ALICE:\Sb is undefined
ALICE:\gB is undefined
ALICE:\LC is undefined
ALICE:\CH is undefined
ALICE:\Unif is undefined
ALICE:\bbR is undefined
ALICE:\GCH is undefined
ALICE:\SCH is undefined
ALICE:\DC is undefined
ALICE:\limit is undefined
ALICE:\ub is undefined
ALICE:\Max is undefined
ALICE:\gG is undefined
ALICE:\dbcu is undefined

ANALYTICAL GUIDE AND UPDATES FOR CARDINAL ARITHMETIC
E-12

SAHARON SHELAH

Abstract. Part A: A revised version of the guide in [Sh:g], with corrections
and expanded to include later works.
Part B: Corrections to [Sh:g].
Part C: Contains some revised proof and improved theorems.
Part D: Contains a list of relevant references.

Date: August 18, 2013.
The author thanks Alice Leonhardt for the beautiful typing. First Typed at Rutgers - 97/Mar/17.
Contents

Part A: Analytic Guide
0. $\check{f}[\lambda]$ and partial squares, pg.3
1. Guessing clubs, pg.5
2. Existence of lub, pg.8
3. Uncountable cofinality, pg.11
4. Products, $T_D(f), U(f)$, pg.13
5. pcf Theory, pg.16
6. Representation and pp, pg.20
7. cov, pg.24
8. Bounds in cardinal arithmetic, pg.28
9. Johnsson algebras, pg.31
10. Coloring = negative partition, pg.32
11. Trees, linear orders, Topology and Boolean Algebras, pg.34
12. Strong covering and forcing; choiceless universes and partition relation, pg.41
13. Transversals and freeness, pg.42
14. Model theory, pg.44
15. Discussion, pg.47

Part B: Corrections to [Sh:g], pg.51
16. Discussion, pg.47

Part C: Details on changes and additions, pg.54
17. Short expansions, pg.54
18. More on II, 3: Trees with κ-branches ordered by $<_{p4}$, pg.56
19. More on III, 4: Densely running away from colours
20. Guessing clubs by countable C’s, pg.75

Part D: Relevant references

Part E: Anotated content of continuations
Notation -1.1. $\mu^+ \supseteq \ldots$ appears in the following context: $\mu^+ \supseteq \ldots$ means “both sides are equal, and if in the right side the sup is not obtained, then it is singular.”

For a set C of ordinals $\text{acc}(C) = \{ \alpha \in C : \alpha = \sup(\alpha \cap C) \}$, $\text{nacc}(C) = C \setminus \text{acc}(C)$.

The aim of this guide is to help the reader find out what is said in [Sh:g] and related works of the author, what are the theorems and definitions or where to look for them.

Let $[A]^\kappa = \{ a \subseteq A : |a| = \kappa \}$, similarly $[A]^{<\kappa}$ and $[A]^{\leq \kappa}$ we call $[A]^{\leq \kappa}$ also $\mathcal{P}^{\leq \kappa}[A]$.
§ 0. $I[\lambda]$ and Partial Squares

See [Sh:108], [Sh:88a], [Sh:345a, 2.3(5)], equivalent forms [Sh:420, 1.2], preservation of stationary subsets by μ-complete forcing [Sh:108, 21], [Sh:88a, 10].

{0.1}

Definition 0.1. Let $\lambda = \text{cf}(\lambda) > \aleph_0$. For $S \subseteq \lambda$ we have: $S \in \check{I}[\lambda]$ iff for some club E of λ and $(C_\alpha : \alpha < \lambda)$ we have: C_α is a closed subset of α, $\text{otp}(C_\alpha) < \alpha$, $[\beta \in \text{nacc}(C_\alpha) \Rightarrow C_\beta = \beta \cap C_\alpha]$ and $[\alpha \in E \cap S \Rightarrow \alpha = \text{sup}(C_\alpha)]$

(and every $\beta \in \text{nacc}(C_\alpha)$ is a successor ordinal); note $E \cap S$ has no inaccessible cardinal as a member. Note that [Sh:420, 1.2] says that the definition just given is equivalent to those used in [Sh:108], [Sh:88a].

We can demand further $\alpha \in E \cap S \Rightarrow \text{otp}(C_\alpha) = \text{cf}(\alpha)$. But we can demand less: for each α we are given $< \lambda$ candidates for C_α, and for C a candidate for α and $\beta < \alpha, C \cap (\beta + 1)$ is a candidate for some $\gamma < \alpha$. $I[\lambda]$ is a normal ideal, and in many cases of the form “non-stationary ideal + S” (see [Sh:108]; [Sh:88a]).

{0.1A}

Remark 0.2. $\check{I}[\lambda]$ is a normal ideal but many times it has the form \{ $A \subseteq \lambda : A \cap S$ non-stationary \} and then S is the “bad” set of λ. This holds for $\check{I}[\lambda] \upharpoonright \{ \delta < \lambda : \text{cf}(\delta) = \kappa \}$ if $\lambda = \lambda^{< \kappa}$ or less (see [Sh:108], [Sh:88a]).

{0.2}

Claim 0.3. If λ is regular, then $S = S^+_{\lambda, \lambda} = \{ \delta < \lambda^+ : \text{cf}(\delta) < \lambda \}$ is the union of λ sets on each of which we have a square (see below) hence belongs to $\check{I}[\lambda]$, see [Sh:351, 4.1], [Sh:371, Ch.III, 2.1?]. If $\lambda = \lambda^{< \kappa}$, then $\{ \delta < \lambda^+ : \text{cf}(\delta) < \kappa \}$ is the union of λ sets on each of which we have a square (see [Sh:237]), hence the set belongs to $\check{I}[\lambda]$. Moreover, if $\lambda > \aleph_0$ is regular and $\alpha < \lambda \Rightarrow \text{cov}(\alpha, \kappa, 2) < \lambda$ then $\{ \delta < \lambda : \text{cf}(\delta) < \kappa \} \in \check{I}[\lambda]$ (see [Sh:420, 2.8]). By Dzamonja, Shelah [DjSh:562] the same assumption gives $\{ \delta < \lambda^+ : \text{cf}(\delta) < \text{cf}(\lambda) \}$ is the union of $\leq \lambda$ sets on each of which we have square. Also in [DjSh:562] there are results on getting squares with λ singular and results with an inaccessible instead of λ^+.

{0.2A}

Definition 0.4. $S \subseteq \mu$ has a square if we have $S^+, S \subseteq S^+ \subseteq \mu$ and $(C_\alpha : \alpha \in S^+)$ such that: C_α is a closed subset of α of order type $< \alpha$, and $\alpha \in C_\alpha \Rightarrow C_\alpha = \alpha \cap C_\beta$ and $[\alpha \in S \Rightarrow \text{cf}(\alpha) \leq \kappa(\kappa)]$, we can add “$\text{otp}(C_\alpha) \leq \kappa(\kappa)$”.

{0.3} : Related ideals [Sh:345a, 2.3, 2.4] [Sh:371, 2.3, 2.4, 2.5, 5.1, 5.1A, 5.2].

If $\kappa^+ < \lambda = \text{cf}(\lambda)$, then we can find a stationary $S \subseteq \{ \delta < \lambda : \text{cf}(\delta) = \text{cf}(\kappa) \}, S \in \check{I}[\lambda]

{0.5} [Sh:420, 1.5] (somewhat more [Sh:420, 1.4]).

Negative consistency results: [Sh:108], (“GCH + the bad set for $\aleph_{\omega+1}$ is stationary”) Magidor, Shelah [MgSh:204], Hajnal, Juhasz, Shelah [HJSh:249], consistency of $\check{I}[\lambda]$ large but stationary sets reflect [Sh:351].

{0.6} On killing stationary sets by forcing [Sh:108], [Sh:88a, 18, 19], [Sh:371, 2.4].

On consequences of pcf structure ([Sh:108], [Sh:g, Ch.VIII, §5.7], [Sh:589, 5.17, 5.18]), e.g. (GCH) the bad stationary subsets of $\aleph_{\omega+1}$ do not reflect ([Sh:108] or [Sh:88a]).
\section{Guessing clubs}

\textbf{Definition 1.1.} Definition of ideals \cite[1.3,1.5,3.1]{Sh}: definition of $g\ell$ \cite[2.1]{Sh}; also \cite[1.8]{Sh}.

For example

\textbf{Definition 1.2.} For $C = \{C_\delta : \delta \in S\}, S \subseteq \lambda = \text{cf}(\lambda) > \aleph_0, C_\delta$ a club of δ:

$$\text{id}^a(C) = \{A \subseteq \lambda : \text{for some club } E \text{ of } \lambda \text{ for no } \delta \in S \cap A \cap E \text{ is } C_\delta \subseteq E\}$$

$$\text{id}^a(C) = \{A \subseteq \lambda : \text{for some club } E \text{ of } \lambda \text{ for no } \delta \in S \cap A \cap E \text{ is } \sup(C_\delta \setminus E) < \sup C_\delta\}$$

$$\text{id}_p(C) = \{A \subseteq \lambda : \text{for some club } E \text{ of } \lambda \text{ for no } \delta \in S \cap A \cap E \text{ is } \delta = \sup(E \cap \text{nacc}(C_\delta))\}.$$

\begin{enumerate}
 \item Easy facts \cite[1.4,1.6]{Sh}.
 \item For $\lambda, S \subseteq \lambda$ stationary concerning the existence of $C = \{C_\delta : \delta \in S\}$ “guessing clubs of λ^+” \cite[2]{Sh} (and \cite[Ch.II,7.8A-G]{Sh}).
 \item The following two items give sufficient conditions for the properness of the above ideals.
 \begin{enumerate}
 \item If $\delta \in S \Rightarrow \text{cf}(\delta) < \mu$ for some $\mu < \lambda$, then we can find clubs C_δ for $\delta \in S$ such that $\text{id}^a(\langle C_\delta : \delta \in S \rangle)$ is a proper ideal (i.e. for every club E of λ for some $\delta, C_\delta \subseteq E$) by \cite[2.3(2)]{Sh}.
 \item If $\lambda = \mu^+, \mu$ regular, $\delta(\ast) < \mu$, then for some stationary $S^* \subseteq \lambda$, there is a square $\bar{C} = \langle C_\alpha : \alpha \in S^* \rangle$ (so $\alpha \in S^* \Rightarrow C_\alpha \subseteq S^*, \beta \in C_\alpha \Rightarrow C_\beta = C_\alpha \cap \beta$) satisfying $\text{otp}(C_\alpha) \leq \delta(\ast)$ and $\text{id}^a(\langle C_\delta : \delta \in S^*, \text{otp}(C_\delta) = \delta(\ast)\rangle)$ is a proper ideal (i.e. for every club E of λ for some $\delta, \text{sup}(E \cap \text{nacc}(C_\delta))$, \cite[2.14(2)]{Sh} (see part B here)).
 \item If $\lambda = \mu^+, \mu$ regular, $S \subseteq S_\mu^\lambda$ is stationary, then we can find $\bar{C} = \langle C_\delta : \delta \in S, C_\delta \text{ a club of } \delta, \text{otp}(C_\delta) = \mu, [\alpha \in \text{nacc}(C_\delta) \Rightarrow \text{cf}(\alpha) = \mu] \rangle$ and $\text{id}_p(\bar{C})$ a proper ideal (i.e. for every club E of λ for some $\delta, \delta = \sup(E \cap \text{nacc}(C_\delta))$), \cite[2.3(1)]{Sh}, \cite[413]{Sh}, \cite[572, 3]{Sh}.
 \item If $[\lambda = \mu^+, \mu$ singular and: $\delta \in S \Rightarrow \text{cf}(\delta) = \text{cf}(\mu) > \aleph_0]$ or $[\lambda$ inaccessible and: $\delta \in S \Rightarrow \text{cf}(\delta) \in (\aleph_0, \delta)]$, then for some $\bar{C} = \langle C_\alpha : \alpha \in S \rangle$ we have: $\text{id}^a(\bar{C})$ is proper and for each $\delta \in S$ we have: $[\text{cf}(\alpha) : \alpha \in \text{nacc}(C_\delta)]$ converges to $[\delta]$ (and is strictly increasing) \cite[2.6.2.7]{Sh}.
 \item If $S^* \subseteq \lambda$ is stationary and does not reflect outside itself and $S \subseteq \lambda$ is stationary, then for some $\bar{C} = \langle C_\delta : \delta \in S \rangle$ we have $\text{nacc}(C_\delta) \subseteq S^*$, and $\text{id}_p(\bar{C})$ is a proper ideal, \cite[2.13]{Sh}.
 \item Similar theorems with ideals \cite[1.7,2.4]{Sh}, \cite[11.1,11.2]{Sh} other related ideals \cite[1.10]{Sh}.
 \item More in the places above and \cite[2.6.2.8,2.9]{Sh} and \cite[449]{K}.
 \item Assume $\lambda = \text{cf}(\lambda), S \subseteq \{\delta < \lambda^+ : \text{cf}(\delta) = \lambda\}$ is stationary and χ satisfies one of the following: $\lambda = \chi^+$ or $\chi = \min\{\tau < \lambda : \langle \exists \theta \leq \tau \rangle^\theta > \lambda\}$ or λ strongly inaccessible not Mahlo. Then we can find $\langle C_\delta, h_\delta : \delta \in S \rangle$ such that: $C_\delta = \{\alpha_{\delta, \zeta} : \zeta < \lambda\}$ is a club of $\delta, \alpha_{\delta, \zeta}$ increasing with $\zeta, h_\delta : C_\delta \rightarrow \chi$ and for every club E of λ^+ for stationarily many $\delta \in S$, for each $i < \chi$
 \end{enumerate}
\end{enumerate}
\[\{\zeta < \lambda : \alpha_{\delta,\zeta} \in E, \alpha_{\delta,\zeta+1} \in E \text{ and } b_\delta(\alpha_{\delta,\zeta}) = i\}\]

is a stationary subset of \(\lambda\) (see [Sh:413, §3], [Sh:572, §3]). If \(\lambda\) is a limit of inaccessibles, we can demand \(\text{cf}(\alpha_{\delta,\zeta+1}) > \zeta\).

\(i\) If \(\lambda, \overline{C} = (C_\delta : \delta \in S^+\lambda)\) is as in 0.1, \(S \subseteq S^+\lambda, \sup\{|C_\alpha|^+: \alpha \in S\} < \lambda\) then for some club \(E\) of \(\lambda, \overline{C}' = (g\ell(C_\delta, E) : \delta \in S^+\lambda \cap \text{acc}(E))\) is as in 0.1 and for every club \(E_1 \subseteq E\) of \(\lambda\) for stationarily many \(\delta \in S\) we have \(\alpha \in C'_\delta \Rightarrow \sup(C'_\delta \cap \alpha) \leq \sup(E \cap \alpha)\).

\(j\) Assume \(\lambda = \text{cf}(\lambda)\) and \(S \subseteq S^+\lambda = \{\delta < \lambda^+: \text{cf}(\delta) = \lambda\}\) is stationary.

Then we can find an \(S\)-club system \(\overline{C} = (C_\delta : \delta \in S)\) and \(h : S \rightarrow \lambda\) such that for any club \(E\) of \(\lambda^+\) for stationarily many \(\delta \in S\) for every \(i < \lambda\) the set \(\text{nacc}(C_\delta) \cap h^{-1}(\{i\})\) is unbounded in \(\delta\) (under reasonable assumption \(|\{\delta \in S : \alpha \in \text{nacc}(C_\delta)\}| \leq \lambda\), see [Sh:413, 3.3].

\(\{1.4\}\) On \(\otimes_S, \otimes_S\) for some \(S\)-club system [Sh:365, 2.12.2.12A,4.10] and a colouring theorem [Sh:365, 4.9] (see earlier [Sh:276]). Where \(\lambda\) is a Mahlo cardinal,

\(\otimes_S\) \(\overline{C}\) has the form \(\langle C_\delta : \delta \in S\rangle, S \subseteq \lambda\) a set of inaccessibles, \(C_\delta\) a club of \(\delta\) such that: for every club \(E\) of \(\lambda\) for stationary many \(\delta \in S, E \cap \delta \backslash C_\delta\) is unbounded in \(\delta\)

and for \(\kappa < \lambda:\)

\(\otimes_S\) \(\overline{C}\) has the form \(\langle C_\delta : \delta \in S^\lambda\rangle, S^\lambda = \{\mu < \lambda : \mu \text{ inaccessible}\}, \text{ such that: for every club } E \text{ of } \lambda, \text{ for stationary many } \delta \in S^\lambda \cap \text{acc}(E), \text{ for no } \zeta < \kappa \text{ and } \alpha \in S^\lambda(\zeta < \zeta) \text{ is nacc}(E \cap \delta) \backslash \bigcup \alpha < \zeta \text{ bounded in } \delta\).

By [Sh:365, 4.9] if \(\kappa\) is a Mahlo cardinal and \(\otimes_S\), then for some 2-place function \(c\) from \(\kappa\) to \(\omega\), for every pairwise disjoint \(w_i \subseteq \kappa, |w_i| < \kappa\) for \(i < \kappa\), and \(n\), for some \(i < j, \text{Rang}(c \upharpoonright w_i \times w_j) \subseteq (n, \omega)\). By [Sh:365, 4.10B], \(\otimes_S \Leftrightarrow \otimes_S\), also \(\otimes_S\) is a strengthened form of "\(\kappa\) not weakly compact", which fails under mild conditions \(\{1.5\}\) ([Sh:365, 4.10A]). See more in [Sh:365, 4.13].

\(\{1.6\}\) \(id_\alpha(\overline{C}, I)\) is decomposable [Sh:365, 3.2.3.3].

If \(\kappa^+ < \lambda\), we can find \(\langle \mathcal{P}_\alpha : \alpha < \lambda \rangle\) such that: \(\mathcal{P}_\alpha\) is a family of \(< \lambda\) closed subsets of \(\alpha\),

\[\beta \in \text{nacc}(C)\text{and}C \in \mathcal{P}_\alpha \Rightarrow C \cap \beta \in \mathcal{P}_\beta\]\n
and for every club \(E\) of \(\lambda\) for stationarily many \(\alpha < \lambda\), there is \(C \in \mathcal{P}_\alpha, \kappa = \text{otp}(C), \alpha = \text{sup}(C)\) and \(C \subseteq E\) [Sh:420, 1.3] (we can replace \(\kappa\) by \(\delta(\bullet), |\delta(\bullet)| = \kappa\)).

\(\{1.7\}\) On 1(c) \(\text{in } [\text{Sh:413, } \S 4] \text{ and better in } [\text{Sh:572, } \S 3].\)

If we want to preserve \(\alpha \in \text{nacc}(C_\alpha) \cap \text{nacc}(C_\beta) \cap \text{nacc}(C_\gamma) \Rightarrow C_\beta \cap \alpha = C_\gamma \cap \alpha\) we can weaken the guessing to: \(\forall\text{ club } E^{\exists \text{nat } \delta}\text{ such that } E\text{ is not disjoint to any}\)

\(\{1.9\}\) interval of \(C_\alpha\). See the proof of [Sh:430, 6.2], [DSh:562].

On ideals related to Jonsson algebras and guessing clubs: [Sh:380], [Sh:413, §1] (used in §8 here).
§ 2. Existence of lub

We discuss here lub of $\vec{f} = (f_\alpha : \alpha < \delta) \mod I$, where $f_\alpha \in {}^\kappa \text{Ord}$, I an ideal on $\kappa, \kappa^+ < \text{cf}(\delta)$. See [Sh:68], [Sh:111], [Sh:282, §14] and better [Sh:355, §1].

Definition 2.1. We say "\vec{f} is a lub of $(f_\alpha : \alpha < \delta)$ mod I" where I is an ideal on $\text{Dom}(I), \ f_\alpha : \text{Dom}(I) \to \text{ordinals}$, if $\bigwedge_{\alpha < \delta} f_\alpha \leq_I f$ and $\bigwedge_{\alpha < \delta} f_\alpha \leq f' \Rightarrow f \leq f'$ mod I.

We say "\vec{f} is a lub (exact upper bound) of $(f_\alpha : \alpha < \delta)$ mod I" where I is an ideal on $\text{Dom}(I), \ f_\alpha : \text{Dom}(I) \to \text{ordinals}$, if $\bigwedge_{\alpha < \delta} f_\alpha \leq_I f$ and if $g <_I \max\{f, 1\}$ then for some $\alpha < \delta$ we have $g \leq_I f_\alpha$ (see [Sh:345a, 1.4(4)]): usually $\alpha < \beta \Rightarrow f_\alpha \leq_I f_\beta$;

"\vec{f} is an eub (exact upper bound) of $(f_\alpha : \alpha < \delta)$ mod I" says more than "\vec{f} is a lub of $(f_\alpha : \alpha < \delta)$ mod I".

§ 14] and better [Sh:355, 1.2, 1.6] (slightly more [Sh:430, 6.1A], on eub \neq lub, see example [Sh:430, 6.1A]).

For example for I a maximal ideal on κ, $f_\alpha \in {}^\kappa \text{Ord}$ for $\alpha < \delta, \text{cf}(\delta) > \kappa^+$, $\vec{f} = (f_\alpha/j : \alpha < \delta)$ increasing, either \vec{f} has a $<_I$-eub, or for some sequence $\vec{w} = \langle w_i : i < \kappa \rangle$ of sets of ordinals, $|w_i| < \kappa$ we have:

$$\bigwedge_{\alpha < \delta} \bigvee_{\beta < \delta} \exists g \in \prod_{i < \kappa} [f_\alpha/I < g/I < f_\beta/I].$$

The $\text{cf}(\delta) > \kappa^+$ is necessary by [KjSh:673].

Definition 2.2. [Sh:345a, 2.6]. We define:

$$\mathfrak{d}_I(\vec{f}) =: \{\alpha < \delta : \text{ cf}(\alpha) > \kappa \ \text{and there is an unbounded}
A \subseteq \alpha \ \text{and members} \ s_i \ \text{of} \ I \ \text{for} \ i \in A \ \text{such that:}
i \in A \ \text{and} \ j \in A \ \text{and} \ i \prec_J \ j \ \text{and} \ i \in \kappa \setminus (s_i \cup s_j) \ \Rightarrow \ f_i(\zeta) \leq_J f_j(\zeta)\}.\]

Sufficient conditions for the existence of lub [Sh:355, 1.7] is that $\text{gd}_I(\vec{f})$ is a stationary subset of δ.

§ 1.2.1.3.1.4] and [Sh:430, §6].

On the good/bad/chaotic division. For f a $<_I$-increasing sequence of functions from κ to ordinals, we have a natural division of $\ell g(\vec{f})$, for example to $\text{gd}_I(\vec{f})$ (see 2.2 above),

$$\text{ch}(\vec{f}) = \{\delta < \ell g(\vec{f}) : \text{ for some ultrafilter} \ D \text{ on } \ell g(\vec{f}) \text{ disjoint to } I \text{ and}
w_i \subseteq \text{ordinals for} \ i \in \text{Dom}(I), \ |w_i| \leq |\text{Dom}(I)| \text{ and}
\bigwedge_{i < \delta} \bigvee_{j < \delta} (\exists g \in \Pi_{w_i}[f_i \leq_D g \leq_D f_j])$$

and $\text{bd}_I(\vec{f}) = \ell g(\vec{f}) \setminus (\text{gd}_I(\vec{f}) \cup \text{ch}_I(\vec{f}))$. Note: for every $\delta < \ell g(\vec{f})$ of uncountable cofinality there is a club C of δ such that $\delta \in \text{gd}_I(\vec{f})$ and $\alpha \in \text{gd}_I(\vec{f})$ and $\delta \in \text{ch}_I(\vec{f}) \Rightarrow C \subseteq \text{ch}_I(\vec{f})$; also for $\text{bd}_I(\vec{f})$ to be non-trivial, $\ell g(\vec{f})$ should not be so small among the alephs.
There are connections to NPT (see §12) and $\mathcal{I}([\ell g(f))]$ (see §1) (and consistency of the existence of counterexamples; see [Sh:108], [MgSh:204], [Sh:355, 1.6], [Sh:523]).

Problem 2.3. Is the following consistent: $\{\delta < \aleph_{\omega+1} : \text{cf}(\delta) = \aleph_2 \} \notin \mathcal{I}[\aleph_{\omega+1}]$ or $2^{\aleph_0} < \aleph_\omega$ and $\{\delta < \aleph_{\omega+1} : \text{cf}(\delta) = (2^{\aleph_0})^+ \} \notin \mathcal{I}[\aleph_{\omega+1}]$ (also for inaccessibles) or $\bar{f} = (f_\alpha : \alpha < \aleph_{\omega+1}), f_\alpha \in \prod_{n < \omega} \aleph_n, \text{ch}_\Gamma(\bar{f}) \cap \{\delta < \aleph_{\omega+1} : \text{cf}(\delta) = \aleph_2 \}$ stationary or $(\forall S) [S \in \mathcal{I}[\aleph_2] \text{ and } \bigwedge_{\delta \in S} \text{cf}(\delta) = \aleph_1 \Rightarrow S \text{ not stationary}]$?

problem 2.7: More on §2, see in §11 (in universes without full choice).

Problem 2.8: See more in [Sh:506] for generalization to the case $\text{cf}(\delta) \leq |\text{Dom} I|$. On existence of eub see [Sh:506, 3.10] and [Sh:589, 6.4].

Problem 2.9: Assume $\lambda = \text{cf}(\lambda) \geq \mu > 2^\kappa, f_\alpha \in \kappa^\omega, \text{Ord}$ for $\alpha < \kappa$. Then for some $\beta^*_i (i < \kappa)$ and $w \subseteq \kappa$ we have: $i \in w \Rightarrow \text{cf}(\beta^*_i) > 2^\kappa$ and for every $f \in \prod_{i \in w} \beta^*_i$ for unboundedly many $\alpha < \lambda$ we have $i \in w \Rightarrow f(i) < f_\alpha(i) < \beta^*_i$ and $i \in \kappa \setminus w \Rightarrow f_\alpha(i) = \beta^*_i$; [Sh:430, 6.6D] (slightly more general); more detailed proof [Sh:513, 6.1], more variants [Sh:620, §7].

Problem 2.10: On decreasing sequences see [Sh:589, 6.1.6.2]. See also [Sh:829].
§ 3. Uncountable cofinality and \aleph_1-complete filters and products:

[Sh:71], [Sh:111], [Sh:256]

: Assume $(\lambda_i : i \leq \kappa)$ is an increasing continuous sequence of singulars, $\aleph_0 < \kappa = \text{cf}(\kappa) < \aleph_0$. Let $\lambda = \lambda_\kappa$. If $\{ i < \kappa : \text{pp}(\lambda_i) = \lambda^+_i \}$ is a stationary subset of κ, then $\text{pp}(\lambda) = \lambda^+$, [Sh:355, 2.4(1)].

Moreover, $\text{pp}(\lambda_k)$ is bounded by $\lambda^+_{\mu(k)}$ where $\text{pp}(\lambda_i) = \lambda^+_i$ hence we have a bound on $\text{pp}(\lambda)$ in many cases [Sh:355, 2.4], [Sh:371, 1.10].

§ 4. Preservative pairs (see 3), definition and basic properties [Sh:386, 4.15].

: The class of preservative pairs is closed under:

1. $H^*(i)$ iterating H times [Sh:386, 4.7, 4.8, 4.9]
2. composition [Sh:386, 4.10]
3. $\sup_{n < \omega} H^n$ [Sh:386, 4.11]
4. iterating α times, $\alpha < \omega_1$ [Sh:386, 4.12]
5. more [Sh:386, 4.13]
6. induction [Sh:333, §2].

: Preservative pairs are bounds on cardinal exponentiation [Sh:386, 5.1, 5.5].

: If $\text{rk}_E^2(f) = \text{rk}_E^3(f) = \lambda$ inaccessible, then modulo (fil E) almost every $f(i)$ is inaccessible [Sh:386, 5.7].

: Generalizing normal filters and then ranks [Sh:410, §5], [Sh:420, §3, §4, §5].
Combinatorial theorem using ranks, [Sh:881], if $\lambda > \text{cf}(\lambda) > \aleph_0$ and $2^{\text{cf}(\lambda)} < \lambda$
then $\lambda \to (\lambda, \omega + 1)^2$.

For set theory with weak choice much remains (see [Sh:497], here §11).
§ 4. Products, $T_D(f), U$

We deal with computing $T_D(f), U_D(f)$ and reduced products $\prod_{i \in \kappa} f(i)/D$ from pcf, mainly when $(\forall i)[f(i) > 2^\kappa]$ see [Sh:506, §3], [Sh:589, §1], [Sh:589, §4] on T_D

earlier, Galvin Hajnal [GH75].

Definition 4.1.
1) $T_D(f) = \text{ Min} \{ |\mathcal{F}| : \mathcal{F} \subseteq \prod_{i}(f(i) + 1) \text{ and } f \neq g \in \mathcal{F} \Rightarrow f \neq D \}$
2) $U_D(f, < \theta) = \text{ Min} \{ |\mathcal{A}| : \mathcal{A} \subseteq \prod_{i}[f(i)]^{< \theta} \text{, each member of } \mathcal{A} \text{ of cardinality } < \theta \text{ such that for every } g \in \kappa \text{Ord}, \ g <_D f \text{ for some } \bar{A} \in \mathcal{A} \text{ we have } \{i < \kappa : g(i) \in A_i\} \neq \emptyset \text{ mod } D \}$

If $\theta = \kappa^+$ we may omit it, (note: if $cf(\theta) > \kappa$ we can replace \bar{A} by $\bigcup_{i \in \kappa} A_i$).

[Saharon/Shimi: add: [Sh:430], [Sh:552].]

: If $\lambda > 2^{<\theta}, \theta \geq \sigma = cf(\sigma) > \aleph_0$ and $\Gamma = \Gamma(\theta, \sigma)$ (the set of σ-complete ideals on a cardinal $< \theta$) we have $T_\Gamma(\lambda) = \text{ cov}(\lambda, \theta, \sigma)$

(the latter can be computed from case of $	ext{ ppp}_\Gamma$); [Sh:355, 5.9.p.94]. If $\theta^\kappa < U_D(\lambda)$, then $T_D(f) = U_D(f)$.

: A pcf characterization when $\lambda \leq T_D(f)$ holds, under $2^{\text{Dom}(D)} < \text{ Min } f(i)$ and $(\forall \alpha)(\alpha < \lambda \Rightarrow |\alpha|^\aleph_0 < \lambda)$, see [Sh:506, 3.15], (note if $A_\alpha \in D$, $\bigcap_{\alpha < \lambda} A_\alpha = \emptyset$, then $T_D(f) = T_D(f)^{\alpha_\kappa}$).

See more in [Sh:506, §3].

: On sufficient conditions for $T_I(\lambda) \geq \lambda$ and $T_J(\lambda) = \lambda$, see [Sh:829] (?? and ??).

: Assume D is a filter on $\kappa, \mu = cf(\mu) > 2^\kappa, f \in \kappa{\text{Ord}}$ and: D is \aleph_1-complete or $(\forall \sigma < \mu)(\sigma^{\aleph_0} < \mu)$. Then $(\exists A \in D^+)T_{D+A}(f) \geq \mu$ if for some $A \in D^+$ and $(\lambda_i : i < \kappa) = \lambda \leq D+A f$ we have $\prod_{i \in \kappa} \lambda_i/(D+A)$ has true cofinality μ (for approximations see [Sh:506, §3], proof [Sh:589, 1.1], note \equiv is trivial). This is connected to the problem of the depth of products (e.g. ultraproducts) of Boolean Algebra.

