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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS

SAHARON SHELAH

Abstract. How many endomorphisms does a Boolean algebra have? Can we
find Boolean algebras with as few endomorphisms as possible? Of course from
any ultrafilter of the Boolean algebra we can define an endomorphism, and
we can combine finitely many such endomorphisms in some reasonable ways.
We prove that in any cardinality λ = λℵ0 there is a Boolean algebra with no
other endomorphisms. For this we use the so called “black boxes”, but in a self
contained way. We comment on how necessary the restriction on the cardinal
is.

0. Introduction

In this paper we prove the existence of a Boolean algebra of any cardinality
λ = λℵ0 which has as few endomorphisms as possible, in some natural sense. Note
that every ultrafilter D of a Boolean algebra B induces an endomorphism hD of B:
hD(x) is 1B for x ∈ D and 0B otherwise. Also we can combine endomorphisms: if
hℓ is a homomorphism from B ↾ aℓ into B ↾ bℓ for ℓ = 1, 2 and a1∪a2 = 1B = b1∪b2,
a1 ∩ a2 = 0B = b1 ∩ b2, then there is a unique endomorphism h of B extending
both h1 and h2, and for any endomorphism h of B and a ∈ B, h ↾ (B ↾ a) is a
homomorphism from B ↾ a into the Boolean algebra B ↾ h(a).

Also if İ1, İ2 are ideals of B satisfying İ1 ∩ İ2 = {0B} and {a1 ∪ a2 : a1 ∈
İ1, a2 ∈ İ2} is a maximal ideal of B, then there is an endomorphism h of B such

that h ↾ İ1 = idI1
and h ↾ İ2 is constantly zero; but possibly there are no such

non–zero ideals İ1, İ2, (then we call B indecomposable).
In §2 we define the family of such endomorphisms (those defined by a schema

and those defined by a simple schema) and investigate this a little. Our main result
(in §3) is that for any λ > ℵ0 there is a Boolean algebra of cardinality λℵ0 (and even

density character λ) with only endomorphisms as above, of course there are 2λℵ0

such Boolean algebras with no non trivial homomorphism from one to a distinct
other (see 3.1, 3.15, 3.16); we also show that “cardinality λℵ0” is a reasonable
restriction (see 3.17, 3.18, 3.19).

For simplicity, we concentrate on the case of cf(λ) > ℵ0; note that this affect
only the density character as cf(λ) = ℵ0 ⇒ λℵ0 = (λ+)ℵ0 . How do we construct
such B? The algebra B extends the Boolean algebra B0 which is freely generated
by {xη : η ∈ ω>λ} and is a subalgebra of its completion Bc

0. In fact, B = 〈B0∪{aα :
α < α∗}〉Bc

0
, with aα chosen by induction on α, has the form

⋃

n

(dα
n ∩ sα

n), where

〈dα
n : n < ω〉 is a maximal anti-chain of B, for each dα

n we have already decided that

Publication E58; last revised 2011.4.29. This is a revised version of [Sh:229], exist since early
nineties. It was supposed to be Chapter I of the book “Non-structure” and probably will be if it
materializes.
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2 SAHARON SHELAH

it will belong to B and is based on (= in the completion of the subalgebra generated

by) {xη : η ∈ ω>ξ} for some ξ < ζ̇(α) < λ, and for some increasing ηα with the limit

ζ̇(α), sα
n ∈ 〈xν : ηα ↾ n ⊳ ν〉Bc

0
. Why these restrictions? We would like to “kill”

undesirable endomorphisms and we shall omit appropriate countable (quantifier
free) types which the image of aα, if exists, has to realize, so such restrictions give
us tight control and so helps us to “diagonalize” over all possible endomorphisms.
To diagonalize we use a black box — it is presented in §1, but its existence is not
proved here (it is proved in [Sh:309]).

∗ ∗ ∗

In [Sh:89], answering a question of Monk, we have explicated the notion of “a
Boolean algebra with no endomorphisms except the ones induced by ultrafilters
on it” (see §2 here) and proved the existence of one with density character ℵ0,
assuming first ♦ℵ1

and then only CH . The idea was that if h is an endomorphism
of B, not among the “trivial” ones, then there are pairwise disjoint dn ∈ B with
h(dn) 6⊆ dn. Then we can add, for some S ⊂ ω, an element x such that dn ≤ x for
n ∈ S, x ∩ dn = 0 for n 6∈ S while forbidding a solution for

{y ∩ h(dn) = h(dn) : n ∈ S} ∪ {y ∩ h(dn) = 0 : n 6∈ S}.

Later, further analysis had showed that the point is that we are omitting positive
quantifier free types. Continuing this, Monk succeeded to prove in ZFC, the exis-
tence of such Boolean algebras of cardinality 2ℵ0 . In his proof he replaced some
uses of the countable density character by the ℵ1–chain condition. Also, generally
it is hard to omit < 2ℵ0 many types but because of the special character of the
types (as said above, positive quantifier free) and models involved, using 2ℵ0 al-
most disjoint subsets of ω, he succeeded in doing this. Lastly, for another step in
the proof (ensuring idecomposability - see Definition 2.1) he (and independently
Nyikos) found it is in fact easier to do this when for every countable set Y ⊆ B
there is x ∈ B free over it.

The question of the existence of such Boolean algebras in other cardinalities
remained open (See [vDMR80] and a preliminary list of problems for the handbook
of Boolean algebras by Monk).

In [Sh:229] it is proved (in ZFC) that there exist such B of density character
λ and cardinality λℵ0 whenever λ > ℵ0; from this follows answers to some other
questions from Monk’s list, (combining 3.1 with 2.7).

Almost all the present work is a revised version of [Sh:229] but 3.17 - 3.19 were
added; here as in [Sh:229] §2 repeats [Sh:89].

