, S, g) fully covers.
2) If (R, S, g) covers then (R, S, g) strongly covers for Possibility A.

Proof. 1) We read the meaning of {f ∈ "a" : fRβ,a(gα)} from Definition 4.9. f(0) ∈ a ∩ ω₁. The part (a) of the disjunction means f⁻¹[1] is a subset of the forcing T_{<δ}, and {s : s < tδf(0)} meets f⁻¹[1]. This is an open relation. Note that it is not written that f⁻¹[1] be dense. The disjunction (b) means f⁻¹[1] is not dense in (T ∩ N, <T) since above tδf(0)↾α there is no element. This is a closed relation. The disjunction (c) means tδf(0) need not be considered as a generic filter in T_{<δ} as it is not in Y(δ). This is a clopen relation, since it speaks only about f(0). Now (R, S, g) covers N iff T is (Y, S) proper. 2) The Rβ,a are open or closed. –
Lemma 4.11. \((\bar{R},S,g)\) be as in Definition 4.9. A forcing notion \(Q\) is \((\bar{R},S,g)\)-preserving for Possibility C iff it is so for Possibility A.

Proof. "\(\Rightarrow\)" A winning strategy for player II is: In the \(n\)-th round he uses that I played \(N_n \supseteq N_\ell\) and \(H_n\) for \(n \geq \ell\) such that \(N_n\) is as in (a) of Definition 4.4(2). In particular \(N_n = (\bar{R},S,g)\) covers. So there is \(N' \models N_n\) that is \((\bar{R},S,g)\)-good and \(N' \models (\bar{R},S,g)\) covers and is \((\bar{R},S,g)\)-good.

Player II plays \((f_0^m, \ldots, f_{m-1}^m) \in H_n \cap N_n\) and \(d_n \geq d_\ell\) for \(\ell < n\) and \(\beta_\ell^n \leq \beta_k^n\) for \(k \leq n\) and \(\ell < n\) such that \(\text{dom}(f_\ell^n) = d_n\), for \(\ell < n\) and such that \((\forall \ell < n)(\exists m)(f_{m,\ell}^n \supset f_\ell^n \cap d_n \land f_{m,\ell}^n : a \to a \land f_{m,\ell}^n R_{m,\ell}^n, a G_a)\), and such that \(\bigcup d_n = a\). Since for \(\ell < \omega\), the \(\beta_\ell^m\), \(m < \omega\), become eventually constant to \(\beta_\ell^*\), and since \(R_{\beta_\ell^*, a}\) is closed, he thus ensures \((\forall \ell \in \omega)(\bigcup_{n \geq \ell} f_\ell^n R_{\beta_\ell^*, a G_a})\).

"\(\Leftarrow\)" We take the conditions from Possibility A: Let \(N \times \mathcal{H}(\chi)\) be countable, \((\bar{R},S,g) \in N\) and \(p, \langle p_n : n < \omega\rangle, \langle f_\ell^m : \ell < k, m < \omega\rangle, \langle \beta_\ell^m, \beta_\ell^* : \ell < k, m < \omega\rangle\) be as in (a) of Definition 4.5.

Let \(\delta = N \cap \omega_\ell\). Let \(w_m = \langle \ell < k : f_{m,\ell}^m(0) < \gamma_\delta \land \beta_\ell^m \neq 0\rangle\). For some \(m_0\) all of the finitely many possible \(w_m\) appeared. Fix such an \(m_0\) and fix the finitely many witnesses \(x_m,\ell, m < m_0, \ell < k\). For \(\ell \in k \setminus w_m\) choose \(t^\beta_{f_{m,\ell}^m} \leq T x_m,\ell \in T \cap N\) such that \(x_m,\ell <_T f_{m,\ell}^m(0)\) and \(\forall n \models \langle f_\ell^m(x_m,\ell) = 1 \lor f_\ell(0) \geq \gamma_\ell\rangle\). So for some \(n(*)\),

\[p_{n(*)} \models \bigwedge_{\ell \in k \setminus w_m} f_\ell(x_m,\ell) = 1 \lor f_\ell(0) \geq \gamma_\ell.\]