: If $2^{2^\kappa} \leq \mu < T_D(\lambda)$ and $\mu^{<\theta} = \mu$, then for some θ-complete ideal $E \subseteq D$ we have $\mu < T_E(\lambda)$, [Sh:506, 3.20].

: On $\prod_{i \in \kappa} \lambda_i/D$ see [Sh:506, 3.1-3.9B], essentially this gives full pcf characterization when it is $> 2^\kappa$. In particular for an ultrafilter D on κ with regularity θ (i.e. not θ-regular but σ-regular for $\sigma < \lambda$) and $\lambda_1 > 2^\kappa$, we have

$$\prod_{i \in \kappa} \lambda_i/D = \text{ sup}(\text{cf} \prod_{i \in \kappa} \lambda'_i/D : 2^\kappa < \lambda'_i = \text{ cf}(\lambda'_i) \leq \lambda_i)^{<\text{reg}(D)}$$

(see mainly [Sh:506, 3.9]).

: Assume $\lambda_i : i < \kappa$ tends to λ. A full characterization of $\prod_{i \in \kappa} \lambda_i/D = \lambda$ (via weak normal ultrafilters) appears in [GaSh:956].

\[\text{revision:2013-08-18}\]
Assume D is an ultrafilter on κ and θ is the regularity of D (i.e. minimal θ such that D is not θ-regular). Then every $\lambda = \lambda^\theta > 2^\kappa$ can be represented as $\prod_{i<\kappa} \lambda_i/D$. (Note $\lambda = \lambda^{<\theta}$ is necessary) (see [Sh:589, §6]).

Assume $\theta < \kappa$, $J_\kappa = [\kappa]^{<\theta}$ and $\lambda > \kappa^\theta$ then

\[T_J(\lambda) = \sup\{ \text{tcf}(\prod_{n < i < \kappa} \lambda_{i,n}/J) : n_i < \omega, \lambda_{i,n} \text{ regular } \in [\kappa^\theta, \lambda) \text{ and } J \text{ is an ideal on } \bigcup \{i\} \times n_i, \text{ and} \]

\[A \subseteq \kappa \text{ and } \forall i \in A \Rightarrow \bigcap_{i \in A} \{i\} \times n_i \in J^\kappa \text{ and} \]

\[\prod_{n < i < \kappa} \lambda_{i,n}/J \text{ has true cofinality}. \]

This is just a case of the “θ-almost disjoint family $\subseteq [\lambda]^{\kappa}$” problem as clearly

$T_J(\lambda) = \sup\{ \mathcal{A} : \mathcal{A} \subseteq [\lambda]^{\kappa} \text{ is } \theta \text{-almost disjoint; i.e. } A \neq B \in \mathcal{A} \Rightarrow |A \cap B| < \theta \}$.

\[(\text{See } [\text{Sh:410, } \S 6]). \]

If $\lambda \geq \kappa > \underline{\text{cov}}(\theta)$ then in 4, $T_J(\lambda) = \lambda$.

(See [Sh:460]).

Assume $\lambda > \mu = \text{cf}(\mu) > \theta > \aleph_0$ and $\text{cov}(\theta, \aleph_1, \aleph_1, 2) < \mu$.

Then the following are equal

$\lambda(0) = \text{Min}\{ \kappa : \text{ if } a \subseteq \text{Reg} \cap \lambda \mu, |a| \leq \theta \text{ then we can partition } a \text{ to } \langle a_n : n < \omega \rangle \text{ such that } b \subseteq a_n \text{ and } |b| \leq \aleph_0 \Rightarrow \max \text{pcf}(b) \leq \kappa \}$

$\text{and } [a_n]^{\leq \aleph_0} \text{ is included in the ideal generated by } \{b_\theta[a_n] : \theta \in a_n\} \text{ for some } a_n \subseteq \kappa^\theta \cap \text{pcf}(a_n) \text{ of cardinality } < \mu\}

$\lambda(1) = \text{Min}\{|\mathcal{P}| : \mathcal{P} \subseteq [\lambda]^{<\mu} \text{ and for every } A \in [\lambda]^{<\theta} \text{ for some partition } \langle A_n : n < \omega \rangle \text{ of } A \text{ we have:} \}

$\langle \mathcal{P}_n : n < \omega \rangle, \mathcal{P}_n \subseteq \mathcal{P}, |\mathcal{P}_n| < \mu, \mu > B \in \mathcal{P}_n \Rightarrow \sup(B) \text{ and } n < \omega \text{ anda } [a_n]^{\aleph_0} \Rightarrow (\exists A \in \mathcal{P}_n)(a \subseteq A)\}.$
For a partial order P let $\text{cf}(P) = \text{Min}\{|A| : A \subseteq P, \bigwedge_{p \in P} \bigvee_{q \in A} p \leq q\}$. We say that P has true cofinality if it has a well ordered cofinal subset whose cofinality is called $\text{tcf}(P)$ (equivalently - a linearly ordered cofinal subset).

$J_{<\lambda}[a], J_{\leq\lambda}[a]$: for every ultrafilter \mathcal{D} on a, $\text{pcf}(\mathcal{D}) = \text{Min}\{|A| : A \subseteq \mathcal{D}, \bigwedge_{p \in A} \bigvee_{q \in \mathcal{D}} p \leq q\}$. Let $\mathcal{D} = \text{cf}(\mathcal{D})$.

For given cardinals $\theta > \sigma$ let

$$\text{pcf}_{\Gamma(\theta, \sigma)}(a) = \{\text{cf}(\Pi b / J) : b \subseteq a, |b| < \theta, J \text{ is a } \sigma\text{-complete ideal on } b \text{ and } \Pi b / J \text{ has true cofinality}\}.$$

$\Gamma(\theta)$ means $\Gamma(\theta^+, \theta)$.

$\Gamma(\theta)$ has true cofinality if it has a well ordered cofinal subset whose cofinality is called $\text{tcf}(\Gamma(\theta))$ (equivalently - a linearly ordered cofinal subset).

$\Gamma(\theta)$ means $\Gamma(\theta^+, \theta)$.

$\Gamma(\theta)$ has true cofinality if it has a well ordered cofinal subset whose cofinality is called $\text{tcf}(\Gamma(\theta))$ (equivalently - a linearly ordered cofinal subset).

For given cardinals $\theta > \sigma$ let

$$\text{pcf}_{\Gamma(\theta, \sigma)}(a) = \{\text{cf}(\Pi b / J) : b \subseteq a, |b| < \theta, J \text{ is a } \sigma\text{-complete ideal on } b \text{ and } \Pi b / J \text{ has true cofinality}\}.$$

$\Gamma(\theta)$ means $\Gamma(\theta^+, \theta)$.

$\Gamma(\theta)$ has true cofinality if it has a well ordered cofinal subset whose cofinality is called $\text{tcf}(\Gamma(\theta))$ (equivalently - a linearly ordered cofinal subset).

$\Gamma(\theta)$ means $\Gamma(\theta^+, \theta)$.

$\Gamma(\theta)$ has true cofinality if it has a well ordered cofinal subset whose cofinality is called $\text{tcf}(\Gamma(\theta))$ (equivalently - a linearly ordered cofinal subset).

For given cardinals $\theta > \sigma$ let

$$\text{pcf}_{\Gamma(\theta, \sigma)}(a) = \{\text{cf}(\Pi b / J) : b \subseteq a, |b| < \theta, J \text{ is a } \sigma\text{-complete ideal on } b \text{ and } \Pi b / J \text{ has true cofinality}\}.$$
4.1A(2)]. Another representation is included in [Sh:506] (see 2 on the framework and 5 below); it uses 0 from [Sh:420].

: If $b \subseteq a$ and $c = \text{pcf}(b)$, then for some finite $d \subseteq c$, $b \subseteq \bigcup_{\theta \in d} b_{\theta}[a]$ see [Sh:345a, 5.1a].

\section{3.2(5)}

: Cofinality sequence [Sh:345a, 3.3], [Sh:371, 2.1], more in the proof of [Sh:400, 4.1].

\section{5.12}

: f is x-continuous (nice) [Sh:345a, 3.3, 5.3.8(1),(2)].

\section{5.13}

: For a discussion of when a has a generating sequence which is smooth and/or closed [Sh:345a, 3.6, 3.8(3)], [Sh:400, 4.1A(4)]: smooth means $\mu \in b_{\lambda}[a] \Rightarrow b_{\mu}[a] \subseteq b_{\lambda}[a]$. closed means $\text{pcf}(b_{\lambda}[a]) = b_{\lambda}[a]$. If for example $|\text{pcf}(a)| < \min(a)$ we can have both [Sh:345a, 3.8] and more, then we can use the “pcf calculus” style of proof. Proof in this style can be carried generally complicated a little, as done in [Sh:430, 6.7-6.7E] (particularly ??(3)), on a generalization see [Sh:506].

\section{5.14}

: If $\lambda = \text{max}\text{pcf}(a)$, and $\mu := \sup(\lambda \cap \text{pcf}(a))$ is singular, then for $\epsilon \subseteq \text{pcf}(a)$ unbounded in μ, $\text{tcf}(\{b / J^{\mu}_{\mu}\}) = \lambda$ [Sh:345a, 3.7], [Sh:371, 2.10(2)], where for A a set of ordinals, $J^{\mu}_{\mu} = \{B \subseteq A : \sup(B) < \sup(A)\}$.

\section{5.15}

: If $\lambda \in \text{pcf}(a)$, then for some $b \subseteq a$ we have: $\lambda = \text{max}\text{pcf}(b)$ and $\lambda \cap \text{pcf}(b)$ has no last element and $\lambda \notin \text{pcf}(a/b)$; see [Sh:371, 2.10(1)].

\section{5.16}

: If $\forall \mu |\mu < \lambda \Rightarrow \mu < \lambda$, then $J_{\lambda}[a]$ is κ-complete [Sh:371, 1.6(1)].

\section{5.17}

: Localization: if $\lambda \in \text{pcf}(b)$, $b \subseteq \text{pcf}(a)$ (and we assume just $|b| < \min(b)$), then, for some $\epsilon \subseteq b$ we have $|\epsilon| \leq |a|$ and $\lambda \in \text{pcf}(\epsilon)$, [Sh:371, 3.4].

Also if $\lambda \in \text{pcf}_{\sigma\text{-complete}}(b)$, $b \subseteq \text{pcf}(a)$ then for some $\epsilon \subseteq b$, we have $|\epsilon| \leq |a|$ and $\lambda \in \text{pcf}_{\sigma\text{-complete}}(\epsilon)$, see [Sh:430, 6.7F(4),(5)].

\section{5.18}

: \begin{itemize}
 \item[(a)] $\text{pcf}(a)$ cannot contain an interval of Reg (= the class of regulars) of cardinality $|a|^{+4}$.
\end{itemize}

In fact:

\section{5.19}

: Defining (μ, θ, σ)-inaccessibility [Sh:410, 3.1.3.2].

\section{5.20}

: On $\text{pcf}(b)$ for $b \subseteq \text{pcf}(a), |b| < \min(b)$ or even with no inaccessible accumulation points, see [Sh:345a, 1.12], [Sh:371, 3.3], mainly: having $b_{\lambda}[a] \subseteq \text{pcf}(a]$.

\section{5.21}

: Uniqueness of f ($<J$-increasing cofinal) [Sh:345a, 7.2.7.2.10].

\section{5.22}

: If $J = J_{\lambda}[a], \lambda = \text{tcf}(\Pi a / J), a = \bigcup_{i < \alpha} a_i$, then for some finite $b_i \subseteq \text{pcf}(a_i)(i < \alpha)$ we have $\lambda = \text{max}\text{pcf}(\bigcup_{i < \alpha} b_i)$, and for $w \subseteq \alpha : \text{max}\text{pcf}(\bigcup_{i \in w} b_i) < \lambda \Leftrightarrow (\bigcup_{i \in w} a_i) \in J$

\section{5.23}

[Sh:371, 1.1], more in [Sh:430, 6.6].

: If $\lambda = (\lambda_i : i < \kappa), I'$ a weakly θ-saturated ideal on κ (see below) $\theta = \text{cf}(\theta) < \lambda_i$, then the pcf analysis, e.g. from 5 holds for λ when we restrict ourselves to ideals on κ extending I' (see [Sh:506, 1.1.2]).

E.g. θ can play the role of $\kappa = \text{Dom}(I)$ if I is weakly θ-saturated, i.e.
there is no division of κ to θ sets none of which is in I.

\((*)_{I,\theta}\) If $|a| < \min(a)$, $\aleph_0 \leq \sigma = \text{cf}(\sigma)$, then for some $\alpha < \sigma$ and $\lambda_\beta, a_\beta (\beta < \alpha)$ we have

\[(i)\quad a = \bigcup_{\beta < \alpha} a_\beta,\]

\[(ii)\quad \lambda_\beta = \max \text{pcf}(a_\beta)\]

\[(iii)\quad \lambda_\beta \notin \text{pcf}(a)\] and

\[(iv)\quad \lambda_\beta \in \text{pcf}_{\sigma-\text{com}}(a_\beta).\]

[Why? We prove this by induction on $\max \text{pcf}(a)$, hence by the induction hypothesis we can ignore \((iii)\) as we can regain it, now let

\[J = \{b \subseteq a : \text{we can find } \alpha < \sigma, (a_\beta : \beta < \alpha) \text{ such that } b = \bigcup_{\beta < \alpha} a_\beta \text{ and } (ii), (iv) \text{ above}\}.\]

Clearly J is a family of subsets of a, includes the singletons, and closed under subsets and under unions of $< \sigma$ members. If $a \in J$ we are done. If not, choose $c \subseteq a$ such that $c \notin J$ and (under these restrictions) $\lambda_c =: \max \text{pcf}(c)$ is minimal. Now by the minimality of $\lambda_c, J_{<\lambda_c}[a] \subseteq J$ so $b_{\lambda_c}[a]$, satisfies the requirement for $b \in J$ (with $a = 1$), contradiction].

\[\text{See more in 7 and [Sh:497] and particularly [Sh:513].}\]

\[\text{If } \lambda = \max \text{pcf}(b) \text{ and } \lambda \cap \text{pcf}(b) \text{ has no last element (see 5) and } \mu < \text{sup}(\lambda \cap \text{pcf}(b)), \text{ then for some } c \subseteq \text{pcf}(b) \setminus \mu \text{ of cardinality } \leq |b| \text{ we have } \lambda = \max \text{pcf}(c) \text{ and } \theta \in c \Rightarrow \max \text{pcf}(\theta \cap c) < \theta \text{ (see [Sh:413, 2.4A,2.4(2)], an ex.}).}\]
§ 6. Representation and pp

\{6.1\} : Definition of pp and variants [Sh:355, 1.1]. For \(\lambda \) singular

\[
\text{pp}_\theta(\lambda) = \sup \{ \text{tcf}(\Pi a/J) : a \text{ is a set of } \leq \theta \text{ regular cardinals, unbounded in } \lambda, J \text{ an ideal on } a \text{ including } J_a^\text{bd} \text{ and } \Pi a/J \text{ has true cofinality} \},
\]

\[
\text{pp}(\lambda) = \text{pp}_{\text{cf}(\lambda)}(\lambda),
\]

\(\text{pp}^+(\lambda) \) is the first regular without such a representation

\[
\text{pp}_I(\lambda) \text{ means that we restrict ourselves to } J \text{ satisfying } \Gamma,
\]

\[
\text{pp}_I^+(\lambda) = \text{pp}_I(\lambda)
\]

and

\[
\text{pp}_I(\lambda) = \sup \{ \text{pp}_I^+(\lambda) : J \text{ an ideal extending } I \},
\]

\(\lambda =^+ \text{pp}(\lambda) \) means more than equality; the supremum in the right hand side

is obtained if it is regular.

\{6.2\} : Downward closure:

If \(\lambda = \text{tcf}(\prod_{i<\kappa} \lambda_i/I), \lambda_i = \text{cf}(\lambda_i) > \kappa, \) and \(\kappa < \lambda' = \text{cf}(\lambda') < \lambda, \) then for some

\(\lambda'_i \) we have \(\kappa \leq \lambda'_i = \text{cf}(\lambda'_i) < \lambda_i \) and \(\lambda' = \text{tcf}(\prod_{i<\kappa} \lambda'_i/I), \) moreover \(\lim_{i} \lambda_i = \mu < \lambda' < \lambda \Rightarrow \text{lim}_{i} \lambda'_i = \mu \) and \(\lambda' = \text{tcf}(\Pi \lambda'_i \leq I) \) is exemplified by \(\mu^+ \)-free \(\bar{f} \)

which means: if \(w \subset \lambda' \text{ and } |w| \leq \mu, \) then for some \(\langle s_\alpha : \alpha \in w \rangle, s_\alpha \in I \) and for each \(i < \kappa, \langle f_\alpha(i) : \alpha \in w, i \notin s_\alpha \rangle \) is without repetition, in fact we get “strictly increasing.” [Sh:355, 1.3, 1.4, 2.3] more [Sh:400, 4.1] a generalization [Sh:506, 3.12].

\{6.3\} : If \(\lambda > \kappa \geq \text{cf}(\lambda), I \text{ an ideal on } \kappa, \kappa \text{ is an increasing union of } \text{cf}(\lambda) \text{ members of } I, \text{ then } \{ \text{tcf}(\prod \lambda_i/I) : \text{lim}_{i} \lambda_i = \lambda \text{ and } \lambda_i = \text{cf}(\lambda_i) \} \text{ is an initial segment of}

\(\text{Reg} \setminus \lambda, \) so the first member is \(\lambda^+, \text{ [Sh:355, 1.5, 2.3].} \)

\{6.4\} : If \(\lambda > \text{cf}(\lambda) > \kappa_0, \text{ then } \) for some increasing continuous \(\langle \lambda_i : i < \text{cf}(\lambda) \rangle \) with limit \(\lambda, \prod_{i<\text{cf}(\lambda)} \lambda_i^+ / J_{\text{cf}(\lambda)} \) has true cofinality \(\lambda^+, \text{ [Sh:355, 2.1].} \)

\{6.5\} : \(\text{pp}(\lambda) > \lambda^+ \) contradicts “large cardinal” type assumptions, for example “every \(\mu \)-free abelian group is free” [Sh:355, 2.2, 2.2B], for the parallel fact on cov see [Sh:355, 6.6].

\{6.6\} :

(a) (inverse monotonicity) If \(\mu > \lambda > \kappa \geq \text{cf}(\lambda) + \text{cf}(\mu) \) and \(\text{pp}_\nu^+(\lambda) > \mu, \text{ then } \)

\(\text{pp}_\nu^+(\lambda) \geq \text{pp}_\nu^+(\mu) \)

(b) so given \(\kappa_0 \leq \kappa_1 < \mu \) if \(\lambda \) is minimal such that \(\lambda > \kappa_1 \geq \kappa_0 \geq \text{cf}(\lambda), \) \(\text{pp}(\lambda) \geq \mu, \text{ then } : a \in \text{Reg} \cap [\kappa_1, \lambda), |a| \leq \kappa_0, \text{sup}(a) < \lambda \text{ implies max pcf}(a) < \lambda, \) equivalently: \(\lambda' < (\kappa_1, \lambda) \text{ and } \text{cf}(\lambda') \leq \kappa_0 \Rightarrow \text{pp}_{\kappa_1}(\lambda') < \lambda \text{ [Sh:355, 2.3] (with more) } \)
(c) assume $\kappa \leq \chi < \mu$, and
\[
(\forall \lambda)[\lambda \in (\chi, \mu) \text{ and } \text{cf}(\lambda) \leq \kappa \Rightarrow \text{pp}(\lambda) < \mu]
\]
then for every $a \subseteq (\chi, \mu)$ of cardinality $\leq \kappa$, $\sup(a) < \mu$ we have $\max \text{pcf}(a) < \mu$ [by (d) below and 6 below]

(d) $\max \text{pcf}(a) \leq \sup\{\text{pp}_{\omega \cap \mu}(\mu): \mu \notin a, \mu = \sup(a \cap \mu)\}$ [by the definition].

Similar assertion holds for $\text{pp}_\Gamma \Gamma$ is “nice” enough.

\[\text{(6.7)}\]

(A) If λ is singular, $\mu < \lambda$, then for some $\delta \leq \text{cf}(\lambda)$ and increasing sequence
\[
\langle \lambda_i: i < \delta \rangle
\]
of regular cardinals in (μ, λ) and $\delta = \text{cf}(\delta) \lor \delta < \omega_1$ we have:
\[
\lambda_i > \max \text{pcf}\{\lambda_j: j < i\} \text{ and } \lambda^+ = \text{pcf}(\prod \lambda_i/J^\text{bd}_i), \text{ [Sh:355, 3.3]}
\]

(B) If λ is singular and $\aleph_0 < \text{cf}(\lambda) = \kappa$ and $\bigwedge_{\mu < \lambda} \mu^+ < \lambda$ and $\lambda < \theta = \text{cf}(\theta) \leq \lambda^\kappa$,
then for some increasing sequence $\langle \lambda_i: i < \kappa \rangle$ of regulars $< \lambda$, $\lambda = \sum_{i<\kappa} \lambda_i$
and $\prod \lambda_i/J^\text{bd}_i$ has true cofinality θ (see [Sh:371, 1.6(2)]). Moreover, we can
demand $i < \kappa \Rightarrow \max \text{pcf}\{\lambda_j: j < i\} < \lambda_i$. We can weaken the hypothesis
to $\aleph_0 < \kappa = \text{cf}(\lambda) < \lambda_0 < \lambda$ and $(\forall \mu)[\lambda_0 < \mu < \lambda \text{ and } \text{cf}(\mu) \leq \kappa \Rightarrow \text{pp}(\mu) < \lambda]$ [see [Sh:371, 1.6(2)]]. If we allow $\text{cf}(\lambda) = \kappa = \aleph_0$ we still get this, but for
possibly larger J, see [Sh:430, 6.5]; see 6 below.

\[\text{(6.8)}\]

: $\text{pp}(\theta, \sigma)$ can be reduced to finitely many $\text{pp}(\theta)$, see [Sh:355, 5.8].

: If $\mu > \theta \geq \text{cf}(\mu)$ and for every large enough $\mu' < \mu$:
\[
[\text{cf}(\mu') \leq \theta \Rightarrow \text{pp}(\mu') < \mu]\n\]
then
\[
\text{pp}(\mu) =^+ \text{pp}_\theta(\mu) =^+ \text{pp}_\Gamma(\text{cf}(\mu))(\mu)
\]

[Sh:371, 1.6(3)(5),1.6(2)(4)(6),1.6A]; see 6 below.

: If $\langle b_\zeta: \zeta < \kappa \rangle$ is increasing, $\lambda \in \text{pcf}(\bigcup_{\zeta<\kappa} b_\zeta) \bigcup_{\zeta<\kappa} \text{pcf}(b_\zeta)$, then:

\[\text{(6.10)}\]

(1) for some $\epsilon \subseteq \bigcup_{\zeta} \text{pcf}(b_\zeta)$, $|\epsilon| \leq \kappa$, we have $\lambda \in \text{pcf}(\epsilon)$

(2) if $\kappa = \text{cf}(\kappa) > \aleph_0$, then for some club $C \subseteq \kappa$ and $\lambda_\zeta \in \text{pcf}(\bigcup_{\zeta<\zeta} b_\zeta)$ for $\zeta \in C$, we have $\lambda = \prod_{\zeta \in C} \lambda_\zeta/J^\text{bd}_\zeta: \lambda_\zeta (\zeta \in C)$ is increasing and $\zeta \in C \Rightarrow$
\[
\lambda_{\zeta+1} > \max \text{pcf}\{\lambda_\zeta : \zeta \in C \text{ and } \zeta \leq \zeta\}
\]
[Sh:371, ? , 1.5].

: If $\mu > \theta \geq \text{cf}(\mu) \geq \sigma = \text{cf}(\sigma)$, and for every large enough $\mu' < \mu$:
\[
[\sigma \leq \text{cf}(\mu') \leq \theta \Rightarrow \text{pp}_\Gamma(\sigma, \sigma)(\mu') < \mu]\n\]
then
\[
\text{pp}_\Gamma(\text{cf}(\mu)+, \sigma)(\mu) = \text{pp}_\Gamma(\text{cf}(\mu))(\mu)
\]

[Sh:420, 1.2] and more there.

: If $\mu > \kappa = \text{cf}(\mu) > \aleph_0$ and for every large enough $\mu' < \mu$

\[\text{(6.12)}\]
\[(\mu')^\kappa < \mu \text{ or just } [\text{cf}(\mu') \leq \text{cf}(\mu) \Rightarrow \text{pp}_\kappa(\mu') < \mu],\]

then \(\text{pp}^+(\mu) = \text{pp}^+_{\text{bd}}(\mu)\) and we can get the conclusion in ?? above [Sh:371, 1.8].

\{6.13\} Generalization for \(\Gamma(\theta, \sigma)\) in [Sh:410, 1.2].

- If \(\lambda > \kappa = \text{cf}(\lambda) > \aleph_0, \lambda > \theta\) then for some increasing continuous sequence \(\langle \lambda_i : i < \kappa \rangle\) with limit \(\lambda:\)
 - (a) for every \(i < \kappa, \lambda_i < \mu \leq \lambda_{i+1} \text{ and } \text{cf}(\mu) \leq \theta \Rightarrow \text{pp}_\theta(\mu) < \lambda_{i+1}\)
 - (b) for every \(i < \kappa, \text{pp}_{\theta+\text{cf}(i)}(\lambda_i) \geq \lambda\) [Sh:371, 1.9; more 1.9A].

\{6.14\}:

- If \(\sigma \leq \text{cf}(\mu) \leq \theta < \kappa < \mu\) then:
 \[
 \text{pp}_\theta(\mu) < \mu^{+_{\theta^+}} \Rightarrow \text{pp}_\kappa(\mu) = \text{pp}_\theta(\mu);
 \]

 and
 \[
 \text{PP}_{\Gamma(\theta^+, \sigma)}(\mu) < \mu^{+_{\theta^+}} \Rightarrow \text{PP}_{\Gamma(\kappa^+, \sigma)}(\mu) = \text{pp}_\theta(\mu)
 \]

\{6.15\} [Sh:371, 3.6; more 3.7,3.8].

- If \(\langle \mu_i : i \leq \kappa \rangle\) is increasing continuous, \(\mu_0 > \kappa^{\aleph_0} > \kappa = \text{cf}(\kappa) > \aleph_0\) and \(\text{cov}(\mu_i, \mu_i, \kappa^+, 2) < \mu_{i+1}\), then for some club \(E\) of \(\kappa\) we have: \(\delta \in E \cup \{\kappa\} \Rightarrow \text{pp}_{\mu \cup \{\kappa, \mu, \kappa^+, 2\}}(\mu_\delta) = \text{cov}(\mu_\delta, \mu_\delta, \kappa^+, 2);\) so e.g. for most limit \(\delta < \omega_1, \text{pp}_{\mu \cup \{\kappa, \mu, \kappa^+, 2\}}(\mu_\delta) = \kappa^+ \delta + 1\)

\{6.16\} (see [Sh:E12, part C, remark to X,§5,p.412].

- If \(\text{pp}_{\tau^+}(\mu) > \lambda = \text{cf}(\lambda), (\text{so } \text{cf}(\mu) \leq \sigma)\) then
 - (a) for some \(a\) an unbounded subset of \(\mu, |a| \leq \sigma, \lambda = \text{tcf}(\prod a \uparrow J^\text{bd}_a) = \max \text{pcf}(a)\)
 - (b) for some \(a \subseteq (\mu, \lambda)\) of cardinality \(\leq \sigma, \lambda = \max \text{pcf}(a)\) and \(\theta \in a \Rightarrow \max \text{pcf}(\theta \cap a) < \theta\) (see [Sh:413, 2.4A,2.4(2)]).
§ 7. COV

Definition 7.1. [Sh:355, 5.1]

\[\text{cov}(\lambda, \mu, \theta, \sigma) = \min\{|P| : \]}
\[P \text{ a family of subsets of } \lambda \text{ each of cardinality}< \mu \text{ such that: for every } a \subseteq \lambda, |a| < \theta \]
\[\text{for some } \alpha < \sigma \text{ and } A_i \in P \text{ for } i < \alpha \text{ we have } a \subseteq \bigcup_{i<\alpha} A_i \}. \]

So \(\text{cov}(\lambda, \kappa^+, \kappa^+, 2) = \text{cf}(\lambda \leq \kappa) \). \]

: Basic properties [Sh:355, 5.2,5.3] see also [Sh:355, 3.6]; for example if \(\lambda > \theta > \text{cf}(\lambda) \geq \sigma \), then
\[\text{for some } \mu < \lambda \text{ we have} \]
\[\text{cov}(\lambda, \mu, \theta, \sigma) = \text{cov}(\lambda, \mu, \theta, \sigma) \].

Definition of \(T_{\Gamma}(\lambda) \) see e.g. [Sh:355, 5.10],[Sh:355, 5.6,5.7,5.9,5.10, Definition of \(T_{\Gamma} \) for example
\[\lambda^\kappa = \text{cov}(\lambda, \kappa^+, \kappa^+, 2) + 2^\kappa. \]

By this and 7, 7 below we shall use assumptions on cases of pp rather than conventional cardinal arithmetic.

: On \(\text{cov} = \text{pp} \): if \(\lambda \geq \mu \geq \theta > \sigma = \text{cf}(\sigma) > \aleph_0, \lambda > \mu \lor \text{cf}(\mu) \in [\sigma, \theta) \), then
\[\text{cov}(\lambda, \mu, \theta, \sigma) = \sup\{\text{pp}_{\Gamma(\theta, \sigma)}(\chi) : \chi \in [\mu, \lambda], \text{cf}(\chi) \in [\sigma, \theta) \}, \text{we have } = + \text{ if } \mu = \theta; \]
[Sh:355, 5.4,]

Assuming for simplicity \(\lambda = \mu \), if \(= + \) fails, then for some \(a \subseteq \text{Reg} \cap \mu \) we have
\[|a| < \mu, \sup(a) = \mu \text{ and} \]
\[\text{cov}(\lambda, \mu, \theta, \sigma) = \sup\{\tcf(\Pi b/J) : b \subseteq a, |b| < \theta, \mu = \sup(b), \]
\[J \text{ is an ideal on } b \text{ extending } J_{b}^{bd} \}; \]

see [Sh:513, 6.12,].