1. A black box
{1.2}

Explanation 1.1. We shall let B0 be the Boolean algebra freely generated by {η :
η ∈ ω>λ}, Bc

0 its completion and we can interpret Bc
0 as a subset of M = H<ℵ1

(λ)
(each a ∈ Bc

0 has the form
⋃

n<ω

sn where sn is a Boolean combination of members

of ω>λ). As the η ∈ ω>λ may be over-used, we replace them for this purpose by xη

(for example below let F ∈ τ0 be a unary function symbol, xη = F (η)).
Our desired Boolean algebra B will be a subalgebra of the competition Bc

0 of
B0 hence it extend B0. For our diagonalization, i.e. the omitting type, we need
the following case (we shall use κ = ℵ0). That is we need a family of subalgebras
with endomorphism, for each we add an element and promise to omit the type of
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 3

the supposed image. The family is sparse enough so that we can do it (i.e. with
the different promises not hindering one another too much), but dense enough so
that every endomorphism of the Boolean Algebra we construct is approximated.
See more accurate explanation in 1.4.

{1.2d}
Convention 1.2. We fix κ ≥ ℵ0 for this section.

{1.3}
Definition 1.3. (1): Let τn, for n < ω, be fixed vocabularies (= signatures),

|τn| ≤ κ, τn ⊆ τn+1, (with each predicate and function symbol finitary for
simplicity). Let Pn ∈ τn+1\τn be unary predicates. Let M = (H<κ+(λ),∈).

(2): For n < ω let Fn be the family of sets (or sequences) of the form
{(fℓ, Nℓ) : ℓ ≤ n} satisfying:

(a): fℓ : ℓ≥κ −→ ℓ≥λ is a tree embedding, i.e.,
(i): fℓ is length preserving, that is, η, fℓ(η) have the same length,
(ii): fℓ is order preserving (of ⊳), moreover, for η, ν ∈ ℓ≥κ we have

η ⊳ ν iff fℓ(η) ⊳ fℓ(ν),
(b): fℓ+1 extends fℓ (when ℓ + 1 ≤ n),
(c): Nℓ is an τ ′

ℓ–model of cardinality ≤ κ, |Nℓ| ⊆ |M|, where τ ′
ℓ ⊆ τℓ,

(d): τ ′
ℓ+1 ∩ τℓ = τ ′

ℓ and Nℓ+1 ↾ τ ′
ℓ extends Nℓ,

(e): if Pm ∈ τ ′
m+1, then PNℓ

m = |Nm| when m < ℓ ≤ n, and
(f): if x, y ∈ Nℓ then {x, y} ∈ Nℓ and ∅ ∈ Nℓ.
(g): Rang(fℓ) ⊆ Nℓ

(3): Let Fω be the family of pairs (f, N) such that for some sequence 〈(fℓ, Nℓ) :
ℓ < ω〉 the following hold:

(i): {(fℓ, Nℓ) : ℓ ≤ n} belongs to Fn for n < ω,
(ii): f =

⋃

ℓ<ω

fℓ, N =
⋃

n<ω

Nn, (i.e., |N | =
⋃

n<ω

|Nn|, τ(N) =
⋃

n

τ(Nn),

and N ↾ τ(Nn) =
⋃

n<m<ω

Nm ↾ τ(Nn)).

(4): For any (f, N) ∈ Fω let 〈(fn, Nn) : n < ω〉 be as above (if Pn ∈ τ ′
n+1

for n < ω then it is easy to show that (fn, Nn) is uniquely determined by
(f, N)- notice clauses (d), (e) in (2)), so for each (fα, Nα) as in 1.10 below
(fα

n , Nα
n ) for n < ω are defined as above.

(5): A branch of Rang(f) or of f (for f as in (3)) is just any η ∈ ωλ such
that for every n < ω we have η ↾ n ∈ Rang(f).

{1.4}
Explanation of our Intended Plan 1.4. (of Constructing for example the
Boolean algebra)

We will be given W = {(fα, Nα) : α < α∗}, so that every branch η of fα

converges to some ζ̇(α), ζ̇(α) non-decreasing (in α). We have a free object generated
by ω>λ (i.e., by 〈xη : η ∈ ω>λ〉, this is B0 in our case), and by induction on α we
define Bα and aα for α < α∗, such that Bα is increasing and continuous, Bα+1 is
an extension of Bα, aα ∈ Bα+1 \Bα (usually Bα+1 is generated by Bα and aα, and
is included in the completion of B0). Every element will depend on few (usually
≤ κ) members of ω>λ, and aα “depends” in a peculiar way: the set Yα ⊆ ω>λ on

which it “depends” is Y 0
α ∪ Y 1

α , where Y 0
α is bounded below ζ̇(α) (i.e., Y 0

α ⊆ ω>ζ

for some ζ < ζ̇(α)) and Y 1
α is a branch of fα or something similar. See more in 1.8.

{1.5}
Definition of the Game 1.5. We define for W ⊆ Fω a game a(W), which lasts
ω-moves.

In the n-th move:
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4 SAHARON SHELAH

Player II: Chooses fn, a tree-embedding of n≥κ into n≥λ, extending
⋃

ℓ<n

fℓ, such

that Rang(fn) \
⋃

ℓ<n

Rang(fℓ) is disjoint to
⋃

ℓ<n

|Nℓ|;

then
Player I: chooses Nn such that {(fℓ, Nℓ) : ℓ ≤ n} ∈ Fn.
In the end player II wins i when(

⋃

n<ω

fn,
⋃

n<ω

Nn) ∈ W.

{1.6}
Remark 1.6. We shall be interested in W such that player II wins (or at least does
not lose) the game, but W is “thin”. Sometimes we need a strengthening of the
first player in two respects: he can demand (in the n-th move) that Rang(fn+1) \
Rang(fn) is outside a “small” set, and in the zero move he can determine an
arbitrary initial segment of the play.

{1.7}
Definition 1.7. We define, for W ⊆ Fω, a game a′(W) which lasts ω-moves.

In the zero move:
Player I chooses k < ω and {(fℓ, Nℓ) : ℓ ≤ k} ∈ Fk, and X0 ⊆ ω>λ, |X0| < λ.

