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§ 1. ON PCF

This is a revised version of [Sh:430, §6] more self-contained, large part done
according to lectures in the Hebrew University Fall 2003
Recall

Definition 1.1. Let f = (fo : @ < 8), fa € "Ord, I an ideal on .
1) We say that f € *Ord is a <;-l.u.b. of f when:

(o) a<d=foa <1 f
(b) if f' € "Ord and (Va < 0)(fo <7 f') then f <; f'.
2) We say that f is a <j-e.uw.b. of f when
(a) a<6:fa§lf
(b) if f/ € *Ord and f' <y Max{f,1,} then f’ <; Max{fq4, 1} for some a < .

3) f is <r-increasing if o < 8 = fo <7 fs, similarly <;-increasing. We say f is
eventually <;-increasing: it is <;-increasing and (Voo < 9)(38 < 9)(fa <1 f3)-
4) We may replace I by the dual ideal on k.

Remark 1.2. For 1, f as in Definition 1.1, if f is a <;-e.u.b. of f then f is a
<r-lu.b. of f.

Definition 1.3. 1) We say that 5 witness or exemplifies f is (< o)-chaotic for D
when, for some s

(a) f={(fa:a <) is asequence of members of *Ord

(b) D is a filter on  (or an ideal on k)

(¢) fis <p-increasing

(d) 5= (s;:i < k),s; anon-empty set of < o ordinals

(e) for every a < ¢ for some f € (o, d) and g € [] s; we have f, <p g <p fs-

1<K
2) Instead “(< o1)-chaotic” we may say “o-chaotic”.

Claim 1.4. Assume

(a) I an ideal on k

(b) f={(fa:a <) is <j-increasing, f, € *Ord
(¢) J 21 is an ideal on k and § witnesses f is (< o)-chaotic for J.

Then f has no <j-e.u.b. f such that {i < r:cf(f(i)) > o} € J.

Discussion 1.5. What is the aim of clause (c¢) of 1.47 For <;-increasing sequence
fy {fa : @ < 6) in ®Ord we are interested whether it has an appropriate <7-e.u.b. Of
course, I may be a maximal ideal on x and (f; : ¢ € cf((w, <)"/D)) is <;-increasing
cofinal in (w, <)"/D, so it has an <j-e.u.b. the sequence w,, = (w : i < k), but this is

not what interests us now; we like to have a <;-e.u.b. g such that (¥i)(cf(g(7)) > k).

Proof. Toward contradiction assume that f € “Ord is a <j-e.w.b. of f and A4; :=
{i <k:cf(f(i)) >0} ¢ Ihence A¢I.
We define a function f/ € *Ord as follows:

® (a) ifie Athen f'(i) =sup(s; N f(i))+1

{1.1}

{1.1}
{1.2}

{1.3}

{1.4}
{1.3}
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(b) ifi € k\A then f/(i) = 0.

Now that i € A = cf(g9(i)) > o > |si] = f'(1) < f(i) < Max{g(i),1} and

i€ kK\A = f'(i) =0 = f'(i) < Max{f(i),1}. So by clause (b) of Definition

1.1(2) we know that for some a < § we have f’ <y Max{f,,1}. But “5 witness

that f is (< o)-chaotic” hence we can find g € [[ s; and 8 € (a,d) such that
<K

foa <19 <r fs and as f is <;-increasing without loss of generality g <; fs.

So Az :={i < Kk : fol(i) < g(i) < fs(i) < f(i) and f'(i) < Max{fn(i),1} = K}
mod I hence A := A1 N Ay # () mod I hence A # (). So for any i € A we have
fali) < (i) < fa(i) < £(i) and f(3) € s hence g(i) < f'(i) := sup(s: N (i) + 1
and so f'(i) > 1.

Also f'(i) < Max{fa(i,1)} hence f'(i) < fa(i). Together f'(i) < fo(i) < g(i) <
1'(7), contradiction. Oy 4

Lemma 1.6. Suppose cf(6) > x™, I an ideal on k and fo, € *Ord for a < § is

<y-increasing. Then there are J,3, f' satisfying:
(A) 5= (s; 11 < k), each s; a set of < k ordinals,
(B) sup{fa(i): a < d} € s;; moreover is max(s;)
(C) F = (f1, - o < 8) where f!, € T] si is defined by f,(i) = Min{s;\ fa(0)},

1<K
(similar to rounding!)

(D) ct[fL ()] <k (e.g. f.(i) is a successor ordinal) implies f! (i) = fu(i)

(B) J={(Jo:a<d),Jy is an ideal on k extending I (for a < &), decreasing
with o (in fact for some aq,p C k (for o < f < k) we have aq /I decreases
with B, increases with a and Jy, is the ideal generated by IU{ay g : B belongs
to (a, \)}) so possibly J,, = P (k) and possibly Jo = 1

such that:

(F) if D is an ultrafilter on k disjoint to Jo then f! /D is a <p-l.u.b and
even <p-e.u.b. of (fg/D : B < a) which is eventually <p-increasing and
{i <k :cf[fL(i))] >k} € D.

Moreover

(F)" if K ¢ Jo then fl is an <, -e.u.b (= exact upper bound) of (fz : B < 9)

and B € (o, 0) = f5 =, fa

(G) if D is an ultrafilter on k disjoint to I but for every a not disjoint to J,
then s exemplifies (fo : o < 8) is Kk chaotic for D as exemplified by § (see
Definition 1.3), i.e., for some club E of 6,3 <~v € E = fg <p fz <p f4

(H) if cf(0) > 2% then (fo : < d) has a <p-l.u.b. and even <r-e.u.b. and for
every large enough o we have I, = 1

(I) if bo =: {i: fL(i) has cofinality < k (e.g., is a successor)} ¢ Jo then: for
every B € (a,0) we have fl, | ba = f3 | bo mod Jq.

Remark 1.7. Compare with [Sh:506].

Proof. Let o = U{f,(i)+1: a < d,i < K} and S = {j < a* : j has cofinality
<k}, €= (ej:j€S) besuch that

{1.1}
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(a) ej Cj,lej| <k for every j € S

(b) if j =i+ 1 then e; = {i}

(¢) if j is limit, then j = sup(e;) and j' € SNe; = ej Cej.
For a set a C a* let clz(a) =aU |J e; hence by clause (c) clearly clz(clz(a)) =

j€ans

clz(a) and [a C b = cls(a) C clz(b)] and |clz(a)| < |a| + k. We try to choose by
induction on ¢ < 7, the following objects: ac, D¢, g¢, 5S¢ = (s¢ci 11 < K), (fe,a -
a < 0) such that:

K (a) gc €"Ord and gc(i) < U{fa(i): a <}
(b)  s¢,i = cle[{ge(i) : e < (Y U{sup, 5 fali)}] so it is a set of < k ordinals
increasing with ¢ and sup,s fo(2) € s¢,is
moreover sup,, 5 fo(i) = max(s¢,;)

fe.o € 70rd is defined by fe (i) = Min{s¢ ;\ fa(?)},

D¢ is an ultrafilter on & disjoint to 1

fo <p. g¢ for a <6

a¢ is an ordinal < ¢

ar <a<d=ge <D, fe,a-

)
~

e

f
g

o~~~ o~ o~
—_ s —

If we succeed, let a(x) = sup{ac : ¢ < K1}, so as cf(6) > wT clearly a(x) < 4.
Now let ¢ < k and look at (f¢ o(+)(i) : ¢ < £™); by its definition (see clause (c)),
f¢,a(+) (i) is the minimal member of the set s¢ i\ fo(x) (7). This set increases with ¢,
S0 f¢,a(+) (1) decreases with ¢ (though not necessarily strictly), hence is eventually
constant; so for some & < kT we have ¢ € [§, k%) = fe o)1) = fe, a0 (i) Let
&(x) = sup; ., &, s0 (%) < kT, hence

@1 (e [E(*), m"’)andi < K = f(,a(*)(i) = fE(*),a(*)(i)-

By clauses (e) + (g) of X we know that fo() <pD(., e(x) <De(.) fe(+),a(+) hence
for some i < k we have fo) (1) < ge() (1) < fe(e),a()(@). But ge (i) € Se(x)+1,i
by clause (b) of X hence recalling the definition of fe(.)41,a(x) (%) in clause (c) of X
and the previous sentence fe(s)4+1,a(+) (%) < ge(x) (1) < fe(x),a+) (i), contradicting the
statement ©;.

So necessarily we are stuck in the induction process. Let ( < x* be the first
ordinal that breaks the induction. Clearly s¢;(i < k), fc,o(a < J) are well defined.

Let s; =: s¢; (for i < k) and f), = fc.o (for o < §), as defined in K, clearly they
are well defined. Clearly s; is a set of < x ordinals and:

(1 fa < fa
(K)o a<B= <1 f)
(#)3 ifb={i: fo(i) < f3(i)} ¢ [ and @ < B <0 then f, [b<; fz b
We let for v < 6
Oy Ja={bCr:beTorb¢I and for every 3 € (o, d) we have:
Fa T(R\B) =1 f5 1 (r\ D)}
Oy fora < B <dwelet ang = {i <r: fi(i) < f5(i)}.

Then as (f! : a < ) is <-increasing (i.e., (*)2):
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()1 aq,p/I increases with J, decreases with «, J,, increases with «

()5 Jo is an ideal on x extending I, in fact is the ideal generated by I U {aq. g3 :
B € (a,0)}

(x)¢ if D is an ultrafilter on x disjoint to J,, then f/, /D is a <p-lub of {fz/D :
B <4}

[Why? We know that 8 € (@, 0) = aap = 0 mod D, so fg < fs =p f, for
B € (a,6), so f!,/D is an <p-upper bound. If it is not a least upper bound then
for some g € "Ord, for every 5 < § we have fg <p g <p f! and we can get a
contradiction to the choice of (, 5, fj because: (D, g,a) could serve as D¢, g¢, a.]

(¥)7 If D is an ultrafilter on & disjoint to I but not to .J, for every a < § then
5 exemplifies that (f, : a < ) is kT-chaotic for D, see Definition 1.3.

[Why? For every o < § for some 8 € («,0) we have aq p € D, ie., {i <k: fl(i) <
f5())} € D, so (fo,/D : a < §) is not eventually constant, so if « < 3, f, <p f}
then f!, <p fg (by (x)3) and fo <p f. (by (¢)). So fo <p fl, <p fs as required.]

(x)s if k ¢ J, then f! is an <; -eub. of (fz: 3 < J).

[Why? By ()¢, fi is a <;_-upper bound of (fz : 8 < d); so assume that it is not
a <y, -eub. of (fg: < d), hence there is a function g with domain x, such that
g <J., Max{1, f.}, but for no 8 < § do we have

cg=:{i <r:g9(i) <Max{l, fg(¢)}} =k mod J,.

Clearly (cg : f < 0) is increasing modulo J, so there is an ultrafilter D on & disjoint
to JoU{cg: B <d}. Sof<d= fz<pg<p fl, sowe get a contradiction to (x)s
except when g =p f/, and then f, =p 0, (as g(i) < 1V g(i) < fL(7)). If we can
demand ¢* = {i: f/(i) = 0} ¢ D we are done, but easily ¢* \ ¢g € J, so we finish.]

()9 If cf[f1 ()] < K then f’ (i) = fa(i) so clause (D) of the lemma holds.
[Why? By the definition of s; = ¢/¢]...] and the choice of €, and of f/,(7).]