: The parallel of 7 for \(\sigma = \aleph_0 \) “usually holds”, i.e.:

(a) for \(\lambda \) singular, \(\text{cov}(\lambda, \lambda, \text{cf}(\lambda)^+, 2) = \text{pp}(\lambda) \) if for every singular \(\chi < \lambda, \text{pp}(\chi) = \chi^+; \] [Sh:400, §1] (and weaker assumptions and intermediate stages there)

(b) if \(\text{cf}(\lambda) = \aleph_0, \bigwedge_{\mu < \lambda} \mu^{\aleph_0} < \lambda \text{ and } \text{pp}(\lambda) < \text{cov}(\lambda, \lambda, \aleph_1, 2), \text{then } \{ \mu : \lambda < \mu = \aleph_\mu < \text{pp}(\lambda) \} \text{ is uncountable} \] [Sh:400, 5.9], more in [Sh:420, 6.4], if \(\lambda \) is a strong limit, then the set has cardinality \(> \lambda; \)

(c) few exceptions: if \(\lambda_i : i \leq \kappa \) is increasing continuous and \(\kappa = \text{cf}(\kappa) > \aleph_0, \bigwedge_{i < \kappa} \text{cov}(\lambda_i, \lambda_i, \kappa^+, 2) < \lambda_\kappa, \text{then } \text{for some club } C \text{ of } \kappa, \delta \in C \cup \{ \kappa \} \Rightarrow \)
\[\text{equality, i.e.} \]
\[\text{cov}(\lambda_\delta, \lambda_\delta, \aleph_1, 2) = \text{pp}(\lambda_\delta) \]
[Sh:400, 5.10]

(d) for example for a club of \(\delta < \omega_1, 2^{\omega_1} \) it suffices for the parallel of 6, [Sh:400, 5.13]
(e) if on λ there is a \aleph_1-saturated λ-complete ideal (extending J_{λ}^{bd}) for example λ a real valued measurable, then $\text{cov}(\lambda, \aleph_1, \aleph_1, 2) \leq \lambda$ [Sh:430, §3] and more there

(f) in clause (e), if $\kappa^{\omega_5} < \lambda_0$ we can add $pp(\lambda_3) =^+ \text{pp}_{\mathcal{J}_{\lambda}^{bd}}(\lambda_3)$; of course, there $\text{cov}(\lambda_5, \lambda_5, \aleph_1, 2) = \text{cov}(\lambda_5, \lambda_5, \kappa^+, 2)$.

\{7.6\}

$\text{cov} = \text{minimal cardinality of a stationary } S$ [Sh:355, 3.6.5.12], [Sh:400, 3.6.3.8,3.8A,5.11,5.2A], [Sh:g, Ch.VII,§1,§4], [Sh:410, 2.6(under 2.2),3.7], finally [Sh:420, 3.6]; for example

$$\text{cf}(\mathcal{F}_{\leq s}(\lambda), \subseteq) = \min |S| : S \subseteq [\lambda]^{<\kappa} \text{ is stationary}.$$

Moreover, we got a measure one set of this cardinality for an appropriate filter; for another filter see [Sh:580].

\{7.7\}

Covering by normal filters (prc) [Sh:371, §4], [?, §1], generalization [Sh:410, §5], essentially [Sh:430, proof of 4.2 second case]. To quote [Sh:410, §1]. Saharon?

\{7.9\}

On $\text{cf}_f(\Pi\mathfrak{a}, <_f)$, a generalization, see [Sh:400, 3.1].

\{7.10\}

$\text{Compute} \text{cf}_{\leq s}(\Pi\mathfrak{a})$ [Sh:400, 3.2]; computing from it $pp(\lambda)$ for non-fixed point λ by it [Sh:400, 3.3].

\{7.11\}

cov is $\text{cf}_{\leq s}(\Pi(\text{Reg} \cap \lambda)) < p_{\mathcal{J}_{\theta}(\theta)}$, when $\text{cf}(\sigma) > 0$ [Sh:400, 3.3.3.4.3.5].

\{7.12\}

$\text{cov}(\lambda, \lambda, \text{cf}(\lambda^+, 2) =^+ pp(\lambda)$ when λ is singular non-fixed point [Sh:400, 3.7(1), and more 3.7(1)-(5),3.8].

\{7.13\}

$\text{ cov}(\lambda, \theta, \theta, 2)$ by using $\text{cf}_{<\theta}$ when $\theta > \text{cf}(\lambda) = \aleph_0$ [Sh:400, 5.1.5,2.5.3.5,4.5.4A,5.5,restriction to subset of $\lambda \cap \text{Reg}$ is \aleph_0; more (for 6 here),5.7,5.8].

\{7.14\}

Finding a family \mathcal{P} of subsets of λ covering many of the countable subsets of λ, for example, if $a \in [\lambda]^{\omega_1}$ we can find $H : a \rightarrow \omega$ such that each countable subset of $H^{-1}((0, \ldots, n))$ is included in a member of \mathcal{P}. I.e. we characterize the minimal $\text{cardinality of such } \mathcal{P}$ by pcf [Sh:410, 2.1-2.4], [Sh:430, 1.2] more in [Sh:513].

\{7.15\}

Characterizing the existence of $\mathcal{P} \subseteq [\lambda]^{\omega_1}, |\mathcal{P}| > \lambda$ with pairwise finite intersection [Sh:430, §6] more in [Sh:430, 1.2], [Sh:513].

\{7.16\}

If $\lambda \geq \mu > \sigma = \text{cf}(\sigma) > \aleph_0$, then $\{\text{cov}(\lambda, \mu, \theta, \sigma) : \mu \geq \theta > \sigma\}$ is finite $\{\text{GiSh:412}\}$.

\{7.17\}

Let $\lambda > \kappa > \aleph_0$ be regular, then: $\text{cov}(\mu, \kappa, \kappa, 2) < \lambda$ if and only if for every $\mu < \lambda$ and $\langle a_\alpha : \alpha < \lambda, a_\alpha \subseteq \mu, |a_\alpha| < \kappa \text{ for some unbounded } s \subseteq \lambda, |\bigcup_{a_\alpha \subseteq s} a_\alpha| < \kappa \text{ (a problem of Rubin Shelah [RuSh:117], see [Sh:371, 6.1], [Sh:430, 3.1]). For } \lambda \text{ successor of regular, a stronger theorem: see [Sh:371], §6]; more [Sh:513, 6.13.6.14].}

\text{label7.17}: \text{If } \mu > \lambda \geq \kappa, \theta = \text{cov}(\mu, \lambda^+, \lambda^+, \kappa) \text{ and } \text{cov}(\lambda, \kappa, \kappa, 2) \leq \mu \text{ (or at least } \leq \theta) \text{, then } \text{cov}(\mu, \lambda^+, \lambda^+, 2) = \text{cov}(\theta, \kappa, \kappa, 2), [Sh:430, 2.1].$

\{7.18\}

$\text{If } \lambda \geq \Gamma_n, \text{ then for some } \kappa < \Gamma_n, \text{cov}(\lambda, \Gamma_n, \Gamma_n, \kappa) = \lambda$, [Sh:460, 1.1]; any strong limit singular can serve instead of Γ_n. For a singular limit cardinal μ (for example $\mu = \aleph_\alpha$) sufficient conditions (for replacing Γ_n by μ) are given in [Sh:460, 2.1.4.1]. For example such a condition is

\{(*)_{\kappa, \mu} : \alpha \subseteq \text{Reg} \text{ and } |\text{pf}_{\kappa}\text{-complete}(\alpha)| < \mu\}.

So for every $\lambda \geq \Gamma_n$ for some n and $\mathcal{P} \subseteq [\lambda]^{<\omega_1}$ of cardinality λ, every $X \in [\lambda]^{<\omega_1}$ is the union of $\leq \Gamma_n$ sets from \mathcal{P}; ([Sh:460, 2.5]) and the inverse [Sh:460, ?, 4.2] (see [Sh:513]).

Also if the statement above holds for e.g. \aleph_α then $(*)_{\kappa_\alpha, \kappa_{\alpha+1}}$ holds by [Sh:460, ?, 2.6]).
§ 8. Bounds in cardinal arithmetic

8.1: If $\langle \lambda_i : i \leq \kappa \rangle$ is increasing continuous, J a normal ideal on κ and $\text{pp}_J(\lambda_i) \leq \lambda_i^{+^{h(i)}}$, then $\text{pp}_J(\lambda_\kappa) \leq \lambda_\kappa^{\|h\|}$ [Sh:355, 2.4], [Sh:371, 1.10, 1.11] where $\|h\|$ is Galvin Hajnal rank, i.e.

$$\|h\| = \sup\{\|f\| + 1 : f <_{D_\kappa} h\},$$

D_κ the club filter on κ.

8.2: Let C_{0} be the class of infinite cardinals and define by induction:

$$C_\zeta =: \{\lambda : \text{ for every } \xi < \zeta, \lambda \text{ is a fixed point of } C_\zeta, \text{ i.e., } \lambda = \text{otp}(C_\zeta \cap \lambda)\},$$

then for example

$$\text{pp}(\omega_1\text{-th member of } C_1 \setminus \beth_2(\aleph_1)) < \beth_2(\aleph_1)^+\text{-th member of } C_1 \setminus \beth_2(\aleph_1)$$

[Sh:386, 5.6].

For $\zeta < \omega_1$ we have

$$\text{pp}_\text{nor}(N_\zeta(\beth_2(\aleph_1))) < N_\zeta(\beth_2(\aleph_1))^+ + \beth_2(\aleph_1))$$

and more on N_ζ^+, see [Sh:386, 5.4, 5.5], where

$$N_0^+(\lambda) = \lambda^{+_0}, N_0^{\zeta+1}(\lambda) = \lambda, N_\zeta^{\zeta+1}(\lambda) = N_\zeta^+(\aleph_0)$$

where

$$\zeta = N_0^{\zeta+1}(\lambda) + 1 \text{ and } N_\zeta^{\zeta+1}(\lambda) = \bigcup_{\alpha < \zeta} N_\zeta^{+1}(\lambda),$$

and for i limit,

$$N_0^i(\lambda) = \lambda, N_\zeta^{\alpha+1}(\lambda) = \bigcup_{j < i} N_\zeta^{\alpha+1}(N_\zeta^i(\lambda)) \text{ and } N_\zeta^i(\lambda) = \bigcup_{\alpha < \zeta} N_\zeta^i(\lambda).$$

8.4: If there are no [there are $\leq \aleph_1$] inaccessibles below $\lambda, \lambda > 2^{\aleph_1}$, $\text{cf}(\lambda) = \aleph_1$, then there are no [there are $\leq 2^{\aleph_1}$] inaccessibles below $\text{pp}(\lambda)$ [Sh:386, 5.10], similarly for Mahlo, ε-Mahlo.

8.5: If $\bigwedge_{\delta < \omega_1} \text{pp}(N_\delta < \aleph_1, \text{pp}(N_\omega_1) = R_\alpha^{\alpha^*}$, then there are $|\alpha^*|$ subsets of ω_1 with pairwise countable intersection [Sh:371, 1.7(1), more(2)] getting Kurepa trees [Sh:371, 2.8.2.9].

8.6: The minimal counterexample to Tarski statement is simple, Jech-Shelah [JeSh:385].

In [Tar25] Tarski showed that for every limit ordinal β, $\prod_{\xi < \beta} N_\xi = N_\beta^{|\beta|}$, and conjectured that

$$\prod_{\xi < \beta} N_\xi = N_\beta^{|\beta|}$$
holds for every ordinal \(\beta \) and every increasing sequence \(\{ \sigma_\xi \}_{\xi < \beta} \) such that \(\lim_{\xi < \beta} \sigma_\xi = \aleph_\alpha \).

Now: if a counterexample exists, then there exists one of length \(\omega_1 + \omega \) (Jech and Shelah [JeSh:385]).

\{8.7\}: pp(\(\aleph_\alpha + \delta \)) < \aleph_\alpha + \delta+1 [Sh:400, 2.1, 2.2, more 2.3-2.8].

\{8.8\}: If \(\delta < \aleph_\omega \), cf(\(\delta \)) = \aleph_0 \) then \(\text{pp}(\aleph_\delta) < \aleph_\omega \). If \(|\delta| + \text{cf}(\delta)^+ < \kappa \), then \(\text{pp}(\aleph_\alpha + \delta) < \aleph_\alpha \) [Sh:400, 4.2, 4.3, 4.4], more [Sh:410, 3.3-3.6].

\{8.9\}: More on the number of inaccessibles: [Sh:430, \S 4].

\{8.10\}: Gitik and Shelah [GiSh:412]:

\((a)\) if \(\mu \) is a Jonsson limit cardinal not strong limit, then \(\langle 2^\sigma : \sigma < \mu \rangle \) is eventually constant.

\((b)\) If \(\mu \) is a limit cardinal, \(\mu_0 < \mu \) and \(\bigwedge_{\theta \in (\mu_0, \mu)} \mu \rightarrow [\theta]^{\omega}_{\mu_0} \), then \(\langle 2^\theta : \mu_0 < \theta < \mu \rangle \) has finitely many values.

\((c)\) If on \(\mu \) there is a \(\mu_0^+ \)-saturated, uniform \(\mu \)-complete ideal for example \(\mu \) a real value measurable \(\leq 2^{\aleph_0} \), then the assumption of \((b)\) holds, hence its conclusion.
§ 9. Jonsson algebras

: Definition and previously known results: [Sh:355, 4.3.4.4]. A Jonsson algebra is one with no proper subalgebra with the same cardinality. A Jonsson cardinal is \(\lambda \) such that there is no Jonsson algebra with countable vocabulary and cardinality \(\lambda \).

: Definition of \(\text{id}_j(\bar{C}) \), \(\text{id}_d(\bar{C}) \) see [Sh:380, 1.8], \(\text{id}_f(\bar{C}) \) see [Sh:380, 1.16] (also with \(k \) instead of \(f \)).

: Jonsson games: Definition [Sh:380, 2.1], connection to [Sh:380, 2.3] (for example \(\lambda = \aleph_{\omega +1} \)).

: \(\lambda^+ \) (for a singular \(\lambda \)) is not a Jonsson cardinal when:

(a) \(\lambda \) is not an accumulation point of inaccessible Jonsson cardinals [Sh:355, 4.5 more 4.6]

(b) weaker hypothesis (for \(\lambda^+ \to [\lambda^+]^\kappa_\omega \) [Sh:413, 2.5]

(c) \(\lambda = \beth_\kappa^+ \) (see [Sh:413], [EiSh:535] more there)

(d) on every large enough regular \(\mu < \lambda \), there is an algebra \(M \) on \(\mu \) which has no proper subalgebra with set of elements a stationary subset of \(\mu \), see [Sh:572, 3.3].

: Sufficient condition for “\(\lambda \) not Jonsson” [Sh:365, 1.8.1.9] for \(\lambda \not\to [\lambda]^{\kappa_\omega} \) [Sh:365, 1.10,3.5,3.6,3.7].

: \(\lambda \) inaccessible is not Jonsson when: \(\lambda \) not Mahlo [Sh:365.3.8], \(\lambda \) has a stationary subset \(S \) not reflecting in inaccessibles [Sh:365, 3.9], \(\lambda \) not \(\lambda \)-Mahlo [Sh:380], \(\lambda \) not \(\lambda \times \omega \)-Mahlo [Sh:413, 1.14], there is a set \(S \) of singulars satisfying, \(\text{rk}_\lambda(S) > \text{rk}_\lambda(S^+) \) where \(S^+ = \{ \kappa < \lambda : \kappa \text{ inaccessible}, S \cap \kappa \text{ stationary} \} \), [Sh:413, 1.15].

: If \(\mu^+ \) is a Jonsson cardinal, \(\mu > \text{cf}(\mu) > \aleph_0 \), then \(\text{cf}(\mu) \) is “almost” \(\mu^+ \)-supercompact [Sh:413, 2.8] other [Sh:413, 2.10].

: If \(\lambda \) is regular, and for every regular large enough \(\mu < \lambda \), for some \(f : \mu \to \lambda \) we have \(\|f\|_{J_{\mu^+}} \geq \lambda \) (or at least this holds for “enough” \(\mu \)'s), then on \(\lambda \) there is a Jonsson algebra, [Sh:380, 2.12+2.12A]. More sufficient conditions there.

: See more [Sh:413], [EiSh:535].
§ 10. Colouring = negative partition: ([Sh:282], [Sh:280], [Sh:327])

(10.1) $\text{Definition of } Pr_c: Pr_c, see [Shg, AP,1.1], Pr_c^{[-]}, see [Shg, AP,1.2], Pr_c^{(y)}, see [Shg, AP,1.3], Pr_c^{(y)}, see [Shg, AP,1.4], Pr_c, see [Sh:365, 4.3].$

For example: $Pr_c(\lambda, \mu, \theta, \kappa)$ means: there is a 2-coloring of λ by θ colours (= symmetric 2-place function from $\lambda \times \theta$) such that: if $(w_i : i < \mu)$ is a sequence of pairwise disjoint subsets of $\lambda, \bigcap_i |w_i| < \kappa$ and $\zeta < \theta$, then for some $i < j$, on $w_i \times w_j$ the coloring c is constant. In $Pr_c(\lambda, \mu, \theta, \kappa)$ we replace ζ by $h: \kappa \times \kappa \rightarrow \theta$ and demand $\alpha \in w_i \land \beta \in w_j \Rightarrow c(\alpha, \beta) = h(otp(w_i \cap \alpha), otp(w_j \cap \beta)).$ If $\mu = \lambda$

(10.2) $\text{Trivial implications } [Shg, AP,1.6,1.6A,1.7] \text{ and } Pr_c \Rightarrow Pr_0 \text{ by } [Sh:365, 4.5(3)], Pr_4 \Rightarrow Pr_4 \Rightarrow Pr_0 \text{ by } [Sh:365, 4.5(1)].$ For example if $Pr_1(\lambda, \mu, \theta, \sigma), \chi = \chi^{<\sigma} + 2^\theta \leq \mu \leq \lambda < 2^\theta$ then $Pr_0(\lambda, \mu, \chi, \sigma).$ Other such Pr and implications $[Sh:572, \S2,\S4].$

(10.3) $\text{Colouring for successor of singular: } [Sh:355, 4.1.4,7], [Sh:413, \S2] \text{ for example}$

(10.4) $Pr_1(\lambda^+, \lambda^++, (cf(\lambda))^+, 2)$ for λ singular.

(10.5) $\text{Combining } Pr_c^{(y)'s } [Sh:355, 4.8,4.8A].$

(10.6) Using pcf:

(a) if $\lambda = \text{pcf}(\Pi \cap J^{|\alpha|})$ and $\theta \in \varepsilon$ then $Pr_1(\lambda, \lambda, 2^{|\varepsilon|}, cf(\varepsilon)), see [Sh:355, 4.1B].$

(b) getting colouring on $\lambda \in \text{pcf}(\alpha)$ from colourings on every $\theta \in \alpha$, see $[Sh:355, 4.1D].$

(10.7) $\text{Using guessing of clubs: Definition and basic properties of for example } (Dx)^{\lambda,\sigma,\theta,\tau}_{\text{Sh:365,4.1}}.$

(10.8) $\text{Proof of such properties } [Sh:365, 4.2], [Sh:413, 2.6].$

(a) if λ is a regular $\lambda > \sigma > \kappa$ then $Pr_1(\lambda^+, \lambda^+, \sigma, \kappa), [Sh:365, \S4].$

(b) if λ is inaccessible with a stationary subset S not reflecting in inaccessibles and $\sigma \leq \text{min}_S \text{cf}(\delta)$ and $\kappa < \lambda$ then $Pr_1(\lambda, \lambda, \lambda, \sigma), [Sh:365, 4.1.4.7].$

(c) if $\lambda = \mu^+, \mu > 2^{cf(\mu)}, \kappa < \mu$, then $Pr_1(\lambda, \lambda, \text{cf}(\mu), \kappa), [Sh:413, 2.7].$

(d) if $\lambda = \mu^+, \mu > \text{cf}(\mu)$ then $Pr_1(\lambda, \lambda, \text{cf}(\mu), \text{cf}(\mu)), [Sh:355, 4.1].$

(e) by $[\text{Sh:535}]$ we get such properties for e.g. $\lambda = \beth_\omega^+$.

(f) if $\kappa \text{ and } \mu \text{ or if } \lambda = \mu^{++}, \mu \text{ regular then } Pr_1(\lambda, \lambda, \lambda, \mu) ([Sh:572, \S1]).$

(10.9) $\text{(E2) implies Pr}_4 [Sh:365, 4.4].$

(10.10) $\text{(D2) implies } Pr_1 [Sh:365, 4.7].$

(10.11) $\text{Concerning the results in [Sh:95] on partition relations restriction of the kind appearing there are necessary (we use FILL) see, some day [Sh:F50].}$

$\text{Galvin conjecture:}$

(a) $\aleph_n \rightarrow [\aleph_n]_{\aleph_n}^{n+1}$ $[[Sh:288, 5.8(1)], more there), but$

(b) for the naturally defined $h: \omega \rightarrow \omega \text{ if } \text{CON(ZFC + } \lambda \rightarrow (\aleph_1)^2_{\aleph_1})$ then it is consistent with ZFC that: $2^{\aleph_0} = \lambda \rightarrow [\aleph_n]_{h(n)}^{\aleph_1}$ (we can even get $\lambda \in [\lambda]^{\aleph_1}$ which exhibits the conclusion simultaneously for all $n, \lambda \rightarrow [\aleph_n]_{h(n)}^{\aleph_1}$, if $h_1(n) \geq n, h_1(n)/h(n) \rightarrow \infty), [Sh:288, 3.1].$
(c) if κ is measurable indestructible by adding (even many) Cohen subsets to κ, then a generalization of Halpern Lauchli theorem holds to $^{<2}\kappa$ (but using some $\langle \alpha^+: \alpha < \kappa \rangle$, α^+ a well order of $^{<2}\alpha$) ([Sh:288, 4.1, 4.2 + §2]). See more in [Sh:481], [Sh:546], [RbSh:585].

: More on colouring (improving results on Jonssonness from [Sh:413] to colouring) see [EiSh:535], e.g. for $\lambda = \beth_\omega$ we have $\text{Pr}_1(\lambda, \lambda, \lambda, \aleph_0)$.

: More on Pr_i’s in [Sh:829, §3]. E.g., if $\mu > \aleph_0$ is strong limit, $\chi \geq \mu$, $\lambda = 2^\chi$ is singular, then $\chi \in \mu \cap \text{Reg}\setminus\{\aleph_0\} \Rightarrow \text{Ps}_1(\text{cf}(\lambda), \lambda, \kappa)$.

\{10.12\}

\{10.13\}
§ 11. Trees, linear orders

{11.1} Let \(a_\delta = \{ \lambda_i : i < \delta \} \) and \(a_\iota = \{ \lambda_j : j < \iota \} \) for every \(i < \delta \). If \(\lambda = \max pcf(a_\delta) \) and \(\lambda_i = \max pcf(a_\iota) \), then we can find in \(\Pi(a_\delta) \) a \(\langle f_{\alpha_\lambda} \rangle \)-increasing cofinal sequence \(\{ f_\alpha : \alpha < \lambda \} \) such that \(f_\alpha \upharpoonright a_\iota = \{ i < \iota : i < \delta, \alpha < \lambda \} \) forms a tree with \(\delta \) levels, level \(i \) of cardinality \(\max pcf(a_\iota) < \lambda_i \) and \(\geq \lambda \delta \)-branches [Sh:355, 3.5].

Note

(a) the lexicographic order on \(\mathcal{F} = \{ f_\alpha : \alpha < \lambda \} \) has density \(\sum_{i < \delta} \lambda_i \)

(b) if \(\Pi \lambda_i / I \) is as in [Sh:355, 1.4(1)(see 1.3)], \(F \) is \((\Sigma \lambda_i)^\delta \)-free (see 6), hence any set of cardinality \(\leq \Sigma \lambda_i \) is the union of \(\leq \text{gen}(I) \) sets \(F' \), each satisfying for some \(s \in I \) we have \(\langle f_\alpha \upharpoonright (\delta \setminus s) : f_\alpha \in F' \rangle \) is increasing i.e. \(\alpha < \beta, f_\alpha \in F', f_\beta \in F', \alpha \in \delta \setminus s \Rightarrow f_\alpha(i) < f_\beta(i) \) where \(\text{gen}(I) \) is \(\min\{ |P| : \emptyset \subseteq I \} \) generates the ideal \(I \), [Sh:355, 1.4(3)]

(c) if \(\lambda > 2^{[\delta]} \), then we can have such trees with exactly \(\lambda \) branches [Sh:276]; somewhat more: [Sh:430, 6.6B].

{11.2} See more in part (C).

: There are quite many \((\lambda_i : i < \delta), \lambda \) as in 11: for example if \(R_0 < \kappa = \text{cf}(\mu) < \mu_0 < \mu < \lambda = \text{cf}(\lambda) < \text{pp}_{\alpha}(\mu) \), then we can find such \((\lambda_i : i < \kappa) \) with limit \(\mu \) with \(\mu_0 < \lambda < \mu \), if \(\bigwedge_{\alpha < \mu} |\alpha|^{< \mu} < \mu \) or at least \((\forall \nu' < \mu)(|\text{pp}_{\nu'}(\mu')| < \mu) \), see [Sh:371, 1.6(2),(4)]. Also “\(\text{pp}(R_{\alpha + \delta}) < \alpha_{\alpha + [\delta]} \)” helps to get such examples, see [Sh:462, §5],

{11.3} [RoSh:534]: For \(\lambda > \kappa = \text{cf}(\kappa) \) the following cardinals are equal:

\[\sup \{ \mu : \text{some tree with } \lambda \text{ nodes has } \geq \mu \kappa \text{-branches} \} \]

and

\[\sup \{ \text{pcf}(a) : |a| < \min(a), \text{cf}(\text{otp}(a)) = \kappa, a \subseteq \text{Reg} \cap \lambda^+ \kappa \text{ and } \theta \in a \Rightarrow \text{max pcf}(a \cap \theta) < \theta \} \]

{11.4} see [Sh:589, 2.2].

: Definition of Ens, entangled linear order and basic facts see for example [Sh:42, AP.2.1, 2.2 more 2.3].

A linear order \(\mathcal{I} \) is \(\lambda \)-entangled if given any \(n < \omega \) and pairwise distinct \(x_\zeta^n \in \mathcal{I} \) and \(n \subseteq \{ 0, 1, \ldots, n - 1 \} \) there are \(\zeta < \xi \) such that for \(e < n \) we have: \(x_\zeta^n < x_\xi^n \Leftrightarrow e \in w \). We say \(\mathcal{I} \) is entangled if it is \(|\mathcal{I}|\)-entangled: Ens(\(\lambda, \mu \)) means there are \(\mu \) linear orders \(\mathcal{I}_\xi(\zeta < \mu) \) each of cardinality \(\lambda \) and if \(n < \omega, \zeta < \mu \) distinct \((e < n) \) and \(w \subseteq n \) and if \(x_\zeta^n \in \mathcal{I}_\xi \) are distinct then for some \(\alpha < \beta < \mu \) we have \(\mathcal{I}_\zeta \models x_\alpha^n < x_\beta^n \Leftrightarrow e \in w \).

More on \(\sigma \)-entangled linear orders see [Sh:462].

{11.5} : Ens(\(\lambda^+, \text{cf}(\lambda) \)) for \(\lambda \) singular [Sh:355, 4.9 more 4.11,4.14] more [Sh:371, 5.3].

: For \(\mu \) regular uncountable and a linear order \(\mathcal{I} \) of power \(\mu \), \(\mathcal{I} \) is entangled iff the interval Boolean algebra of \(\mathcal{I} \) is \(\lambda \)-narrow (see [Sh:345b, 2.3] or [Sh:462, §1]).

: A sufficient condition for existence of entangled linear order of cardinality \(\lambda \) is: \(\lambda = \max pcf(a), \kappa = |a|, [\theta \in a \Rightarrow \theta > \max pcf(\theta \cap a)], 2^\kappa \geq \sup(a) \), a divisible to \(\kappa \) sets not in \(J_{<\lambda}[a] \), [Sh:355, 4.12]: if we omit “\(2^\kappa \geq \sup(a) \)” we can still prove

\[\text{Ens}(\lambda, \kappa); \] [Sh:355, 4.10A] more in [Sh:355, 4.10F,4.10G], [Sh:371, 5.4,5.5,5.5A].
there is an entangled linear order in λ^+, [Sh:355, \eqref{11.9}].

If $\lambda \in \text{pcf}(a)$ and $[\theta \in a \Rightarrow \theta > \max \text{pcf}(\theta \cap a)]$ and for each $\theta \in a$ there is an entangled linear order or just $\text{Ens}(\theta, \max \text{pcf}(\theta \cap a))$, then on λ there is one, [Sh:355, ?, 4.10C].

(a) If $\kappa^+ \leq \text{cf}(\lambda) < \lambda < 2^\kappa$, then there is an entangled linear order in λ^+, [Sh:410, 4.1 more 4.2, 4.3].

(b) There is a class of cardinals λ for which there is an entangled linear order of cardinality λ^+, [Sh:371, \S 5]. It is not clear if we can demand e.g. $\lambda = \lambda^0$, but if this fails, then for κ large enough, $\kappa^0 = \kappa \Rightarrow 2^\kappa < \mathbb{R}_{\kappa}+4$ (see (a), more in [Sh:462]).

(c) There is a class of cardinals λ for which there is a Boolean algebra B of cardinality λ^+ with neither chain nor antichain of cardinality λ^+, i.e. if $Y \subseteq B, |Y| = |B|$ then $(\exists x, y \in Y)[x < y]$ and $(\exists x, y \in Y)[x \not< y \land y \not< x]$ (in fact for any sequence $(x_\alpha : \alpha < \lambda^+)$ of distinct members of B:

(i) $(\exists \alpha < \beta)(x_\alpha < x_\beta)$,

(ii) $(\exists \alpha < \beta)(x_\beta > x_\alpha)$ and

(iii) $(\exists \alpha < \beta)[x_\alpha \not< x_\beta \land x_\beta \not< x_\alpha]$; see [Sh:462, 4.3].

(d) Moreover, in part (c), for any given λ_0, letting μ be the minimal $\mu = \mathbb{R}_\mu > \lambda_0$ then we can find B as there with density μ (everywhere); similarly in (b).

(e) Moreover in (c) and (b) if the density character is $\mu, \ell \in \{0, 1, 2\}, \theta = \text{cf}(\theta) < \mu$ and $x_\alpha \in B$ for $\alpha < \lambda$ are distinct then for some $w \subseteq \lambda, |w| = \theta$ we have for any $\alpha, \beta \in w, \alpha < \beta$:

$\ell = 0 \Rightarrow x_\alpha < x_\beta$

$\ell = 1 \Rightarrow x_\alpha > x_\beta$

$\ell = 2 \Rightarrow x_\alpha \not< x_\beta \land x_\beta \not< x_\alpha$

Similarly in part (b).

(f) If 2^λ is singular, then there is an entangled linear order of cardinality $(2^\lambda)^+$ (the assumption implies $(\forall \mu)[\lambda < \text{cf}(\mu) < \mu \leq 2^\lambda < \text{pp}(\mu)]$ (i.e. $\mu = 2^\lambda$), this suffices as we can use 6(b), 6, 11; see [Sh:462, \S 5]).

Universal linear orders: see Section 13, Model Theory.

For every λ there is $\mu, \lambda \leq \mu < 2^\lambda$ such that (A) or (B):

(A) $\mu = \lambda$ and for every regular $\chi \leq 2^\lambda$ there is a tree T of cardinality λ with $\geq \chi$ branches (so a linear order of cardinality $\geq \chi$ and density $\leq \lambda$)

(B) $\mu > \lambda$, and:

(a) $\text{pp}(\mu) = 2^\lambda, \text{cf}(\mu) \leq \lambda, (\forall \theta)[\text{cf}(\theta) \leq \lambda < \theta < \mu \Rightarrow \text{pp}(\theta) < \mu]$. Hence, by [Sh:371, \S 1] for every regular $\chi \leq 2^\lambda$ there is a tree from [Sh:355, 3.5]: $\text{cf}(\mu)$ levels, every level of cardinality $< \mu$ and χ ($\text{cf}(\mu)$)-branches
(β) For every \(\chi \in (\lambda, \mu) \), there is a tree \(T \) of cardinality \(\lambda \) with \(\geq \chi \)-branches of the same height.