In the n-th move, n > 0:
Player II chooses fk+n, a tree embedding of (k+n)≥κ into (k+n)≥λ, with Rang(fk+n)\

⋃

ℓ<k+n

Rang(fℓ) disjoint to
⋃

ℓ<k+n

Nℓ ∪
⋃

ℓ<n

Xℓ.

Player I chooses Nk+n such that {(fℓ, Nℓ) : ℓ ≤ k + n} ∈ Fk+n and he chooses
Xn ⊆ ω>λ satisfying |Xn| < λ.

In the end of the play, player II wins when (
⋃

n<ω

fn,
⋃

n<ω

Nn) ∈ W

{1.8}
Remark 1.8. What do we want from W? First that by adding an element (to
B0) for each (f, N), we can “kill” every undesirable endomorphism, for this W
has to “encounter” every possible endomorphism, and this will be served by “W a
barrier” defined below. For this W = Fω is O.K. but we also want W to be thin
enough so that various demands will have small interaction. For this, disjointness
and more are demanded.

{1.6A}

Definition 1.9. (1): We call W ⊆ Fω a strong barrier if Player II wins

in the game a(W) and even a′(W) (which just means he has a winning
strategy.)

(2): We call W a barrier if Player I does not win in the game a(W) and
even does not win in a′(W).

(3): We call W disjoint if for any distinct (f ℓ, N ℓ) ∈ W (ℓ = 1, 2), f1 and

f2 have no common branch.
{1.7A}

The Existence Theorem 1.10. (1): If λℵ0 = λκ, cf(λ) > ℵ0 then there is
a strong disjoint barrier.

(2): Suppose λℵ0 = λκ, cf(λ) > ℵ0. Then there is

W = {(fα, Nα) : α < α∗} ⊆ Fω

and a non-decreasing function ζ̇ : α∗ −→ λ such that:
(a): W is a strong disjoint barrier, moreover for every stationary S ⊆

{δ < λ : cf(δ) = ℵ0}, the set {(fα, Nα) : α < α∗, ζ̇(α) ∈ S} is a
disjoint barrier,

(b): cf(ζ̇(α)) = ℵ0 for α < α∗,
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 5

(c): every branch of fα is an increasing sequence converging to ζ̇(α),
(d): each Nα

n is transitive, i.e.: if M |=“a ∈ b”, b ∈ Nα
n , b /∈ λ, then

a ∈ Nα
n , (we call {(fℓ, Nℓ) : ℓ ≤ n}, transitive if each Nℓ is transitive

and similarly {(fℓ, Nℓ) : ℓ < ω} and W).

(e): if ζ̇(β) = ζ̇(α), β + κℵ0 ≤ α < α∗ and η is a branch of fα, then
η ↾ k 6∈ Nβ for some k < ω,

(f): when λ = λκ we can demand: if η is a branch of fα and η ↾ k ∈ Nβ

for all k < ω (where α, β < α∗) then Nα ⊆ Nβ (and even for every
n < ω, Nα

n ∈ Nβ).

Proof: See [Sh:309, 3.11], [Sh:309, 3.16].

2. Preliminaries on Boolean Algebras

We present here some easy material.
{2.1}

Definition 2.1. (1): For any endomorphism h of a Boolean Algebra B, let

ExKer(h) = {x1 ∪ x2 : h(x1) = 0, and h(y) = y for every y ≤ x2},
ExKer∗(h) = {x ∈ B : in B/ExKer(h), below x/ExKer(h),

there are only finitely many elements}.

(2): A Boolean algebra is endo-rigid if for every endomorphism h of B, B/ExKer(h)

is finite (equivalently: 1B ∈ ExKer∗(h)).
(3): A Boolean algebra is indecomposable if there are no two disjoint ideals

I0, I1 of B (except 0B of course), each with no maximal member, which
generate a maximal ideal of B (that is {a0 ∪ a1 : a0 ∈ I0, a1 ∈ I1}).

(4): A Boolean algebra B is ℵ1-compact if for every pairwise disjoint dn ∈ B
(for n < ω) for some x ∈ B, we have x ∩ d2n+1 = 0, x ∩ d2n = d2n.

{2.2}
Lemma 2.2. (1): A Boolean algebra B is endo-rigid if and only if every en-

domorphism of B is the endomorphism of some scheme (see Definition
2.4(1),(3) below).

(2): A Boolean algebra B is endo-rigid and indecomposable if and only if ev-
ery endomorphism of B is the endomorphism of some simple scheme (see
Def 2.4(2) below).

(3): For every scheme of an endomorphism of B there is one and only one
endomorphism of the scheme.

Proof. Easy.
{2.2A}

Remark 2.3. (1) In fact, for a Boolean algebra B, we have {h : h is an endo-
morphism of B defined by a scheme} is a sub-semi-group of End(B), even
a normal one (as (B, End(B)) is interpretable in End(B)).

(2) Similarly for simple schemes.
{2.3}

Definition 2.4. (1): A scheme of an endomorphism of B consists of a parti-
tion a0, a1, b0, . . . , bn−1, c0, . . . , cm−1 in B of 1B, with maximal non-principal

ideals İℓ below bℓ for ℓ < n (in other words İℓ is a maximal ideal of B↾bℓ)

and non-principal ideals İ0
ℓ , İ1

ℓ below cℓ for ℓ < m such that İ0
ℓ ∪ İ1

ℓ gener-

ates a maximal non principal ideal below cℓ and İ0
ℓ ∩ İ1

ℓ = {0B}, a number
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6 SAHARON SHELAH

k ≤ n, and a partition b∗0, . . . , b
∗
n−1, c

∗
0, . . . , c

∗
m−1 of a0 ∪ b0 ∪ · · · ∪ bk−1. We

assume also that

[k + m > 0 ⇒ a0 = 0], [(n − k) + m > 0 ⇒ a1 = 0]

and except possibly a0, a1 there are no zero elements in the partition a0, a1,
b0, . . . , bn−1, c0, . . . , cm−1.