Let \(I = \{q \in \mathbb{Q} : \text{for each } \ell \in \omega, q \text{ forces a value to } f_\ell, \text{ say } m_\ell \text{ and it forces} \]

a truth value to \((\exists x)(t^\beta_{m_\ell} \leq_T x \land f_\ell(x) = 1)\}$. So for some \(n > n(*)\) we have \(p_n \in I\), and hence all truth values it forces are false, since for \(f_{m,\ell}^m\) they are false, \(f_{m,\ell}^m R_{\beta_\ell^*, a G_a}\) and since for any \(x\) there is \(p_{n'} \geq p_n\) and \(m\) forcing \(g(x) = f_{m,\ell}^m(x)\) and we let \(\beta_\ell^* = \max\{\beta_\ell^m : m < m_0\}\). So any \((N,\mathbb{Q})\)-generic \(q \geq p_{n'}\) we have

\[q \models \bigwedge_{m \in \gamma_\delta} \{s <_T t^\delta_m \} \text{ is } (N[G_{\mathbb{Q}}], T) \text{ generic,}\]

or, in other words, \(q \models N[G_{\mathbb{Q}}] \) is \((\bar{R},S,g)\)-good. The existence of such a \(q\) follows from Possibility C. For \(f_\ell, \ell < k\) moreover \(q \models f_\ell R_{\beta_\ell^*, a G_a}\) and \(\beta_\ell^* \leq \gamma_\ell\). So the conclusions (a) and (b) of Def. 4.5 of preserving in Case A are shown.

\[\square\]

Lemma 4.12. \((\bar{R},S,g)\) be as in Definition 4.9. A forcing notion \(Q\) is \((\bar{R},S,g)\)-preserving for Possibility A iff it is \((T,S,Y)\)-preserving.
Proof. For the forward direction we read the meaning of $(\bar{R}, \mathcal{S}, \mathbf{g})$. It is easy to fulfil (\ast) of Definition 4.5 for $k = 0$. Conclusion (b) in Definition 4.5 for Possibility A ensures that \mathbb{Q} is $(\mathcal{T}, \mathcal{S}, \mathcal{Y})$-preserving.

For the backward direction: We look at Possibility A. All the \{\(f : f R_{\alpha,a}^g\alpha\)\} are open or closed, and by reorganising, we can assume that all of them are closed. Fix $k \in \omega$ and $p, f_\ell, \ell < k, f_m, \ell, m < \omega, \beta_\ell^m, m < \omega, \langle p_n : n < \omega \rangle$ as in (\ast) of Def. 4.5. We have to find a particular generic $q \geq p$ that also satisfies conclusions (a) and (b) of Def. 4.5.

Now
\[
\mathcal{I} = \{ q \in \mathbb{Q} \cap N : q \not \Vdash (\exists \ell < k)(-f_\ell R_{\beta_\ell^m,a}^g) \}
\]
is dense above some p_n in \mathbb{P} since $\bigcup_{\ell < k} \{ f \in {}^a a : -f_\ell R_{\beta_\ell^m,a}^g \}$ is open in the Baire space $^a a$. So first we take $p_1 \geq p, p_1 \in \mathcal{I} \cap N$, and then we take, according to preserving in possibility C, $q \geq p_1$ such that q is (N, \mathbb{P})-generic and $q \Vdash N[\mathbb{G}_\mathbb{Q}]$ is $(\bar{R}, \mathcal{S}, \mathbf{g})$-good.

So now for the proof of Theorem 4.2 we can use Lemma 4.6 and Theorem 4.8 for Possibility A or for Possibility C, and we are done.

References

the Reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 645–654,

Trees and Creatures, volume 141 (no. 671) of Memoirs of the American Mathematical

[RoSh:942], 2009.

[18] Andrzej Rosłanowski and Saharon Shelah. Lords of the iteration. In Set theory and
Providence, RI, 2011.

[20] Fritz Rothberger. Sur un ensemble toujours de première catégorie qui est dépourvu

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY, EDMOND SAFRA
CAMPUS GIVAT RAM, JERUSALEM 91904, ISRAEL

ABTEILUNG FÜR MATHEMATISCHE LOGIK, MATHEMATISCHES INSTITUT, UNIVERSITÄT
FREIBURG, ECKERSTR. 1, 79104 FREIBURG IM BREISGAU, GERMANY

E-mail address: heike.mildenberger@math.uni-freiburg.de, shelah@math.huji.ac.il