(γ) \(\text{cf}(\mu) = \text{cf}(\lambda_0) \) for \(\lambda_0 = \min \{ \theta : 2^\theta = 2^\lambda \} \) and even \(\text{pp}_{\text{cf}(\mu)}(\mu) = 2^\lambda \)

\(\{11.13\} \) If \(\theta_{n+1} = \min \{ \theta : 2^\theta > 2^{\theta_n} \} \) for \(n < \omega, \sum_{n<\omega} \theta_n < 2^{\theta_n} \), then for some \(n > 0 \) and regular \(\mu \in [\theta_n, \theta_{n+1}) \) for every regular \(\chi \leq 2^{\theta_n} \), there is a tree with \(\mu \) nodes and

\(\{11.14\} \) Kurepa trees: there are two contexts that arise

(a) we can get Kurepa trees of singular cardinality: if \(\bar{\lambda} = (\lambda_i : i < \delta) \) and \(\delta < \bar{\lambda} = \text{cf}(\lambda_i), \lambda_i > \max \text{pcf}\{\lambda_j : j < i\} \) then there is a tree with \(\delta \) levels, the \(i \)-th level of cardinality \(< \lambda_i \), and at least \(\max \text{pcf}\{\lambda_i : i < \delta\} \) \(\delta \)-branches, see [Sh:355, 3.5], hence can derive consequences from conventional cardinal arithmetic assumptions

(b) if for example \(\text{pp}(\aleph_{\omega_1}) > \aleph_{\omega_2} \) and for a club of \(\delta < \omega_1, \text{pp}(\aleph_\delta) < \aleph_{\omega_1} \), then there is an \((\aleph_1) \)-Kurepa tree (see [Sh:371, 2.8] for more). We get a large family of sets with small intersection in more general circumstances [Sh:371, 1.7].

(c) If \(\bigwedge_{\alpha<\mu} |\alpha|^\kappa < \mu, \text{cf}(\mu) = \kappa > \aleph_0 \) and \(\mu \leq \lambda < \mu^\kappa \), then there is a tree with \(\mu \) nodes, \(\kappa \) levels and exactly \(\lambda \) branches, \(\lambda \) of them of height \(\kappa \). We can derive results on linear orders (really they are the same problems). If we speak on the number of \(\kappa \)-branches (or for linear order number of Dedekind cuts of cofinality from at least one side \(\kappa \)), instead of "\(\bigwedge_{\alpha<\mu} |\alpha|^\kappa < \mu \)" it suffices that

(∗) (a) \(2^\kappa < \mu_0 < \mu \)

(b) if \(\mu_0 < \chi < \mu \) and \(\text{cf}(\chi) \leq \kappa \) then \(\text{pp}(\kappa) < \mu \).

See [Sh:262] or [Sh:430, 6.6(1)]. (Similarly, other results can be translated between trees and linear orders).
§ 12. Boolean Algebras and General Topology

: Boolean algebras and topology. \(\lambda \)-c.c. is not productive and \(\lambda - S \)-spaces exist and more follows from \(\text{Pr}_T(\lambda, 2) \) (or appropriate colouring) see [Sh:282a, 1.6A] so [Sh:355, 4.2] is a conclusion of this. This is translated to results on cellularity of topological spaces (cellularity \(\leq \lambda \leftrightarrow \lambda^+\)-c.c.).

We have

(a) if \(\lambda \geq \aleph_1 \), for some \(\lambda^+\)-c.c. Boolean algebras \(B_1, B_2 \) we have: \(B_1 \times B_2 \) is not \(\lambda^+\)-c.c. (why? now \(\text{Pr}_T(\lambda^+, \lambda^+, 2, \aleph_0) \) suffice [Shg, Shh94, 1.6A] and it holds by [Sh:327] or [Sh:365, 4.8(1),p.177] if \(\lambda \) regular > \(\aleph_1 \), [Sh:355, 4.1,p.67] if \(\lambda \) is singular and lastly by [Sh:572, §1] if \(\lambda \) = \(\aleph_1 \))

(b) if \(\lambda \) is inaccessible and has a stationary subset not reflecting in any accessible, then for some \(\lambda \)-c.c. Boolean algebras \(B_1, B_2 \) we have: \(B_1 \times B_2 \) is not \(\lambda \)-c.c. (see [Sh:365, 4.8])

(c) if \(\lambda \) is Mahlo, \(\otimes_{\aleph_0}^\lambda \) (see 1) then for some \(\lambda \)-c.c. Boolean algebras \(B_\alpha \), for any proper filter \(I \) on \(\omega \) extending \(J_\omega \) we have \(\Pi B_\alpha/I \) fails the \(\lambda \)-c.c. [Sh:365, 4.11].

: Topology: characterizing by \(pp \) when there are \(f_\alpha \in \kappa^\sigma \) for \(\alpha < \theta \) such that \(\alpha < \beta \Rightarrow \bigvee_{i<\kappa} f_\alpha(i) < f_\beta(i) \), see [Sh:410, 3.7], is needed for Gerlits, Hajnal and Szentmiklossy [GHS92]. The condition is (when \(\theta \) is regular for simplicity)

\[
2^\kappa \geq \theta \quad \text{or} \quad (\exists \mu)[\text{cf}(\mu) \leq \kappa < \mu \land \mu \in \text{p} \cap \text{pp}(\mu) > \theta]
\]

(for \(\theta \) singular just ask if for every regular \(\theta_i < \theta \).

(Why not just \(\theta \leq \sigma^\kappa \) ? Because if e.g. \(\kappa = \beth_n, \theta = \beth_{n+1}, \sigma = \aleph_0 \) we do not know whether \(pp^+(\kappa) = \theta^+ \).

: Topology: let \(X \) be a topological space, \(B \) a basis of the topology (not assuming the space to be Hausdorff or even \(T_0 \)). If \(\lambda = \aleph_0 \) or \(\lambda \) is strong limit of cofinality \(\aleph_0 \), and the number of open sets is > \(|B| + \lambda \), then it is \(\geq \lambda^{\aleph_0} \); see for \(\lambda = \aleph_0 \) [Sh:454], for \(\lambda > \aleph_0 \) [Sh:454a] relying on [Sh:460].

: Topology: densities of box products: for example if \(\mu \) is strong limit singular, \(\mu = \sum_{i<\text{cf}(\mu)} \lambda_i, \text{cf}(\lambda_i) = \aleph_0, 2^{\lambda_i} = \lambda_i^+ \) are strong limit cardinals, max pcf\{\(\lambda_i : i < \text{cf}(\mu) \)\} < \(2^\mu, \text{cf}(\mu) < \theta < \mu \), then the density of the \((\text{cf}(\mu))^\mu \)-box product \(\theta^\mu \) is \(2^\mu \) [?, §5].

: the results in 12 come from starting to analyze the following: given \(\mu \)-complete filter \(D_i \) on \(\lambda_i \) for \(i < \kappa \), what is

\[
\min\{|A| : A \subseteq \prod_{i<\kappa} \lambda_i \text{ such that for every } (A_i : i < \kappa) \in \prod_{i<\kappa} D_i \text{ we have } A \cap \prod_{i<\kappa} A_i \neq \emptyset \}
\]

continued in [Sh:575] and then [Sh:620].
(b) This is applied also to the problem of λ-Gross spaces (vector space V over a field F with an inner product such that for $U \subseteq V$ of dimension λ,

$$\dim \{ x \in V : \bigwedge_{y \in u} (x, y) = 0) < \dim V \},$$

in Shelah Spinas [ShSi:468],

\{11.20\} A well known problem in general topology is whether every Hausdorff space can be divided to two sets each not containing a homeomorphic copy of Cantor’s discontinuum. In [Sh:460] we have a sufficient condition for this (e.g. $|a| \leq \aleph_0 = |\text{pcf}(\pi)| \leq \aleph_0$ and $2^{\aleph_0} = \aleph_0$, by [Sh:460, 3.6(2)], the $(*)$-version relying on [Sh:460, Th.2.6]). But we can prove: if $c\ell$ is a closure operation on $\mathcal{P}(X)$ (i.e. $a \subseteq b \Rightarrow c\ell(a) \subseteq c\ell(b)$ and $|a| \geq \aleph_0 \Rightarrow |c\ell(a)| > \aleph_0$, then we can partition X to two sets, each not containing any infinite $a = c\ell(a)$. (Can prove more).

Related weaker problem is to find large $A \subseteq \aleph_\lambda$ containing no large closed subsets, λ strong limit of cofinality \aleph_β, if $pp(\lambda) = 2^\lambda$ is easy (for higher cofinalities this holds and e.g. for many $\aleph_3 / \delta < \omega_1$). See [Sh:355, 6.9], more in [Sh:430, 3.3,4]. See more in [Sh:460], [Sh:668].

\{11.21\} If $pp(\lambda) > \lambda^+$, then there is a first countable λ-collectionwise Hausdorff (and even λ-metrizable), not λ^+-collectionwise Hausdorff space (see [Sh:E9]; when we assume just $\text{cov}(\lambda, \lambda, \aleph_1, 2) > \lambda^+$ use [Sh:355, §6]).

\{11.22\} If $\lambda < \lambda^{<\lambda}$, then there is a regular $\kappa < \lambda$ and tree T with κ levels, for each $\alpha < \kappa$, T has $< \lambda$ members of level $\leq \alpha$, and T has $> \lambda$-κ-branches. If $\lambda < \lambda^{<\lambda}$ and $\neg(\text{there is an } \aleph_\mu \text{ strong limit and } \text{sup} \mu \leq \lambda < 2^\mu)$, then above $2^\kappa > \lambda$; see [Sh:430, 6.3].

\{11.23\} Depth of homomorphic images of ultraproducts of Boolean algebras, [Sh:506, §3] and resolved for $\lambda_1 > 2^{\text{dom}(\pi)}$ in [Sh:589, §3].

\{11.24\} If λ is strong limit singular, $\kappa = c\ell(\lambda)$ and e.g. $2^\lambda = \lambda^+$, then for some Boolean algebras B_1, B_2 we have: B_1 is λ^+-c.c., B_2 is $(2^\kappa)^+$-c.c. but $B_1 \times B_2$ is not λ^+-c.c.

\{11.25\} (see more [Sh:575]). More constructions in [Sh:620].

\{11.26\} On the measure algebra, [Sh:620].

\{11.27\} On independent sets in Boolean Algebra, [Sh:620].

\{11.28\} On ultraproducts of Boolean Algebra: $s(B)$, spread, i.e. constructing examples of $\text{inv}(\prod_{i<\kappa} B_i / D) > \prod_{i<\kappa} \text{inv}(B_i) / D$, see:

(a) for inv being s, (spread), Roslanowski Shelah [RoSh:534], [Sh:620]
(b) similarly hd (hereditarily density)
(c) similarly hL (hereditarily Lindelof)
(d) for inv being Depth, [Sh:641], [Sh:853], [GaSh:878], [GaSh:956]
(e) for inv being Length, [Sh:641].
§ 13. Strong covering, forcing, choiceless universes and partition calculus

Preservation under forcing: essentially pcf and pp are preserved except for forcing notion involving large cardinals. Specifically if (the pair of universes) \((V, W)\) satisfies \(\kappa\)-covering [i.e. \(V \subseteq W\) and if \(a \subseteq \text{Ord}, W \models |a| < \kappa\) then for some \(b \in V, a \subseteq b \subseteq \text{Ord}\) and \(W \models |b| < \kappa\) and \(a \subseteq \text{Ord}\) \(\kappa\) is a set from \(W\) of cardinality < \(\kappa\)] and \(a \subseteq \text{Ord}\) is a set from \(W\) of cardinality < \(\kappa\) of regulars of \(W\) then \(\text{pcf}_V\{\text{cf}_V(\theta) : \theta \in \text{pcf}_V(a)\} = \{\text{cf}_V(\lambda) : \lambda \in \text{pcf}_W(\{\text{cf}_W(\theta) : \theta \in a\})\}\)

(this applies for example to \((K, V)\) if there is no inner model with measurable by Dodd and Jensen [DJ81]).

The strong covering lemma: see [Sh:f, Ch.XIII, §1, §2] or better [Sh:g, Ch.VII, §1, §2]; see more in [Sh:410, 2.6, p.407] and [Sh:580], each can be read independently.

Suppose \(W \subseteq V\) is a transitive class of \(V\) including all the ordinals and is a model of ZFC, let \(\lambda > \kappa\) be cardinals of \(V\).

We say \((W, V)\) satisfies the strong \((\lambda, \kappa)\)-covering property if for every model \(M \in V\) with universe \(\lambda\) and predicates and function symbols there is \(N \prec M\) of cardinality < \(\kappa\), \(N \cap \kappa \in \kappa\), \(N \in V\) but the universe of \(N\) belongs to \(W\); we also use stronger versions (like the set of such \(N\)'s is positive or even equal to \([\lambda]^{< \kappa}\) modulo some ideal, or weaker versions like union of few sets from \(W\)).

Those papers do this without using fine structure assumptions, just that \((W, V)\) satisfies \((\lambda, \kappa)\)-covering and related properties.

Also, with ranks. If \(\lambda > \text{cf}(\lambda) > \aleph_0\) then \(\lambda \rightarrow (\lambda, \omega + 1)^2\) in ZFC (see [Sh:881]).

If \(\lambda\) is strong limit singular and \(2^\lambda > \lambda^+\), then \((\lambda^+)^{< \lambda^+} \rightarrow (\lambda)^{1,1}_{\lambda^+}\), see [Sh:586].

If \(\lambda > \text{cf}(\lambda)\) is a limit of measurables and some pcf assumptions are forced, then even \((\lambda^+)^{< \lambda^+} \rightarrow (\lambda)^{1,1}_{\lambda^+}\), see [GaSh:949].

See [Sh:497] - Saharon.
§ 14. Transversals and (λ, I, J)-sequences

See [Sh:161] (and [Sh:52]), a transversal is a one to one choice function.

label13.1: If I is an ideal on κ, $\lambda > \text{cf}(\lambda)$ and $pp_I(\lambda) > \mu$, then we can find a family of functions $f_\alpha(\alpha < \mu)$ from κ to λ, which is λ^+-free for I, i.e. any λ of them are strictly increasing on each $x \in \text{Dom}(I)$ if for each α we ignore a set $s_\alpha \subseteq I$ such that $i \in \kappa \setminus (s_\alpha \cup s_\beta) \Rightarrow f_\alpha(i) < f_\beta(i)$ (so $\{\text{Rang}(f_\alpha) : \alpha \in \mathbb{N}\}$ has a transversal when $\mu \subseteq \mu, |\mu| < \lambda$) [Sh:355, 1.5A] (the case μ singular changes nothing for this purpose).

So $\text{NPT}(\lambda^+, \kappa)$ (see Definition below). On weakening “$pp_I(\lambda) > \mu$” to “$pp_I^+(\lambda) > \mu$” for μ successor of regular see [Sh:371, §6] (\(\mu\) singular-easy). On weakening $pp_I(\lambda) > \mu, pp(\lambda, \kappa^+, 2) > \mu$, see [Sh:355, §6] for some variants; in particular $\text{NPT}_{p}(\lambda^+, \kappa)$ when $\mu, \lambda, \kappa^+, 2 > \lambda$ by [Sh:355, 6.3, p.99].

\[\text{Definitions of variants of NPT, [Sh:355, 6.1], [Sh:371, 6.3] for example NPT}(\lambda, \kappa)\]

means that there is a family $\{A_i : i < \lambda\}$ of sets each of cardinality $\leq \kappa$, and $< \lambda$ of them have a transversal, but not all. Similarly for $\text{NPT}_{p}(\lambda, \kappa)$ we have $f_\alpha : \text{Dom}(J) \rightarrow \text{ordinals as in ??}.$

\[\text{Trivial and easy facts [Sh:355, 6.2,6.7], why concentrating on “NPT}(\lambda^+, \kappa), \text{cf}(\lambda) = \kappa_0^\kappa\text{[Sh:355, 6.4].}\]

\[\text{If } \lambda > \text{cf}(\lambda) = \kappa_0 \text{ and } \text{cov}(\lambda, \kappa, \kappa, 1) > \lambda^+, \text{then } \text{NPT}_{p}(\lambda, \kappa_1), \text{[Sh:355, 6.3] more in [Sh:355, 6.5,6.8], [Sh:371, 6.1], [Sh:371, 6.2] application to [RuSh:117], [Sh:371, 6.4,6.5].}\]

\[\text{When } \lambda \text{ is a strong limit of cofinality } \kappa_0, \text{there is } T \subseteq \omega \lambda, |T| = 2^\kappa \text{ with no large dense subset, [Sh:355, 6.9] (there is a subclaim with more information).}\]

\[\text{If } \lambda > \text{cf}(\lambda) = \kappa_0 \text{ and } \text{cov}(\lambda, \kappa, \kappa, 2) > \lambda^+, \text{then } \text{NPT}_{p}(\lambda^+, \kappa_1), \text{[Sh:355, 6.3] more in [Sh:355, 6.5,6.8], [Sh:371, 6.1], [Sh:371, 6.2] application to [RuSh:117], [Sh:371, 6.4,6.5].}\]

\[\text{Let } \kappa = \text{cf}(\kappa) > \kappa_0. \text{ For any } \mu \geq 2^\kappa \text{ letting } \chi = \chi_\kappa^\kappa = \sup \{pp_{J_\alpha}(\mu') : 2^\kappa \leq \mu' \subseteq \mu, \text{cf}(\mu') = \kappa\} \text{ we have:}\]

\[(a) \text{ every } \kappa\text{-almost disjoint subfamily of } [\mu]^\kappa \text{ (i.e. intersection of two has cardinality } < \kappa) \text{ has cardinality } \leq \chi; \text{ also } \chi_\kappa^\kappa = T_{p}(\mu)\]

\[(b) \text{ trivially there is maximal } \kappa\text{-almost disjoint family } \subseteq [\mu]^\kappa \text{ and all such families have the same cardinality which is in } \chi\]

\[(c) \text{ if } \chi_\alpha = \chi, \chi_{\alpha + 1} = \chi_\kappa^\kappa(\chi_\alpha), \chi_\omega = \sum_{\kappa < \omega} \chi_\kappa \text{ then }\]

\[(\alpha) \chi_\kappa = \sup \{pp_{J_\alpha}(\mu') : 2^\kappa \leq \mu' \subseteq \mu, \text{cf}(\mu') = \kappa\} \text{ where } J_\kappa = \{A \subseteq \kappa^\kappa : (3^{< \kappa} \alpha_0)(3^{< \kappa} \alpha_1) \ldots (3^{< \kappa} \alpha_{n - 1})(\alpha_0, \ldots, \alpha_{n - 1}) \in A\}\]

\[(\beta) \chi_\kappa^\kappa(\chi_\omega) = \chi_\omega \text{ (hence is doubtful if it is consistent to have } \chi_\kappa \neq \chi_{\alpha + 1}.\text{)}\]

\[\text{Labels:} \quad \eta = \{\eta_\alpha : \alpha < \lambda\} \text{ is a } (\lambda, I, J)\text{-sequence for } I = \{I_i : i < \delta\} \text{ iff each } \eta_\alpha \in \prod_{i < \delta} \text{Dom}(I_i), J \text{ is an ideal on } \delta, I \text{ is an ideal on } \lambda, \text{ each } I_i \text{ is an ideal on } \text{Dom}(I_i), \text{ and}\]

\[X \in I^+ \Rightarrow \{i < \delta : \eta_\alpha(i) : \alpha \in X\} \in I_i \in J.\]
The definition was introduced in [Sh:575] and considered again in [Sh:620]. In [Sh:620] first the case of the Erdős-Rado ideal defined there was considered. For the case $I = \langle J^\text{bd}_\lambda : i < \delta \rangle$ and $\lambda = \text{tcf}(\prod_{i \leq \delta} \lambda_i/J^\text{bd}_\delta)$ and $J = J^\text{bd}_\lambda, I = J^\text{bd}_\delta$, the existence of a (λ, I, J)-sequence comes from pcf theory. Also the case $I_i = \prod_{\ell < n_i} J^\text{bd}_{\lambda_i,\ell}$ for $\langle \lambda_i, \ell : \ell < n_i \rangle$ increasing a sufficient pcf condition for the existence of a (λ, I, J)-sequence was given in [Sh:620] which holds sometimes (for any given $\langle n_i : i < \delta \rangle$). Also in [Sh:620] the case $I_i = J^\text{bd}_{\lambda_i,\ell}$ for $\langle \lambda_i, \ell : \ell < n \rangle$ a decreasing sequence of regulars was considered, giving a sufficient condition which requires pcf to be reasonably complicated. A most case $I_i = \prod_{\ell < n} J^\text{nst,}\theta_{\lambda_i,\ell}$ regular decreasing, $J^\text{nst,}\theta_{\lambda}$ is the ideal of non-stationary sets $+\{\delta < \lambda : \text{cf}(\delta) \neq \theta\}$, when e.g. $\delta < \kappa < \lambda_i, \ell$ and we prove existence for some $\langle \lambda_i, \ell : \ell < n, i < \delta \rangle$. Many applications for Boolean algebras can be found in [Sh:620].

13.9: The family $\{\kappa : \text{NPT}(\kappa, \aleph_1)\}$ is not too small, see [Sh:108], Magidor Shelah [MgSh:204], [Sh:523].
\[15.\] **Model Theory and Algebra**

\[14.1\] : \(L_{\infty, \lambda}\)-equivalent non-isomorphic models in \(\lambda\); if \(\lambda > cf(\lambda) > \aleph_1\) there are such models of cardinality \(\lambda\) (if \(cf(\lambda) = \aleph_1\), it suffices to have: there is \((\lambda_i : i < cf(\lambda))\)

increasing sequence of regulars with limit \(\lambda\), \(\delta < cf(\lambda) : \) there is an unbounded \(a \subseteq \delta\) with \(\lambda > \max \text{pcf} \{\lambda_i : i \in a\}\) is stationary); not known if this fails in some universe of set theory, see [Sh:355, §7].

\[14.2\] : Universal Models for example the class of linear orders. If \(\lambda\) is regular and \(\exists \mu (\mu^+ < \lambda < 2^{\mu})\), then there is in \(\lambda\) no universal linear order, not even a universal model (for elementary embeddings) for \(T\) in \(\lambda\) where \(T\) is a first order theory with the strict order property. For almost all singular \(\lambda\) we have those results, more specifically if \(\lambda\) is not a fixed point of the second order the result holds; and if it fails for \(\lambda\) the consequences for \(pp\) are not known to be consistent, see [KjSh:409]

which rely on guessing clubs.

\[14.3\] : A much weaker demand on the first order \(T\) suffices in 15: \(\text{NSOP}_4\), see [Sh:500, §2] on the remaining cardinals see some information in [Sh:457, §3]; on complimentary consistency (only for \(\lambda = \aleph_1\)) see [Sh:100, §4].

\[14.4\] : Universal models for \((\omega + 1)\)-trees with \((\omega + 1)\)-levels and or stable unsuperstable \(T\):

Similar results: if \(\lambda\) regular \((\exists \mu)[\mu^+ < \lambda < \mu^{\aleph_0}]\) then there is no universal member; also for most singular [KjSh:447].

\[14.5\] : Similarly if \(\kappa = cf(\kappa) < \kappa(T), (\exists \mu)(\mu^+ < \lambda < \mu^\kappa)\).

\[14.6\] : Universal abelian groups have similar results for pure embedding (under reasonable restrictions (mainly the groups are reduced, because there are divisible universal abelian groups the interesting cardinals are \(\lambda^{\aleph_0} > \lambda > 2^{\aleph_0}\)). For torsion free reduced abelian groups, \(\mathcal{R}_{rtf}\), or reduced separable \(p\)-groups, \(\mathcal{R}_{rtf}(p)\) if \(2^{\aleph_0} + \mu^+ < \lambda = cf(\lambda) < \mu^{\aleph_0}\), then there is no universal. For “most” \(\lambda, \lambda\) regular can be omitted.

\[14.7\] : We can use the usual embedding but restrict the class of abelian groups. The natural classes: \(\mathcal{R}_{rtf}\) (torsion free, reduced i.e. has no divisible subgroups) and \(\mathcal{R}_{rtf}(p)\) (reduced separable \(p\)-groups). But in addition we restrict ourselves to the abelian groups which are \((< \lambda)\)-stable (see [Sh:456], club guessing is used).

\[14.8\] : For classes \(\mathcal{R}_{rtf}, \mathcal{R}_{rtf}(p)\) from 14 of abelian groups under embeddings see [Sh:552]: mainly if \(\lambda^{\aleph_0} > \lambda > 2^{\aleph_0}\) there are negative results except when some \(pcf\) phenomena not known to be consistent (also club guessing is used). Below the continuum there are independence results. More on the existence of universals see [Sh:457] on metric spaces see [Sh:552] and on normed spaces [DjSh:614].

\[14.9\] : For cardinals \(\geq \beth_\omega\), for the classes \(\mathcal{R}_{rtf}, \mathcal{R}_{rtf}(p)\) the results in 15 are improved to have demands on the cardinals like 15, see [Sh:622].

\[14.10\] : There exists a reflexive abelian group, whose cardinality is the first measurable cardinal, [Sh:904].

Diamons and Omitting Types In the omitting type theorem for \(L(Q)\) in the \(\lambda^+\) interpretation, not only \(\lambda = \lambda^{< \lambda}\) (needed even for the completeness) was used in [Sh:82] but \(\mathcal{D}_\lambda\) [for \(\lambda\) successor this is \(\phi_\lambda\), generally it means: there is \((\mathcal{P}_\alpha : \alpha < \lambda), \mathcal{P}_\alpha\) a family of \(< \lambda\) subsets of \(\lambda\) such that for every \(A \subseteq \lambda\) for stationarily many \(\delta < \lambda, A \cap \delta \in \mathcal{P}_\delta\). Now by [Sh:460]: if \(\lambda > \beth_\omega\) then \(\lambda = \lambda^{< \lambda} \iff (\mathcal{D}_\lambda)\). In fact: if \(\lambda = \lambda^{< \lambda}\) and \((\forall \mu < \lambda)(\mu^{< \mu^{< \mu}} < \lambda) \implies (\mathcal{D}_\lambda)\).
(where $(Df)_{S_k}$ is defined as above but for $\alpha \in S_k^\lambda =: \{ \delta < \lambda : \text{cf}(\delta) = \kappa \}$, and $\mu^{\kappa > \nu} = \sup \{ \lambda : \text{there is a tree with } \mu \text{-nodes and } \lambda \kappa \text{-branches} \}$.)

: There are uses for proving Black Boxes (see [Sh:c, Ch.III, §6]), those are construction principles provable in ZFC, and have quite many applications, see there for references.

: On tiny models: On tiny models see Laskovski, Pillay and Rothmaler [LPR92], M is tiny if $\mu = \|M\| < |T|, T$ categorical in $|T|^+$, where $|T|$ is the number of formulas up to equivalence. Assume further that for T not every regular type is trivial, then existence of such T for given μ is equivalent to the existence of $A_i \in [\mu]^{\mu}$ for $i < \mu^+$ such that $\bigwedge_{i<j} |A_i \cap A_j| < \aleph_0$, hence necessarily $\mu < \beth_\omega$. (Proved in the appendix of [Sh:460]).

: On cofinalities of the symmetric group: Let Sp be the family of regular λ such that the permutation group of ω is the union of a strictly increasing chain of subgroups. Now Sp has closure properties under pcf, say if $n < \omega \Rightarrow \lambda_n \in Sp$ then $\text{pcf}\{\lambda_n : n < \omega\} \subseteq Sp$ (Shelah and Thomas [ShTh:524]).

: Hanf number

On application to Hanf numbers see Grossberg Shelah [GrSh:238].

: On the number of non-isomorphic models: see [Sh:600, §2].
§ 16. Discussion

Artificially/naturality thesis.
Probably you will agree that for a polyhedron v (number of vertices) e (number of edges) and f (number of faces) are natural measures, whereas $e + v + f$ is not, but from a deeper point of view $v - e + f$ runs deeper than all. In this vein we claim: for λ regular 2^λ is the right measure of $\mathcal{P}(\lambda)$, and λ^κ is a good measure of $|\lambda|^{\leq \kappa}$. However, the various cofinalities are better measures. λ^κ is an artificial combination of more basic things of two kinds: the function $\lambda \mapsto 2^\lambda$ (regular which is easily manipulated) and the various cofinalities we discuss (which are not). For example $\text{pp}(\omega_\omega) < \aleph_\omega < (2^{\aleph_0} + (2^{\aleph_0})^+)$ (not to say: $2^{\aleph_\omega} < \aleph_\omega$ when \aleph_ω is strong limit). Also the equivalence of the different definitions which give apparently weak and strong measures, show naturality:

(a) $\text{cf}([\aleph_\omega])^{\aleph_0} = \text{pp}(\aleph_\omega)$

(b) $\min\{|S| : S \subseteq [\lambda]^{\leq \kappa} \text{ stationary} \} = \text{cf}([\lambda]^{\leq \kappa}, \subseteq) \text{ for } \kappa < \lambda$

(c) if $\lambda \geq \mu > \theta > \sigma = \text{cf}(\sigma) > \aleph_0$ then

$$\text{cov}(\lambda, \mu, \theta, \sigma) = \sup\{\text{pp}(\text{cf}(\chi), \theta, \sigma)(\chi) : \mu \leq \chi \leq \lambda, \sigma \leq \text{cf}(\chi) < \theta\}.$$

Note, $\chi \leq \text{pp}_0(\lambda)$ says $[\lambda]^{\leq \kappa}$ is at least as large as χ in a strong sense, whereas $\chi \geq \min\{|S| : S \subseteq [\lambda]^{\leq \kappa} \text{ stationary} \}$ says that $[\lambda]^{\leq \kappa}$ can be exhausted very well by χ “points” (for the right filters: measure 1).

We tend to think the pp’s are enough, but there is a gap in our understanding concerning cofinality \aleph_0, mainly: is it true that

$$\lambda > \text{cf}(\lambda) = \aleph_0 \Rightarrow \text{cf}([\lambda]^{\leq \kappa}, \subseteq) = \text{pp}(\aleph_0)(\lambda).$$

We have many approximations saying that this holds in many cases (see 7).

More generally, we should replace power by products, and cardinality by cofinality, and therefore deal with $\text{pcf}(a)$.

The Cardinal Arithmetic below the continuum thesis:
We should better investigate our various cofinalities without assuming anything on powers (for example, the difference between the old result $\text{pp}(\aleph_\omega) < \aleph(2^{\aleph_0})^+$ and the latter result $\text{pp}(\aleph_\omega) < \aleph_{\omega_4}$ is substantial); as

(a) you should try to get the most general result (when it has substance of course)

(b) if we add many Cohen reals, all non-trivial products are $\geq 2^{\aleph_0}$, but our various cofinalities do not change, so we should not ignore this phenomenon

(c) even if we want to bound 2^λ for λ strong limit singular, we need to investigate what occurs in the interval $[\lambda, 2^\lambda]$ which is a problem of the form indicated above; this is central concerning the problem (see [Sh:430]): if λ is the ω_1-fixed point then $2^\lambda < \omega_1$-th fixed point

(d) looking at cardinal arithmetic without assumptions on the function $\lambda \mapsto 2^\lambda$, makes induction on cardinality more useful.