(2): The scheme is simple if m = 0.
(3): The endomorphism of the scheme is the unique endomorphism h : B −→

B such that:
(i): h(x) = 0 when x ≤ a0 or x ∈ İℓ, ℓ < k, or x ∈ İ0

ℓ , ℓ < m,

(ii): h(x) = x when x ≤ a1 or x ∈ İℓ, k ≤ ℓ < n or x ∈ İ1
ℓ , ℓ < m,

(iii): h(bℓ) = b∗ℓ when ℓ < k,
(iv): h(bℓ) = bℓ ∪ b∗ℓ when k ≤ ℓ < n,
(v): h(cℓ) = cℓ ∪ c∗ℓ when ℓ < m.

So, an endomorphism of a scheme is a “trivial” endomorphism defined by ideals,
essentially maximal ones, and finitely many elements.

{2.4}
Claim 2.5. (1) If h is an endomorphism of a Boolean Algebra B, and B/ExKer(h)

is infinite then there are pairwise disjoint dn ∈ B (for n < ω) such that
h(dn) � dn.

(2) We can demand that: h(dn) ∩ dn+1 6= 0, and if B satisfies the c.c.c.,then
{dn : n < ω} is a maximal antichain.

Proof. (1) As B/ExKer(h) is infinite we can choose inductively dn ∈ B such that
dn /∈ ExKer(h), [ℓ < n ⇒ dℓ ∩ dn = 0B] and {x/ExKer(h) : x ∈ B & x ∩

⋃

ℓ≤n

dℓ =

0B} is infinite. It is enough for each n to find d∗n ≤ dn such that h(d∗n) 6≤ d∗n. Since
dn /∈ ExKer(h), clearly (by the definition of ExKer(h)) we have h(dn) > 0B and for
some d′n ≤ dn, h(d′n) 6= d′n.
Case 1: h(dn) 6≤ dn, let d∗n = dn.
Case 2: h(dn) = dn.

Now if h(d′n) 6≤ d′n let d∗n = d′n and otherwise h(d′n) ≤ d′n so by the choice of d′n
we have h(d′n) < h(dn), let d∗n = dn − d′n, so h(d∗n) = h(dn)− h(d′n) = dn − h(d′n) >
dn − d′n = d∗n so d∗n is as required.
Case 3: Neither case 1 nor case 2.

So h(dn) ≤ dn but h(dn) 6= dn hence h(dn) < dn. So h(dn − h(dn)) ≤ h(dn −
0B) = h(dn) is disjoint from dn − h(dn), so if h(dn − h(dn)) > 0B we let d∗n =
dn − h(dn). So assume not, so dn − h(dn) ∈ Ker(h) ⊆ ExKer(h), and hence
h(h(dn)) = h(0B ∪ h(dn)) = h((dn − h(dn)) ∪ h(dn)) = h(dn) and necessarily
h(dn) /∈ ExKer(h) (as dn /∈ ExKer(h), dn − h(dn) ∈ ExKer(h)), hence case 2 apply
to h(dn) and we are done.
(2) Let cn = h(dn) − dn > 0, so m 6= n ⇒ dn ∩ dm = 0B ⇒ cm ∩ cn = 0B and

dn ∩ cn = dn ∩ (h(dn) − dn) ≤ dn ∩ (−dn) = 0B

so dn ∩ cn = 0B.
By Ramsey theorem,without loss of generality, for all m < n the truth value of

dm ∩ cn = 0B is the same and of cn ∩ dm = 0B is the same.
Now we prove

(∗): for some 〈d′n : n < ω〉 we have d′n ∈ B, h(d′n) 6≤ d′n moreover h(d′n) ∩
d′n+1 > 0 and n < m ⇒ d′n ∩ d′m = 0B.
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 7

Case 1: c0 ∩ d1 > 0B.
Let d′n = d2n+2 ∪ (c2n ∩ d2n+1); now 〈d′n : n < ω〉 are pairwise disjoint as the

dn’s are. Now as h(dm) ≥ cm for m < ω clearly

h(d′n) ≥ h(d2n+2) ≥ c2n+2 ≥ c2n+2 ∩ d2n+3 > 0B

d′n+1 ≥ c2n+2 ∩ d2n+3 > 0B,

so h(d′n) ∩ d′n+1 ≥ c2n+2 ∩ d2n+3 > 0B.
Case 2: c1 ∩ d0 > 0B.

Let d′n = d2n+3 ∪ (c2n+1 ∩ d2n). Now 〈d′n : n < ω〉 are pairwise disjoint (as
〈d2n ∪ d2n+3 : n < ω〉 are), h(d′n) ≥ h(d2n+3) ≥ c2n+3 ≥ c2n+3 ∩ d2n+2 > 0
and d′n+1 ≥ c2(n+1)+1 ∩ d2(n+1) = c2n+3 ∩ d2n+2 > 0. So clearly h(d′n) ∩ d′n+1 ≥
c2n+3 ∩ d2n+2 > 0.
Case 3: Neither Case 1 nor Case 2.

As we have noted above dn∩cn = 0B by the case assumption’s we have dn∩cm =
0B for every m, n < ω and of course n 6= m ⇒ dn ∩ dm = 0B & cn ∩ cm = 0B.
Lastly let d′n = dn+1 ∪ cn, they are as required e.g. h(d′n) ∩ d′n+1 = (h(dn+1) ∪
h(cn)) ∩ (dn+2 ∪ cn+1) ≥ h(dn+1) ∩ cn+1 = cn+1 > 0B.

So we have proved (∗). Now renaming d′n as dn, 〈dn : n < ω〉 satisfies (part (1)
and) the first demand of part (2).