(*)10 Clause (I) of the conclusion holds.

[Why? As fo <J, f5 <s. fo and fa [ ba =J, f& I ba by (%)o.]
(¥)11 if @ < B <4 then f), = f; mod Jy, so clause (F)* holds.

[Why? First, f is <;-increasing hence it is < -increasing. Second, f < a = fz <;
fo < fo = fp <u. fo- Third, if B € (@,6) then anp = {i < K : fo (i) < f3(i)} €
Ja, hence fé <J. fo but as fo < fs clearly f; <r fj hence f, <, fj, so together
fo=u. f5]

(#)12 if cf(8) > 2 then for some a(*), Jo(x) = I (hence f has a <;-e.u.b.)

[Why? As (J, : a < ¢) is a C-decreasing sequence of subsets of & (k) it is eventually
constant, say, i.e., there is a(x) < d such that a(x) < a < 0 = Jo = Jaw).
Also I C Jyx), but if I # J,(, then there is an ultrafilter D of  disjoint to
I but not to J,(x) hence (s; : i < k) witness being s-chaotic. But this implies
cf(0) < IT Isi| < &% = 2", contradiction.]
1<K
The reader can check the rest. Uie
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Example 1.8. 1) We show that l.u.b and e.u.b are not the same. Let I be an
ideal on k,kT < XA = cf(\),a = (an : @ < A) be a sequence of subsets of k,
(strictly) increasing modulo I, k\a, ¢ I but there is no b € Z(k)\I such that
AbNa, € I. [Does this occur? E.g., for I = [k]<", the existence of such a is

known to be consistent; e.g., MA andk = Rgand\ = 2%°. Moreover, for any x and
T < X = cf(\) < 2% we can find a, C & for a < X such that, e.g., any Boolean
combination of the a,’s has cardinality x (less needed). Let Iy be the ideal on &
generated by [k]<" U {aa\ag : @ < < A}, and let I be maximal in {J : J an ideal
onk, Iy CJand [a < < X= ag\aa ¢ J]|}. Soif G.C.H. fails, we have examples.]
For a < A\, we let f, : kK — Ord be:

fa(i):{a ifier\ aq,

At a ific€ag,.

Now the constant function f € “Ord, f(i) = A+ A is a Lu.b of {f, : @ < A) but not
an e.u.b. (both mod I) (no e.u.b. is exemplified by ¢g € “Ord which is constantly
A).

2) Why do we require “cf(d) > x™” rather than “cf(6) > x”? As we have to, by
Kojman-Shelah [KjSh:673].

Recall (see [Sh:506, 2.3(2)])

Definition 1.9. We say that f = (f, : @ < §) obeys (u, : a € S) when

(a

) fa :w — Ord for some fixed set w
b) S a set of ordinals

) Uq

)

(

(c

(d 1fa6506andﬁeua then t € w = fa(t) < fa(t).
Claim 1.10. Assume I is an ideal on @f = (fa : @ < §) is <j-increasing and
obeys i = (uq : o € S). The sequence f has a <j-e.u.b. when for some ST we
have ®1 or ®o where

®1 (a) ST C{a<d:cf(a) >k}

(b) ST is a stationary subset of &

(c)  for each o € ST there are unbounded subsets u,v of « for which
Bev=>unpCug.

®y ST = {8} and for ¢ clause (c) of ®1 holds.
Proof. By [Sh:506]. U110

Remark 1.11. 1) Connected to I[)\], see [Sh:506].

Claim 1.12. Suppose J a o-complete ideal on 6*,pu > k = cf(u), p = tlim;(\; :
i< 8),0% < p, A =cf(N) > 0" fori<d* and X =tcf( [ Ni/J), and (fo : < A)
1<0*
exemplifies this.
Then we have

{1.6}

{1.7}

{1.8}

{1.10}
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(%) if (ug : B < A) is a sequence of pairwise disjoint non-empty subsets of A,
each of cardinality < o (not < o!) and o* < p*, then we can find B C A
such that:

(a) otp(B) = a”,

(b) if € B,y € B and <~ then sup(ug) < min(u,),

(c) we can find s¢c € J for ¢ € |J u; such that: if ¢ € U up,§ €

i€B B
ﬂU ug, ¢ <& and i € 6\(s¢ USE)E, then fe(i) < fe(i). e
€B

Proof. First assume o < pi. For each regular 6 < p, as 6t < X =cf()) there is a
stationary Sp C {6 < A : cf(d) = 6 < §} which is in I[A] (see [Sh:420, 1.5]) which is
equivalent (see [Sh:420, 1.2(1)]) to:

(¥) there is C? = (C? : o < \)
() C% a subset of a, with no accumulation points (in C?),
) fo € ace(C8) = €2 = Bl
(7) for some club EJ of A,
[0 € SeNEY=>cf(6) =0 <5 AS=sup(Cy) Aotp(C§) = 6].

Without loss of generality Sp C EJ, and A otp(C?) < 6. By [Sh:365, 2.3,Def.1.3]
a<d

for some club Ey of A, (g¢(C?, Ep) : a € Sp) guess clubs (i.e., for every club E C Ejy
of \, for stationarily many ( € Sy, gE(Cg, Ey) C E) (remember gf(CY¢, Ep) =
{sup(y N Ey) : v € C¢;v > Min(Ep)}). Let C%* = {y € C% : v = Min(C?\ sup(y N
FEp))}, they have all the properties of the C?’s and guess clubs in a weak sense: for
every club E of \ for some a € SyNE, if 1 < 7» are successive members of F then
|(71,72) N C%*| < 1; moreover, the function vy + sup(F N ) is one to one on CY*.

Now we define by induction on ¢ < A, an ordinal a¢ and functions gg e II N

i<5*

(for each 8 € © =: {0 : 6 < p, 0 regular uncountable}).

For given ¢, let a¢ < A be minimal such that:

E< (= as<ag

E£<CANOEO = g5 < fo. mod J.

Now a¢ exists as (fo : @ < A) is <j-increasing cofinal in [[ A;/J. Now for each
i<é
0 € © we define gg as follows:

for i < 6%, g5(i) is sup[{g5(i) +1: € € Cg} U {fac (i) + 1}] if this number is
< Ai, and fo (i) + 1 otherwise.

Having made the definition we prove the assertion. We are given (ug : § < A), a
sequence of pairwise disjoint non-empty subsets of A, each of cardinality < o and
a* < p. We should find B as promised; let 6 =: (|a*| + |6*|)T so € < u is regular
> |0%]. Let E = {0 € By : (VQ)[( < & sup(uc) < d & uc C 6 & ae < I}
Choose a € SpNacc(F) such that gﬂ(Cg, Ep) C E; hence letting C%* = {~, : i < 0}
(increasing), (i) = i, we know that i < 0* = (v;,741) N E # 0. Now let
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B =: {7si43 : i < o} we shall prove that B is as required. For a € uy(5¢43),¢ <

a*, let 89 = {i < 6% : gg(5<+1)(i) < fali) < gg(5q+4)(z')}, for each ¢ < a* let
(e € < |uy(sc43)]) enumerate w.(sc43) and let

Sac. = {i: for every £ < e, foce (1) < f%ye(i) S ace <o

< fozg,s (l) < fag,e(i)}'

Lastly, fora € |J wuscislet so = sSUs) and it is enough to check that (¢, : « € B)
(<a*

witness that B is as required. Also we have to consider a* € [u, u™), we prove this

by induction on «* and in the induction step we use 0 = (cf(a*) + [6*|)T using a

similar proof. U112

Remark 1.13. In 1.12:

1) We can avoid guessing clubs.

2) Assume o < 67 < 03 < p are regular and there is S C {0 < X : cf(d) = 61}
from I[)\] such that for every ¢ < A (or at least a club) of cofinality 62, S N is
stationary and (f, : @ < A) obey suitable C? (see [Sh:345a, §2]). Then for some
A C X unbounded, for every (ug : 8 < 62) sequence of pairwise disjoint non-empty
subsets of A, each of cardinality < o with [min ug, sup ug| pairwise disjoint we have:
for every By C A of order type 02, for some B C By, |B| = 61, (c) of (*) of 1.12
holds.

3) In (%) of 1.12, “a* < p” can be replaced by “a* < put” (prove by induction on
a*).

Observation 1.14. Assume A\ < A<}, u = Min{7 : 27 > \}. Then there are §,x
and 7, satisfying the condition (x) below for x = 2" or at least arbitrarily large
regqular x < 2#

(%) T a tree with § levels, (where § < u) with a set X of > x d-branches, and
for oo <6, U |78] < A.
B<a

Proof. So let x < 2 be regular, x > .

Case 1: A 2/°l < X\. Then .7 = #>2, 7, = 2 are O.K. (the set of branches #2
a<p

has cardinality 2#).

Case 2: Not Case 1. So for some 0 <y, 2¢ > X, but by the choice of ;1,2 < \, so
20 =\ 0 < pandsof <a<p= 2 =20 Note |*>2| = X as u < X\. Note also
that p = cf(u) in this case (by the Bukovsky-Hechler theorem).

Subcase 2A: cf(N\) # p = cf(p).
Let #»2 = |J B, B; increasing with j,|B;| < A. For each n € #2, (as cf(\) #
F<A
cf(p)) for some j, < A,
p=sup{¢ <p:n[(eB}.
So as cf(x) # u, for some ordinal j* < A we have

{ner2:4, <j*} has cardinality > x.

1.

{1.
{1.

A1}
.10}

10}

10}

12}
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As cf(N) # cf(p) and p < A (by its definition) clearly p < A, hence |Bj«| x p < A.
Let

T ={nle:e<lyg(n) and n € Bj-}.
It is as required.

Subcase 2B: Not 2A so cf(\) = u = cf(p).

If A = u we get A = A<* contradicting an assumption.

So A > p, so A singular. Now if o < p, pu < 0 = cf(0;) < A for i < o then (see
[Sh:g, ?, 1.3(10)]) maxpcf{o; : i < a} < [[ oy < Aol < (29)lel < 2<# = ), but

i<
as A is singular and maxpcf{o; : i < a} is regular (see [Sh:345a, 1.9]), clearly the
inequality is strict, i.e., maxpef{o; : i < a} < A. So let {0; : i < p) be a strictly
increasing sequence of regulars in (p, A) with limit A, and by [Sh:355, 3.4] there is
T C 11 o; satistying |{v [ i: v € T} < maxpct{o; : j < i} < A, and number of
i<p

p-branches > \. In fact we can get any regular cardinal in (A, pp*(\)) in the same
way.

Let A* = min{X\ : p < XN < \cf(N) = pand pp(N) > A}, so (by [Sh:355,
2.3]), also A* has those properties and pp(A\*) > pp(A). So if pp*(\*) = (2#) or
pp(A\*) = 2* is singular, we are done. So assume this fails.

If 4 > N, then (as in [Sh:430, 3.4]) a < 2* = cov(a,pt,ut, u) < 2* and we
can finish as in subcase 2A (actually cov(2<H, pu*, ™, u) < 2# suffices which holds
by the previous sentence and [Sh:355, 5.4]). If u = Ny all is easy. 0114

Claim 1.15. Assume by C ... C by C by C -+ for k < w,a = | by (and

k<w
la|™ < Min(a)) and X € pef(a)\ U pef(br).
k<w
1) We can find finite 9, C pecf(by\bx_1) (stipulating b_1 = 0) such that X\ €
pef(U{og 1 k < w}).
2) Moreover, we can demand 0 C pcf(by)\(pef(br—1)).