Thesis

(A) $\text{pp}(\lambda)$ is the right power set operation.
\(\lambda \mapsto 2^\lambda \) (\(\lambda \) regular) is very elastic, you can easily manipulate it, but \(\text{pp}(\lambda) \) (\(\lambda \) singular) and \(\text{cov}(\lambda, \mu, \theta, \sigma) \) are not; it is hard to manipulate them, and we can prove theorems about them in ZFC.

\((B) \) ?

1) Consider \([\lambda]^{\leq \kappa} \), the family of subsets of \(\lambda \) of cardinality \(\leq \kappa \), when \(\lambda > \kappa \) (see 16).

2) \(\lambda^\kappa \) is the crude measure of \([\lambda]^{\leq \kappa} \).

It is very interesting to measure it, and cardinality is generally a very crude measure; \(\text{pp}_\kappa(\lambda) \) is a fine measure; and we have intermediate ones: \(\text{cf}(\lambda) \), \(\min\{|S| : S \subseteq [\lambda]^{\leq \kappa} \text{ stationary}\} \) and more. The best is when we can compute cruder numbers from finer ones; particularly when they are equal, so we could use different definitions for the same cardinal depending on what we want to prove. So we want to show that the \(\text{pp}_{\Gamma(\text{cf}(\lambda))}(\lambda) \) (\(\lambda \) singular) is enough.

\(15.4 \) : \(\text{pp}_{\Gamma(\theta, \sigma)}(\lambda) \) is the finest we have for what we want; they are like the skeleton of set theory; you can change easily your dress and even manage to change how much flesh you have; but changing your bones is harder. You may take hypermeasurable \(\lambda \), blow up \(2^\lambda \) and make it singular; this does not affect for example \(\text{pp}_{\Gamma(\theta, \sigma)}(\lambda^*) \) when \(\lambda^* > \lambda, \text{cf}(\lambda^*) = \aleph_1 \) (even if \(\lambda^* < \text{new } 2^\lambda \)), nor \(\text{cov}(\lambda^*, \lambda^*, \aleph_1, \sigma)(\sigma = 2, \aleph_1) \); they measure really how many subsets of \(\lambda^* \) of cardinality \(\aleph_1 \) there are - not through some \(\lambda^* < \lambda^* \) having many subsets of cardinality \(\leq \aleph_1 \).

\(15.5 \) : Subconscious remnants of GCH have continued to influence the research: concentration on strong limit cardinals; but from our point of view, even if \(2^{\aleph_0} \) is large and \(\mu < 2^{\aleph_0} \Rightarrow 2^\mu = 2^{\aleph_0} \), the cardinal arithmetic below \(2^{\aleph_0} \) does not become simpler.

Also GCH was used as an additional assumption (or semi-axiom), but rarely was the negation of CH used like this: simply because one didn’t know to prove interesting theorems from \(\neg \text{CH} \). But now we know that violations of GCH have interesting consequences (see below).

\(15.6 \) : Up to now we have many consequences of GCH (or instances of it) and few of the negations of such statements. We now begin to have consequences of the negation, for example see here 11; so we can hope to have proofs by division to cases. For example, let \(\lambda \) be a strong limit singular; if \(\text{pp}(\lambda) > \lambda^+ \) then \(\text{NPT}(\lambda^+, \text{cf}(\lambda)) \) and if \(\text{pp}(\lambda) \leq \lambda^+ \) then \(2^\lambda = \lambda^+ \) (and \(\Diamond_{\lambda < \lambda^+, \text{cf}(\lambda)}(\lambda) \) and so various constructions are possible (see here 11(b) and [Sh:462] on more, also [Sh:E9], [RoSh:534]).

\(15.7 \) : The right problems.

An outside viewer may say that the main problem,

\[(\aleph_\omega = \beth_\omega \Rightarrow 2^{\aleph_\omega} < \aleph_{\omega_1}) \]

was not solved. As an argument we may accuse others: maybe \(\aleph_{\omega_4} \) is the right bound. But more to the point is our feeling that this is not the right problem; right problems are:

\((a) \) Does \(\text{pcf}(\mathfrak{a}) \) always have cardinality \(\leq |\mathfrak{a}|? \)

\((b) \) Is \(\text{cov}(\lambda, \lambda, \aleph_1, 2) = \) \(\text{pp}(\lambda) \) when \(\text{cf}(\lambda) = \aleph_0? \)
Now (α) is just a member of a family of problems quite linearly ordered by implication discussed in [Sh:420, §6], [Sh:460], which seem unattackable both by the forcing methods and ZFC methods. The borderline between chaos and order seems

$(\alpha)^-$ can pcf(a) has an accumulation point which is an inaccessible cardinal (hopefully not).

Similarly (β) is the remnant of the conjecture that all cov$(\lambda, \mu, \theta, \sigma)$ can be expressed by the values of pp$(\Gamma(\theta, \sigma)(\lambda')$ and even pp$(\Gamma(\text{cf}(\lambda'))(\lambda')$; this has been proved in many cases (see 7). On an advance see [Sh:460].

Also though $(\alpha), (\beta)$ have not been solved, much of what we want to derive from them has been proved.

Another problem on which no light was shed is:

(γ) if λ is the first fixed point, find a bound on pp(λ) (or better cov$(\lambda, \lambda, \aleph_1, \aleph_2)$).

We can hope for the ω_4-th fixed point, to serve as a bound but will be glad to have the first inaccessible as a bound. Even getting a bound assuming GCH below λ would open our eyes. This becomes a problem after [Sh:111], [Sh:b, Ch.XII, §5, §6].

(δ) Generalize [Sh:355, §1] to deal with what occurs above tlimλ_i (for example 4.1, (λ, σ)-entangled linear order).

More accurately, assume $\prod_{i<\delta(\ast)} \lambda_i/J$ has true cofinality $\lambda, \mu = \text{tlim} (\lambda_i) = \sup (\lambda_i), \lambda_i$ regular $> \delta(\ast)$, and $\sup_{i<\delta(\ast)} \lambda_i < \text{cf}(\theta) < \lambda$. We can find regular $\lambda'_i < \lambda_i$ such that tcf$(\Pi \lambda'_i/J) = \theta$ as exemplified by f, which is μ^+-free (hence tlim$(\lambda'_i) = \lambda_i$) in addition: if $\delta < \theta, \text{cf}(\delta) < \theta$ and $\text{cf}(\delta) > 2^{\delta(\ast)}$ (or just $f\upharpoonright \delta$ has a $<\delta$-lub) then without loss of generality f_δ/J is the $<\delta$-lub of $f\upharpoonright \delta$, we want to know something on $(\text{cf}(f_\delta(a)) : a < \delta)$. For more information see [Sh:400, 4.1,4.1A].

Note that we also do not know, for example

(ε) if $\text{cf}(\lambda) \leq \kappa < \lambda$, is $\text{cf}(\text{pp}_\kappa(\lambda)) > \lambda$? (we know that it is $> \kappa$)

(ζ) we believe pcf considerations will eventually have impact on cardinal invariants of the continuum, but this has not materialized so far.

{15.8} : The perspective here led to phrasing some hypothesis, akin to GCH or SCH.

The “strong hypothesis” says pp$(\lambda) = \lambda^+$ for (every) singular λ; note it is like GCH but is not affected say by c.c.c. forcing, it follows from $\sim\theta$ and from GCH; its negation is known to be consistent and I feel it is a natural axiom. Other hypothesis may still follow from ZFC for example, the medium hypothesis says $|\text{pcf}(a)| \leq |a|$, and the weak say $\{\mu : \text{pp}(\mu) \geq \lambda, \mu < \lambda, \text{cf}(\mu) = \aleph_0, \aleph_0 \}$ is countable [finite], there are intermediate ones, such hypothesis and consequences are dealt with in [Sh:420, §6], see more in [Sh:460], [Sh:513]. Particularly concerning the connection of the medium and weak ones, (see 13, 7), ZF + DC + $[\alpha]^{<\alpha}$ well ordered suffice, see [Sh:835].

* * *
§ 17. Part B - Corrections to the book [Sh:g]

§ 16 Corrections

page 50, line 22: see more in Part C.

page 51, line 12: replace λ^+ by μ.

page 51, line 13: see more in Part C.

page 66, Theorem 3.6: second line of the theorem:
- replace $\lambda^{\beta+1}$ by $\lambda_0^{\beta+1}$

add after the second line of Remark 3.6A:
2) This is essentially the proof from [Sh:b, Ch.XIII, §6] and more appears in Ch.IX
first line of the proof:
- replace $\lambda > \aleph_0$ by “$\lambda_0 > |\alpha|^+$ (why? as we can replace λ_0 by λ_0^+ and deduce the result on the original λ_0 from the result on λ_0^+)”

replace fifth line of the proof:
- $\mathcal{N}_H = \cap\{\text{Skolem Hull}_M(\lambda_0 \cup \bigcup_{\beta < \alpha} C_\beta) : C_\beta \text{ a club of } f(\lambda^{\beta+1}) \text{ for } \beta < \alpha\}$

add in the end of the proof:
Clearly this family is a family of subsets of λ each of cardinality at most λ_0 of the right cardinality. So we have to prove just that it is cofinal. So let X be a subset of λ of cardinality at most λ_0, and we shall find a member of the family which includes it. Let χ be large enough. By 3 we can find an elementary submodel N_i of $(H(\chi), \in, <^*_{\chi})$, for $i \leq \delta =: |\alpha|^+$ each of cardinality such that $\{F, \lambda_0, \alpha^*, \lambda, X, f, g\} \in N_i$ and $i < j \rightarrow N_i \in N_j$ increasing continuous with i and condition (b) form 3.4 holds for $f \in F$.

It is enough to prove that

\[(\ast) \ N_f \text{ includes } N_\delta \cap \lambda\]

for this it is enough to prove

\[(\ast\ast) \text{ if } C_\beta \text{ is a club of } \lambda_0^{\beta+1} \text{ for each } \beta < \alpha^* \text{ and } M' \text{ is the Skolem Hull in } M \text{ of } \lambda_0 \cup \{C_\beta : \beta < \alpha^*\} \text{ then } M' \text{ include } N_\delta \cap \lambda.\]

For this we prove by induction on $\gamma \leq \alpha$ that

\[(\ast\ast)_{\gamma} \ M' \text{ includes } \lambda \cap \lambda_0^{\gamma+1}.\]

Case 1: $\gamma = 0$.

In this case as M includes λ_0 this is trivial.

Case 2: γ a limit cardinal ordinal.

In this case the induction hypothesis implies the conclusion trivially.

Case 3: $\gamma = \beta + 1$.

Use the induction hypothesis and the choice of the functions f and g. (See more Ch.IX, 3)

page 136, lines 21, 22, 23;
replace by:
No problem to define. We define \(B^\alpha_i \) (for \(i < \lambda, \alpha \in S \)) by induction on \(\alpha \):

\[
B^\alpha_i = \begin{cases}
\{ \beta : \text{cf}(\beta) \neq \lambda \text{ and } \beta \in \mathcal{A}^\alpha_i \} & \text{if } \text{cf}(\alpha) \neq \aleph_1 \\
\bigcap_{\beta \in C} B^\beta_i : C \text{ a club of } \alpha \text{ such that } \bigwedge_{\beta \in C} \text{cf}(\beta) = \aleph_0
\end{cases}
\]

(2) The first phrase follows from part 1 and check the second

page 228, line 1: replace \(D^* \) by \(D^* \in V^* \).

pages 334-337: see a rewriting in [Sh:E11]

page 334, line -4 replace by:

(2) The first phrase follows from part 1 and check the second

page 335, line 4: replace “\(f \upharpoonright b [\mu] \leq f^{\mu +}_{\omega} \)” by “\(f \upharpoonright b [\mu] \leq f^{\mu +}_{\omega} \)”}

page 336, line 3: replace \(b \) by \(c \)

page 336, line -7: replace \(\Box_{3,3} \) by \(\Box_{3,2} \)

page 381, lemma 3.5 and page 383, line 21: No! But see [Sh:400, 5.12] and [Sh:513, §6]

page 410, line -1: replace by: \(\{ \delta < \sigma : \text{cov}(\lambda_5, \lambda_5, \theta^+, 2) < \mu_5 \} \) contains a club of \(\sigma \), where

(1) let \(\mu_5 \) be \(\text{pp}^{\sigma}(\lambda_5) \) the first regular \(\mu > \lambda_5 \) such that:

if \(a \subseteq \text{Reg} \cap \lambda_5 \setminus \lambda_5^{+} \), then \(\sup \{ \max \text{pcf}(b) : b \subseteq a, |b| \leq \theta \text{ and } (\forall \chi < \lambda_5) \text{ max pcf}(b \cap \chi) < \lambda_5 \} \) (so normally this means \(\text{cov}(\lambda_5, \lambda_5, \theta^+, 2) =^{+} \text{pp}_{\theta}(\lambda_5) \)).

page 411, line 1: replace by:

(2) \(\text{cov}(\lambda, \lambda, \theta^+, 2) < \text{pp}^{\sigma}(\lambda) \) which normally means \(\text{cov}(\lambda, \lambda, \theta^+, 2) =^{+} \text{pp}_{\theta}(\lambda) \), e.g. if \(\text{cov}(\lambda_i, \theta^+, \theta^+, 2) < \lambda \) for a club of \(i < \sigma \)
(iii) if e.g. \(\sigma^{\aleph_0} < \lambda \), then we can add \(\{ \delta < \sigma : \text{if } \text{cf}(\delta) = \aleph_0 \text{ then } \text{pp}_{j_n}(\lambda_\delta) > \text{cov}(\lambda_\delta, \lambda_\delta, 2) \} \) contains a club (for the changes needed for the proof see below, Part C).

Page 417, line 11: add:
Here examples are constructed for \(\lambda \) singular and in [Sh:572] for \(\lambda = \aleph_1 \) which was the last case.

Page 418, line 20: sequence of ubnot sequence of ...
§ 17 Short Expansions

Page 50, line 22: add: [this is the proof of II,1.4(3)].

Case 1: otp(A) is zero.
Trivial.

Case 2: otp(A) is a successor ordinal.
Let α be the last member of A and let A' by A\{α}. Clearly the order type of A' is (strictly smaller than that of A) hence by the induction hypothesis we can find s'_β ∈ i for β ∈ A' as required. Define s_β for β ∈ A as follows:
if β = α, then s_β = 0 and if β ∈ A' then s_β := {i < κ : i ∈ s'_β or f_α(i) ≤ f_β(i)}.
Now s_β is a subset of κ and if β = α is the union of two sets: s'_β and {i < κ : f_α(i) ≤ f_β(i)}, now the first belongs to I by its choice and the second as we know f_β < f_α (because β < α). So S_β, their union is in I, too.

This holds also in the case β = α. So s_β ∈ I for β ∈ A, and it is easy to check the requirements.

Case 3: otp(A) is a limit ordinal.
Let δ be sup(A), so is a limit ordinal. So by 1(ii)(δ) there is a closed unbounded subset C of δ and sets τ_α ∈ I for α ∈ C such that i ∈ κ\τ_α \ s_β and α < β implies f(i) < f_β(i).
Without loss of generality 0 ∈ C (let t_0 :=: {i < κ : f_0(i) ≥ f_{Min(A)}(i)}).
Now for every α ∈ C let A_α := A∩[α, Min(A\{α+1})]. Clearly otp(A_α) < otp(A), let A'_α := A_α ∪ {α}. So otp(A'_α) = 1 + otp(A_α) < otp(A) (as the latter is a limit ordinal). So we can apply the induction hypothesis, getting s'_β for β ∈ A'_α as guaranteed there.

Now we define s_β for β ∈ A as follows: let αβ := sup(C ∩ β) and γ_β := Min(A\{α+1}). So β ∈ A_αβ hence s'_β is well defined and let s_β := s'_β ∩ {i < κ: it is not true that f_αβ(i) ≤ f_β(i)}.
Now check.

* * *

Page 51, line 13: add to the end of line (this is line 7 of the proof of II,1.5A).
Of course, we do not have knowledge on the relation between f_α(i) and f_β(j), so we just e.g. use f'_α defined by f'_α(i) := κf_α(i) + i (so f'_α is a function from κ to λ (as κ < λ)). Now (f'_α : α < µ) is as required (note that ⟨{f_α(i) : i < µ} : i < κ⟩ is a sequence of pairwise disjoint subsets of λ).
§ 19. More on II.3.5

This refinement is used in [Sh:810].

Claim 19.1. Assume

(a) $a = \{\lambda_i : i < \delta\}$ is an increasing sequence of regular cardinals $> \delta$
(b) $\lambda = \text{tcf}(a, <_{pcf})$
(c) $\lambda_0 > 2^{[a]}$ for $i < \delta$ or just $i < \delta \Rightarrow \lambda_0 > |\text{pcf}(a)\lambda_i|
(d) $\text{cf}(\delta) > \aleph_0$
(e) $S := \{i < \delta : \text{for some } i_0 < i_1, \text{pcf}\{\lambda_j : i_0 < j < i_1\} \ni \sum_{j<i} \lambda_j \text{ is a singleton and } \text{cardinal } < \gamma \rightarrow \sup \lambda_j \}$ is stationary.

Then we can find $(f_\alpha : \alpha < \lambda)$ such that

(a) $f_\alpha \in \prod_{i<\delta} \lambda_i$ is $<_{pcf}$-increasing and cofinal
(b) if $f \in \prod_{i<\delta} \lambda_i$ and $(\forall i < \delta)(\exists \alpha < \lambda)(f \upharpoonright i \neq f_\alpha \upharpoonright i)$ then $f \in \{f_\alpha : \alpha < \lambda\}.$

Remark 19.2. This is just the proof of [Sh:c, Ch.II.3.5], just we use more of it.

Proof. Let $\mu = \sum_{i<\delta} \lambda_i$ and $\mu_j = \sum_{i<\delta} \lambda_i$ for $j < \delta.$

Recall $a = \{\lambda_i : i < \delta\},$ so $\min(a) = |\mu \cap \text{pcf}(a)|.$ Let $\bar{b} = \langle b_\theta : \theta \in \text{pcf}(a)\rangle$ be a generating sequence for $\text{pcf}(a).$ Choose $\langle f^\theta : \theta \in \text{pcf}(a)\rangle$ as in claim 19.4 below. Now we let $\mathcal{F} = \{f \in \prod_{i<\delta} \lambda_i : \text{for every } \theta \in \text{pcf}(a) \text{ for some } n < \omega \text{ and } \theta_0 < \ldots < \theta_{n-1} \text{ from } \text{pcf}(b_\theta) \text{ and } a_0 < \theta_0, \ldots, a_{n-1} < \theta_{n-1} \text{ we have } f \upharpoonright b_\theta = \max\{f_{a_0}^\theta, \ldots, f_{a_{n-1}}^\theta : \ell < n\}\}.$

Let $f_\alpha := f_{a_\alpha}^\theta$ for $\alpha < \lambda.$

First clearly

(**) $\alpha < \lambda \Rightarrow f_\alpha \in \mathcal{F}.$

Secondly, the main point is

(***) 2 if $f', f'' \in \mathcal{F}$ then $f' <_{pcf} f''$ or $f' = f'' <_{pcf} f''.$

Why (***) holds? gives $f', f'' \in \mathcal{F}$ let $c_1 = \{\theta \in a : f'(\theta) < f''(\theta)\}, c_2 = \{\theta \in a : f'(\theta) = f''(\theta)\}$ and $c_3 = \{\theta \in a : f'(\theta) > f''(\theta)\},$ so $\langle c_1, c_2, c_3 \rangle$ is a partition of $a.$

Let $E = \{i < \delta : \text{for } \ell = 1, 2, 3 \text{ if sup}(c_\ell) = \sup(a) \text{ then sup}(c_\ell \cap \lambda_i) = \sup(a \cap \lambda_i) \text{ and if sup}(c_\ell) < \sup(a) \text{ then sup}(c_\ell) < \lambda_i \text{ for some } j < i\}.$

Clearly E is a club of δ by clause (c) of the assumption, $S \subseteq E = \emptyset,$ so let $i \in S \cap E$ and let θ_i be the single member of $\text{pcf}(a \cap \lambda_i) \mu_i = \text{pcf}(\{\lambda_j : j < i\}) \mu_i$ (recall the definition of S). So b_{θ_i} contains an end-segment of $a \cap \lambda_i.$ - say $b'.$ By the choice of \mathcal{F} and the assumption $f', f'' \in \mathcal{F}$ and the choice of $\theta_i,$ we know that for some end segment b'' of $b', f' \upharpoonright b'' \in \{f_{a_\alpha}^\theta \upharpoonright b'' : \alpha < \theta_i\}$ and without loss of generality also $f'' \upharpoonright b'' \in \{f_{a_\alpha}^\theta \upharpoonright b'' : \alpha < \theta_i\}.$ So for some $\beta', \beta'' < \theta_i$ we have $f' \upharpoonright b'' = f_{a_\alpha}^\theta \upharpoonright b''$ and $f'' \upharpoonright b'' = f_{a_\alpha}^\theta \upharpoonright b''.$

Now $\beta' < \beta''$ or $\beta' = \beta''$ or $\beta' > \beta''$ and accordingly we get one of the three possibilities in (***)2.

Now clearly we are done. $\square_{19.1}$
Claim 19.3. 1) In 19.1 we can weaken assumption (e) to

(e)

letting $\langle \mu_i : i < \sigma \rangle$ be increasing continuous with limit $\sup(\mathfrak{a})$ so $\sigma = \cf(\sup(\mathfrak{a}))$ for some normal filter D on $\cf(\sup(\mathfrak{a})) = \cf(\delta)$ we have:

(e)

if $a' \subseteq a(=: \{ \lambda_i : i < \delta \})$ and $\sup(a') = \sup(\mathfrak{a})$ then $\{ i < \sigma : \max(\pcf(a' \cap \mu_i)) = \max(\pcf(\mathfrak{a} \cap \mu_i)) \} \in D$.

2) Assume \mathfrak{a} has no least element $\cf(\sup(\mathfrak{a})) > \aleph_0$ and $\lambda = \cf(\pi(\mathfrak{a}/J_{\mathfrak{a}}^{<\aleph_0}))$ and $\mu < \sup(\mathfrak{a})$ \Rightarrow $\max(\pcf(\mathfrak{a} \cap \mu)) < \sup(\mathfrak{a})$, (e.g. $\mathfrak{a} = \{ \lambda_i : i < \delta \}$ from 19.1 assuming clauses (a)-(d) of 19.1.

Then for some unbounded $a^* \subseteq a$, we have (clause (a), (b), (c) of 19.1 and) clause (e) α^* of part (1) holds (hence the conclusion of 19.1).

Proof. 1) Let $\mathfrak{a} = \{ \lambda_i : i < \delta \}$ such that λ_i is regular increasing with i.

We repeat the proof of 19.1. So our problem is that in proving $(*)2$, so we have $f', f'' \in \mathcal{F}$ and having defined the partition ξ_1, ξ_2, ξ_3 of \mathfrak{a}, at least two parts are unbounded in \mathfrak{a} say ξ_1, ξ_3.

$\exists \exists$ if $\theta \in \pcf(\xi_1) \setminus \{ \lambda \}$ then $b_\theta \setminus \xi_3 \in J_\theta[\mathfrak{a}]$.

[Why $\exists \exists$? As in the proof of 19.1, we know that $f', f'' \in \mathcal{F}$ hence for some $\xi \in J_{<\theta}[\mathfrak{a}]$ we have $f' \upharpoonright (b_\theta \setminus \xi), f'' \upharpoonright (b_\theta \setminus \xi)$ belongs to $\{ f_\theta \upharpoonright (b_\theta \setminus \xi) : \alpha < \theta \}$ and we continue as there.] Now for $\ell = 1, 2, 3$ we have $\sup(\xi_\ell) = \sup(\mathfrak{a}) \Rightarrow S_\ell := \{ j < \sigma : \max(\pcf(\xi_\ell \cap \mu_j)) = \max(\pcf(\mathfrak{a} \cap \mu_j)) = \cf(\sup(\mathfrak{a})) \} \in D$ also $E := \{ i : \sup(\mathfrak{a} \cap \mu_i) = \mu_i \}$ is a club of σ. Hence $S = E \cap S_1 \cap S_2 \cap S_3 \in D$.

So for the D-majority of $j < \sigma$ we have $\sup(\xi_1 \cap \mu_j) = \mu_j = \sup(\xi_3 \cap \mu_j)$ and $\max(\pcf(\xi_2 \cap \mu_j)) = \max(\pcf(\mathfrak{a} \cap \mu_j))$ and we get contradiction by $\exists \exists$.

2) We try to choose $\langle a_\eta : \eta \in {}^n\sigma \rangle$ by induction on $< \omega$ such that

(i) $a_{<\eta} = a$

(ii) $a_\eta \subseteq a_{n|n}$ for $\eta \in {}^{n+1}\sigma$

(iii) $\sup(a_\eta) = \sup(\mathfrak{a})$

(iv) for every $\eta \in {}^n\sigma$ for some club E_η of σ we have: for every $j \in E_\eta$ there is $i < j$ such that $\max(\pcf(a_{\eta \setminus <\eta} \cup \mu_j)) < \max(\pcf(a_{n|n} \cup \mu)$.

Now for $n = 0$ there is no problem and if $a_0, (a_\eta : \eta \in {}^n\sigma)$ has been chosen but there is no suitable $a_\eta : \eta \in {}^{n+1}\sigma$ then for some $\eta \in {}^n\sigma$ letting $\mathcal{P}_\eta = \{ \{ i < \sigma : \max(\pcf(b \cap i)) < \max(\pcf(a_\eta \cap i)) \} : b \subseteq a_\eta, \sup(b) = \sup(a_\eta) \}$, the normal ideal D_η (on σ) which \mathcal{P}_η generates satisfies $\emptyset \notin D_\eta$ so a_η, D_η are as required. Lastly, not all the a_η’s are defined as then we let $E = \{ i < \sigma : i$ a limit ordinal such that $\eta \in {}^n\eta \Rightarrow i \in E_\eta \}$, clearly E is a club of σ. Now for any $i \in E$, we choose by induction on $n < \omega$, a sequence $\eta_n \in {}^n\sigma$ such that $\eta_n \prec \eta_{n+1}$ and $\max(\pcf(a_{n})) > \max(\pcf(a_{\eta_{n+1}}))$. We let $\eta_0 = <\sigma$ and η_{n+1} exists by clause (iv). So $\langle \max(\pcf(a_{\eta_n}) : n < \omega \rangle$ is a strictly decreasing sequence of cardinals, a contradiction. So we are done.

Claim 19.4. Assume

(a) $|\pcf(a)| < \min(a), a$ as usual a set of regular cardinals
(b) $b = \langle b_\theta : \theta \in [a] \rangle$ a generating sequence for pcf(a) (exists by \textit{x.x - FILL}) which is closed (i.e. $\mu \in b_\theta \Rightarrow b_\mu \subseteq b_\theta$) and smooth (i.e. pcf($b_\mu$) $\cap a = b_\mu$).

We can choose by induction on $\theta \in$ pcf(a), $f^\theta = \langle f^\theta_\alpha : \alpha < \lambda \rangle$ such that

(α) $f^\theta_n \in \Pi b_\theta$ is $<_{\text{cf}[b_\theta]}$-increasing and cofinal

(β) if $\theta \in$ pcf(a), $\alpha < \theta$ and $\mu \in b_\theta$ then for some $n < \omega, \mu_0, \ldots, \mu_{n-1} \in$ pcf(b_μ) and $\beta_0 < \mu_0, \ldots, \beta_{n-1} < \mu_{n-1}$ and $\beta < \mu \iff b_\mu = \text{Max}(\{f^\mu_\beta : \beta < n\})$.

Proof. This is a restatement of [Sh:2g, Ch.VII, §1].

Claim 19.5. Assume κ is regular and $\bar{\theta} = \langle \theta_i : i < \kappa \rangle$ is a sequence of regular cardinals $> \kappa^+$. Then for some u, E, λ, λ and D we have:

(a) $u \subseteq \kappa$ is unbounded
(b) $\lambda = \text{tecf}(\prod_{i \in u} \theta_i, <_{\text{tef}[\bar{\theta}]})$
(c) $E := \{ \delta < \kappa : \delta$ a limit ordinal and $\delta = \sup(u \cap \delta) \}$
(d) $\lambda = (\lambda_\delta : \delta \in E)$
(e) $\lambda_\delta = \max\text{pcf}(\theta_i : i \in u \cap \delta \setminus j)$ for every $j \in [\delta_\delta, \delta)$
(f) $\lambda = \text{tecf}(\prod_{i \in u} \theta_i, <_{\text{tef}[\bar{\theta}]})$

(g) \mathcal{D} is a normal filter on κ extending \mathcal{D}_κ

(h) if $A \in \mathcal{D}^+, \nu_3 \subseteq u \cap \delta, \delta_3 < \delta, \lambda_3 \geq \max\text{pcf}(\theta_i : i \in u \cap \delta \setminus v_3 \setminus j_3)$ for $\delta \in A$

then $\cup\{v_3 : \delta \in A\}$ is a co-bounded subset of u.

Remark 19.6. We can add:

(i) if v is an unbounded subset of u then the set $\{i < \kappa : \max\text{pcf}(\{\theta_j : j \in i \cap v\})\}$ belongs to \mathcal{D}.

FILL - Saharon.

Proof. By the pcf theorem there is $u_0 \in [\kappa]^\kappa$ such that

(\ast) $\lambda = \text{tecf}(\prod_{i \in u_0} \theta_i, <_{\text{tef}[\bar{\theta}]})$ is well defined.

Now for every $u \in [u_0]^{<\kappa}$ we define E_u and $\langle \lambda^u_\delta : \delta \in E_u \rangle$ as in clauses (c),(e) and stipulate $\lambda^u_\delta = \theta_i$ for $i \in \kappa \setminus E_u$ and let $\bar{\lambda}^u = (\lambda^u_\delta : i < \kappa)$. So $\gamma_u = \text{rk}_{\mathcal{D}_u}(\bar{\lambda}^u : i < \kappa)$ is a well defined ordinal and we can choose $u_1 \in [u]^{<\kappa}$ such that γ_u_1 is minimal. Let $\mathcal{D}_u^* = \{ A \subseteq \kappa : A \in \mathcal{D}_u \}$ or $A \in \mathcal{D}_u^+ \setminus \mathcal{D}_u$ and $\gamma_u_1 < \text{rk}_{\mathcal{D}_u^+(\kappa \setminus A)}((\lambda^u_\delta : i < \kappa))$.

As for clause (h), but [Sh:589], \mathcal{D}_u is a normal filter on κ (extending \mathcal{D}_κ). For proving assume that $A \in \mathcal{D}_u^+, \bar{v} = (v_3 : \delta \in A), j = \langle j_3 : \delta \in A \rangle$ and $v_3 \subseteq u_1 \cap j_3 \cap \delta, j_3 < \delta$ and $\lambda^u_{j_3} > \max\text{pcf}(\theta_i : i \subseteq \delta \cap u_1 \setminus v_3 \setminus j_3)$.