If B satisfies the c.c.c., we can find α ∈ [ω, ω1) and dβ for β ∈ [ω, α) such that
〈dβ : β < α〉 is a maximal antichain of B, without loss of generality, α ≤ ω + ω.
Now let d′n be dn∪dω+n if ω +n < α, and dn otherwise. So n 6= m ⇒ d′n ∩d′m = 0
and h(d′n) ∩ d′n+1 ≥ h(dn) ∩ dn+1 > 0, so 〈d′n : n < ω〉 is as required. 2.5

{2.4u}
Definition 2.6. A Boolean Algebra B is Hopfian if every onto endomorphism
of B is one-to-one. A Boolean Algebra B is dual Hopfian if every one to one
endomorphism is onto.

{2.5}
Lemma 2.7. (1): Every atomless endo-rigid Boolean Algebra B is Hopfian

and dual Hopfian.
(2): Also B + B is Hopfian (and dual Hopfian), however it is not rigid.

Proof: Easy to check using 2.2, 2.4.

3. The Construction
{3.1}

Main Theorem 3.1. Suppose cf(λ) > ℵ0. Then there is a Boolean algebra B such
that:

(a): B satisfies the c.c.c and is atomless,
(b): B has power λℵ0 and has algebraic density λ (in the Boolean cardinal

invariant notation, π(B) = λ), this means:

min{|X | : X ⊆ B \ {0B} and (∀y ∈ B)(∃x ∈ X)(y > 0 ⇒ x ≤ y)},

(c): B is endo-rigid and indecomposable.

Proof. Let τn for n < ω be as in §1 for κ = ℵ0, we use τ ′
n with τ ′

0 having unary
predicate Q, binary predicate ≤, individual constants 1, 0, binary function symbols
∪,∩,− and unary function symbol H (and more) and Pn /∈ τ ′

n+1 \ τ ′
n. We shall

use Theorem 1.10(2) for λ and κ = ℵ0, and let W = {(fα, Nα) : α < α∗}, the
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8 SAHARON SHELAH

function ζ̇, the model M = (H<ℵ1
(λ),∈) and T = ω>λ be as there. We call α < α∗

a candidate if

BNα

= B[Nα] = (QNα

, 1Nα

, 0Nα

,∪Nα

,∩Nα

,−Nα

,≤Nα

)

is a Boolean algebra and hα = HNα

↾ BNα

is an endomorphism of BNα

; of course
∪Nα

means ∪Nα

↾ QNα

etc and we are demanding that all the relevant predicates
and function symbols belongs to τNα .

We will think of the game as follows: Player I tries to produce a non trivial
endomorphism h. Player II supplies (via the range of fℓ) elements in B0 (see
Stage A below) and challenges Player I for defining h on them. So Player I plays
models Nℓ in the vocabulary τ ′

ℓ which is mainly a subalgebra of the Boolean algebra
we are constructing, with additional elements and expanded by, in particular, the
distinguished function symbol H ∈ τ ′

0 which is interpreted as an endomorphism of
Boolean algebras. In the end, as W is a barrier, for some such play we will get a
model Nα ∈ W, in the vocabulary

⋃

ℓ<ω

τ ′
ℓ which includes a function symbol H . We

can think of Nα as a Boolean algebra ⊆ Bc
0 with an endomorphism hα = HNα .

Stage A Let B0 be the Boolean algebra freely generated by {xη : η ∈ ω>λ}, and
Bc

0 be its completion. For A ⊆ Bc
0 let 〈A〉Bc

0
be the Boolean subalgebra of Bc

0 that
A generates. As B0 satisfies the c.c.c. every element of Bc

0 can be represented as
a countable union of members of B0, and as B0 is free we get ‖Bc

0‖ = λℵ0 . We
say x ∈ Bc

0 is based on (or supported by) J ⊆ ω>λ if it is based on (or supported
by) {xν : ν ∈ J} that is Bc

0 |= “x =
⋃

n<ω

yn”, where each yn is in the subalgebra

generated by {xν : ν ∈ J}; we shall also say that J is a support of x. Let supp(x) be
the minimal such J ; it is easy to prove its existence. [Why? Let x =

⋃

n<ω

yn, where

yn = σn(. . . , x′
ηn,ℓ

. . .)ℓ≤kn
; as if yn =

⋃

ℓ<k

yn,ℓ we can replace yn by yn,0, . . . , yn,k−1,

hence without loss of generality, for each n, for some disjoint finite un, vn ⊆ ω>λ
we have yn =

⋂

η∈un

xη ∩
⋂

η∈vn

(−xη). Also we can replace un by any u ⊆ un such

that y′ =
⋂

η∈u

xη ∩
⋂

η∈vn

(−xη) satisfies y′ ≤ x. So without loss of generality

u ⊆ uη & u 6= uη ⇒
⋂

η∈u

xη ∩
⋂

η∈vn

(−xη) − x > 0.

Similarly without loss of generality

v ⊆ vn & v 6= vn ⇒
⋂

η∈un

xη ∩
⋂

η∈v

(−xη) − x > 0.

Lastly let J =
⋃

n<ω

un ∪
⋃

n<ω

vn, clearly J is a support of x. If J is not minimal then

let J ′ be a support of x such that J 6⊆ J ′ as witness e.g. by 〈y′
n : n < ω〉. So for

some n, un ∪ vn 6⊆ J ′, by symmetry without loss of generality un 6⊆ J ′, but then
u′ = un ∩ J ′ contradicts the statement above.]
Without loss of generality, not only Bc

0 ⊆ M but x ∈ Bc
0 implies that the transitive

closure of {x} in M includes supp(x). We shall now define by induction on α < α∗,
the truth value of “α ∈ Yℓ” (ℓ = 1, 2, 3), “α ∈ Y ”, “α ∈ Y ′”, the sequence ηα,
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 9

and members aα, bα
m, cα

m, dα
m, sα

m of Bc
0 for m < ω when α ∈ Y ′ such that,

Y ∪ Y1 ∪ Y2 ∪ Y3 ⊆ Y ′ and letting Bα = 〈B0 ∪ {aγ : γ < α, γ ∈ Y ′}〉Bc
0

we have 1:

⊛α: (1) ηα is a branch of Rang(fα), and ηα 6= ηβ for β < α;