Proof. We start to repeat the proof of [Sh:371, 1.5] for k = w. But there we apply
[Sh:371, 1.4] to (be : ¢ < k) and get ((cce : € < n(()) : ( < k) and let Ay =
maxpcf(ce ¢). Here we apply the same claim ([Sh:371, 1.4]) to (by\br—1 : k < w)
to get part (1). As for part (2), in the proof of [Sh:371, 1.5] we let 6 = |a|t + N,
choose (N; : i < 40), but now we have to adapt the proof of [Sh:371, 1.4] (applied to
a, (b 1 k <w), (N; : i < 9)); we have gotten there, toward the end, a < § such that
E, CE. Let E, = {ix : k < w},ir < irs+1. But now instead of applying [Sh:371,
1.3] to each by separately, we try to choose (cc ¢ : £ < n(¢)) by induction on ¢ < w.
For ¢ = 0 we apply [?, 1.3]. For ¢ > 0, we apply [Sh:371, 1.3] to b; but there defining
by induction on ¢,¢; = ¢¢ ¢ C a such that max(pcf(a\eeo\ -+ \ece—1) Npcf(be) is

strictly decreasing with /. (]

We use:

Observation 1.16. If |a;| < Min(a;) for i < i*, then ¢ = () pcf(a;) has a last
i<i*

element or is empty.

Proof. By renaming without loss of generality (|a;|: ¢ < i*) is non-decreasing. By
[Sh:345b, 1.12]
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(x)1 0 C cand|d] < Min(2) = pcf(d) C c.
By [Sh:371, 2.6] or 2.7(2)

(x)2 if A € pcf(d),0 C ¢, [0 < Min(?) then for some > C 9 we have |>| <
Min(ag), A € pcf(>).

Now choose by induction on ¢ < |ag|*,0¢ € ¢, satisfying 6, > max pcf{f. : € < (}.
If we are stuck in ¢, maxpcf{f. : € < ¢} is the desired maximum by (x);. If we
succeed the cardinal # = maxpcf{f : € < |ag|T} is in pcf{fe : € < ¢} for some
¢ < lag|T by (*)2; easy contradiction. 0416

Conclusion 1.17. Assume Ry = cf(u) < 5 < po < p, [1 € (po, p)andcf(p') <
k = pp.(') < Al and ppt(pn) > X = cf(A) > p. Then we can find N, for
n<w, iy <Ay <A1 < p, o= U Anoand X = tef( [ \n/J) for some ideal J

nw nw
on w (extending J59).

Proof. Let a C (uo, ) NReg, |a| < &, A € pef(a). Without loss of generality A =
max pef(a), let p= U, po < gy, < iy < o, let pg, = pf, +sup{pp, (1) : pro <

n<w
p < pp and cf(p') < &}, by [Shi:355, 2.3] py, < g, py = iy + sup{pp. (1) : po <
p < pl and cf(p') < k} and obviously p) < pl 4 by replacing by a subsequence
without loss of generality pl < ul +1- Now let b, =an pl and apply the previous
claim 1.15: to by =: a N (u})™, note:

max pef(by) < g, < Min(by41\by).
Uy a7

Claim 1.18. 1) Assume Ny < cf(p) = & < po < 1,2% < p and [po < p' <
pandcf (') < k= pp,. () < p]. If u <A =cf(\) < pp* (1) then there is a tree T
with k levels, each level of cardinality < p, 7 has exactly X k-branches.
2) Suppose (\; : i < K) is a strictly increasing sequence of reqular cardinals, 2" <
Ao, 0 =: {\; 17 < K}, A = maxpcf(a), \; > maxpct{\; : i < j} for each j < k (or
at least Y N > maxpcf{\; : i < j}) and a ¢ J where J = {b C a: b is the union

i<j
of countably many members of Jx[a]} (so J 2 J2Y and cf(k) > Vo). Then the
conclusion of (1) holds with p =Y \;.

<K

Proof. 1) By (2) and [Sh:371, §1] (or can use the conclusion of [Sh:g, AG,5.7]).
2) For each b C a define the function gy : kK — Reg by

ge(1) = maxpcf[b N {\; : j < i}].
Clearly [b1 C by = gb, < gp,|. Ascf(k) > Ng, J is Rj-complete, thereis b C a,b ¢ J
such that:
¢ C bandc ¢ J = —g. <J go.

Let A} = maxpcf(bn{)\; : j < i}). For each i let b, = bn{)\; : j < i} and
((fR o :a<X):Xepcf(b)) be as in [Sh:371, §1].
Let

{6.7C.1}

{1.22}

{6.4}

{1.23}
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20 = { Max f/{]e,ae [b;: A\ € pCf(bi),ag < Agyn < w}.

0<t<n
Let J; = {f € % : for every j <4, f | b; € T moreover for some f" € [] A,
I<K
for every j, f' | b, € 9]-0 and f C f'}, and 7 = |J , clearly it is a tree, .J;

<K
its ith level (or empty), |Z;| < Af. By [Sh:371, 1.3,1.4] for every g € [[b for
some f € [[b, A f [ b;€ Z°hence A\ f | b;i € Z. So || = Af, and T
1<K 1<K
has > A k-branches. By the observation below we can finish (apply it essentially
to .# = {n: for some f € [[b for i < k we have n(i) = f | b; and for every

i <k, f b€ Z%), then find A C k,k\ A € J and g* € [](\; + 1) such that
i<K

Y = {feF:f|]A<g*] A} has cardinality A and then the tree will be .7’

where 7/ =:{f [ b;: f €Y'} and " = |J 7. (So actually this proves that if we

1<K
have such a tree with > 6(cf(6) > 2") k-branches then there is one with exactly ¢

r-branches.) 0118
Observation 1.19. If # C [[ \i, J an Yy-complete ideal on k, and [f # g €
1<K
F = [ #59g] and | F| > 0,ct(0) > 2%, then for some g* € [] (N +1) we have:
<K

(a) Y ={f€F:[f<yg*} has cardinality 0,

(b) for f' <y g*, we have |{f € F : f <; f'} <0,

(c) there ' are fo €Y for a < 0 such that: fo <j g*,[a < B <0 = ~fs <,

]
(Also in [Sh:829, §1]).
Proof. Let Z =:{g:g€ [[(M+1)and Yy =: {f € F : f <; g} has cardinality
<K

> 0}. Clearly (\; : i < k) € Z so there is g* € Z such that: [¢ € Z = —¢' <,
g*]; so clause (b) holds. Let Y = {f € .F# : f <; ¢g*}, easily Y C Y. and
|Yy- \ Y] < 2% hence |Y| > 0, also clearly [f1 # fo € Fandfi <; fo = fi <; fal.
If (a) fails, necessarily by the previous sentence |Y| > 6. For each f € Y let
Yy ={h €Y :h <y f}, so by clause (b) we have |Y}| < 6 hence by the Hajnal
free subset theorem for some Z' C Z, |Z'| = A", and f1 # fo € Z' = f1 ¢ Y}, so
[f1 # fa € Z/ = —f1 <y f2]. But there is no such Z’ of cardinality > 2% ([Sh:111,
2.2,p.264]) so clause (a) holds. As for clause (¢): choose f, € Z by induction on «,
such that f, € Y\ s<a Yy it exists by cardinality considerations and (fa <)
is as required (in (c)). 0119

Observation 1.20. Let k < A be regular uncountable, 25 < p; < X (for i < k), u;
increasing in i. The following are equivalent:
(A) there is F C "X such that:
(i) | 7] = A,
(@) {f1i:feFH <,
(ii)) [f# 9 €F = f o gli

LOr straightening clause (i) see the proof of 1.20
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(B) there be a sequence (\; : i < k) such that:
(1) 28 <N = cfth) < i,
(#4) maxpef{\; :i <k} =\,
(ii1) for j < k,pj > maxpcf{\; : i < j};

(C) there is an increasing sequence (a; : i < k) such that X\ € pcf(|J a;), pef(a;) C

<K
1% (SO Min(_U Cli) > | U Cll|)
1<K 1<K
Proof. (B) = (A): By [Sh:355, 3.4].
(A) = (B): If (VO)[0 > 25 = 6% < 6] we can directly prove (B) if for a club of
i <k, p; > |J pj, and contradict (A) if this fails. Otherwise every normal filter D
j<i

on k is nice (see [Sh:386, §1]). Let .# exemplify (A).

Let K = {(D, g) : D anormal filter on s, g € *(A+1),A=|{f € F : f <p g}|}.
Clearly K is not empty (let g be constantly A) so by [Sh:386] we can find (D, g) € K
such that:

(x)1 if ACK,A#0 mod D,g1 <ptagthen A\>|{f€.F:f<piaq}

Let #* ={f € % : f <p g}, so (as in the proof of 1.18) |.7*| = .
We claim:

(%) if h € Z* then {f € #* : -h <p f} has cardinality < A.

[Why? Otherwise for some h € F*, #' =: {f € #* : =h <p [} has cardinality A,
for ACklet Fy={feF*:f1A<h]A}soF = {F,: ACKk,A#D
mod D}, hence (recall that 2% < \) for some A C k, A # () mod D and |.F)| = \;
now (D + A, h) contradicts (x)1].

By (%)2 we can choose by induction on o < A, a function f, € F* such that

N s <p fo- By [Sh:355, 1.2A(3)] (fa : @ < A) has an eu.b. f*. Let \; =
<o

cf(f*(7)), clearly {i < k : \; < 2"} = 0 mod D, so without loss of generality
A cf(f*(i)) > 2" so A; is regular € (27,)], and A = tef([[ \i/D). Let J; =
<K <K
{A C i :maxpcf{); : j € A} < p;}; so (remembering (ii) of (A)) we can find
hi € T f*(@) such that:
j<i
(%)3 if {j:j <i} ¢ .J;, then for every f € .F, f [ i <y, hi.
Let h € ] f*(¢) be defined by:
i<K
h(i) = sup{h;(i) : j € (i,k) and {j : j < i} ¢ J;}. As Acf[f*(i)] > 2%, clearly

h < f* hence by the choice of f* for some a(x) < A we have: h <p fs(.) and let
A=:{i <k:h(i) < fawu (i)}, so A€ D. Define \] as follows: A} is \; if i € A, and
is (2%)T if i € K\ A. Now ()} : i < k) is as required in (B).

(B) = (C): Straightforward.

Claim 1.21. If.% C "Ord, 2" < 0 = cf(0) < |.Z| then we can find g* € "Ord and
a proper ideal I on k and A C k, A € I such that:

{1.23}

{1.26}
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(a) TI ¢*(4)/I has true cofinality 0, and for each i € k\ A we have cf[g*(i)] >
1<K
9"

(b) for every g € *Ord satisfying g |
can find f € F such that: f ] A
(r\A).