We should prove that $v := u_1 \cup \{v_3 : \delta \in A\}$ is bounded in κ. Toward contradiction assume $\kappa = \sup(v)$ and we shall prove that $\gamma_e < \gamma_u$, thus deriving the desired contradiction

$$(**)_1 \quad \gamma_u_1 = \text{rk}_{\mathcal{D}_u}(\bar{\lambda}^u_1).$$

But by the choice of \mathcal{D}_u

$$(**)_2 \quad \text{rk}_{\mathcal{D}_u}(\bar{\lambda}^u_1) = \text{rk}_{\mathcal{D}_u^+(\bar{\lambda}^u_1)}.$$
Now clearly by our assumption
\[(**)_3 \delta \in A \Rightarrow \lambda^v_\delta < \lambda^u_\delta, \]
hence
\[(**)_4 \lambda^v < \lambda^u_1 \text{ mod } (\mathcal{G}_\kappa + A) \text{ hence } \]
\[(**)_5 \text{ rk}_{\mathcal{G}_\kappa + A}(\lambda^u_1) = \text{ rk}_{\mathcal{G}_\kappa + A}(\lambda^v). \]

Now by a monotonicity property of rk\(D(\lambda^v)\) in \(D\)
\[(**)_6 \text{ rk}_{\mathcal{G}_\kappa + A}(\lambda^v) \geq \text{ rk}_{\mathcal{G}_\kappa}(\lambda^v). \]

But
\[(**)_7 \text{ rk}_{\mathcal{G}_\kappa}(\lambda^v) = \gamma_v. \]

Together \((**)_1 - (**)_7\) gives \(\gamma_u_1 > \gamma_v\), contradicting the choice of \(u_1\). The contradiction comes from assuming that \(v\) is unbounded in \(\kappa\), so \(\sup(v) < \kappa\), thus finishing the proof of clause (h) and of the claim. \(\square_{19.5}\)

\{k.6\}

Remark 19.7. We can replace \((J^{bd}, \mathcal{G}_\kappa)\) by other such pairs (on \(\kappa\) or \([\mu]^{< \kappa}\) or ...

Saharon: phrase

\{k.7\}

Observation 19.8. Assume \(\theta = \text{ cf}(\theta)\) and \(\lambda = (\theta_i : i < \kappa)\) is an increasing sequence of regular cardinals \(> \kappa^+\) and \(\lambda = \text{ tcf}(\Pi \theta_i, < J^{\text{bd}}_\kappa).\) Then we can find an \(u, \mathcal{F}, \bar{f}\) such that

(a) \(u \subseteq \kappa\) is unbounded
(b) \(\bar{f} = (f_\alpha : \alpha < \lambda)\) such that
(c) \(f_\alpha \in \prod_{i \in u} \theta_i\)
(d) \((f_\alpha : \alpha < \lambda)\) is \(< \J^{\text{bd}}_u\)-increasing cofinal in \((\prod_{i \in u} \theta_i, < \J^{\text{bd}}_u)\)
(e) \(\mathcal{F} \subseteq \prod_{i \in u} \theta_i\) includes \(\{f_\alpha : \alpha < \lambda\}\) and \(|\{f \upharpoonright \delta : f \in \mathcal{F}\}| \leq \lambda_\delta\) for \(\delta \in E\)
(f) if \(f \in \prod_{i \in u} \theta_i\) for every \(j < \theta\) for some \(g \in \mathcal{F}\) we have \(f_\alpha \upharpoonright (j \cap u) = g \upharpoonright (j \cap u)\)
then \(f \in \mathcal{F}\)
(g) \(\mathcal{F}\) is linearly ordered by \(< J^{\text{bd}}_u\).

Let \(u, E, (\lambda_i : i < \kappa), \mathcal{G}\) be as in the previous claim. As we can ...?

For \(j \in E_i\) let \(J_j = \{v \subseteq u \cap j : \text{ max pcf}(\lambda_i : i \in [j', j) \cap u) < \lambda_i \text{ for some } j' < j\}\). For each \(\delta \in E_u\) choose \((f_\alpha^\delta : \alpha < \lambda^u_\delta)\) such that

\(\otimes_\delta\)

(a) \(f_\alpha^\delta \in \prod_{i \in u \cap \delta} \theta_i\)
(b) \(\bar{f}^\delta = (f_\alpha^\delta : \alpha < \lambda^u_\delta)\) is \(< \J_\delta\)-increasing and cofinal in \((\prod_{j \in u \cap \delta} \theta_i, < \J_\delta)\)
(c) if \(\bar{f}^\delta \upharpoonright \delta\) has a \(< \J_\delta\)-l.u.b. then \(f_\alpha^\delta\) is an increasing \(< \J_\delta\)-l.u.b.

Let

\(\otimes \mathcal{F}^* = \{f \in \prod_{i \in u} \lambda_i : \text{ for each } \delta \in E \text{ for some } \alpha < \lambda^u_\delta \text{ we have } f \upharpoonright (u \cap \delta) = f_\alpha^\delta \text{ mod } J^u_\delta\}.)
For \(f \in \mathcal{F} \) let \(g^+_f(\delta) = \alpha, \alpha \) as above (clearly it is unique). By \([\text{Sh}e, \text{xxx}]\) - FILL

\(\circ \) we can find \(f_\alpha \in \mathcal{F} \) for \(\alpha < \lambda \) such that \(\bar{f} \) is \(<_{J^{bd}_u} \)-increasing cofinal in \(\prod_{i \in u} \lambda_i, <_{J^{bd}_u} \) (and if \(\alpha > \kappa \), \(\bar{f} \) has a \(<_{J^{bd}_u} \)-e.u.b. then \(f_\alpha \) is such \(<_{J^{bd}_u} \)-e.u.b..

Assume toward contradiction

\(\nabla f_1, f_2 \in \mathcal{F} \) and \(u_1 = \{ i \in u : f_1(i) < f_2(i) \} \) is unbounded in \(\kappa \) and also \(u_2 := u \setminus u_1 \) is unbounded \(\theta \kappa \).

Now \(E \) is partitioned to \(A_1 = \{ \delta \in E : g^f_1(\delta) < g^f_2(\delta) \} \) and \(A_2 = \{ \delta \in E : g^f_1(\delta) \geq g^f_2(\delta) \} \). Hence for some \(\ell \in \{ 1, 2 \} \) we have \(A_\ell \in D^+ \). So for each \(\delta \in A_\ell \) we can find \(v_\delta \) such that

\((a) \ u \setminus v_\delta \in J_\delta \) and \(v_\delta \subseteq u \cap \delta \)

\((b) \ f_k \upharpoonright v_\delta = f^\delta_{g^f_k(\delta)} \upharpoonright v_\delta \) for \(k = 1, 2 \)

\((c) \) if \(\ell = 1 \) then \(g^f_1(\delta) < g^f_2(\delta) \) and \(f^\delta_{g^f_1(\delta)} \upharpoonright v_\delta < f^\delta_{g^f_2(\delta)} \upharpoonright v_\delta \)

\((d) \) if \(\ell = 2 \) then \(g^f_1(\delta) \geq g^f_2(\delta) \) and \(f^\delta_{g^f_1(\delta)} \upharpoonright v_\delta \geq f^\delta_{g^f_2(\delta)} \upharpoonright v_\delta \).

This is clearly possible.

Now if \(i \in v := \cup \{ v_\delta : \delta \in A_1 \} \) then \([f_1(i) < f_2(i) \iff \ell = 1] \) but by the previous claim (clause (b)) and clause (a), \(v \) is a co-bounded subset of \(u, f_1 < f_2 \) mod \(J^u_{boi} \) or \(f_2 \leq f_1 \) mod \(J^u_{boi} \) so we are done.

\(\{ \kappa.8 \} \)

\textbf{Conclusion 19.9.} Assume \(\mu > \kappa = \text{cf}(\mu) > \aleph_0 \), \(\langle \mu_i : i < \kappa \rangle \) is increasing continuous sequence with limit \(\mu = \text{cf}(\mu) \leq \kappa \) and \(\text{pp}(\mu_i) < \mu_i + 1 \) for \(i < \kappa \). Then we can find \(\mathcal{F} \) as in 19.8 of cardinality (and cofinality) \(\text{pp}(\mu) \).
§ 20. More on III.4.10: Densely running away from Colours

Question 20.1. [Hajnal]: Let $\lambda = (2^{\aleph_0})^+$. Is there $c : [\lambda]^2 \rightarrow \omega$ such that

$$(\forall A \in [\lambda]^\lambda)(\forall n < \omega)(\exists B \in [A]^\lambda)(n \notin \text{Rang}(c \upharpoonright |B|^2))?$$

Answer: yes.

Clearly it is equivalent to the property $P_7(\lambda, \aleph_0, 2)$ defined below for $\lambda = (2^{\aleph_0})^+$. Now Claim 20.3 covers the case $\lambda = (2^{\aleph_0})^+$ and then we have more. We look again at [Sh:e, Ch.III.4.9-4.10C, pp.177-181].

Definition 20.2. $P_{\tau}(\lambda, \sigma, \theta)$ where $\lambda \geq \theta \geq 1$, $\lambda \geq \sigma = \text{cf}(\sigma)$ means that there is $c : [\lambda]^2 \rightarrow \sigma$ such that

$$(\forall A \in [\lambda]^\lambda)(\forall \alpha < \sigma)(\exists B \in [A]^\lambda)(\text{MinRang}(c \upharpoonright |B|^2) > \alpha)$$

(So far, θ is redundant). Moreover, if $w_\alpha \in [\lambda]^{<1+\theta}$ for $\alpha < \lambda$ are pairwise disjoint and $\zeta < \sigma$ then for some $X \in [\lambda]^\lambda$ we have

(*) if $\alpha < \beta$ are from X then $(\forall i \in w_\alpha)(\forall j \in w_\beta)(c(i, j) \geq \zeta)$.

Claim 20.3. Assume λ is a regular uncountable cardinal, $2 \leq \kappa < \lambda$ and \otimes^κ_X holds or just \otimes^κ_X (see below). Then there is a symmetric 2-place function c from λ to \aleph_0 such that:

(*) if $(w_i : i < \lambda)$ is a sequence of pairwise disjoint non-empty subsets of λ, $|w_i| < \kappa$ and $n < \omega$, width 8mm height 8mm depth 2mm then for $Y \in [\lambda]^\lambda$ for every $i < j$ from Y we have:

$$\max(w_i) < \min(w_j)$$

$$\bigwedge_{\alpha \in w_i} \bigwedge_{\beta \in w_j} c(\alpha, \beta) > n.$$

(i.e. $P_{\tau}(\lambda, \aleph_0, \kappa)$).

Note that Definition 20.4(1) is from [Sh:e, Ch.III.4.10, p.178].

Definition 20.4. 1) For a Mahlo (inaccessible) cardinal λ and $\kappa < \lambda$ let

\otimes^κ_X there is $C = \{C_\delta : \delta \in S^{\kappa}_m\}$, where $S^{\kappa}_m = : \{\delta < \lambda : \delta$ is inaccessible$\}, C_\delta$ a club of δ, such that: for every club E of λ for some $\delta \in \text{acc}(E) \cap S^{\kappa}_m$ of cofinality $\geq \kappa$, for $\text{max} \zeta < \kappa$ and $\alpha \in S^{\delta}_m$ (for $\varepsilon < \zeta$) do we have

(*) $\text{nacc}(E) \cap \delta \cup \bigcup_{\varepsilon < \zeta} C_{\alpha_\varepsilon}$ is bounded in δ.

2) For λ regular $> \kappa = \text{cf}(\kappa) \geq \aleph_0$, let

\otimes^κ_X there is $C = \{C_\delta : \delta \in S\}, S = \{\delta < \lambda : \delta$ limit$\}, C_\delta$ a club of δ such that: for every club E of λ for some $\delta \in \text{acc}(E)$ of cofinality $\geq \kappa$, for $\text{max} \zeta < \kappa$ and $\alpha \in S$ (for $\varepsilon < \zeta$) do we have

(*) $\text{max}(S^\lambda_{\geq \kappa} \cap E) \cup \bigcup_{\varepsilon < \zeta} C_{\alpha_\varepsilon}$ is bounded in δ where $S^\lambda_{\geq \kappa} = \{\delta < \lambda : \text{cf}(\delta) \geq \kappa\}$.

\textbf{Remark 20.5.} 1) For \(\lambda\) Mahlo, the property \(\otimes^2_{\lambda}\) holds if there are stationary subsets \(S_i\) of \(\lambda\) for \(i < \lambda\) such that for no \(\delta < \lambda\), \(\bigwedge_{i < \delta} [S_i \cap \delta\ a\ stationary\ in\ \delta]\) (we can consider only \(\delta\) inaccessible).

[Why? Choose \(C_\delta\) a club of \(\delta\) disjoint to \(S_i\) for some \(i(\delta) < \delta\), such that \(\min(C_\delta) > \delta(\delta)]\).

2) This is close to [Sh:276, §3], see [Sh:g, Ch.III,2.12]. As in [Sh:276, §3], the proof is done such that from appropriate failures of Chang conjectures or existence of colourings we can get stronger colourings here. For the result as stated also \(c(\beta, \alpha) = \ell g(\rho(\beta, \alpha))\) is O.K., but the proof as stated is good for utilizing failure of Chang conjecture (as in [Sh:276, §3]).

3) Note that \(\otimes^2_{\lambda}\) is closely related to \(\otimes_{\lambda}^\ast\) from [Sh:g, Ch.III,2.12]. Also if \(\kappa \leq \aleph_0\), then in \(\otimes^2_{\lambda}\) we can replace \(nacc(E)\) by \(E\).

4) Note that \(\lambda\) weakly compact fails even \(\otimes^2_{\lambda}\) and forcing notion \(P\) which is \(\theta\)-c.c.

\textbf{Observation 20.6.} In Definition 20.4 in (\(\ast\)) and (\(\ast\))' if \(\kappa \leq \aleph_0\) it does not matter whether we write \(E\) or \(nacc(E)\).

\textbf{Observation 20.7.} 1) \(\otimes^2_{\lambda}\) implies \(\otimes_{\lambda}^{\kappa_0}\).

2) \(\otimes^2_{\lambda}\) implies \(\otimes_{\lambda}^{\kappa_0}\).

3) If \(\kappa_1 < \kappa_2 < \lambda\) then \(\otimes^2_{\lambda} \Rightarrow \otimes_{\lambda}^{\kappa_1}\) and \(\otimes^2_{\lambda} \Rightarrow \otimes_{\lambda}^{\kappa_2}\).

4) \(\otimes_{\lambda}^{\kappa_0} \Rightarrow \otimes_{\lambda}^{\kappa_1}\) if \(\lambda\) is inaccessible \(> \aleph_0\).

\textbf{Proof.} 1) Let \(C\) exemplify \(\otimes^2_{\lambda}\) and we shall show that it exemplifies \(\otimes_{\lambda}^{\kappa_0}\), assume not and let \(E\) be a club of \(\lambda\) which exemplifies this. We choose by induction on \(k < \omega\) a club \(E_k\) of \(\lambda\) : \(E_0 = E\), if \(E_k\) is defined let

\[A_k = \{\delta < \lambda : \delta \in acc(E_k) \cap S^\lambda_{\alpha}\ and\ for\ no\ \alpha \in S^\lambda_{\min} is\ E_k \cap \delta\langle C_\alpha\ bounded\ in\ \delta\}\}.

As \(C\) exemplifies \(\otimes^2_{\lambda}\) clearly \(A_k\) is a stationary subset of \(\lambda\) and let

\[E_{k+1} = \{\delta \in E_k : \delta = \sup(A_k \cap \delta)\}\]

Let \(\delta(\ast) = \bigcap_{k < \omega} E_k\) which necessarily belong \(\subseteq\ E\). By the choice of \(E\) we can find \(n < \omega = \kappa\) and \(\alpha \in S^\lambda_{\ell}\) for \(\ell < n\) such that \(nacc(E) \cap \delta(\ast) \cup C_{\alpha\ell}\) is bounded in \(\delta(\ast)\). Now we choose by induction on \(k \leq n, \delta_k \in acc(E_{n+1-k})\) such that \(\delta_k \leq \delta(\ast)\) and \(nacc(E_{n+1-k}) \cap \delta_k \cup C_{\alpha\ell}\) is bounded in \(\delta_k\). For \(k = 0\) any large enough \(\delta \in \delta(\ast) \cap E_{n+1}\) is O.K. For \(k + 1\) use the definition of \(E_{n+1-k}\). For \(k = n, \delta_n\ gives\ a\ contradiction\ to\ the\ choice\ of\ E\).

2) Same proof replacing \(S^\lambda_{\kappa}\) by \(S^\lambda_{\kappa'}\).

3) The same \(C\) witnesses it.

4) Here \(\lambda\) is inaccessible. That is, we have to show that:

the version with \((\ast)\) ⇒ the version with \((\ast)\)'.

Let \(C' = \langle C'_{\delta} : \delta \in S^\lambda_{\kappa}\rangle\) exemplifies \(\otimes^2_{\lambda}\). We define \(S = \{\delta < \lambda : \delta\ \text{limit}\}\) and \(C = \langle C_{\delta} : \delta \in S\rangle\) as follows: if \(\delta \in S^\lambda_{\kappa}\) we let \(C_{\delta} = C'_{\delta}\) and if \(\delta \in S\setminus S^\lambda_{\kappa}\) let \(C_{\delta}\) be a club of \(\delta\) of order type \(\text{cf}(\delta)\) with \(\text{cf}(\delta) < \delta \Rightarrow \text{Min}(C_{\delta}) > \text{cf}(\delta)\) and if \(\delta\)
is a successor cardinal, say θ^+ then $\text{Min}(C_\beta) > \theta$ (possible as $\delta \notin S_\kappa^\lambda \Rightarrow \text{cf}(\delta) < \delta \vee (\exists \psi < \delta)(\delta = \theta^+)$). We shall show that $(C_\delta : \delta \in S)$ exemplify \otimes_{κ}^δ.

Given a club E of λ let $E_0 = \{ \delta \in E : \delta$ a limit cardinal $\otimes (\delta \cap E) = \delta$ and $\delta > \kappa \}$ and $E_1 = \{ \delta \in E_0 : \otimes (\delta \cap E_0)$ is divisible by $\kappa^+ \}$, so E_1 is a club of λ by the version with (\ast) there is $\delta \in \text{acc}(E_1) \cap S_\kappa^\lambda$ hence $\text{cf}(\delta) > \kappa$ satisfying (\ast), i.e. the requirement in $??$; we shall show that it satisfies the requirement in $??$ thus finishing.

So let $\zeta < \kappa$ and $\alpha_\zeta \in S$ for $\zeta < \kappa$ and we should prove that $Y =: S_{\zeta \kappa}^\alpha \cap E \setminus \bigcup C_{\alpha_\zeta}$ is unbounded in δ, so fix $\beta^+ < \zeta$ and we shall prove that $Y \cap (\beta^+, \delta) \neq \emptyset$ thus finishing.

Let ζ be the disjoint union of u_0, u_1, u_2 where $u_0 = \{ \zeta < \kappa : \alpha_\zeta < \delta \}, u_1 = \{ \zeta < \kappa : \alpha_\zeta \geq \delta \}$ and $\alpha_\zeta \in S_\zeta^\lambda \cap \zeta \in S_\zeta^\lambda$.

By the choice of δ we know that $Y_2 = \text{acc}(E_1) \cap \delta \setminus \bigcup C_{\alpha_\zeta}$ is unbounded in δ. As $\text{cf}(\delta) \geq \kappa$ (see its choice, i.e. $\delta \in \text{acc}(E) \cap S_\kappa^\lambda \cap \text{Min}(E) > \kappa$), we can find $\beta \in Y_2$ such that $\beta < \delta, \beta > \beta^+$ and $\beta > \alpha_\zeta$ for $\zeta < u_0$.

Now $\text{cf}(\beta) = \kappa^+$ as $\beta \in Y_2 \subseteq \text{acc}(E_1)$ and the choice of E_1. Also $\zeta \in u_0 \Rightarrow \text{sup}(C_{\alpha_\zeta}) < \beta$ and $\zeta \in u_2 \Rightarrow \text{sup}(C_{\alpha_\zeta} \cap \beta) < \beta$ (as otherwise $\beta \in C_{\alpha_\zeta}$ contradicting $\beta \in Y_2$), so we can find $\beta_0 < \beta$ such that $\zeta \in u_0 \cup u_2 \Rightarrow \text{sup}(C_{\alpha_\zeta} \cap \beta) < \beta_0$.

Now for $\zeta < \kappa$, if $C_{\alpha_\zeta} \cap (\beta_0, \beta) \neq \emptyset$ then $\zeta \in u_1$, so by the choice of C_{α_ζ} we know $|C_{\alpha_\zeta}| = \text{cf}(\alpha_\zeta) < \text{Min}(C_{\alpha_\zeta}) < \beta$, noting that β is a cardinal as E_0 is a set of cardinals. By the definition of E_0, E_1 we know that $E \cap S_\kappa^\lambda \cap \beta$ has cardinality β hence $E \cap S_\kappa^\lambda \setminus \beta_0$ has cardinality β, so we finish.

$\square_{\text{20.6}}$

Proof. By $20.11(4)$ without loss of generality \otimes_{λ}^κ, so let \bar{C} be as required in \otimes_{λ}^κ.

We define e_α for every ordinal $\alpha < \lambda$ as follows:

(a) if $\alpha = 0, e_\alpha = \emptyset$

(b) if $\alpha = \beta + 1, e_\alpha = \{ 0, \beta \}$

(c) if α is a limit ordinal, then we let $e_\beta = C_\alpha \cup \{ 0 \}$.

Let S be the set of limit ordinals $\leq \lambda$. For $\alpha < \beta$ we define by induction on $\ell \leq \omega$ the ordinals $\gamma_\kappa^+(\beta, \alpha), \gamma_\kappa^-(\beta, \alpha)$.

$\ell = 0$: $\gamma_\kappa^+(\beta, \alpha) = \beta, \gamma_\kappa^-(\beta, \alpha) = 0$

$\ell = k + 1$: $\gamma_\kappa^+(\beta, \alpha) = \text{min}(e_{\gamma_{\kappa}^+(\beta, \alpha)} \cap \alpha) \alpha \leq \gamma_{\kappa}^+(\beta, \alpha)$ and $\gamma_\kappa^-(\beta, \alpha) = \text{sup}(e_{\gamma_{\kappa}^+(\beta, \alpha)} \cap \alpha) \alpha \leq \gamma_{\kappa}^+(\beta, \alpha)$

Note that $\gamma_\kappa^-(\beta, \alpha) < \alpha \leq \gamma_{\kappa}^+(\beta, \alpha)$ if they are defined and then $\ell > 0 \Rightarrow \gamma_{\kappa}^+(\beta, \alpha) < \gamma_{\kappa}^-(\beta, \alpha)$ (prove by induction). So if $\alpha < \beta < \lambda$ for some $k = k(\beta, \alpha) < \omega$ we have: $\gamma_{\kappa}^+(\beta, \alpha)$ is defined iff $\ell \leq k$ and: $\gamma_{\kappa}^-(\beta, \alpha)$ is defined iff $\ell < k \vee [\ell = \text{Kand}(\gamma_{\kappa}^+(\beta, \alpha) = \alpha]$ and: $\gamma_{\kappa}^+(\beta, \alpha) = \alpha$ or $\alpha \in \text{acc}(e_{\gamma_{\kappa}^+(\beta, \alpha)})$. Let $\rho(\beta, \alpha) = (\gamma_{\kappa}^+(\beta, \alpha) : \ell \leq k(\beta, \alpha))$. (Note (we shall use it freely):

$\otimes_{\ell \leq k}$ if $\gamma < \alpha < \beta, k \leq k(\beta, \alpha)$ and $\gamma_{\kappa}^-(\beta, \alpha)$ is defined and $\bigwedge_{\ell \leq k} \gamma_{\kappa}^-(\beta, \alpha) < \gamma$

then

(a) $\ell \leq k \Rightarrow \gamma_{\kappa}^+(\beta, \alpha) = \gamma_{\kappa}^+(\beta, \gamma)$

(b) $\ell \leq k \Rightarrow \gamma_{\kappa}^-(\beta, \alpha) = \gamma_{\kappa}^-(\beta, \gamma)$

(c) $k(\beta, \gamma) \geq k(\beta, \alpha)$ and $\rho(\beta, \alpha) \leq \rho(\beta, \gamma)$.

Now we define \(c(\alpha, \beta) = c(\beta, \alpha) = c(\alpha, \beta) \) for \(\alpha < \beta < \lambda \) as follows:

\[
c(\beta, \alpha) = k(\beta, \alpha) + 1.
\]

So assume \(\vec{w} = \{w_i : i < \lambda\} \) is a sequence of pairwise disjoint subsets of \(\lambda, |w_i| < \kappa \) and \(\eta(w) < \omega \). Without loss of generality for some \(\kappa^* < 1 + \kappa, \bigwedge_{i < \lambda} |w_i| = \kappa^* \) and \(i < \min(w_i) \) and \(i < j \Rightarrow \sup(w_i) < \min(w_j) \). Let \(w_i = \{\alpha_i^e : e < \kappa^*\} \). Let \(\chi \geq (2^{\kappa^*})^+ \) and we choose by induction on \(n < \omega \) and for each \(n \) by induction on \(i < \lambda, N^\beta_i \prec (\mathcal{F}(\chi), \in, <^*_\chi) \) such that \(\|N^\beta_i\| < \lambda, \{\{N^\beta_i : \epsilon \leq j\} : j < i\} \subseteq N^\beta_i, \vec{w} \in N^\beta_i \) increasing continuous in \(i \) and \(\{N^\beta_m : i < \lambda\} \subseteq N^\beta_m \) for \(m < n \).

Let us define for \(\ell < \omega \)

\[
E^\ell = \{\delta < \lambda : N^\beta_\ell \cap \lambda = \delta\}
\]

\[
S^\ell = \{\delta \in S^\lambda_{\geq \kappa} \cap \text{acc}(E^\ell) : \text{ for every } \zeta < \kappa \text{ and } \alpha_\zeta < \lambda \text{ for } \epsilon < \zeta \text{ do we have } \delta > \sup[S^\lambda_{\geq \kappa} \cap E^\ell \cap \delta] \cup \bigcup_{\ell < \zeta} C_{\alpha_\ell}\}.
\]

Note that \(\alpha < \lambda \Rightarrow (E^\ell, S^\ell) \in N^{\ell+1}_\alpha \) hence \(\delta \in E^{\ell+1} \Rightarrow \delta = \sup(\delta \cap S^\ell) \).

We know that \(S^\ell \) is a stationary subset of \(\lambda \) as \(E^\ell \) is a club of \(\lambda \) because \(\Theta^\lambda \) is a club and \(\delta \in S^\ell \).

Choose \(\delta_{n(*)} \in E^{2(n(*)+1)} \cap S^{2(n(*)+1)} \) and then choose \(\alpha(*) < \lambda \) such that \(\alpha(*) > \delta_{n(*)} \). We now choose by downward induction on \(m < n(*) \) ordinals \(\delta_m, \xi_m \) such that:

\[
(\ast)(i) \quad \delta_m < \delta_{m+1}
\]

\[
(ii) \quad \delta_m \in E^{2m} \cap S^{2m}
\]

\[
(iii) \quad \delta_m > \sup[\gamma_\ell(\beta, \delta_{m+1}) : \ell \leq k(\beta, \delta_{m+1})] \text{ and } \gamma_\ell(\beta, \delta_{m+1}) \text{ is well defined and } \beta \in \omega_{\alpha(*)}
\]

\[
(iv) \quad \delta_m \notin \bigcup[C_{\gamma} : \gamma = \gamma^+_k(\beta, \delta_{m+1})(\beta, \delta_{m+1}) \text{ for some } \beta \in \omega_{\alpha(*)}]
\]

\[
(v) \quad \xi_m < \delta_m, \xi_m < \xi^*_m \text{ if } m + 1 < n(*)
\]

\[
(vi) \quad \text{If } \alpha \in [\xi_m, \delta_m) \text{ then } (\forall \beta' \in \omega_{\alpha(*)})(\forall \beta'' \in \omega_{\alpha(*)})(\rho(\beta'', \delta_m) < \rho(\beta'', \beta'))
\]

[Why can we do it? Assume \(\delta_{m+1} \in S^{2(m+1)} \) has already been defined and we shall find \(\delta_{m+1}, \xi_{m+1} \) as required. Let \(Y_m = \{\gamma^+_k(\beta, \delta_{m+1}) : \ell \leq k(\beta, \delta_{m+1}) \text{ and } \gamma^+_k(\beta, \delta_{m+1}) \text{ is well defined and } \beta \in \omega_{\alpha(*)}\} \), so \(Y_m \) is a subset of \(\delta_{m+1} \text{ of cardinality } < \kappa \), but \(\delta_{m+1} \in S^{2(m+1)} \) (if \(m = n(*) - 1 \) by the choice of \(\delta_n \), if \(m < n - 1 \) by the induction hypothesis). But \(S^{2(m+1)} \subseteq S^\lambda_{\geq \kappa} \) hence \((\forall \delta \in S^{2(m+1)})[\rho(\delta) \geq \kappa]\), hence \(\sup(Y_m) < \delta_{m+1} \). Also as \(\delta_{m+1} \in E^{2(m+1)} \cap S^{2(m+1)} \) by the definition of \(S^{2(m+1)} \), there is \(\xi_{m+1} \in S^\lambda_{\geq \kappa} \cap E^{2(m+1)} \cap \delta \setminus \bigcup \{\leq \gamma : \text{ for some } \beta \in \omega_{\alpha(*)} \text{ we have } \gamma = \gamma^+_k(\beta, \delta_{m+1}) \} \sup(Y_m) \). As each \(\epsilon \) is closed and there are \(< \kappa \) of them \(\xi_m = \sup[\sup(Y_m) \cup \sup(\epsilon) \cap \xi_m] \) for some \(\beta \in \omega_{\alpha(*)} \) we have \(\gamma = \gamma^+_k(\beta, \delta_{m+1})(\beta, \delta_{m+1}) \) is \(< \xi^*_m \). So we can find \(\delta_m \in (\xi_m, \xi^*_m) \cap S^\lambda_{\geq \kappa} \cap E^{2m} \cap S^{2m} \) as required and choose \(\xi_m < \delta_m \) large enough.]
(\textasteriskcentered\textasteriskcentered) For every $\alpha \in [\zeta^*_0, \delta_0]$ we have
\[
(\forall \beta' \in w_\alpha)(\forall \beta'' \in w_\alpha)[c(\beta', \beta'') \geq n].
\]

[Why? By clause (vi) above.]

Let
\[
W = \{ \delta < \lambda : \delta > \zeta^*_0 \text{ and for some } \alpha'' \geq \delta \text{ we have for every } \alpha' \in (\zeta^*_0, \delta) \text{ we have } (\forall \beta' \in w_{\alpha'})(\forall \beta'' \in w_{\alpha''})[c(\beta', \beta'') \geq n] \}.
\]

As $\delta_0 \in E_0$ (see (\textasteriskcentered\textasteriskcentered)(i)i) so by E_0’s definition, $\delta_0 = N^0_\lambda \cap \lambda$ hence $\zeta_0 \in N^0_\lambda$. Now $\bar{w} \in N^0_\lambda$ (read definition) hence $W \in N^0_\lambda$ and by (\textasteriskcentered\textasteriskcentered) + (\textasteriskcentered\textasteriskcentered\textasteriskcentered) and W’s definition $\delta_0 \in W$, hence W is a stationary subset of λ. For $\delta \in W$, let $\alpha''(\delta)$ be as in the definition of W. So $E = \{ \delta^* : (\forall \delta \in W)(\alpha''(\delta) < \delta^*) \}$, it is a club of λ hence $W' = W \cap E$ is a stationary subset of λ and $(\alpha''(\delta) : \delta \in W')$ is as required. $\square_{20.3}

\{\text{ac.5}\}

\textbf{Conclusion 20.8.} If $\lambda = \text{cf}(\lambda) > \aleph_0$ is not Mahlo (or is Mahlo as in ?? or ??), $\kappa Then $\Pr_7(\lambda, \aleph_0, \aleph_0)$.