(2) if α ∈ Y ′, then for some ξ < ζ̇(α):
aα =

⋃

m<ω

(sα
m ∩ dα

m), where 〈dα
m : m < ω〉 is a maximal antichain of

non zero elements (of Bc
0), dα

n ∈ Bα,
⋃

m

supp(dα
m) ⊆ ω>ξ, sα

m ∈ 〈xρ :

ηα ↾ m ⊳ ρ, ρ ∈ ω>λ〉Bc
0
, and dα

m > sα
m ∩ dα

m > 0, and bα
n, cα

n ∈ Bα are

based on ω>ζ̇(α) and aα /∈ Bα;
(3) if α ∈ Y , then bα

n, dα
n ∈ Nα

0 , cα
n, sα

n ∈ Nα (hence, by clause (g) of
Definition 1.3(2) each is based on {xν : ν ∈ ω>λ, ν ∈ Nα}), and
bα
n ∩ bα

m = 0 for n 6= m;
(4) if β < α, β ∈ Y , then (β ∈ Y ′ and) Bα omits the type

pβ = {x ∩ bβ
n = cβ

n : n < ω}.

Before we carry out the construction observe:
{3.2}

Crucial Fact 3.2. For any x ∈ Bα letting ζ = ζ̇(α) there are a finite subset J of
ω>λ, k < ω, ξ < ζ, and α0 < . . . < αk−1 < α such that

(a): ζ̇(α0) = ζ̇(α1) = ζ̇(α2) = · · · = ζ̇(αk−1) = ζ,
(b): x is based on

{xν : ν ∈ J ∪ ω>ξ or ν ∈ supp(sαℓ
m ) for some ℓ < k, m < ω}.

(c): x = σ(aα0
, . . . , aαk−1

, b0, . . . , bn−1), for some Boolean term σ,

and b0, . . . , bn−1 ∈ 〈B0 ∪ {aα : ζ̇(α) < ξ}〉,
and if x ∈ B0 then k = 0 and n is minimal.

Continuation of the proof of 3.1 Stage B Let us carry out the construction on α.
For ξ < λ, w ⊆ α∗ let

Iξ,w = {ν : ν ∈ ω>ξ or ν ∈
⋃

m<ω,γ∈w

supp(sγ
m)}.

We call α a good candidate if (α < α∗ and) B[Nα] is a subalgebra of Bα, x ∈
B[Nα] ⇒ supp(x) ⊆ Nα of course and hα = HNα↾BNα is an endomorphism
of B[Nα] (note that hα maps B[Nα

n ] into B[Nα
n ] for n < ω). We let α ∈ Y1

if and only if

⊗1
α (α): α is a good candidate

(β): there are dα
m ∈ Nα

0 ∩ Bα for m < ω, dα
m 6= 0, dα

m ∩ dα
ℓ = 0 for

m 6= ℓ, such that 〈dα
m : m < ω〉 is a maximal antichain of Bc

0 and for

some ξ < ζ̇(α) each dα
m is based on ω>ξ, and there are a branch ηα of

Rang(fα) and sα
m ∈ Nα ∩Bα (m < ω) as in (1), (2) above,

(γ): in addition if we add
⋃

n<ω

(sα
n ∩ dα

n) to Bα then

(a): each pβ (β ∈ Y ∩ α) is still omitted
(b)1: pα =: {x∩hα(dα

m) = hα(dα
m ∩ sα

m) : m < ω} is omitted.

Let α ∈ Y2 if and only if α /∈ Y1 and ⊗2
α holds where

1actually the α ∈ Y ′ \ Y = Y ′ \ Y1 have no real role here, but have in 3.15 later.
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10 SAHARON SHELAH

⊗2
α is defined like ⊗1

α replacing clause (b)1 by
(b)2: the type p′α is realized where p′α = {x∩ hα(d2n ∪ d2n+1) =

hα(d2n) : n < ω} and hα(s2n) = 1, hα(s2n+1) = 0 and 〈dn : n < ω〉 ∈
Nα

0 but B[Nα] omit p′α.
Let α ∈ Y3 iff α /∈ Y1 ∪ Y2 and

⊗3
α we have (α) + (β) + (γ)(a) from ⊗1

α.

Let Y = Y1, Y ′ = Y1 ∪ Y2 ∪ Y3 and for α ∈ Yℓ let ⊗α mean ⊗ℓ
α.

If α ∈ Y ′ we choose ηα, dα
n, sα

m, satisfying ⊗α so also Bα+1 is well defined and
if ℓ = 1 let bα

m = hα(dα
m), cα

m = hα(dα
m ∩ sα

m) for m < ω , if ℓ ∈ {2, 3} we can still
choose bα

m, cα
m for m < ω such that ⊛α holds (e.g. {〈n〉 : n < ω} ⊆ Nα

0 by clause
(f) of 1.3(2), so bα

n = x〈2n+1〉 −
⋃

m<n

x〈2n+1〉, c
α
n = b∗n ∩ x〈2n〉).

If α ∈ α∗ \ Y ′ we leave aα, ηα and dα
n, sα

n (for n < ω) undefined, and so
Bα+1 = Bα. So we have carried the induction.

So “α ∈ Y ′” means that Player I played Boolean Algebras and endomorphisms
as in the previous remark and we get in the end a Boolean Algebra with the same
properties.

The desired Boolean algebra B is Bα∗ = ∪{Bα : α < α∗}. We shall investigate
it and eventually prove that it is endo-rigid (in 3.11) and indecomposable (in 3.14)
thus proving Bα∗ is as required in clause (c) of 3.1, where (3.1(a), 3.1(b) hold
trivially noting that |Bα∗ | is ≤ |Bc

0| ≤ |B0|ℵ0 = λℵ0 and is ≥ |Y ′| ≥ λℵ0 which will
be proved later (see 3.13) and aα /∈ Bα by (2) from stage A). The rest of the proof
is broken to facts and claims in this framework.