Proof. As in [Sh:410, 3.7], proof of (4) = (B). (In short let f, € F for a < 0
be distinct, x large enough, (N; : i < (2%)T) as there, §; =: sup(6d N N;),g; €
*Ord, g;(¢) =: Min[N N Ord\f5,(¢)],A C x and S C {i < (2°)F : cf(i) = v}
stationary, [i € S = ¢g; = ¢%], [ < aandi € S = [f5,(¢) = ¢*(¢) = ¢ € A] and for
some (%) < (27), g* € Ny, s0 [¢ € K\ A= cf(g*(¢)) > 27]. Oy.21

A=g"TA gl (kK\A) <g* T (kK\A) we
=g " [ A g (K\A) < f](rK\A) <g"!|

Claim 1.22. Suppose D is a o-complete filter on 6 = cf(0), k an infinite cardinal,
0 > |a|* for a < o, and for each a < 0, B = (B : € < K) is a sequence of ordinals.
Then for every X C 0, X # 0 mod D there is (3% : € < k) (a sequence of ordinals)
and w C Kk such that:

(a) e€ R\w= 0 <cf(p}) <4,
(b) if B. < B and [e € w = B = BF], then {a € X: for every e < Kk we have
BL< < B andle€cw=pBY=p]}#0 mod D.

Proof. Essentially by the same proof as 1.21 (replacing ¢; by Min{« € X: for every
Y € N; N D we have a € Y'}). See more [Sh:513, §6]. (See [Sh:620, §7]). O1.22

Remark 1.23. We can rephrase the conclusion as:

(a) B=:{a € X: if € € w then ¢ = 37, and: if € € k \ w then 8% is < B but
>sup{Bf: ¢ <e ¢ <Bl}}is #0 mod D

(b) If B, < B for € € K\ w then {a € B: if € € K\ w then & > B} # 0
mod D

(¢) e€ k\w=cf(pl)is <6 but > 0.

€

Remark 1.24. If |a| < min(a),.# C Ila, |Z| = 0 = cf(d) ¢ pcf(a) and even
0 > o = sup(6T N pcf(a)) then for some g € Ila, the set {f € F : f < g}
is unbounded in 6 (or use a o-complete D as in 1.23). (This is as Ha/J<g|a]
is min(pef(a) \ 0)-directed as the ideal J.g[a] is generated by < o sets; this is
discussed in [Sh:513, §6].)

Remark 1.25. Tt is useful to note that 1.22 is useful to use [Sh:462, §4,5.14]: e.g.,
forif n <w, Oy < 01 < --- < 0,, satistying () below, for any 5. < 3 satisfying
[e € w= . < B¥] we can find o < 7 in X such that:

ecw=p=p;,
{6,¢} € k\ wand{cf(B7),ct(B7)} C [0r, 0cy1))andl even = B < ﬂz,

{6,¢} € v\ wand{cf(B]),cf(B7)} C [0e, 0ry1)andl odd = BT < B¢
where

() (a) e€r\w= cf(Br) € [bo,0,), and
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max pef[{cf(B87) : € € K\w}Nby] < O, (which holds if 0, = o, of = 0y
for £ € {4,...,n}).
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§ 2. NICE GENERATING SEQUENCES
Claim 2.1. For any a, |a| < Min(a), we can find b = (by : A\ € a) such that:
() b is a generating sequence, i.e.

A€ a= Joy[a] = Jon[a] + by,

(B) b is smooth, i.e., for < X in a,
0eby,= by C bA,

(v) b is closed, i.e., for A € a we have by = a N pcf(by).

Definition 2.2. 1) For a set a and set a of regular cardinals let Chj be the function
with domain a N a defined by Ch;(0) = sup(a N 6).
2) We may write N instead of |N|, where N is a model (usually an elementary
submodel of (J#(x), €, <}) for some reasonable x.

Observation 2.3. If a C a and |a] < Min(a) then chy € Ila.

Proof. Let (bg[a] : 0 € pcf(a)) be as in [Sh:371, 2.6] or Definition [Sh:506, 2.12].
For A € a, let f* = (f®* : a < \) be a <J_,[a)-increasing cofinal sequence of
members of [] a, satisfying:

()1 if 6 < AJa] < cf(d) < Min(a) and 6 € a then:
$2(0) = Min{ | £2*(0) : C a club of 6}
acC
[exists by [Sh:345a, Def.3.3,(2)" + Fact 3.4(1)]].

Let x = 3, (sup(a))t and k satisfies |a| < £ = cf(k) < Min(a) (without loss of
generality there is such %) and let N = (N; : i < k) be an increasing continuous
sequence of elementary submodels of (7 (x), €, <), N;N« an ordinal, N | (i+1) €
Nis1, | N < &, and a, (f** : X € a) and & belong to Ny. Let N,, = |J N;. Clearly

i<K
by 2.3
(¥)2 Chy, € Ia for i < k.

Now for every A € a the sequence (Chj, ()) : i < k) is increasing continuous (note
that A € No € N; C N;11 and N;, A € N, 41 hence sup(N; N A) € N, 11 N A hence
Chiy,(A) is < sup(Nig1 N A)). Hence {Chy, (\) : i < s} is a club of Chy, (M);
moreover, for every club E of & the set {Ch}y () : i € E} is a club of Chy ().
Hence by ()1, for every A € a, for some club E) of &,

(x)3 (o) if6 € aand F C E) isaclub of x then fﬂiﬁ(mm) ) = LéJE ffl;;(Nam) (0)

(B) fadg(N,mA) (0) € cl(0 N Ny), (i.e., the closure as a set of ordinals).

S

Let E = () E\, so E is a club of k. For any i < j < k let
A€a

by = {0 € a: ChY, (0) < f3) (6)}.

sup(N;NA)
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(x)4 fori < j <k and X € a, we have:
(a) J<ala] = Jexla] + 657 (hence by = by[a] mod Jy[a]),
(8) 6% C At Na,
(7) < t A€ a) € Ny,
) f,

(6 < Chy, = (sup(N. N0) : 0 € a).

sup(N nA)
[Why?
Clause (): First as Chy, € Ila (by 2.3) there is v < A such that Chy, <;_ (q
3N and as a U {a, N;} C Chy,,, clearly Chy, € Niy1 hence without loss of
generality v € AN N;y1 but i +1 < j hence N;y1 € N; hence v € N; hence
v < sup(N; N A) hence f9 A <.J7A[a] fsup(N YL Together Chy, <_,[a] fsup(N )
hence by the definition of b}/ we have a\by’ € J_,[a] hence A ¢ pcf(a\by’) so
Jeala] € Jala] + 637

Second, (Ia, <I<A[a]) is AT-directed hence there is g € Ila such that o < \ =
oA <Joala] 9- As fo* € Ny without loss of generality g € No hence g € N; so g <
Chy,. By the choice of g, fsup(N An) <J<ala] 9 SO together fu (N;AA) <J<ald) Chy,
hence b}/ € J<y[a]. As Joa[a] C J<y[a] clearly Joy[a] + b C J<y[a]. Together
we are done.
Clause (3): Because II(a\A1) is AT-directed we have § € a\A" = {0} ¢ J<,[a].
Clause (v): As Chy, ’fslg(N.m)’ f belongs to Nj1.
Clause (0): For 6 € a(C Ny) we have fup(N A (0) = u{ o ap(N.rn (0) 1€ € Ex} <

sup(N,, N 0).
So we have proved (*)4.]

()5 &(*) < k when (%) = U{exg : 0 < A are from a} where € 9 = Min{e < &:
if Foipv,nn (0) < sup(Ne 00) then S5 5 (6) < sup(Ne N 0)}.
[Why? Obvious.]
()6 fsﬂdg(mm) rbﬁj = Ch},_ | b}’ when i < j are from E\e(x).

[Why? Let 6 € b}, so by (#)s(8) we know that f5° \ 1 /(6) < Chf, (6). If
the inequality is strict then there is 3 € N, N6 such that fsup(N m)( ) < B <

ChY,_ (#) hence for some ¢ < k, 3 € N, hence ¢ € (¢, ) = f sup(Na\) (0) < Chy,(0)

hence (as “i > €,” holds) we have fsup N m)( ) < Chy, (0) so Sc:l’p(ij)(t?) <
f;lg( NN (0) < Ch} Ni( (the first inequality holds as j € Ey). But by the definition

of b7 this contradlcts 9 € by
We now define by mductlon one < |a|t, for A € a (and i < j < k), the set by

(4)7 () B30 =0y
(B) b7 =6 U by 0 € by U{0 € a6 € pef(by7)},

(y) b2 = |J b4 for € < |a|* limit.
(<e

{1.33}
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Clearly for A € a, (657 : € < |a|t) belongs to N4, and is a non-decreasing sequence
of subsets of a, hence for some (i, 7, \) < |a]™, we have

[e € (e(i, 4, A), [al*) = b7 = b3/ V),
So letting €(i, j) = supyeq €(i, J, A) < |a|™ we have:

(1)s €(i,j) < e<lat = A B3 =piie,
A€a
We restrict ourselves to the case i < j are from E\e(*). Which of the properties
required from (by : A € a) are satisfied by (b;’j’e(i’j) : A € a)? In the conclusion of
2.1 properties (), () hold by the inductive definition of b” (and the choice of
€(i,7)). As for property («), one half, J<y[a] C J<x[a] + bi’j’e(i’j) hold by (x)4(cx)
(and by? = %70 C bi’j’e(i’j)), so it is enough to prove (for A € a):

(x)o 0377 € J<alal.

For this end we define by induction on ¢ < |a|* functions f&* with domain by’
for every pair (o, \) satisfying o < X € @, such that ¢ < e = f&M¢ C f3M¢ 50 the
domain increases with e.

We let foM0 = faA 1 b5, fade = | f2A¢ for limit e < |a|* and foM+! s
(<e
defined by defining each f3*¢*1(0) as follows:

Case 1: If 6 € 659 then fo=+1(g) = fore(g).

Case 2: If u € bf\’j’e, 0 e bﬁj’e and not Case 1 and p minimal under those conditions,
then foA<t1(9) = f5°(6 where we choose 8 = f3™(p).

Case 3: If 6 € a N pcf(b5”) and neither Case 1 nor Case 2, then

FEMH0) = Min{y < 01 f3 [ bgla] <_,1q f37°}

Now ({657 : XA € a) : € < |a|T) can be computed from a and (b57 : X € a).
But the latter belongs to N,y1 by (*)4(7), so the former belongs to N;+1 and as
((bi’j’€ : A €a):e<|a]T) is eventually constant, also each member of the sequence
belongs to Nj+1. As also ((f&* :a < A) : A € pef(a)) belongs to N;41 we clearly
get that

<<<f§’)"€ re<laT)ia<A):Aea)
belongs to N;11. Next we prove by induction on € that, for A € a, we have:

®1 0 ¢ bg\’j’eand/\ ca= fsau’gévmm\) (0) = sup(N,, N 0).

For e = 0 this holds by (x)g. For e limit this holds by the induction hypothesis and

the definition of f&*¢ (as union of earlier ones). For ¢ + 1, we check ffligﬁlm ()

according to the case in its definition; for Case 1 use the induction hypothesis
applied to f° g&m NS For Case 2 (with u), by the induction hypothesis applied to

a, €
fSUP(NmﬂN)-
Lastly, for Case 3 (with #) we should note:
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(i) b3 Nbgla] & Jplal.
[Why? By the case’s assumption b5”° € (Jy[a])T and (x)4(a) above.]

.. A€ i,7,€ i,7,€ 0,¢
(i) fominaon 1 (057 Nb7) C fE0 oy

[Why? By the induction hypothesis for €, used concerning A and 6.]
Hence (by the definition in case 3 and (i) + (ii)),

uh)ﬁ$m$MW)gam@@mw.