Proof. By 20.3 it suffices to prove $\nabla^\kappa_{\aleph_0}$. This holds by 20.9, 20.11 and 20.12 below. $\square_{20.3}$

\{\text{ac.5A}\}

\textbf{Claim 20.9.} 1) If $\lambda = \mu^+$ then $\nabla^\text{cf}(\mu)_{\lambda}$. 2) If λ is (weakly) inaccessible, not Mahlo or Mahlo as in 20.4(1), e.g. as in 20.5(1), and $\aleph_0 \leq \kappa < \lambda$ then ∇^κ_{λ}.

Proof. 1) Choose C_δ a club of δ of order type $\text{cf}(\delta)$.

Repeat the proof of ??, using $E_0 = \{ \delta < \lambda : \delta > \mu \text{ and } \text{otp}(E \cap \delta) = \delta \text{ is divisible by } \mu^2 \}$. The only point slightly different is $|C_{\alpha_0} \cap (\beta_0, \beta]| < |\beta| \text{ (now } \beta \text{ is not a cardinal)}$. For μ singular, $|C_{\alpha_0}| < |\beta| = |\beta \cap S^\lambda_{\geq \kappa} \cap E \setminus \beta_0|$, and for μ regular we choose δ of cofinality μ and everything is easy.

2) Now ∇^κ_{λ} holds trivially (choose a club E^*_0 of λ with no inaccessible member and choose C_δ a club of δ of order type $\text{cf}(\delta)$ such that $\text{cf}(\delta) < \delta \Rightarrow \text{Min}(C_\delta) > \text{cf}(\delta)$ and $\delta \notin E^* \Rightarrow \text{Min}(C_\delta) > \text{sup}(E^* \cap \delta)$, now for any club E choose $\delta \in \text{acc}(E \cap E^*)$). So we can apply ??.

$\square_{20.9}$

\{\text{ac.6}\}

\textbf{Definition 20.10.} $\Pr_8(\lambda, \mu, \sigma, \theta)$ means:

there is $c : [\lambda]^2 \rightarrow [\sigma]^{< \aleph_0} \setminus \emptyset$ such that width 8mm height 8mm depth 2mmif $w_\alpha \in [\lambda]^{< \theta}$ for $\alpha < \lambda$ are pairwise disjoint and $\zeta < \sigma$ width 8mm height 8mm depth 2mmthen for some $Y \in [\lambda]^\mu$ we have $\alpha' \in Y \text{ and } \alpha'' \in Y \text{ such that } \alpha' < \mu \Rightarrow \forall \beta' \in w_\alpha \forall \beta'' \in w_{\alpha''}[c(\beta', \beta'') \geq \kappa].$

\{\text{ac.7}\}

\textbf{Observation 20.11.} Note that $\Pr_8(\lambda, \lambda, \sigma, \theta) \Rightarrow \Pr_7(\lambda, \sigma, \theta)$ because we can use $c' : [\alpha, \beta] = \text{min}[c[\alpha, \beta]]$.

\{\text{ac.8}\}

\textbf{Claim 20.12.} 1) If λ is regular and $\aleph_0 \leq \sigma \leq \lambda$ then $\Pr_8(\lambda^+, \lambda^+, \sigma, \lambda)$.

2) If μ is singular, $\lambda = \mu^+$ and $\aleph_0 \leq \sigma \leq \text{cf}(\mu)$ then $\Pr_8(\lambda, \lambda, \sigma, \text{cf}(\mu))$.

3) If λ is inaccessible $\geq \aleph_0, S \subseteq \lambda$ stationary not reflecting in inaccessibles and $\sigma < \lambda, \theta = \text{Min}[\text{cf}(\delta) : \delta \in S]$ then $\Pr_8(\lambda, \lambda, \sigma, \theta)$.

Proof. The proofs in [Sh:g, Ch.III,§4] gives this - in fact this is easier. E.g.
1) Follows by Claim 20.3 (and [Sh:g, Ch.III,4.2(2),p.162]) but let us give some
details.

Let \bar{e} be as there (i.e. $\bar{e} = (e_\alpha : \alpha < \lambda^+), e_0 = \emptyset, e_{\alpha+1} = \{\alpha\}, e_\delta$ a club of δ
of order type $\text{cf}(\delta))$. Let $h : \lambda^+ \to \sigma$ be such that $\forall \zeta < \sigma(\exists \text{stat} \delta < \lambda^+)(\text{cf}(\delta) = \lambda \text{and } h(\delta) = \zeta)$.

Let $\gamma(\beta, \alpha), \gamma_e(\beta, \alpha), \rho_{\bar{h}}$ be as there (Stage A,p.164) and also the colouring d:
for $\alpha < \beta < \lambda^+$

$$d(\beta, \alpha) = \text{Max}\{h(\gamma_{\ell+1}(\beta, \alpha)) : \gamma_{\ell+1}(\beta, \alpha) \text{ well defined}\}.$$

By Stage B there the result should be clear. □

20.12

Hajnal has shown the following

Theorem 20.13. Assume $\lambda = (2^{<\kappa})^+, \kappa = \text{cf}(\kappa) > \omega, I$ is a normal ideal concentra-
trating on $S_{\kappa, \lambda} = \{\alpha < \lambda : \text{cf}(\alpha) = \kappa\}, \Gamma = \square [\lambda]^2$ is such that $\Gamma \not\subset [B]^2 \neq \emptyset$
for all $B \in I^+$ and $\Gamma = \bigcup\{\Gamma_{\eta} : \eta < \xi\}$ for some $\xi < \kappa$.

Then there exist I and T such that $I \subset J, T \subset \xi, J$ is a normal ideal and for all $\eta \in T$ and $B \in J^+$ we have

$$[B]^2 \cap \Gamma_{\eta} \neq \emptyset \text{ and } G \cap [B]^2 \subset \bigcup\{\Gamma_{\eta} : \eta \in T\}.$$

This comes from the following

Lemma 20.14. Assume $\lambda = (2^{<\kappa})^+, \kappa = \text{cf}(\kappa) > \omega$.

I is a normal ideal concentrating on $S_{\kappa, \lambda}, P$ is a partial order not containing
decreasing sets of type κ.

Assume further that

$$p : \mathcal{P}(\lambda) \to P \text{ and } p(A) \leq_p p(B) \text{ for } A \subset B.$$

Then there is an $A \in I^+$ and a normal ideal $J \supset I$ satisfying $B \in J$ iff $B \in I$ or
$p(B) \prec_p p(A)$ for $B \subset A$.

The following improves [Sh:g, Ch.IX,5.12,p.410].

Claim 20.15. 1) Assume

(a) $\sigma = \text{cf}(\sigma) > \aleph_0$
(b) $\langle \lambda_i : i < \sigma \rangle$ increasing continuous, $\lambda = \sup\{\lambda_i : i < \sigma\}$
(c) $\sigma \leq \theta < \lambda$ and $\sigma^{\aleph_0} < \lambda$
(d) $\text{cov}(\lambda_i, \lambda, \theta^+, 2) < \lambda$ for $i < \sigma$.

page 412: add at the end

{\bf Claim 20.15.} 1) Assume

(a) $\sigma = \text{cf}(\sigma) > \aleph_0$
(b) $\langle \lambda_i : i < \sigma \rangle$ increasing continuous, $\lambda = \sup\{\lambda_i : i < \sigma\}$
(c) $\sigma \leq \theta < \lambda$ and $\sigma^{\aleph_0} < \lambda$
(d) $\text{cov}(\lambda_i, \lambda, \theta^+, 2) < \lambda$ for $i < \sigma$.

\hfill{\bf \{5.13a\}}
Then

(a) \(p_{\theta}(\lambda) = + \) cov(\(\lambda, \lambda, \theta^{+}, 2 \)) and \(pp_{\mu}^{C}(\lambda) = \) cov(\(\lambda, \lambda, \theta^{+}, 2 \)) (on \(pp^{cr} \) see below).

(b) \(S^{*} = \{ \delta < \sigma : \text{cov}(\lambda_{\delta}, \lambda_{\delta}, \theta^{+}, 2) = pp_{\mu}^{C}(\lambda_{\delta}) \} \) contains a club of \(\sigma \).

2) Instead of \(\sigma^{\aleph_{0}} < \lambda^{+} \) it suffices

\(\otimes \) for some club \(C \) of \(\sigma \), width \(8 \) mm height \(8 \) mm depth \(2 \) mm if \(i < \delta \in C, \delta \) of \(\text{cov} \) \(\aleph_{0} \) and \(a \subseteq \lambda_{5} \) of cardinality \(\leq \lambda_{1} \) and \(a \) is a set of regular cardinals, then \(\lambda > \{ \text{tf}(\Pi_{\lambda_{\delta}}^{bd}) : b \subseteq a, \sup(b) = \lambda_{5}, \text{otp}(b) = \omega, \Pi_{\lambda_{\delta}}^{bd} \text{ has true cofinality} \} \). (So without loss of generality \(\lambda_{i+1} \) is above this cardinality.)

\(5.13b \)

Definition 20.16. Let \(J \) be an ideal on some ordinal \(\text{Dom}(J) \). We let \(pp_{\mu}^{C}(\lambda) = \text{Min}\{ \mu : \mu \text{ regular } \geq \lambda, \text{ and } \sup\{ \text{tf}(\Pi_{\lambda_{\delta}}^{bd}) : \lambda = \{ \lambda_{t} : t \in \text{Dom}(J) \}, \lambda \text{ strictly increasing with limit } \lambda \} < \mu \}. \)

Proof. 1) Similar to the proof of [Sh:g, Ch.IX,5.12]. We assume toward contradiction that the desired conclusion fails.

Without loss of generality

\(\ast_{0}(a) \) each \(\lambda_{i} \) is singular of cofinality \(< \sigma \)

\(\ast_{1}(b) \) \(\theta^{+3} < \lambda_{0} \) and \(\sigma^{\aleph_{0}} < \lambda_{0} \)

\(\ast_{2}(c) \) \(\text{cov}(\lambda_{i}, \lambda_{i}, \theta^{+}, 2) < \lambda_{i+1} \)

\(\ast_{3}(d) \) \(\mu \in (\lambda_{0}, \lambda_{1}) \Rightarrow pp_{\theta}(\mu) < \lambda_{i+1} \).

\[\text{[Why? Clearly we can replace } (\lambda_{i} : i < \sigma) \text{ by } \lambda | C = (\lambda_{i} : i \in C) \text{ for any club } C \text{ of } \sigma, \text{ hence it is enough to show that each of the demands holds for } \lambda | C \text{ for any small enough club } C \text{ of } \sigma. \text{ Now (a) holds whenever } C \subseteq \{ \lambda_{i} : i \in \text{lim} \}, \text{ clause (b) holds for } C \subseteq [\lambda_{0}, \sigma] \text{ when } \theta^{+3} < \lambda_{i}, \text{ and clause (c) holds as } \text{cov}(\lambda_{i}, \lambda_{i}, \theta^{+}, 2) < \lambda \] and use [Sh:g, Ch.II.5.3.10] + Fodor’s lemma and monotonicity of cov.

Lastly, clause (d) holds as if \(\{ \mu < \lambda : pp_{\theta}(\mu) \geq \text{cf}(\mu) \leq 2 \} \) is unbounded in \(\lambda \), we get a contradiction by [Sh:g, Ch.II.2.3(4)].]

Let \(\lambda_{\sigma} := \lambda \). By [Sh:g, Ch.VIII.1.6(3)] we have (but shall not use)

\(\ast_{0}(a) \) if \(\delta \leq \sigma \) and \(\text{cf}(\delta) > \aleph_{0} \) then \(pp_{\theta}^{+}(\lambda_{\delta}) = pp_{\mu}^{C}(\lambda_{\delta}) \) \(\text{and } \text{cf}(\lambda_{\delta}) = \text{cf}(\delta) \). \(\text{Now by clause (d)} \)

\(\ast_{1}(a) \subseteq \text{Reg} \cap \lambda_{i} \backslash \lambda_{0} \backslash [a] \leq \theta \) and \(\sup(a) \leq \lambda_{i} \) implies \(\text{maxpcf}(a) < pp_{\theta}^{+}(\lambda_{i}) \).

Let

\(S =: \{ i \leq \sigma : \text{cov}(\lambda_{i}, \lambda_{i}, \theta^{+}, 2) \geq pp^{C}(\lambda_{i}) \} \).

So it is enough to prove that \(S \) is not stationary.

Let for \(i \leq \sigma, \mu_{i} := pp_{\mu}^{C}(\lambda_{i}) \), so \(\lambda_{i+1} > \mu_{i} > \lambda_{i}, \mu_{i} \) is regular. Note that

\(\mu_{\sigma} = pp_{\theta}(\lambda_{\sigma}) = pp_{\mu}^{C}(\lambda_{\sigma}) \) \(\text{by } [Sh:g, \text{Ch.VIII.1.6(3)}] \).

Clearly

\(\ast_{3}(a) \lambda_{i} < \mu_{i} = \text{cf}(\mu_{i}) \leq \text{cov}(\lambda_{i}, \lambda_{i}, \theta^{+}, 2)^{+} \).
We can find $\bar{A} = (A_{\zeta} : \zeta < \lambda)$ such that:

\[(* _1) \] $\zeta < \lambda_0 \Rightarrow A_{\zeta} = \emptyset$

\[(b) \] $\lambda_i \leq \zeta < \lambda_{i+1} \Rightarrow A_{\zeta} \subseteq \lambda_i$ and $|A_{\zeta}| < \lambda_i$

\[(c) \] for every $A \subseteq \lambda_i$ of cardinality $\leq \theta$, for some $\zeta, \lambda_i < \zeta < \text{cov}(\lambda_i, \lambda_i, \theta^+, 2)$ (which is $< \lambda_{i+1}$) we have $A \subseteq A_{\zeta}$.

Choose χ regular large enough, now choose by induction on $i \leq \sigma$ an elementary submodel M_i^σ of $(H(\chi), E, <^\ast)$, $\|M_i^\sigma\| < \mu_i$, $M_i^\sigma \cap \mu_i$ is a stationary subset of σ, ζ is a stationary subset of σ contradicts. So we have finished the case that M belongs to P.

Choose χ regular large enough, now choose by induction on $i < \sigma$ an elementary submodel M_i^σ of $(H(\chi), E, <^\ast)$, $\|M_i^\sigma\| < \mu_i$, $M_i^\sigma \cap \mu_i$ is an ordinal such that

\[(*)_5 \] if $i < \sigma$, then

$$\bigcup_{j < i} M_j^\sigma \cup \{\zeta : \zeta \leq \lambda_i\} \cup \{\langle i : i < \sigma \rangle, \bar{A}, \langle M_j^\sigma : j < i \rangle\} \subseteq M_i^\sigma.$$

Let $\mathcal{P}_1 = M_i^\sigma \cap [\lambda_i]^{<\lambda_i}$. It is enough to show that

$S_1 = \{i \leq \sigma : \text{for some } Y \subseteq \lambda_i, |Y| \leq \theta \text{ and } Y \text{ is not a subset of any member of } \mathcal{P}_1\}$

is not stationary and $\sigma \notin S_1$ (in fact S, S_1 they are equal).

[Why? As clearly $S \subseteq S_1$.

We assume S_1 is a stationary subset of σ or $\sigma \in S_1$ and eventually will finish by getting a contradiction.

For each $i \in S_1$ choose $Y_i \subseteq \lambda_i$ of cardinality $\leq \theta$ which is not a subset of any member of \mathcal{P}_1. Let $Y = \bigcup_{i \in S_1} Y_i$, so $Y \subseteq \lambda_i, |Y| \leq \theta$; and for each $i < \sigma$ we can find an ordinal $\zeta(i)$ such that $\lambda_i \leq \zeta(i) < \text{cov}(\lambda_i, \lambda_i, \theta^+, 2)$ (which is $< \lambda_{i+1}$) and $Y \cap \lambda_i \subseteq A_{\zeta(i)}$. Now $|A_{\zeta(i)}| < \lambda_i$, hence by Fodor’s Lemma there is $\iota(*) < \sigma$ such that

$S_2 = \{i < \sigma : |A_{\zeta(i)}| < \lambda_i(\iota)\}$

is a stationary subset of σ. Let $Z = \{\zeta(i) : i \in S_2\}$. Now if $\sigma \in S_1$, then by [Sh:5, Ch.IX.5.4] and [Sh:5, Ch.II.3.1] we have $\text{pp}^\sigma_{\text{cf}(\lambda)}(\lambda) = \text{cov}(\lambda, \lambda, \sigma^+, \sigma) =^{+}$ $\text{pp}^\sigma_{\text{cf}(\sigma^+, \sigma)}(\lambda)$; so there are $j^* < \sigma$ and $B_j \in \mathcal{P}_1 = M_\sigma \cap [\lambda]^{<\lambda_i}$ for $j^* < j^*$ such that $Z \subseteq \bigcup_{j < j^*} B_j$. So for some $j < j^*$ we have $|Z \cap B_j| = \sigma$. Now the set

$$A^* = \bigcup \{A_\gamma : \gamma \in B_j, |A_\gamma| \leq \lambda_i(\iota)\}$$

belongs to M_σ, has cardinality $\leq \lambda_i(\iota) \times |B_j| < \lambda$ and

$$Y = \bigcup \{Y \cap \lambda_i : i \in S_2 \text{ and } \zeta(i) \in B_j\} \subseteq \bigcup \{A_{\zeta(i)} : i \in S_2 \text{ and } \zeta(i) \in B_j\} \subseteq A^* \in \mathcal{P}_1$$

contradiction. So we have finished the case $\sigma \in S_1$ and from now on we shall deal with the case $\sigma \notin S_1$ hence S_1 is a stationary subset of σ, hence without loss of generality $S_2 \subseteq S_1$. Note that if $\delta < \text{cof}(\delta) > \aleph_0$, we can apply this proof to $\lambda_{\delta}, \langle \lambda_i : i < \delta \rangle$ (for $\sigma^i = \text{cf}(\delta)$) hence

\[(*)_6 \] $i \in S_2 \Rightarrow \text{cf}(i) = \aleph_0$.

Clearly
For \(k \in \mathbb{N} \) union of \(\sigma \) with “nice” behavior on a club of the domain of \(g \).

Let us carry the induction for \(k < \omega \).

We shall choose by induction on \(k < \omega \)

\[
N_k^a, N_k^b, g_k, (A^k_\ell : \ell < \omega), \langle \{A^k_{\ell,i} : i \leq \sigma \} : \ell < \omega \rangle
\]

such that:

(a) for \(x \in \{a, b\}, N_k^x \) is an elementary submodel of \(\mathcal{H}(\chi), \in, <^*, \sigma, \lambda) \) of cardinality \(\leq \sigma \) and \(N_k^x \) is the Skolem Hull of \(N_k \cap \lambda_0 \) and \(N_k^a \times N_k^b \)

(b) \(N_k^a[N_k^b] \) is the Skolem Hull of \(\{i : i \leq \sigma\} \) [of \(Z \cup \{i : i \leq \sigma\} \)] in \(\mathcal{H}(\chi), \in, <^*, \sigma, \lambda) \)

(c) \(g_k \in \Pi(\text{Reg} \cap N_k^a \cap \lambda \setminus \lambda^+_0) \)

(d) for \(x \in \{a, b\} : N_k^x \cap 1 \) is the Skolem Hull of

\[
N_k^x \cup \{g_k(\kappa) : \kappa \in \text{Dom}(g_k)\} \cup (N_k^x \cap \lambda_0)
\]

(e) \(N_k^a \cap \lambda = \bigcup_{\ell < \omega} A^k_\ell \)

(f) \(A^k_\ell = \bigcup_{i < \sigma} A^k_{\ell,i} \) and \(\langle A^k_{\ell,i} : i < \sigma \rangle \) is continuous increasing (in \(i \)) and \(A^k_{\ell,i} \subseteq \lambda_i \) and \(|A^k_{\ell,i}| < \sigma \)

(g) if \(\kappa \in \text{Reg} \cap \lambda \cap N_k^a \setminus \lambda^+_0 \) then \(\sup(N_k^a \cap \kappa) < g_k(\kappa) < \kappa \)

(h) if \(a \subseteq A^k_\ell \) has order type \(\omega \) and \(\sup(a) = \lambda_i \) and \(a \) is a subset of some \(b \in M_\sigma^* \) of cardinality \(\leq \lambda_0 \), then for some infinite \(b \subseteq a, g_k \) is included in some function \(h^k_a \in M_\sigma^* \) such that \(|\text{Dom}(h^k_a)| \leq \lambda_0 \).

For \(X \in \mathcal{H}(\chi) \) and a function \(F \) we let

\[
A(X, F) = \{F(x_1, \ldots, x_n) : x_1, \ldots, x_n \in X\}.
\]

Let us carry the induction for \(k = 0 \); we define \(N_0^a, N_0^b \) by clause (b) and define \(\{A^0_\ell : \ell < \omega\} \) as

\[
\{A(\sigma + 1, F) : F \text{ a definable function in } \mathcal{H}(\chi), \in, <^*, \sigma, \lambda)\}.
\]

For \(k + 1 \), let \(g^*_k \in \Pi(\text{Reg} \cap \lambda \cap N^a_k \setminus \lambda^+_0) \) be defined by \(g^*_k(\kappa) = \sup(N_k^a \cap \kappa) \) (note: the domain of \(g^*_k \) is determined by \(N_k^a \), the values - by \(N_k^b \)).

We now shall find \(g_k \) satisfying:

(a) \(\text{Dom}(g_k) = \text{Dom}(g^*_k), g_k \in \Pi(\text{Dom}(g^*_k)) \)

(b) \(g^*_k < g_k \)
(γ) if \(i < \sigma, \ell < \omega \) and \(a \subseteq \text{Reg} \cap A^b_i \) is unbounded in \(\lambda \) and is a subset of some \(b \in M^{\ast}_i \) of cardinality \(\leq \lambda_0 \) and is of order type \(\omega \), then for some infinite \(b \leq a \) we have \(g_k \upharpoonright b \) is included in some \(h_b \in M^{\ast}_i \) such that
\[| \text{Dom}(h_b) | \leq \lambda_0 \]

(δ) if \(a \subseteq \lambda_i \cap \text{Reg} \cap A^{t_i}_i \) and \(a \in M^{\ast}_{i+1} \) then \(g_k \upharpoonright a \leq h \) for some function from \(M^{\ast}_{i+1} \).

Note: a function choosing \(\langle f^a_{\alpha} : \mu \in \text{pcf}(a) \rangle \) satisfying (*) below for each \(a \subseteq \text{Reg} \cap \lambda^\ast, \theta^\ast, |a| \leq \theta \) is definable in \(\langle \mathcal{H}(\chi), \varepsilon, <^*_\chi \rangle \), so each \(M^{\ast}_i \) is closed under it where

\[
(*) \quad f^a_{\alpha} = \{ f^a_{\alpha} : \alpha < \mu \} \text{ satisfies } \\
(\alpha) \quad f^a_{\alpha} \in \Pi_{a}, \\
(\beta) \quad \alpha < \beta \implies f^a_{\alpha} < f^a_{\beta}, \\
(\gamma) \quad \text{if } \theta < \text{cf}(a) < \text{Min}(a) \text{ then } f^a_{\alpha}(\kappa) = \text{Min}\{ \bigcup \beta \in C : C \text{ a club of } a \} \\
(\delta) \quad \text{if } f \in \Pi_{a} \text{ then for some } \alpha < \mu \text{ we have } f < f^a_{\alpha} \mod J_{\mu \downarrow [a]}.
\]

Let \(\langle a, \zeta : \zeta < \zeta_i \leq \sigma^0 \rangle \) list the \(a \) such that \(\text{tef}(\Pi_{\zeta}) \) is well defined and for each \(n < \omega, a \subseteq A^k_n, a \subseteq \text{Reg} \cap \lambda^+_i \), \(\text{otp}(a) = \omega, \lambda_i = \text{sup}(a) \) and there is \(b \subseteq \text{Reg} \cap \lambda^+_i \), \(b \subseteq M^{\ast}_i \), \(|b| \leq \lambda_0 \) such that \(a \subseteq b \), note that the number of such \(a \)'s is \(\leq \sigma^0 \). Let \(\{ b_{i, \zeta} : \zeta < \zeta_i \leq \sigma^0 \} \) be such that \(b_{i, \zeta} \subseteq \text{Reg} \cap \lambda_i^{\ast}, b_{i, \zeta} \in \mathcal{M}_i^\ast, | b_{i, \zeta} | \leq \lambda_0 \) and \(a_{i, \zeta} \subseteq b_{i, \zeta} \).

So apply [Shg, CH.VIII, §1]; i.e. let \(\theta_1 = \theta + \sigma^0 \) choose \(M^{\ast}_k \) increasing, \(M^{\ast}_k \times (\mathcal{H}(\chi), \varepsilon, <^*_\chi) \), \(M^{\ast}_k \times \zeta < \xi \in M^{\ast}_{k+1}, \| M^{\ast}_k \| \leq \lambda_0 \) and \(g'_k, \langle A^k_{i, \zeta} : i < \sigma, \ell < \omega \rangle, Z, \{ b_{i, \zeta} : i \in S_2, \zeta < \zeta_i \} \) belong to \(M^{\ast}_0 \), and the function \(g_k(\kappa) = \text{sup}(\kappa \cap \bigcup M^{\ast}_k) \) satisfies clauses \((\alpha), (\beta), (\gamma), (\delta)\) above. Now \(\zeta < \theta^+_1 \).

\(N^{a}_{k+1}, N^{b}_{k+1} \) are defined by clause (d). Note that by the definition of \(\mu_i \) we have: for every \(i < \sigma, \zeta < \zeta_i \) for some infinite \(a = a^\ast_{i, \zeta} \subseteq a_{i, \zeta} \) we have \(\mu_{i, \zeta}, k = \text{max} \text{pcf}(a) < \mu_i \). Moreover \(\Pi_{\zeta} \setminus J_{\mu_{i, \zeta}} \) has true cofinality. So our main demand on \(g_k \) is: \(g_{k+1} \upharpoonright \langle A^k_{i, \zeta} : i < \sigma, \ell < \omega \rangle \) is \(f^a_{\alpha} \mod J_{\mu \downarrow [a]} \) for a suitable \(\alpha \), so \(\alpha = \text{sup}(\mu_{i, \zeta}) \cap M^{k+1}_k \) is O.K.) (For clause (γ) use \(\langle b \rangle \) and \(\langle c \rangle \) above.

Now let \(\langle A^{\ast k}_{i+1} : i < \sigma \rangle \) be a list of:

\[
\{ \lambda \cap A(\bigcup_{m \leq n} A^k_{m} \cup \text{Rang}(g_k \upharpoonright \bigcup_{m \leq n} A^k_{m}), F) : \ n < \omega \text{ and } \ F \text{ a definable function in } (\mathcal{H}(\chi), \varepsilon, <^*_\chi, \theta, \lambda) \}
\]

and if

\[
A^{\ast k}_{i+1} = \lambda \cap A(\bigcup_{m \leq n} A^k_{m} \cup \text{Rang}(g_k \upharpoonright \bigcup_{m \leq n} A^k_{m}), F^{k+1}) \text{ and } i < \sigma
\]

\(g_k \upharpoonright \bigcup_{m \leq n} A^k_{m, i} \cap \lambda_i \) is included in some function: \(\text{Dom}(h^k_{i, \zeta}) = b^k_{i, \zeta}, h^k_{i, \zeta}(\kappa) = \text{sup}(\kappa \cap M^{k+1}_k) \).

Having finished the inductive definition note that:
We can also find a stationary S_

\[\exists \alpha \in S \]

\[\text{[Why? As } N^\alpha_k \times N^\beta_k < (\mathcal{H}(\chi), \in, <^\alpha, \bar{\lambda}) \text{ by clause (a) and clause (d).]} \]

\[(*)_9 \bigcup_{k} N^\alpha_k \cap \lambda_0 = \bigcup_{k} N^\beta_k \cap \lambda_0. \]

\[\text{[Why? } N^\alpha_k \cap \lambda_0 \subseteq N^\alpha_{k+1} \cap \lambda_0 \text{ (see clause (d)).]} \]

\[(*)_{10} \text{ if } \mu \in \text{Reg} \cap \lambda^+ \setminus \lambda^0 \text{ and } \mu \in \bigcup_{k} N^\alpha_k \text{ then } \bigcup_{k<\omega} N^\alpha_k \text{ contains an unbounded subset of } \mu \cap \bigcup_{k<\omega} N^\beta_k. \]

\[\text{[Why? By clauses (d) + (g).]} \]

\[\text{So clearly (as usual)} \]

\[\bigcup_{k} N^\alpha_k \cap \lambda = \bigcup_{k<\omega} N^\beta_k \cap \lambda. \]

but Z \subseteq N^\beta_k \subseteq \bigcup_{k<\omega} N^\beta_k \text{ and } Z \subseteq \lambda \text{ hence } Z \subseteq \bigcup_{k<\omega} N^\alpha_k \cap \lambda. \text{ So for each } \]

\[i \in S_2, \text{ we can find } (\langle \bar{a}^{i,k}, w^{i,k}, u^{i,k}, F^{i,k} : k \leq k(i) \rangle) \text{ such that:} \]

\[(a) \bar{a}^{i,k(i)} = \langle \zeta(i) \rangle \]

\[(b) \bar{a}^{i,k} = \langle a^{i,k} : n < n^{i,k} \rangle \]

\[(c) \text{ each } a^{i,k}_n \text{ belongs to } N^\alpha_k \cup (\lambda_0 \cap N^\beta_{k+1}) \]

\[(d) w^{i,k} = \{ n < n^{i,k} : a^{i,k}_n \in \lambda_0 \cap N^\beta_{k+1} \} \]

\[(e) u^{i,k} = \{ n < n^{i,k} : a^{i,k}_n \in N^\alpha_k \cap \text{Reg} \cap \lambda^+ \setminus \lambda^0 \} \]

\[(f) F^{i,k} = (F^{i,k}_n : n \in n^{i,k} \setminus w^{i,k}), \text{ and } F^{i,k} \text{ is a definable function in } (\mathcal{H}(\chi), \in, <^\alpha, \bar{\lambda}). \]

\[(g) \text{ if } k > 0, \text{ then } a^{i,k}_n = F^{i,k}(\ldots, a^{i,k-1}_m, \ldots, g_{k-1}(a^{i,k-1}_m, \ldots)). \]

\[\text{Let } a^{i,k}_n \in A^k_{\ell(i,k,n)}. \text{ Note (*) We can find stationary } S_3 \subseteq S_2 \text{ such that:} \]

\[(*) \text{ if } i \in S_3 \text{ then } k(i) = k(*) \text{ and for } k \leq k(*) \text{ we have } n^{i,k} = n^k, w^{i,k} = w^k, u^{i,k} = u^k, F^{i,k} = F^k, \ell(i, k, n) = \ell(k, n). \]

We can also find a stationary S_4 \subseteq S_3 such that:

\[(*) \text{ if } i_1 < i_2 \text{ are in } S_4 \text{ then } a^{i_{1,k}}_n \in A^k_{\ell(i, n), i_2} \]

\[(**) \text{ if } k = k(*), n \in u^k \text{ then } \langle a^{i,k}_n : i \in S_4 \rangle \text{ is constant or strictly increasing and if it is strictly increasing and its limit is } \neq \lambda \text{ (hence is } < \lambda) \text{ then it is } \lambda^{\text{Min}(S_4)}. \]
Let \(E = \{ \delta < \sigma : \delta = \sup(\delta \cap S_4) \} \) and if \(n \in u^k \), and \(\langle a_{i,k}^n : i \in S_4 \cap \delta \rangle \) is strictly increasing with limit \(\lambda \) then \(\langle a_{i,k}^n : i \in S_4 \cap \delta \rangle \) is strictly increasing with limit \(\lambda_0 \).