Note also
{3.3}

Fact 3.3. (1): For ν ∈ ω>λ, xν is free over {xη : η ∈ ω>λ, η 6= ν} in B0

hence also over the subalgebra of Bc
0 of those elements based on {xη : η ∈

ω>λ, η 6= ν}.

(2): If η is a branch of fα hence necessarily η 6= ηβ for β ∈ Y ′ ∩α, ξ < ζ̇(α),
and w ⊆ α∩Y ′, is finite then there is k < ω such that {ρ : η ↾ k ⊳ ρ ∈ ω>λ}
is disjoint to

(ω>ξ)∪
⋃

{Nβ∩ω>λ : β ∈ w, β+2ℵ0 ≤ α}∪
⋃

{supp(sβ
n) : n < ω, β ∈ w}.

Proof. (1) Should be clear.
(2) Remember clauses (a),(c),(e) of Theorem 1.10(2) and clause (1) of ⊛α from

stage A. 2.5

From 3.2 we can derive:

{3.4}

Fact 3.4. If ξ < ζ̇(β), β < α, and J ⊆ ω>λ is finite, then every element of Bα

which is based on J ∪ ω>ξ belongs to Bβ.

Proof. We now prove by induction on γ ∈ [β, α] that [x ∈ Bγ\Bβ ⇒ supp(λ)\ω>ξ is
infinite]. For γ = β this is empty, and for γ limit it follows as Bγ = ∪{Bξ : ξ < γ}.
For γ + 1 ≤ α, let x be a counterexample;without loss of generality x /∈ Bγ ; if
Bγ+1 = Bγ this is impossible so aγ , 〈(dγ

n, sγ
n) : n < ω〉 are well defined. Now x is

necessarily of the form y0∪(y1∩aγ)∩(y2−aγ) where y0, y1, y2 are disjoint members
of Bγ . Clearly y1∩aγ /∈ Bγ or y2−aγ /∈ Bγ so without loss of generality the former
(otherwise use −x which also ∈ Bγ+1 \Bγ and has the same support). We can (by
3.2) find n such that J∗ = {ρ : ηγ↾n ⊳ ρ ∈ ω>λ} is disjoint to J and to supp(y1).
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 11

As aγ ∩
⋃

ℓ≤n

dγ
ℓ ∈ Bγ clearly y2 ∩ aγ −

⋃

ℓ≤n

dγ
ℓ /∈ Bγ . As 〈dγ

m : m < ω〉 is a maximal

antichain of Bc
0, we can find m ∈ (n, ω) such that dγ

m ∩ (y2 ∩ aγ −
⋃

ℓ≤n

dγ
ℓ ) > 0Bγ+1

hence y2 ∩ dγ
m > 0Bγ+1

and sγ
n has support ⊆ J∗ whereas y1, d

γ
m, x has support

disjoint to J∗. But y1∩dγ
m ∩x = (y1∩aγ)∩dγ

m = (y1∩dγ
m)∩sγ easy contradiction.

3.4

{3.5}
Notation 3.5. (1): Let Bξ be the set of a ∈ Bc

0 based on ω>ξ.
(2): For x ∈ Bc

0, ξ < λ let prξ(x) = ∩{a ∈ Bξ : x ≤ a}.

(3): For ξ ≤ λ and ν ∈ ω>ξ let Bξ
ν be the set of a ∈ Bc

0 based on Jξ,ν =: {ρ ∈
ω>ξ : ¬(ν ⊳ ρ)}. For x ∈ Bc

0 let prξ,ν(x) =
⋂

{a ∈ Bξ
ν : x ≤ a}.

(4): For γ < α∗ let B〈γ〉 = 〈{xη : η ∈ ω>ζ̇(γ)} ∪ {aβ : β ∈ γ ∩ Y ′}〉Bc
0
.

(5): For I ⊆ ω>λ and w ⊆ α∗ let
B(I, w) = 〈{xη : η ∈ I} ∪ {aβ : β ∈ w ∩ Y ′}〉Bc

0
and for x ∈ Bc

0, ξ ≤ λ
we let

prξ,w(x) = ∩{y ∈ 〈Bξ ∪ {xν : ν ∈ w}〉Bc
0

: x ≤ y}

(6): For ξ < λ let B[ξ] = 〈{xη : η ∈ ω>ξ} ∪ {aβ : ζ̇(β) ≤ ξ and β ∈ Y ′}〉Bc
0
.

(7): For J ⊆ ω>λ and ξ ≤ λ let prξ,J(λ) = ∩{y ∈ Bξ
J : x ≤ y} where

Bξ
J = 〈Bξ ∪ {xν : ν ∈ J〉Bc

0
, when well defined.

{3.6}
Fact 3.6. (1): For ξ < λ, Bξ is a complete Boolean subalgebra of Bc

0. For
ξ < λ and ν ∈ ω>ξ, Bξ

ν is a complete subalgebra of Bc
0.

(2): If ξ < λ and x ∈ Bc
0 then prξ(x) is well defined and belongs to Bξ.

Similarly, if ξ < λ, ν ∈ ω>ξ and x ∈ Bc
0 then prξ,ν(x) is well defined and

belongs to Bξ
ν .

(3): If ξ0 ≤ ξ1 < λ, x ∈ Bc
0 then prξ0

(prξ1
(x)) = prξ0

(x).
(4): If ξ < λ and w ⊆ α∗ is finite then the function x 7→ prξ,w(x) is well

defined for x ∈ Bc
0 and the value is in 〈Bξ ∪ {aα : α ∈ w}〉Bc

0
, of course

which is a complete subalgebra of Bc
0.

(5): If ξ < λ and ν ∈ ω>ξ and x ∈ Bc
0 then prξ,ν(prξ(x)) = prξ,ν(x). If in

addition ξ0 < ξ and ν /∈ ω>(ξ0) then prξ0
(x) = prξ0

(prξ,ν(x)).

(6): B[ξ] ⊆ Bξ and if ξ < ζ̇(α) then B[ξ] ⊆ Bα and B(I, w) ⊆ Bα∗

Proof. Easy.
{3.7}

Fact 3.7. (1): For x ∈ Bα∗ , ξ < λ, the element prξ(x) belongs to B[ξ].