Now if v < sup(N,; N 6) then for some (1) we have v < v(1) € N, N0, so letting
b=: 063" Nbgla] Nby”*, it belongs to J<gla] \ J<g[a] and we have

0 0 0,¢
S5 10 <) f$(1) b < f;]p(zvme)
hence fau;(;}"lm)(ﬁ) > ~; as this holds for every v < sup(/N,, N @) we have obtained

(iv) Fainiany (6) = sup(N, M 6);

together we have finished proving the inductive step for e+ 1, hence we have proved
®1' .

This is enough for proving b{”“ € J<,[a].

Why? If it fails, as bg’j’e € Nji1 and (f&M€:a < A) belongs to Nj41, there is
g € TT657° such that

(*) o < A= foA b5 < g mod J<yla.

s

g < (sup(N, N0) : 6 € b)), Together this contradicts @!
This ends the proof of 2.1. Ua1 {1.31}

Without loss of generality g € Nji1; by (%), f“u;(jv Ay < g mod J<xla]. But

If [pcf(a)| < Min(a) then 2.1 is fine and helpful. But as we do not know this, we 4 31}

shall use the following substitute.
{6.7A}
Claim 2.4. Assume |a| < k = cf(k) < Min(a) and o is an infinite ordinal satisfying

lo|t < k. Let f, N=(N;:i < k), N. be as in the proof of 2.1. Then we can find {1.31}

i=(in:a <o), a=(a,:a <o) and (05[] : A € ag) : B < o) such that:

(a) i is a strictly increasing continuous sequence of ordinals < k,

(b) for B < o we have (iy : a < ﬁ> Nig,, hence (N, o < ) € Ny, and
(63[a : X € ay and v < B) € Ni,,,, we can get i | (B+1) € Niyy1 if &
succesor of reqular (we just need a suitable partial square)

(c) ag = Ny, Npcf(a), so ag is increasing continuous with ,a C ag C pcf(a)
and |ag| < K,

(d) b{[a] C ap (for A € ap),

() Jealag] = Jealag) + b3[a] (so A € b7[a] and bJ[a] C X

(f) if pw < X are from ag and p € bB[ ] then b7[a] C f[ al (z e., smoothness),
(9) b5[a] = ap Npef(b3[a)) (i.e., closedness),
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(h) ifcCag,B <o andce N;

have ¢ € |J b5+ al;
HED

541 then for some finite ® C agy1 N pef(c), we
more generally (note that in (h)™ if 0 = Xq then we get (h)).

(h)* ifcCag,B<o,c€ Ny, ,,0 =cf(0) € Ny, ,, then for somed € N;
ag+1 N PCfy_ ompiete(c) we have ¢ C bﬁJrl[ﬁ] and 0] < 0,
HED

B+1’Dg

(i) bi[a] increases with f.
This will be proved below.
Claim 2.5. In 2./ we can also have:

(1) if we let bya] = bfla] = U bf[ﬁ], a, = |J ag then also for B = o we have
B<o B<o
(b) (use Niﬂ+1)7 (C)7 (d)a (f)7 (1)
(2) If o = cf(o) > |a| then for § = o also (e), (g)
(3) If cf(o) > |al,c € N;,, ¢ C a, (hence |¢| < Min(c) and ¢ C a,), then for
some finited C (pcf(c))Na, we have ¢ C |J by[a]. Similarly for 6-complete,
HED

0 < cf(o) (i.e., we have clauses (h), (h)™ for B =0).
(4) We can have continuity in § < o when cf(5) > |a|, i.e., b[a] = ﬁU(s b[a).
<

We shall prove 2.5 after proving 2.4.

Remark 2.6. 1) If we would like to use length «, use N as produced in [Sh:420,
L2.6] so 0 = k.

2) Concerning 2.5, in 2.6(1) for a club E of ¢ = k, we have a € E = b§[a] =
bafal N aq.

3) We can also use 2.4,2.5 to give an alternative proof of part of the localization
theorems similar to the one given in the Spring ’89 lectures.

For example:

Claim 2.7. 1) If |a| < 6 = cf(0) < Min(a), for no sequence (\; : i < 0) of members
of pct(a), do we have N [Ao > maxpcf{); : i < a}].

a<f
2) If |a] < Min(a),|b] < Min(b),b C pcf(a) and X € pcf(a), then for some ¢ C b
we have [¢| < |a| and X € pcf(c).

Proof. Relying on 2.4:

1) Without loss of generality Min(a) > 6%3, let x = 672 let N, N,, a, b (as
a function), (i, : @ < o =: |a|T) be as in 2.4 but we in addition assume that
(Ni 11 <0) e Ng. Soforj<0,c;={N\:i<j}eNy(soc; Cpcfla)NNy=ap)
hence (by clause (h) of 2.4), for some finite d; C a; Npcf(c;) = N;, Npef(a) Npef(cy)
we have ¢; € )¢, bilal. Assume j(1) < j(2) < 6. Now if p € aﬁ/\ U bila] then

€05
for some 49 € 91y we have p € by, [a]; now po € 91y C pef(cjny) € pef(ejz)) S
pef( U b3ila])= U (pcf(b}[a]) hence (by clause (g) of 2.4 as pug € 09y C N1)
A€ (2) A€ (2)

for some 11 € 02y, o € by, [a]. So by clause (f) of 2.4 we have b}, [a] C b}, [a] hence
remembering p € b}m [a], we have pu € b}“ [a]. Remembering ;i was any member of
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an U b}, wehavean Y bifa] Can U b}fa] (holds also without “an”
AEDi(1) A€0j(1) €D (2)

but not used). So (an |J bi[a]:j < ) is a C-increasing sequence of subsets of a,
A€ED;
but cf(0) > |a|, so the sequence is eventually constant, say for j > j(x). But

maxpef(an |J bifa]) < maxpef( |J bi[a)])
AED; AED;
= f(blla
I;gj(maXpC (bx[a]))
= maxA < maxpcf{\; : i < j} <\,
A€ED;
=maxpcf(an |J bia])
A€V 41

(last equality as by,[a] C b}[a] mod J<x[a;]). Contradiction.

2) (Like [Sh:371, §3]): If this fails choose a counterexample b with |b| minimal, and
among those with max pcf(b) minimal and among those with | J{u™ : p € ANpcf(b)}
minimal. So by the pcf theorem

()1 pef(b) N A has no last member
()2 = sup[ANpcf(b)] is not in pef(b) or p = A
()3 maxpcf(b) = A

Try to choose by induction on @ < |a|™, A; € AN pcf(b), \; > maxpef{\; : j < i}.
Clearly by part (1), we will be stuck at some i. Now pcf{); : j < i} has a last
member and is included in pcf(b), hence by (x)s3 and being stuck at necessarily
pef({Aj 14 <i}) € Abut it is C pef(b) C AT, so A = maxpef{); : j < i}. For each
Jj, by the choice of “minimal counterexample” for some b; C b, we have |b;| < |a],
Aj € pef(bj). So A € pef{); : j < i} Cpcf(Y bj) but |J frb; is a subset of b of
j<i j<i
cardinality < [i| x |a| = |a], so we are done. Os 7
Proof. Without loss of generality ¢ = wo (as we can use w”c so [w¥o| = |o]).
Let f* = (fo* = ((f3* : a < A\) : A € pef(a)) and (N; : i < k) be chosen as in
the proof of 2.1 and without loss of generality f® belongs to Ng. For ( < x we
define a¢ =: N N pef(a); we also define ¢ f as ((f8°X s o < A) : X € pef(a)) where
f3°X € [Ta is defined as follows:

(a) if 0 € a, f3°X(0) = £22(0),
(b) if 0 € a%\a and cf(a) ¢ (|a¢|, Min(a)), then

FEANB) = Min{y < 0 : 2 [ bgla) <s_ypoota) S& 1 bolal},

(c) if 0 € aS\a and cf(a) € (|as|,Min(a)), define f2°*(6) so as to satisfy (%)
in the proof of 2.1.

Now ¢ f is legitimate except that we have only

B <vy<\E€pcf(a) = fgg’)‘ < ff”\ mod J_[a]

{6.7D}

{1.31}

{1.31}
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(instead of strict inequality) however we still have A \/ []"E<’A < f,?C*A mod J.y[a¢]],
B y<A
but this suffices. (The first statement is actually proved in [Sh:371, 3.2A], the sec-

ond in [Sh:371, 3.2B]; by it also ¢ f is cofinal in the required sense.)

For every ( < k we can apply the proof of 2.1 with (N, N pef(a)), ¢f and
(N¢y14i 4 < k) here standing for a, f, N there. In the proof of 2.1 get a club E¢ of
k (corresponding to E there and without loss of generality ¢ +Min(E¢) = Min(E®)
so any i < j from E¢ are O.K.). Now we can define for ¢ < x and i < j from E¢,
Cbi’j and (Cbi’j’e ce < [as|t), (903, 5, A\) = A € a%),e$(i, 5), as well as in the proof of
2.1.

Let:

E={i<k: iisalimit ordinal (Vj <i)(j +j <iandj x j < 1)
and A i€ E’}.
j<i
So by [Sh:420, §1] we can find C = (C5 : § € S),S C {6 < k : cf(6) = cf(0)}
stationary, Cs a club of §, otp(Cs) = o such that:

(1) for each o < X\, {CsNa : @ € nacc(Cs)} has cardinality < . If & is successor
of regular, then we can get [y € C, NC = Co Ny = Cz N~ and

(2) for every club E’ of k for stationarily many 6 € S,Cs C E’.

Without loss of generality C € Ny. For some 6%, Cs- C E, and let {je : ¢ <
w?c} enumerate Cs« U {6*}. So (j¢ : ¢ < w?o) is a strictly increasing continuous
sequence of ordinals from £ C « such that (jc : € < () € N, and if, e.g., s is a
successor of regulars then (j. : ¢ < () € Nj.41. Let j(¢) = j¢ and for £ € {0,2}
let i0(C) = if =t jurrc), ¢ = N Npef(a), and a® =: (af : ¢ < o), t6s[a) =:

. P o8 s L o0
w(Ob&@J§+1LJ@J§+2L€%J@JC+1%J@JC+2»' Recall that o = wo s0 0 = w2o; if the

value of ¢ does not matter we omit it. Most of the requirements follow immediately
by the proof of 2.1, as

® for each ¢ < o, we have b, (bg[ﬁ] : A € ac) are as in the proof (hence

conclusion of 2.1) and belongs to Nj 413 € N;,, .

We are left (for proving 2.4) with proving clauses (h)* and (i) (remember that (h)
is a special case of (h)T choosing 6 = V).

For proving clause (i) note that for ¢ < £ < &, faac’)‘ - f;“ hence Cbg’j C fbi\’j.
Now we can prove by induction on € that be\’j “C fbi’j “ for every A € ac (check
the definition in (x)7 in the proof of 2.1) and the conclusion follows.

Instead of proving (h)™ we prove an apparently weaker version (h)’ below, but
having (h)’ for the case £ = 0 gives (h)™ for £ = 2 so this is enough [[then note that
i = (ig2c : (< 0), @ = (a,2¢: (<), (Njw2e) : ¢ <o), <b‘:\)2<[ﬁ’] (<o NEa; =
a2¢) will exemplify the conclusion]] where:

(h)"if ¢ C ag, B < 0, ¢ € Ny, ,,0 = cf(d) € N;,,, then for some frd €

Nigoyi+1 satisfying 0 € agyw N pefy_omplete(€) We have ¢ C bﬁ*“’[ﬁ]
HED
and 9] < 0.