Now choose \(\delta(*) \in E \cap S_1 \), and choose \(b \), a subset of \(\delta(*) \cap S_4 \) of order type \(\omega \) with limit \(\delta(*) \). We can choose \(b^k \cap [b]^\omega \) for \(k \leq k(*) \), \(n \leq n^k \) such that:

\(b^0 = b, b^k_{n+1} \subseteq b^k_n, b^k_{n+1} = b^k_n \), and if \(n \in u^k \), \(\langle a_{i,k}^n : i \in S_4 \rangle \) strictly increasing with limit \(\lambda \) then \(\Pi\langle a_{i,k}^n : i \in b^k_{n+1} \rangle \) has true cofinality which necessarily is \(< \mu_{\delta(*)} \).

So (recall \(n^{k(*)} = 1 \) and \(b^* = b^{k(*)} \)) is a subset of \(S_4 \cap \delta(*) \) of order type \(\omega \) with limit \(\delta(*) \) and \(b^* \subseteq b^k_n \) for \(k \leq k(*) \), \(n \leq n^k \) and \(b^* \subseteq b^k_{n+1} \) hence \(n \in u^k \) and that \(\langle a_{i,k}^n : i \in S_4 \rangle \) strictly increasing \(\Rightarrow \mu_{\delta(*)} > \max \{ \langle a_{i,k}^n : i \in b^* \rangle \} \).

Now we prove by induction on \(k \leq k(*) \) that for each \(n < n^k \) for some \(\mathfrak{B} \subseteq |i,k,n| \leq \lambda_0 \) we have \(\{ a_{i,k}^n : i \in b^* \} \subseteq \mathfrak{B}^* \).

For \(k = 0 \) clearly \(A_0^0 \in \mathcal{M}_{\delta(*)}^* \) has cardinality \(\leq \sigma \). For \(k > 0 \), for each \(n < n^k \) we use the \(\subseteq b^k_{n+1} \subseteq b \) and the choice of \(g_{k-1} \) and clause (1) of (2). So we get a contradiction to (2) so we are done.

2) A variant of the proof of part (1). First, it is enough to prove, for each \(i(*) < \sigma \)

restrict ourselves to \(S^* \cup \{ \delta < \sigma : \text{the cardinal appearing in } \otimes \text{ is } \geq \lambda_{i(*)} \} \), then without loss of generality \(i(*) = 0 \) and see that \(\zeta_i \leq \lambda_0 \) is O.K.

Remark 20.17. 1) Note that if we just omit “\(\sigma^{\aleph_0} < \lambda^* \)” we still get that for a club of \(\delta < \sigma, \text{cf}(\delta) > \aleph_0 \) or \(\text{cf}(\delta) = \aleph_0 \) and \(\text{pp}^\omega_{\mathcal{M}_{\delta(*)}}(\lambda_0) \), if \(< \text{cov}(\lambda_0, \lambda_0, \theta^+, 2) \) is still \(\geq \lambda_0^{\lambda_0} \). \hspace{1cm} \{5.13c\}

Conclusion 20.18. If \(\mu \) is strong limit singular of uncountable cofinality then for a club of \(\mu' < \mu \) we have \(\langle 2^{|\mathcal{B}|} \rangle = \text{pp}^\omega_{\mathcal{M}_{\delta(*)}}(\mu' \cap \mathcal{B}) \). \hspace{1cm} \{5.13d\}

Conclusion 20.19. If \(\sum_{\delta} \) is a singular cardinal of uncountable cofinality, then for a club of \(\alpha < \delta \), if \(\text{cf}(\alpha) = \aleph_0 \) then

\(\langle *, 2^{\aleph_0} = \text{pp}(\lambda) \rangle \)

\(\langle *, \text{there is } S \subseteq \langle i(*) \rangle \text{ of cardinality } 2^{\aleph_0} \text{ containing no perfect subset (and more see [Sh:355, \S 6]).} \rangle \). \hspace{1cm} \{5.13e\}
§ 21. GUESSING FOOTNOTEMARK CLUBS BY COUNTABLE C’S

Recently Zapletal [?] proved a beautiful theorem

Theorem 21.1. If \(I \) is a “nice” (definition) of a \(\sigma \)-complete ideal on \(\mathcal{P}(\mathbb{R}) \) for suitable LC if \(\text{ZFC} + \text{LC} \vdash \text{cov}(I) = 2^{\aleph_0} \) then \(\text{ZFC} + \text{LC} \vdash \text{Unif}(I) < \aleph_4 \).

He also showed that \(\aleph_4 \) cannot be replaced by \(\aleph_2 \). The \(< \aleph_4 \) comes from quoting guessing clubs. The following shows we can replace \(\aleph_4 \) by \(\aleph_3 \) (other continuation see [ShZa:561], [?]).

\{19.1\}

Claim 21.2. Assume \(\delta^* < \omega_1 \) is a limit ordinal and \(S \subseteq S^{\aleph_2}_\delta \) is stationary. Then we can find \(C = \langle C_\alpha : \alpha \in S \rangle \) such that

\begin{enumerate}[a)]
 \item \(C_\alpha \subseteq S \)
 \item \(C_\alpha \subseteq \alpha \)
 \item \(\beta \in C_\alpha \Rightarrow \beta \in \text{Sand}_\beta = C_\alpha \cap \beta \)
 \item \(\text{otp}(C_\alpha) \leq \delta^* \)
 \item \(\text{for every club } E \) of \(\omega_2 \) the set \(\{ \delta \in S : \delta = \sup(C_\delta), \delta^* = \text{otp}(C_\delta) \text{ and } C_\delta \subseteq E \} \) is a stationary subset of \(\omega_2 \).
\end{enumerate}

Proof. For each \(\alpha < \omega_2 \) choose \(\langle a_\alpha^i : i < \omega_1 \rangle \), be an increasing continuous sequence of countable subsets of \(\alpha \) with union \(\alpha \). For each \(\alpha < \omega_2 \) let \(C_\alpha^0 = \{ i < \omega_1 : i \) is a limit ordinal such that \((\forall \beta \in a_\alpha^i)(a_\beta^i = a_\alpha^i \cap \beta) \) and \(\alpha < \omega_1 \Rightarrow \alpha \subseteq a_\alpha^i \) and \(j < i \Rightarrow \) (the closure of \(a_\alpha^j \) is \(\subseteq a_\alpha^i \cup \{ \alpha \} \)).

Clearly

\([*)_1(a)\) each \(C_\alpha^0 \) is a club of \(\omega_1 \)

\([b)\) if \(i \in C_\alpha^0 \) and \(\beta \in a_\alpha^i \) then \(i \in C_\beta^0 \).

Now

\([*)_2\) for some \(\zeta = \zeta^* < \omega_1 \), for every club \(E \) of \(\omega_1 \) the following set \(F_\zeta^* (E) \cap S \) is non empty where

\(F_\zeta^* (E) \) is the set of \(\delta < \omega_2 \) such that:

\begin{enumerate}[a)]
 \item \(\delta = \text{otp}(\delta \cap E \cap S) \)
 \item \(\delta = \sup(E \cap \delta \cap S) = \sup(a_\delta^i \cap E \cap S) \)
 \item \(\text{otp}(a_\delta^i \cap E \cap S) \) is divisible by \(\delta^* \)
 \item \(\zeta \in C_\alpha^0 \) hence \(\beta \in a_\zeta^i \Rightarrow \zeta \in C_\beta^0 \).
\end{enumerate}

[Why \((*)_2 \) holds? Otherwise for each \(\zeta < \omega_1 \) there is a club \(E_\zeta \) of \(\omega_2 \) such that \(F_\zeta^* (E_\zeta) = \emptyset \). Let \(E^* = \cap \{ E_\zeta : \zeta < \omega_1 \} \setminus \omega_1 \), clearly \(E^* \) is a club of \(\omega_2 \), and so is \(E^* = \{ \delta < \omega_2 \cap \delta = \text{otp}(E^* \cap \delta \cap S) \} \) and choose \(\delta \in E^* \cap S \), exists as \(E^* \) is a club of \(\omega_2 \) and \(S \subseteq S^{\aleph_2}_{\text{otp}(E^*)} \) is stationary. Easily the set \(C^* = \{ \zeta < \omega_1 : \zeta \text{ limit, otp}(a_\zeta^i \cap E \cap S) \) is divisible by \(\delta^* \} \) is a club of \(\omega_1 \). So there is \(\zeta^* \in C^* \cap C_\alpha^0 \), clearly \(\delta \in F_\zeta^* (E^*) \) hence \(\delta \in F_\zeta^* (E_\zeta) \), contradiction.]

\([*)_3\) if \(E_1 \subseteq E_0 \) are clubs of \(\omega_2 \) then \(F_{\zeta^*} (E_1) \subseteq F_{\zeta^*} (E_0) \).

\(\text{added Fall 2002} \)
[Why? Note that $a \subseteq b \subseteq \delta = \sup(a)$ and $\delta^* \text{otp}(a) \Rightarrow \delta^* \text{otp}(b).$]

\((*)_4\) for some club E_0 of ω_1 for every club E_1 of ω_2 the set $F_{\xi'}(E_1, E_0) \neq \emptyset$ where $F_{\xi'}(E_1, E_0) = \{ \delta : \delta \in F_{\xi'}(E_0) \text{ and } a_{\xi'}^{\delta} \cap E_0 \cap E_1 = a_{\xi'}^0 \cap E_0 \}. $

[Why? If not we choose by induction on $\varepsilon < \omega_1$ a club E_{ε} of ω_2 such that $i < \varepsilon \Rightarrow E_{\varepsilon} \subseteq E_1$ and $F_{\xi'}(E_{\varepsilon+1}, E_i) = \emptyset.$ So $E^* = \bigcap \{ E_{\varepsilon} : \varepsilon < \omega_1 \}$ is a club of ω_2 so we can find $\delta \in F_{\xi'}(E^*),$ hence $\delta \in \bigcap \{ F_{\xi'}(E_{\varepsilon}) : \varepsilon < \omega_1 \}$ by \((*)_3.\) Now trivially $\langle a_{\xi'}^{\delta} \cap E_{\varepsilon} : \varepsilon < \omega_1 \rangle$ is a decreasing sequence of subsets of $a_{\xi'}^0$ which is countable and $\varepsilon < \omega_1 \Rightarrow a_{\xi'}^{\delta} \cap E_{\varepsilon} \neq a_{\xi'}^0 \cap E_{\varepsilon+1}$ as $F_{\xi'}(E_{\varepsilon+1}, E_{\varepsilon}) = \emptyset,$ contradiction.]

We fix E_0 as in \((*)_4.\)

\((*)_5\) for some $\xi < \omega_1$ we have: for every club E_1 of ω_2 for some $\delta \in F_{\xi'}(E_1, E_0)$ we have $\text{otp}(a_{\xi'}^{\delta} \cap S \cap E_0) = \delta.$

[Why? As in the proof of \((*)_4.\)]

So necessarily ξ is divisible by $\delta^*.$ Choose $b \subseteq \xi = \sup(b),$ $\text{otp}(b) = \delta^*.$ Let

$$S' = \{ \alpha < \omega_1 : \text{otp}(a_{\alpha}^{\delta} \cap S \cap E_0) \in b \cup \{ \xi \} \}. $$

Now we define $\mathcal{C} = \langle C_\alpha : \alpha \in S \rangle$ as follows: if $\alpha \in S \setminus S'$ we let $C_\alpha = \emptyset$ and if $\alpha \in S'$ we let $C_\alpha = \{ \beta : \beta \in a_{\alpha}^{\delta} \cap S \cap E_0 \text{ and } \text{otp}(\beta \cap a_{\alpha}^{\delta} \cap S \cap E_0) \in b \}.$

Now you can check that $\mathcal{C} = \langle C_\alpha : \alpha \in S \rangle$ is as required. (Noting that is clause (e), "stationarily many" "at least one" are equivalent demands.) \(\square_{21.2}\)

Remark 21.3. Can we demand above that if C_α has no last element then C_α is a closed subset of α?

Not clear to me, but we can find

\(\oplus\) there is $\langle \mathcal{C}_\alpha : \alpha \in S \rangle$ such that

(a) \mathcal{C}_α is a countable family of countable subsets of $\alpha \cap S,$ each of order type $\leq \delta^*,$

(b) if $C \in \mathcal{C}_\alpha$ then C is closed as a subset of α,

(c) if $\beta \in C \in \mathcal{C}_\alpha$ then $C \cap \beta \in \mathcal{C}_\beta$,

(d) if E is a club of ω_2 then for stationarily many $\alpha \in S$ for some $C \in \mathcal{C}_\alpha$ we have $\delta^*(\delta^*) = \text{otp}(C) \text{ and } C \subseteq E.$

In some cases Zapletal [?] uses $d \leq b^{+n}$ we can replace this by $\text{cf}((\mathbb{R}_0, \subseteq) = \mathfrak{d}$ because

Claim 21.4. Assume κ is regular uncountable.

If $\lambda > \kappa$ and $\text{cf}(\lambda)^{<\kappa} = \lambda,$ then for any $\alpha < \kappa$ there is $Y \subseteq \alpha^{<\kappa}$ which is $E_{\kappa, \alpha}(\lambda)$-positive, i.e.,

\(\oplus\) if $\chi > \lambda$ and $\xi \in \mathcal{H}(\chi)$ then there is $\tilde{N} = \langle N_i : i \leq \alpha \rangle$ such that $x \in N_i \prec (\mathcal{B}(\chi) \in \mathcal{H}(\chi))$

$$\|N_i\| < \kappa$$

$$N_i \cap \kappa \in \kappa$$
N_i increasing continuous

$\bar{N} \upharpoonright (i+1) \in N_{i+1}$.

Proof. As in [Sh:420, §2] (fill!)

Let $W_0 = \{\alpha \in E_0 : \{\xi^*, \zeta^*\} \subseteq C_0^\alpha$ and $otp(a^\alpha_{\xi^*} \cap E_0) \leq \zeta$ and for $\alpha \in W_0$ let $b_\alpha = a^\alpha_{\xi^*} \cap E_0 \cap S$. Clearly

\(\otimes \)

(a) $\alpha \in W_0 \Rightarrow b_\alpha \subseteq W_0$ and $otp(b_\alpha) \leq \zeta$

(b) $\alpha \in b_\beta \cap \beta \in W \Rightarrow b_\alpha = b_\beta \cap \alpha$

(c) if E_1 is a club of ω_2 then for stationarily many $\alpha \in W_0 \cap S$ we have $b_\alpha \subseteq E_1$ and $otp(b_\alpha) = \xi$.

\(\Box \)
§ 22. Part D - list of additional papers

[Sh:410]
[Sh:413]
[Sh:420]
[Sh:430]
[Sh:460]
[Sh:462] (applications to entangled linear order)
[Sh:497] (pcf without choice)
[Sh:506]
[Sh:513]
[ShTh:524] (application to cofinality spectrum of permutation groups)
[RoSh:534] (applications to Boolean Algebras)
[EiSh:535] (colourings)
[Sh:552] (applications to existence of universals in classes of abelian groups)
[Sh:572] (colourings + guessing clubs)
[Sh:575] (applications to Boolean Algebra)
[GiSh:597]
[Sh:580] (strong covering)
[Sh:589] (basic + applications to Boolean Algebras, independence in stability theory)
[Sh:620] (existence of complicated $F \subseteq \prod_{i<\delta} \text{Dom}(I_i)$, applications to Boolean Algebras)
[Sh:622] (application to existence universal in classes of abelian groups)
[KjSh:609] (application to general topology)
[Sh:641] (applications to Boolean Algebras)
[Sh:652] (applications to Boolean Algebras)
[Sh:666] (§1, on open questions)
[Sh:668] (Anti-homomorphic partitions, avoiding a monocromatic Cantor set, essential equiconsistency)
[KjSh:673] (in the trichotomy, $\text{cf}(\delta) > \kappa^+$ is necessary)
[Sh:675] (applications, Polish set theory of the reals)
[Sh:698] (applications on the stationary subsets of $[\lambda]^{<\kappa}$)
[GiSh:708] (configurations related to the weak hypothesis)
[MPSh:713] (application to stationary subsets of $[\lambda]^{<\kappa}$)
[KjSh:720] (on $P(\lambda)/[\lambda]^{<\lambda}$ collapsing cardinals, $\text{cf}(\lambda) = \aleph_0 < \lambda$
[MsSh:758] (stationary subsets of $[\lambda]^{<\kappa}$, precipitousness)
[Sh:775] (application: middle diamond)

[?] (almost free groups)

[ShZa:791] (descriptive set theory)

[KKSh:793] (MAD families for $\lambda > \aleph_0$)

[Sh:794] (stationary subsets of $[\lambda]^{<\kappa}$: reflection \Rightarrow SCH)

[MRSh:799] (stationary subsets of $[\lambda]^{<\kappa}$ also [MtSh:804])

[GSSh:805] pcf and Woodin cardinals

[Sh:810] (application to height of automorphism towers)

[MPSh:813] stationary subsets of $[\lambda]^{<\kappa}$ of a group

[?] colourings for μ^+, $\text{cf}(\mu) = \aleph_0 < \mu$

[Sh:820] universal structures

[Sh:829] (RGCH, $\lambda = 2^\mu = \mu^{#} < \aleph_\omega$ then $\{\kappa < \aleph_\omega : \kappa$ regular, $\neg\diamondsuit^*_\lambda\}$ is finite, SBB)

[Sh:835] (pcf without choice)

[Sh:861] ($\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$ collapsing cardinal, $2^{\text{cf}(\lambda)} < \lambda$)

[HvSh:866] (EF equivalent, use RGCH)

[Sh:F691] tries at $\text{Hom}(G, \mathbb{Z}) = \{0\}$, GR_∞-free [Sh:f]?
§ 23. Private Appendix

Saharon: what about the following?

Edi Weitz had some questions. Saharon sent these corrections: in [Sh:g, Ch.II, Theorem 3.6]
replace “max pcf{\lambda^{\beta+1}n} by “max pcf{\lambda_0^{\beta+1}n}
and later wrote:
more: the \alpha in the description of the function \(f\) is a bounded variable, has nothing to do with \alpha in the theorem
BETTER BE corrected (ANDRZEJ - list of corrections to be compiled)

Menachem Kojman has this to remark:
It should be \(\lambda_0^{+(\beta+1)}\) (add subscript 0 to \lambda in the displayed equation in 3. BTW: in the proof it is 0 as needed.
PS the models are, of course, models of \(H(\chi)\). What the theorem says is that since any set is in some “nice model” and every model is reconstructed from its characteristic function, and every char function is a finite combination in functions from the cofinality system for pcf - the cofinality is max pcf.
This section is dedicated to analyzing the situation of a very big pcf(a). By [Sh:513] we know that the existence of free sets is very relevant. We prove that if there are enough cases to its existence then there are allot. So we get some understanding but no really satisfactory results.

{aia.1}

Hypothesis 23.1.

(a) a is a set of regular cardinals $>|a|$

(b) κ is inaccessible and $\lambda = \sup(\lambda \cap \text{pcf}(a))$

(c) for every $\mu_0 < \kappa$ for some $\mu_1 \in (\mu_0,\kappa)$ and $f : \kappa \rightarrow \kappa$, there is no $b \subseteq \kappa \cap \text{reg}\backslash\mu_1$ of cardinality μ_1 such that $\pi, b/|b|^{<\mu_0}$ is $f(\sup(b))$-directed. We call the pair (μ_1,f) the witness for μ_0.

{aia.2}

Remark 23.2. 1) In clause (c) of 23.1 we can separate the roles of μ_1 to two:

(c)$''$ for every $\mu_0 < \kappa$ for some $\mu_1',\mu_1'' \in (\mu_0,\kappa)$ there is no $b \subseteq \kappa \cap \text{Reg}\mu_1' \cap \text{Reg}\mu_1''$ of cardinality μ_1 such that $\pi(b/|b|^{<\mu_0})$ is λ-directed. But we can have an equivalent condition.

{aia.2}

Definition 23.3. 1) Let $R_{b}^{\text{id}}(\kappa)$ be the set of ideals J such that: for some $\theta < \kappa, J$ is an ideal on θ and for some club E of κ, called a we have:

if $\mu \in \text{acc}(E)$ then $\kappa > \sup(\sigma : \text{ for some } \lambda_i \in \text{Reg} \cap \mu$

for $i < \theta, (\lambda_i : i < \theta)$ is E-spread (i.e. $\lambda_1 > \sup(E\backslash(\bigcup_{i<\theta}(\lambda_i: i < \theta)))$

we have $\mu = \lim_{\mu}(\min_{i<\theta}(\lambda_i : i < \theta))$

and $\prod_{i<\theta} \lambda_i/J$ is σ-directed.

2) $R_{b}^{\text{id}}(\kappa) = \text{Reg} \cap \kappa \backslash R_{b}^{\text{id}}(\kappa)$.

3) $R_{b}^{1}(\kappa) = \{ \theta : R_{\theta}^{\text{id}} \in R_{b}^{\text{id}}(\kappa) \}$.

4) $R_{b}^{1}_{\ast}(\kappa) = \{ \theta : J_{\theta}^{\text{id}} \notin R_{b}^{\text{id}}(\kappa) \}$.

5) $R_{b}^{1}_{\ast}(\kappa) = \{ \theta : J_{\theta}^{\text{id}} \notin R_{b}^{\text{id}}(\kappa) \}$.

6) $R_{b}^{2}(\kappa) = \{ \theta : J_{\theta}^{\text{id}} \in R_{b}^{\text{id}}(\kappa) \}$.

7) $R_{b}^{2}_{\ast}(\kappa) = \{ \theta : \text{for some stationary } A \subseteq \theta, J_{\theta}^{\text{id}} + (\theta \backslash A) \in R_{b}^{\text{id}}(\kappa) \}$.

8) $R_{b}^{2}_{\ast}(\kappa) = \{ \theta : \text{for some stationary } A \subseteq \theta, J_{\theta}^{\text{id}} + (\theta \backslash A) \in R_{b}^{\text{id}}(\kappa) \}$.

9) $R_{b}^{3}(\kappa), R_{b}^{3}_{\ast}(\kappa), R_{b}^{3}_{\ast}(\kappa)$ are defined as $\text{Reg} \cap \kappa \backslash R_{b}^{3}(\kappa), \text{Reg} \cap \kappa \backslash R_{b}^{3}_{\ast}(\kappa), \text{Reg} \cap \kappa \backslash R_{b}^{3}_{\ast}(\kappa)$ respectively.

{aia.4}

Fact 23.4. 1) There is a club E^+ of κ such that:

(a) for every $\tau = \text{cf}(\tau) < \kappa$ if $\theta \in R_{b^\star}(\kappa)$ then $E^+ \backslash \text{Min}(E^+\backslash\theta^+) \in \text{Reg}$ witnessing it.

(b) for any $\mu_0 < \kappa$ there is a witness (μ_1,f); see 23.1(c) such that $\mu_1 < \text{Min}(E^+\backslash\mu_0^+)$, $(\forall \mu \in \kappa \backslash \mu_1)(f(\mu) < \text{Min}(E^+\backslash\mu^+))$.

2) $R_b(\kappa) \subseteq R_{b^\star}(\kappa) \subseteq R_{b^\star}(\kappa)$ and $R_{c^\star}(\kappa) \subseteq R_{c^\star}(\kappa) \subseteq R_c(\kappa)$.

{aia.4}

Claim 23.5. Assume $\tau = \text{cf}(\tau) < \kappa$. Then
\((\ast)\) if \(c \subseteq \text{Reg} \cap \kappa, c \subseteq R_{c,\tau}(\kappa), |c| < \tau < \text{Min}(c)\) then \(\sup(\kappa \cap \text{pcf}(c)) < \kappa\) moreover
\n\((\ast\ast)\) if \(\langle \mu_i : i \leq \sigma^+ \rangle\) is an increasing continuous sequence of members of \(E^+, \sigma < \tau = cf(\tau) < \mu_0, \epsilon \subseteq \text{Reg} \cap \kappa, \epsilon \subseteq R_{c,\tau}(\kappa), |c| < \tau < \text{Min}(c), \) then there is no \(E^+\)-spread \(d \subseteq \kappa \cap \text{pcf}(c)\) of cardinality \(\geq \mu_{\sigma^+}\).

Proof. Clearly \((\ast\ast)\) implies \((\ast)\) so we concentrate on proving \((\ast\ast)\); so assume toward contradiction that \(c\) satisfies the assumptions of \((\ast\ast)\) but there is an \(E^+\)-spread \(d \subseteq \kappa \cap \text{pcf}(c), |d| \geq \mu_{\sigma^+}\).

Now we can note

\[\exists_1 \text{ if } d' \subseteq d, |d'| = \mu_{\xi+1}, \text{ then for some } d'' \subseteq d', |d''| \geq \mu_{\xi}^+ \text{ and } \pi d''/|d''| < \xi^\kappa \text{ has true cofinality } \lambda(d'') < \text{Min}(E^+ \setminus \sup(d'')) \text{ and } \lambda(d'') = \max \text{pcf}(d'') \text{ and without loss of generality otp}(d'') = \mu_{\xi}^+\]

Let \(\langle b_\lambda : \lambda \in \text{pcf}(c) \rangle\) be a generating sequence for \(c\).

Now we prove by induction on \(\epsilon \leq \sigma^+\) that (see Definition in [Sh:513])

\[\exists_{2,\epsilon} \text{ if } \zeta, d'' \text{ are as in } \exists_1, \epsilon \leq \zeta \text{ then } \text{rk}(J_{\langle b_\lambda : \theta \in \text{pcf}(\kappa) \rangle}(|d''|) \geq \epsilon.\]

For \(\epsilon = 0\) there is nothing to prove and for \(\epsilon \leq \zeta\) this is trivial. So assume \(\epsilon = \xi + 1\); without loss of generality \(\text{otp}(d'') = \mu_{\xi}\). By \(\exists_1\) there is \(d^1 \subseteq d''\) of order type \(\mu_{\xi}^+\) such that \(\lambda(d^1)\) is well defined. Now use the definition of \(\text{rk}\). Hence \(\exists_{2,\epsilon}\) hold even for \(\epsilon = \sigma^+\).

So \(\text{rk}(J_{\langle b_\lambda : \theta \in \text{pcf}(\kappa) \rangle}(|d|) \geq \sigma^+ > |d|\), hence by [?][xx] we get \(\text{IND}(J_{\langle \theta_i^{\epsilon} \rangle} : \theta \in \epsilon}\). Hence by [Sh:513][xx] for \(\mu \in (\text{sup}(\kappa), \kappa)\) do we have for every \(\theta \in \epsilon, \lambda^0 = \langle \lambda^0_i : i < \theta \rangle\) such that \(\lambda^0_i \in \text{Reg} \cap \mu, \text{sup}(\epsilon), \prod_{i < \theta} \lambda^0_i / J_{\langle \theta_i^{\epsilon} \rangle} \) is \(\mu\)-directed. But this contradicts an assumption \(\theta \in \epsilon \Rightarrow \theta \in R_{c,\tau}(\kappa)\). So we get a contradiction thus proving the claim.

Claim 23.6. The set \(R(c,\kappa) \cap \text{pcf}(\kappa)\) is bounded in \(\kappa\) even \(R_{c,\tau}(\kappa) \cap \text{pcf}(\kappa)\) is bounded in \(\kappa\).

Proof. Toward contradiction assume that not. We can find a club \(E^{**} \subseteq E^*\) of \(\kappa\) such that

\[\mu \in E^{**} \Rightarrow \text{pcf}(\kappa) \cap R(c,\kappa) \cap \text{Min}(E^{**} \setminus \mu^+) \setminus \mu^+ \neq \emptyset\]

\[\text{Min}(E^{**}) > \sup(\mu^+)^+\]

So we can choose \(\theta_\sigma \in \text{pcf}(\mu^+) \cap R(c,\kappa) \cap \text{Min}(E^{**} \setminus \mu^+) \setminus \mu^+\) for each \(\sigma \in E^{**}\).

Let \(\mu_\zeta\) be the \(\zeta\)-th member of \(E^{**}\). We now choose by induction on \(\zeta < \mu_1, \sigma(\zeta) \in E^{**}\) which is \(\sup(\kappa \cap \text{pcf}(\theta(\zeta))) < \zeta\) now this supremum is \(\kappa\) by claim 23.5 above. As in \(\exists_1\) in the proof of 23.5 there is \(\subseteq \mu_1, \text{otp}(\kappa) / \mu^+\) such that \(\text{max pcf}(\theta(\zeta)) : \epsilon \in A) \text{ then } (\theta(\zeta) : \epsilon \in A)\) is a strictly increasing sequence of members of \(\epsilon < \zeta\). As \(\mu_0 = \text{Min}(E^{**}) > \sup(\mu^+) > |\kappa|^+\), by [Sh:410, 3.x] generalizing [Shg, Ch.IX, §2, §4] we get a contradiction.

Remark 23.7. Note that by the proof above for many \(a' \subseteq \text{pcf}(\kappa) \cap \kappa\) we have \(\kappa = \sup(a' \cap \text{pcf}(a'))\).
Now [Sh:513] raise the hope.

Problem: Assume \(\mu \) is singular and \(\text{pp}(\mu) > \aleph_{\mu+} \). Then for every \(\mu_0 < \mu \) we have \(\text{IND}(\mu, \mu_0) \) (see Definition x.x [Sh:513]), i.e. every algebra on \(\mu \) with \(\mu_0 \) functions has an infinite free subset.

Does \(\text{pp}(\mu) > \mu^+ \) suffice?

Question of E-12 - (2005/6/13)

pg.3: 0.3, line 3 - ref to [Sh:e]

pg.4: in ??, ref to [Sh:g]

pg.6: 1: clause (b), line 3 - [??]?

pg.13: Definition 4.1: Saharon add [Sh:430], [Sh:552]

pg.33: 10

pg.40: after 12: Saharon: end? other things?

pg.48: in Thesis 16: (B)?

pg.58: Claim 19.4: inside reference

References

ANALYTICAL GUIDE 69

[Sh:F691] *n-free silly \(\lambda\)-black \(n\)-boxes.*
On the existence of large subsets of $[\lambda]^{<\kappa}$ which contain no unbounded non-stationary subsets, Archive for Mathematical Logic 41 (2002), 207–213, math.LO/9908159.

Pierre Matet and Saharon Shelah, Positive partition relations for $P_{\kappa}\lambda$, Preprint, math.LO/0407440.