O
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Proof. Proof of (h)’

So let 6, 3, ¢ be given; let (b,[a] : 1 € pcf(c))(€ Ni,,,) be a generating sequence.
We define by induction on n < w, An, ((¢y, Ay) : 7 € Ay) such that:

(@) Ao = {() by = ¢, Ay = maxpef(c),

(b) A, C"0,|A,] <0,

(¢) if n € Apq1 then n [ n € Ay, ¢y C cyins Ay < Agpn and A, = max pef(cy,)),

d) An,((cy, ) :m € Ap) belongs to Ny, ., hence A, € Ny,

e) if n € Ay and Ay € pefyomplere(cy) and ¢, € 63" [a] then (Vv)v €
Apqrandn C v & v = n7(0)] and ¢,y = cn\bﬂ+1+n[ ] (s0 Ayroy =
max pef(c,-gy) < A, = max pef(cy,),

(f) if n € Ay and A & pefy omplete(€y) then

Cy = U{bk.y"(-;) [C] ni < ’Ln < HanA<’L> € An+1}7
and if v = n" (i) € A,41 then ¢, = by [c],

(g) if ne Ana and )‘77 € pCfO—complete(cﬂ) but c77 bﬁJrl ’ﬂ[ ] then ﬁ(31/)[77<]V €
Al

(
(

There is no problem to carry the definition (we use 2.8(1), the point is that ¢ €
N15+1+n implies (ba(c) : A € pefy[c]) € Ni,, ., and as there is 9 as in 2.8(1), there
isonein Ny, .., 500 Cagiiini1).

Now let

Dn = {/\77 °n € An and /\77 € pCfG-complete(cﬁ)}

and 0 =: |J 0,; we shall show that it is as required.

nw

The main point is ¢ C |J bﬁJr“’[ |; note that
A€ED

[An650ﬂ7€14n:>b5+1+"[] bﬂ+“[ﬂ

hence it suffices toshow ¢ C | U b§+1+"[ﬁ], soassumed € ¢\ J U b§+1+n [a],
n<w A€V, n<w A€,
and we choose by induction on n, 0, € A, such that ng =<>, n,41 [ n = n, and

0 € c,; by clauses (e) + (f) above this is possible and (maxpcf(c,,) : n < w) is
(strictly) decreasing, contradiction.
The minor point is [9] < 6; if # > Rj note that A |A,] < 6 and 6 = cf(0) clearly

0] < |U, Anl < 0+ = 0.
If § = Xy (i.e. clause (h)) we should show that | J A4, finite; the proof is as above

n
noting that the clause (f) is vacuous now. So n < w = |A4,| = 1 and for some
n\/ A, =0, soJ A, is finite. Another minor point is 0 € Ny, . ,; this holds as the
n

n
construction is unique from ¢, (b,[c] : p € pef(c)), (N; 1 § < igtw), (i; 1 J < B+ w),

ule
<

<(ai(<),<bf\[ﬁ] t A€ ayg) 1 ¢ < B+ w); no “outside” information is used so
(An, ((enyAp) :m € An)) :n < w) € Ny, .\, so (using a choice function) really
RS Nw+w+1 Ua.4

{6.7F}
{6.7F}
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Proof. Let byJa] = b = U b5[ag] and a, = |J ac. Part (1) is straightforward.
B<o (<o
For part (2), for clause (g), for 8 = o, the inclusion “C” is straightforward; so
assume [ € ag N pcf(bf[ﬁ]). Then by 2.4(c) for some By < 3, we have p € ag,),
and by 2.7 (which depends on 2.4 only) for some 81 < 3, u € pcf(bf1 [a]); by
monotonicity without loss of generality Sy = 1, by clause (g) of 2.4 applied to Sy,
We bf“ [a]. Hence by clause (i) of 2.4, u € bf[ﬁ], thus proving the other inclusion.
{6678} The proof of clause (e) (for 2.5(2)) is similar, and also 2.5(3). For ??(B)(4) for
§ < o,cf(8) > |a| redefine bS[a] as ﬁUg 67 [al. O 5
<

{6.7F} .
Claim 2.8. Let 0 be regular.

0) IfOé < 95 pCfO—complete( U ai) = U pCf@—complete(ai)'

<o <o

1) If (bola] : O € pcf(a)) is a generating sequence for a, ¢ C a, then for some
0 C pefy comprete(€) we have: [0 < 6 and ¢ € |J bg[a].

Oca

{6.7A}
{6.7a}1}
{6.74}
{6.7A}

2) IflClUC| < Min(a)’ cC pCfH—complete(a)7 A€ pCfG—complete(c) then A € pcf@—complete(a)'

3) In (2) we can weaken |a U ¢| < Min(a) to |a] < Min(a), |¢| < Min(c).

Proof. (0) and (1): Left to the reader.
2) See [Sh:345b, 1.10-1.12].

3) Similarly. Oag
{6.7G}
Claim 2.9. 1) Let 0 be regular < |a|]. We cannot find Ao € Pty _compiete(@) for

o < |a|™ such that A\; > suppcfy_omprere({Aj 1 7 < i}).
2) Assume 0 < |a|,¢ C pcfy_comprere(a) (and |¢] < Min(c); of course |a] < Min(a)).
If XN € pefy_ompiete(€) then for somed C ¢ we have 0| < [a] and X € pefy_ . piee(0)-

{e{ec7a} Proof. 1)1f 0 = Ry we already know it (see 2.7), so assume 6 > Ro. We use 2.4 with
{0, (\; i < |a|T)} € No, 0 = |a|*, k = |a|*3 where, without loss of generality, r <
(6.7} Min(a). For each o < [a|* by (h)* of 2.4 there is an € Niy, 00 € Pcfy compiete({Ai :
i < a}), [0a] < 6 such that {)\; : i < a} € J bj[a]; hence by clause (g) of 2.4
{6.7A} SN
and part (0) Claim 2.8 we have a; N pcfy comprere({Ai 2@ < a}) € U bglal. So
{6.7F} 0€0,
for a < ﬂ < |Cl|+, (U g ap N pCfO—complete{)\i i1 < Oé} g ap N pCf@—complete{Ai :
i < B} C U bjla. As the sequence is smooth (i.e., clause (f) of 2.4) clearly

{6.74} €25
a<f= U biac U b,la.
HED o HED
So ( U bifaNa:a < |aff) is a non-decreasing sequence of subsets of a of
HED,

length |a|*, hence for some a(*) < |a|* we have:

(#)1 a(x) <a<l|at= U bilalna= U bylana
HED HED ()
Ifre ap N pCfH—COmplete({)‘i i< a}) then 7 € pCfG—complete(a) (by parts (2)7(3)
(6.7F} of Claim 2.8), and 7 € b, [a] for some p, € 0, so blla] C b, [a], also T €
(6.7} Py complete(01[A] N a) (by clause (e) of 2.4), hence

TE pCf@—complete(b'}'[a] N a) C pCfG-complete(b}L,. [a] N ﬂ)

c pCfG-complete( U b}t[a] N U.).
HEVy
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So a1 Npefp complete({Ai 17 < a}) € pefy comprete( U b [6] Na). But for each o <
HED,
la|T we have Ao > sup pefy_complete({Ai : 7 < a}), whereas 9, C pef

a—complete{)‘i :
1 < a}, hence \, > supd, hence

(*)2 )\a > Sup,ueba maXpCf(b}L[a]) > sup pCfG-complete( LJD b}t[a] N Cl).
HED o
On the other hand,

(*)3 Ao € pCfG—complete{)‘i i<a+ 1} - pCfH—COmplete( U b}t[a] N U.).
HEDq 41

For oo = a(x) we get contradiction by ()1 + (%)2 + (*)3.
2) Assume a, ¢, A form a counterexample with A minimal. Without loss of generality
la|™3 < Min(a) and A = maxpcf(a) and A\ = maxpcf(c) (just let o’ =: by[a], ¢’ =:
¢ N pefpla’]; if A ¢ pefy complete(c’) then necessarily A € pef(c\¢’) (by 2.8(0)) and
similarly ¢\¢’ C pcfy comprete(@\a’) hence by parts (2),(3) of Claim 2.8 we have
A € pefy complete(a\a'), contradiction).

Also without loss of generality A ¢ ¢. Let k,0, N, (i, = i(a) : a < o),a = (a; :
i < o) be as in 2.4 with a € Ng,¢ € No, A € Ny, 0 = |a|t, k = |a|t® < Min(a). We
choose by induction on € < |a| ™, A, e such that:

(a) 7 A € Ow2etwt1,0c € Ni(w26+w+1)7
(b) )\6 S C,
(C) 0c € ag2eqyt1 N pCfH—COmplete({)‘ﬁ 10 < 6}))
d) o] <6,
)

e {>‘C (< 6} - GUa bté’zﬁ-i-wi-l[a],
6 €

(
(
(JJZE w =
(f) )‘e ¢ pCfG—complete( U be * +1[U.]).
€0,
For every e < |a|* we first choose d. as the <}-first element satisfying (c) + (d) + (e)
and then if possible A as the <} -first element satisfying (b) + (f). Tt is easy to check
the requirements and in fact (A\¢ : ¢ <€) € Ny2c41, (¢ 1 ¢ <€) € N2, (so clause
(a) will hold). But why can we choose at all? Now A ¢ pcfy .ompieteiAc * ¢ < €}
as a,c¢, A form a counterexample with A minimal and ¢ < |a|T (by 2.8(3)). As

A = max pef(a) necessarily pefy comprete({A¢ 1 ¢ < €}) € X hence 2 € A (by clause
(c)). By part (0) of Claim 2.8 (and clause (a)) we know:

2 _ Ww2dw _
pCfO—COmplete[ U bu;j e+w+1[a]] = U pCfG—Complete[bu * +1[Cl]]
HED HED
CU@m+1ca
HED

(note 1 = max pef (b5 [d])). So A & pefycompiote( U btj%‘“"“[ﬁ]) hence by part (0)
HED,

of Claim 2.8 ¢ ¢ bl‘j%*“’*l[ﬁ] s0 A exists. Now 0. exists by 2.4 clause (h)™T.
HED

2 — . . . .
Now clearly { an |J b “t“*[a] : e <[at ) is non-decreasing (as in the earlier
HED

proof) hence eventually constant, say for € > ¢(x) (where e(x) < |a|T).
But

{6.7F}
{6.7F}

{6.74}

{6.7F}

{6.7F}

{6.7E}
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(@) dee U b“fe*‘”“[ﬁ] [clause (e) in the choice of A, ],
HED 41

(6.7} (B) b§j€+w+1[ﬁ] C UMeae+1 bf‘*‘*’“[ﬁ] [by clause (f) of 2.4 and («) alone],
(7) Ae € pefp_complete(a) [as Ac € ¢ and a hypothesis],

(6.7} (0) A € pcf‘g_complete(b‘;\’jﬁwﬂ[ﬁ]) [by (v) above and clause (e) of 2.4],
() A & pef(a 6"+,
(€) Ac € Pefycomprere(@an U 627 FH[a]) [by (5) + () + (B)].

HEDet1

But for € = €(x), the statement (¢) contradicts the choice of €(x) and clause (f)
above. U
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§3

Definition 3.1. 1) For J an ideal on « (or any set, Dom(.J)-does not matter) and
singular o (usually cf(p) < &, otherwise the result is 0)

(a) we define pp ;(p) as

sup{tef( [T Ni,<s): A € Regnu\xt fori <k
i<K
and p = limy(\; : i < k), see 3.2(1) and

(TT Ai, <) has true cofinality}
<K

(b) we define pp7 (i) as

sup{(tcf(T] Xi,<s))T: N € RegnNpu\xT for i < k
1<K
and p = limy((\; : i < k)), see 3.2(1) below and
(TT Miy <) has true cofinality}.
i<K
2) For J a family of ideals on (usually but not necessarily on the same set) and

singular pu let ppy (1) = sup{pp, (1) : J € I} and ppJ (1) = sup{pp; (u) : J € J}.

3) For a set a of regular cardinals let pef ;(a) = {tef(  [[ A, <y): At € a for
teDom(J)

t € Dom(J)}; similarly pefy(a).

Remark 3.2. 1) Recall that g = limj()\; : ¢ € Dom(J)), where J is an ideal on

Dom(J) mean that for every p; < p the set {t € Dom(J) : A¢ ¢ (111, ]} belongs to
J.

2) On pef ;(a): check consistency of notation by [Sh:g].
Observation 3.3. 1) For p,J as in clause (a) 3.1, the following are equivalent

(a) pps(p) >0

(b) the sup is on a non-empty set

(¢) there is an increasing sequence of length cf(u) of member of J whose union
S K

(d) pps(p) > p

(e) every cardinal appearing in the sup is regular > p and the set of those

appearing is Reg N [, pp (1)) and is non-empty.

Definition 3.4. 1) Assume J is an ideal on k,0 = cf(0) < &, f € #Ord then we
let

Wio(f* < p)=Min{|Z|: & is a family of subsets of sup Rang(f*)+ 1
each of cardinality < p and for every f < f*,
Rang(f) is the union of < o
sets of the form

{i<k:f(i)e A}, Ae Z}.

2) If f* is constantly A we write A if u = X\ we can omit < p.

{cv.1}

{cv.1a}

{cv.2}
{cv.1}

{cv.3}
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Remark 3.5. 1) See cov(, u,0,0) = Wigj<o o ((A 1 < 0), ).

2) On the case of normal ideals, i.e. prc see [Sh:410, §1] and more generally prd see
[Sh:410].

We may use several families of ideals.

Definition 3.6. Let

(a) comg, = {J:Jis a o-complete ideal on 0}

(b) nor, = {J : J a normal ideal on x}

(¢) comy, = {J:Jis a o-complete ideal on Dom(I) extending the ideal I}
(d) nory = {J : J is a normal ideal on Dom(I) extending the ideal I}.

Claim 3.7. The (< Ry)-covering lemma.
Assume Ry < o < cf(u) <k < p and I is a o-complete ideal on k.
Then

(@) Wro(1) = PPeom, (1) (1)

(b) except when ®,, 1, below holds, we can strengthen the equality in clause (a)
to: i.e., if PPoom, (1) 18 @ regular cardinal (so > p) then the sup in 3.1(1) is
obtained

®p 1,0 (a) A =1DPDeom, (1) () is (weakly) inaccessible, the sup is not obtained
and for some set a C RegNy, |a|+x < Min(a) and A = sup(pcf; ,(a));
recalling e com, (1y(a) = { [T Ai, <s: J € coms(I), Ai € a fori <k}
1<K
Remark 3.8. 1) This is [Sh:513, 6.13].
In a reasonable case the result cov(|al, ™, xT, o).

Conclusion 3.9. In 3.7 if K < us < u then

(@) Wio(p, < pix) = sup{PPeom, (1) (1) pue < p" < p,cf(p') < K}

(b) if in (a) the left side is a reqular cardinal then the sup is obtained for some
sequence (A\; : i < k) of reqular cardinality and J € comy(I) such that
lim;(\; : @ < k) is well defined and € [, p] except possibly when

@ Lop, 050 @y 1 above but |a| < pu,.

Proof. The inequality >:

So assume J is a o-complete ideal on r extending I,)\; € Reg N p\xkt and

p=limy((\; : i < g)) and A = tcf( [] A\i, <) is well defined and we shall note that
<K
W o(p) > A, this clearly suffices, and let (f, : @ < A) be <j-increasing cofinal in
(TT i, <Jg)- Now let | 22| < A, & be a family of sets of ordinals each of cardinality
i<K
< p. For each u € 2 let g, € [] \; be defined by g, (i) = sup(u N X;) if |u] < \;
<K

and gy, (i) = 0 otherwise.

Hence for some a(u) < A, gu <j fa) and so a(x) = U{a(u) +1:u € £} < A
and fq(s) exemplifies the failure of & to exemplify A > Wy ,(u).

The inequality <:

Assume that A is regular > pp}tg(,u) and we shall prove that Wy ,(u) < A,
this clearly suffices. Let y be large enough, and 25 be an elementary submodel of
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(€ (x), €, <3,) of cardinality < A such that {I,0, 1, A\} € B and ANV is an ordinal
which we shall call d. Let &2 =: [u]<* N B so |Z] < A. Hence it is enough to
prove that Wi ,(u) < || and for this it is enough to praove that & is as required
in Definition 3.3(1). Let € = (eq : @ < p) € B be such that e, is a club of a of
order type cf(a) so eqy1 = {a},eq = 0.

So let fi. € "p and let (u. : e < cf(p)) € B be an increasing continuous sequence
of cardinals from (k, ) with limit g. Now by induction on n < w we choose
€ns Ans gns T, Sp, By, such that

@ (A)(@) An € (155, Ao = {pe - € < cf(n))
(b) gn is a function from & to A,

f« < gn

ifn=m+1and ¢ < k then g, (%) > f.(i) = gn (i) > gm(7)
T, € "o has cardinality < o

T ={<>}
ifn=m+1and n € 7, thenn [ m e 7,
S, =1(S,:ne )
B, = (B, :n€ )
en<cf(p)andn=m+1=¢, >,
(B) for each n € F:

(a) Sy, Ck,Sy¢ T

(b) ifn=m+1then S;m 2S5,
() B, € is asubset of y of cardinality < jic(n)
(d) {gn(i):i€ Sy} isincluded in B,
(C)(a) ifn=m+1andne 7, then the set

Sy = {i € Sy gm(i) > LN UA{Sy <j> 207 () € Tn}
belongs to I.

=
~ ~—

c

U
— =

SRS
~— —

o~~~ o~~~ —
~ [y
~—

It is enough to Carry the definition:

Why? As then {B,, : n € 7, for some n < w} is a family of members of & (by
(B)(c)), its cardinality is < o (as 0 = cf(0) > Ny and for each n < w,|.7,| < ¢ by
(A)(e)).

Similarly as [ is o-complete the set S* = U{S} : n € 7, for some n < w} belongs
to I. Now for every i € k\S*, we try to choose 1, € 7, by induction on n < w
such that ¢ € S, and n =m+1= 0, =1, | m and g, () > f«(7). For n =0 let
n=<>s0i€r=A. Forn=m+1,asi¢S; ,see (C)(a)clearly n, as required
exists. Now if n =m + 1 again as i ¢ S we get g,,(i) > f«(i) and by (A)(d) we
have g, (i) > gn (7). But there is no decreasing w-sequence of ordinals. So for some
1, g (i) < £2(8) 50 by (A)(C), gm(i) = £2(6) but ga(i) € By,

Carrying the induction:

Case n = 0:

Let 7 = {<>}, Acs = {pe : € < cf(pr)} which has cardinality < x as cf(u) < K
by assumption. Further, let go be defined as the function with domain x and
go(i) = min{pe : pe > fo(i)}, let Scs = k and Bes = Ag which € B as (us : € <
cf(p)) € B (and has cardinality |Ag| = cf(u) < k).

Casen =m+ 1:
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Let n € 7, and define S; = {i € 5, : gu(i) > fu(i)}. If S € I then we decide
that j <n = n"(j) ¢ Zn, so we have nothing more to do so assume S ¢ I.
Let a, = {cf(a) : @ € B, and cf(a) > |B,| + £} and let

¢y = {tef( [T cf(gn(4)),<s): J is an o-complete ideal on
i€s,
Sy, extending I [ S} such that p = lim(cf(gn(i)) : i € Sy)

and [] cf(gn(7)), <s) has true cofinality}
i€sy,

Clearly & + |a,| < min(a,) and ¢, C pcf; ,(a;) € AN Reg and by ~®,, 1, we
know that pcf; ,(a;) is a bounded subset of A\. But B, € B hence a, € B hence
pefy ,(a,) € B so as BN = dys < A, clearly pcf; ,(a,) € B hence 0 € ¢, = 0 <
0. Using pcf basic properties let J, » be the o-complete ideal on a, generated
by J-x[ay,] and so a,,J,x € B and there is a <;, ,-increasing cofinal sequence
fox = (faxc : ¢ < A) of members of Ila,, such that f, ¢ is the <;, ,-e.u.b. of
fn, A | ¢ when there is such <, ,-e.u.b. Without loss of generality fn, A € B hence
{farc:C <A} C .

Let a,, = U{a, : n € Z,} and define a hy, € a,, by hy,(0) = sup{otp(ey,, ) N
f«(@)) 1i <k and fi(i) < gm (i)} Clearly it is < 0 as 0 = cf(0) > pe(m) > |Byl + K
when 6 € a,. For each nn € 7, and A € ¢, let {, » < A be such that hy, [ a,; <
fnﬁ,\ycmk mod ‘]777)\’ and let

Sy =i € Sy han(cf(9i(0)) < fan, x (cf(gm ()}

© for some subset ¢, of ¢, of cardinality < o the set {i € S, : i ¢ S}, for
every A € €, } belongs to /.

[Why? Otherwise, let J be the o-complete ideal on S;, generated by I U {S’;A A€

¢y}, so k ¢ J hence for some S* € J* we know that ( [] cf(gm(i), <s1s+) has true
i€S*
cofinaltiy, call it A*. Necessarily A* € ¢,) and easily get a contradiction.]

Case A: |U{c, :n € In} < p.
Let (A, :j <) list . Let aj, = a,\|J¢y|". Now by induction on k < w we

n
choose hy, i, G i,k for j < jn,n € F, such that

® (a) hmy € Ial,
D) hmk < hmg+1
(€) hmo=hm
(d)  Cojk < Ang
(€)  Cnijk < Cnjikt
() Cojo =G
(9) i (6) =supl{fun, e, (0) 1€ T € ay} U (A i (0))]
(h)  Cpjksr =Min{C < A, : ¢ > Gk and hyp i1 [ ay < fyx, ;. mod

Jnv)‘TIJ}'
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There is no problem to carry the induction. Let h,,. € Ila, be defined by
Ponw(0) = U{hm x(0) : k <w}. Let S) ;= {i € Sy : fu(i) is < the hpy, o (cf(gm(i))-
ith member of e, ()}

Now

X for some ¢ C ¢, |cy| < o for n € T, we have S,\U{S,;: \; € ¢;} € I.
Now continue. Us.7

Case B: C not Case A.
Use §2.

Discussion 3.10. Lemma 3.7 leaves us in a strange situation: clause (a) is fine,
but concerning the exception in clause (b); it may well be impossible and pef(a) is
always not “so large”. We do not know this, we try to clarify the case for reasonable
J;, i.e., closed under products of two.

Observation 3.11. 1) There is . < p such that (V') (e < p/ < pAcf(p) <
k< p') = pp} (1) < ppy (k) when:

® (a) cof(u) <k <p

(b) J is a set of o-complete ideals

(¢) J€J=|Dom(J)| <k

(d) if Jo € for e < cf(u) then for some o-complete ideal I on cf(p),
the ideal J = X1(J. : € < cf(p)) belongs to I (or is
Just <rk from some J' € J).

Proof. Let A = {p/ : ¢/ is a cardinal < g but > &, of cofinality < & such that
ppy (#') > ppy(p)}, and assume toward contradiction that p = sup(A). So we
can choose an increasing sequence (. : ¢ < cf(p)) of members of A with limit
u. For each e < cf(u) let J. € J witnesses pu. € A. Without loss of generality
ke = Dom(J) < k so we can find (\;; : i < k) witnessing this. In particular
( TT Aeis<u.)) has true cofinality A. = cf(\.) > pp3 (). Let I,.J be as in cluase

1<Ke

(d) of ®. Us.11

* *

A dual kind of measure to Definition 3.1 is

Definition 3.12. 1) Assume J is an ideal say on « and f* : kK — Ord and p
cardinal. Then U (f*, < p) = Min{|Z?| : & a family of subsets of sup Rang(f)+ 1
each of cardinality < p such that for every f < f* (i.e., f € [](f*(i) +1)) there is

i<K
Ae€ P such that {i <rk: f(i) € A} ¢ J}.
2) If above we write J instead of J this means J is a family of ideals on x and the
& should serve all the J € J simultaneously.

Claim 3.13. We have U joa(p, < p) = A if we assume
® (a) p>rK=cf(u) >Ny

{cv.10}

{cv.7}

{cv.11}

fev.hy

{cv.22}
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(b) ([]*®, D) satisfies the p-c.c. or just u*-c.c. which means that:
if  Clk]" and A#B € of = |ANB| <k then || <p

(¢)  Ax=pp pa(p) = sup{tef( [ Ai, <jva) : \i < p is increasing with
<K
limit p and ([ Ni, <jva) has true cofinality}.
i<K

Claim 3.14. We can in 3.18 replace J*% by any Ni-complete filter J (?) on k (so
(b) becomes “(JT, D) satisfies the p*-c.c.”

Remark 3.15. If in clause (b) of ® of 3.13, we use the p-c.c. the proof is simpler,
using I, € "(fe, ) €n < Ent1-

Proof. Let

(%) (@) G = {(u;:i< k) is an increasing continuous sequence of singular
cardinals > s with limit px.

Let x be large enough, <} a well ordering of (J(x),€) and % an elementary
submodel of (J#(x), €, <}) of cardinality \. such that A\, +1 C gB and i € B and
let o = [p]<* N B.

So &7 is a family of sets of the right form and has cardinality < A,. It remains
to prove the major point: assume S is an unbounded subset of &, f* € [] [, fri+1]

€S
we should prove that (34 € &7)(3%i € S)(f (i) € A).
Let € = (eq : @ < p) € B be such that e, is a club of « of order type cf(a) so
eat1 = {a},e0 = 0. Let (B : € < cf(a)) be an increasing enumeration of e,,.
We choose ey, gn, An, In, (Sy, By : 1 € ) such that

®n (A)(a) T C'u, R ={<>hn=m+1Ane T, =nlme ]
(b) A, C p has cardinality < k
) gn:k— Ay

(d) i<k= f*(i) < gnli)
) n=m+1= gy < gm

(f) en<rkandn=m+1=¢e, <e,
(9) ifn=m+1i€ (en, k) and g (i) > f*(i) then gn,(i) > g5 (4)
(B) for n € 7,

(a) S, C k has cardinality &
(b) S,elk]"andvan=29,CS,
() B, € B is asubset of y of cardinality < jic(,) where £(n) =
Min{e < k :n € "(pe) and € > &, }
(@) {gnli) i€ 5.} C By

Forn=01let eg =0,Acs = {p; : i < K}, T = {<>}, S<> = K, gm is the function
with domain & such that g<~ = Min{a € Acs ¢ f*(4) < a}. Assume n =m+1
and we have defined for m.

Let
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¢, = {0 : there is an increasing sequence (\; : i < k)
of regular cardinals € (k, ) with limit g such that
0= th( H Nis <J5d) and
i<K
{Niri <k} C{cf(a) s a € Ay, cf(a) > k).
Of course, ¢, C Reg\u. Now for each 6 € ¢, let (\! : i < k) exemplifies it so
N i < Kk} :0€c,}is a family of subsets of {cf(a) : a € A,,,cf(a) > K)} each
of cardinality x and the intersection of any two has cardinality < .
As |A,,] < K, by assumption (d) of the claim we know that |c,| < p and let
(Mg : B < ) list them.
For each n € .7, and € < k let

ay,e = {cf(0) : § € B, and cf(d) > pe + | By}

SO

|an.c| < [By| < min(ay).
Let W = {(n,e,8) : 1 € Tm,e < K,B < pe}. Clearly a,. € B,\3 € B hence
Jyes = the r-complete ideal generated by J—»,[a,.] belongs to B and some
<J,. s-increasing and cofinal sequence (f, c 5.¢c : ¢ < Ag) belongs to B and f, . s.¢

is an <, , ,-ew.b. of (f, ¢ :& < () when there is one.
We now define a function h,,

Dom(hy,) = ay, = U{a, . :n € 7, and € < k}

SO

0 € Dom(hy,,) = k<0 < u A6 € Reg
(in fact we do not exclude the case af, = Reg N p\rT) and
hin(0) = sup{eg, i) N f * (i) : 7 < k and cf(g, (i) = 0}.
As 0 = cf(0) > & clearly
6 € Dom(h.,) = hy,(0) < 6.

We choose now by induction on k < w, huy, . (Cf;,&ﬂ : (n,e,8) € W) such that

K (a) hpmi € af,
(0)  hm,o = hm
(C) hm,k < hm,k+1
(d) CFop=Mn{C: hmy | ape <j, ., frepcand l <k=(_ 5<¢}
(€)  hun1(0) = sup[{hun (0)} U {FE 5. i (0): the triple (n, B,¢) € W

satisfies (Je)(8 < pe < 0) and 0 € a, - }].
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Note that hy, x+1(0) < 6 as the sup is over a set of < 6§ ordinals.

So we have carried the definition, and let hj, ,, € Ila,, be defined by h,, ., (0) =
sup{hm x(0) : k < w} and (o5 = ((n,e,08) = sup{gf;’gﬁ : k < w}. Now for
each (1,e,8) € W we have k < w = hppe [ 6yc <u, .4 s,s,ﬁ,g“(n,s,ﬁ)) < Pt |
a,,. By the choice of f, . 3 as Jy¢ g is Ni-complete it follows that hy, . [ aye =

TneB.oes mod Jyeg.
Let

Ap =:{a’: for some a € A,,cf(a) € a,, and o/
is the A o (cf(a))-th member of e, }.
gn(i) is o when o is the huy, o (cf(gm (i))-th member of
€g,, (i) and zero otherwise.

The main point is why o, € (e, ) exists.
To finish the induction step on n, let

Bn7EaB = Rang(fna87n7<n,a,ﬁ )

B, .=BycpU{ea:ac€ By and cf(a) < pien)}

and we choose (B, : p € J,,p | m € B = n to list them enumerates {B, . 3 :
g, 8} are such that (n,e,8) € W, U{B, .} in a way consistent with the induction
hypothesis.

Having carried the induction on n, note that

@1 for some n,u, ={i <rk: (1) = ga(t)} € [K]"

We now choose by induction on m < n a sequence 1, € ,, such that ng =<>
,m=1L+1=n,<4ny, and S, Nu, € [k]". For m =n by
®(x) v =uns,, €[x]" and Rang(f*Nu') C B, € & so we are done.
O
Discussion 3.16. 1) Can we consider “c([u]*,2) < u™”? We should look again
at §2.
2) More hopeful is to replace U jua (1) by Unon-stationary, (1)-

3) By 3.11 and ?? we should have the prd version (for which J and closure, see
[Sh:410].



nodi fi ed: 2016- 02- 04

2016- 02- 03

revi si on

( E69)

PCF: THE ADVANCED PCF THEOREMS E69 35

REFERENCES

[Sh:g] Saharon Shelah, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University
Press, 1994.

[Sh:111] , On power of singular cardinals, Notre Dame Journal of Formal Logic 27 (1986),
263-299.
[Sh:345a] , Basic: Cofinalities of small reduced products, Cardinal Arithmetic, Oxford

Logic Guides, vol. 29, Oxford University Press, 1994.

[Sh:345b] , Entangled Orders and Narrow Boolean Algebras, Cardinal Arithmetic, Oxford
Logic Guides, vol. 29, Oxford University Press, 1994, Appendix 2.

[Sh:355] , Ny41 has a Jonsson Algebra, Cardinal Arithmetic, Oxford Logic Guides, vol. 29,
Oxford University Press, 1994.

[Sh:365] , There are Jonsson algebras in many inaccessible cardinals, Cardinal Arithmetic,
Oxford Logic Guides, vol. 29, Oxford University Press, 1994.

[Sh:371] , Advanced: cofinalities of small reduced products, Cardinal Arithmetic, Oxford
Logic Guides, vol. 29, Oxford University Press, 1994.

[Sh:386] , Bounding pp(p) when cf(p) > p > Ro using ranks and normal ideals, Cardinal
Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994.

[Sh:410] , More on Cardinal Arithmetic, Archive for Mathematical Logic 32 (1993), 399—
428, arxiv:math.LO/0406550.

[Sh:420] , Advances in Cardinal Arithmetic, Finite and Infinite Combinatorics in Sets and
Logic, Kluwer Academic Publishers, 1993, N.W. Sauer et al (eds.). arxiv:0708.1979, pp. 355-383.

[Sh:430] , Further cardinal arithmetic, Israel Journal of Mathematics 95 (1996), 61-114,
arxiv:math.LO/9610226.

[Sh:462] , o-entangled linear orders and narrowness of products of Boolean algebras, Fun-
damenta Mathematicae 153 (1997), 199-275, arxiv:math.LO/9609216.

[Sh:506] , The pcf-theorem revisited, The Mathematics of Paul Erdés, 11, Algorithms and
Combinatorics, vol. 14, Springer, 1997, Graham, Neetfil, eds.. arxiv:math.LO /9502233, pp. 420—
459.

[Sh:513] , PCF and infinite free subsets in an algebra, Archive for Mathematical Logic 41
(2002), 321-359, arxiv:math.LO/9807177.

[Sh:620] , Special Subsets of <*(*)y, Boolean Algebras and Maharam measure Alge-
bras, Topology and its Applications 99 (1999), 135-235, 8th Prague Topological Symposium
on General Topology and its Relations to Modern Analysis and Algebra, Part II (1996).
arxiv:math.LO/9804156.

[KjSh:673] Menachem Kojman and Saharon Shelah, The PCF trichotomy theorem does
not hold for short sequences, Archive for Mathematical Logic 39 (2000), 213-218,
arxiv:math.LO/9712289.

[Sh:829] Saharon Shelah, More on the Revised GCH and the Black Boz, Annals of Pure and
Applied Logic 140 (2006), 133-160, arxiv:math.LO/0406482.

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA Campus, GIVAT RaMm, THE HE-
BREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, ISRAEL, AND, DEPARTMENT OF MATHE-
MATICS, HILL CENTER - BuscH CAMPUS, RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, 110
FRELINGHUYSEN ROAD, PiscATawAay, NJ 08854-8019 USA

E-mail address: shelah@math.huji.ac.il

URL: http://shelah.logic.at