(2): If x ∈ Bα∗ , ξ < λ and J ⊆ ω>(ξ + 1) not necessarily finite, then the
element prξ,J(x) belongs to 〈B[ξ] ∪ {xν : ν ∈ J}〉Bc

0
.

(3): Like part (2) but J ⊆ ω>λ (and not necessarily J ⊆ ω>(ξ + 1)) and J is
finite

Proof. (1) We prove this for x ∈ Bα, by induction on α (for all ξ). Note that

⊡ prξ(
⋃

ℓ<n

xℓ) =
⋃

ℓ<n

prξ(xℓ) for x0, . . . , xn−1 ∈ Bc
0.

Case i: α = 0, or even just (∀β < α)[ζ̇(β) ≤ ξ].
Easy. Clearly we can find σ, yℓ, νk (ℓ < n, k < m) such that x = σ(y0, . . . , yn−1,
xν0

, . . . , xνm−1
), where σ is a Boolean term, yℓ ∈ B[ξ], νℓ ∈

ωλ\ω>ξ; by the remark
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12 SAHARON SHELAH

above without loss of generality x =
⋂

ℓ<n+m

sℓ, where sℓ ∈ {yℓ, 1 − yℓ} when ℓ < n,

and sℓ ∈ {xνℓ−n
, 1−xνℓ−n

} when n ≤ ℓ < n+m, and the sequence 〈xν0
, . . . , xνn−1

〉
is without repetitions. Now by 3.3 clearly prξ(x) =

⋂

ℓ<n

sℓ which belongs to B[ξ];

Case ii: α is limit.
Trivial as Bα =

⋃

β<α

Bβ.

Case iii: α = β + 1.
By the induction hypothesis without loss of generality x 6∈ Bβ hence β ∈ Y ′. As
x ∈ Bα there are disjoint ẏ0, ẏ1, ẏ2 ∈ Bβ such that x = ẏ0∪ (ẏ1∩aβ)∪ (ẏ2−aβ). It
suffices to prove that prξ(ẏ0), prξ(ẏ1∩aβ), prξ(ẏ2−aβ) ∈ B[ξ]; the first holds by the
induction hypothesis and without loss of generality we concentrate on the second.
Remembering clause ⊛(1) of stage (A), by 3.2 applied to Bα, ẏ1 we have: there are

ξ0 < ζ̇(β) and k < ω such that ẏ1 is based on J
def
= ω>λ \ {ρ : ηβ ↾ k ⊳ ρ ∈ ω>λ}.

Now without loss of generality each dβ
n (n < ω) is based on ω>ξ0 (recall clause ⊛β

(2) of stage A) and ω>ξ0 ⊆ J (this holds if ηβ ↾ k /∈ ω>ξ0, and as ηβ is increasing

with limit ζ̇(β) this is easy to obtain). By Case i, we can assume that ξ < ζ̇(β)
hence (as we can increase k and ξ0) without loss of generality ξ < ξ0, and by
the induction hypothesis and 3.6(3),(5), letting ν =: ηβ ↾ k, it suffices to prove
prξ0,ν(ẏ1∩aβ) ∈ Bβ . As m < ω ⇒ aβ ∩dβ

m ∈ B[ζ̇(β)] and ⊡ above, without loss of

generality ẏ1 ∩ dβ
m = 0 for m < k. Now clearly for proving prξ0,ν(ẏ1 ∩ aβ) = ẏ1 it is

enough to show, for each m < ω, that prξ(ẏ1 ∩ dβ
m ∩ ṡα

m) = ẏ1 ∩ dβ
m as 〈dβ

n : n < ω〉

is a maximal antichain of Bc
0 and as aβ ∩ dβ

m = ṡβ
m both by ⊛β(2). If m < k then

ẏ1 ∩ dβ
m = 0 so this is trivial. If m ≥ k this holds because dβ

m, ẏ1 are based on J ,
ω>ξ0 ⊆ J and ṡβ

m is based on ω>λ \ J and is ṡβ
m > 0.

(2),(3) Same proof. 3.7

{3.8}
Lemma 3.8. 1) Suppose that I, w satisfy:

(∗)I,w: I ⊆ ω>λ, w ⊆ α∗ ∩ Y ′, I is closed under initial segments,

α ∈ w & n < ω ⇒ ηα ↾ n ∈ I,

and for every α < α∗, if
∧

m<ω

(ηα ↾ m ∈ I) then sα
m, dα

m are based on I and

belong to B(I, w) and α ∈ w; see Definition 3.5(5).

Then for any countable C ⊆ Bα∗ there is a projection h from 〈B(I, w), C〉Bc
0

onto
B(I, w).
2) If (∗)I,w holds then every member of B(I, w) is based on I.
3) We can add

(a): if aα ∈ C\B(I, w), and {dα
n : n < ω} ⊆ B(I, w) and {ηα ↾ n : n < ω} ⊆ I

then h(aα) has support ⊆ ω>ζ for some ζ < ζ̇(α).
(b): if ν ∈ ω>λ and xν ∈ C then h(xν) ∈ {0, xν , 1}
(c): if c = σ(aα0

, . . . , aαk−1
, b0, . . . , bn−1) where σ is a Boolean term α0, . . . αk−1 ∈

w and ζ̇(α0) ≤ . . . ≤ ζ̇(αk−1) ≤ ξ and bℓ ∈ B(I, w) and supp(bℓ) ⊆ ω>ζ for
some ζ < ξ and aαℓ

∈ C then h(c) = σ(a′
0, . . . , a

′
k−1, b0, . . . , bn−1) (where

ℓ < k ⇒ a′
ℓ = h(aαℓ

)) is in
⋃

ε<ξ

B[ε].
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 13

Remark: In (∗)I,w the last phrase can be weakened to “for some mα < ω, for
every m ∈ [mα, ω) the elements sα

n, dα
m are based on I (and belong to B(I, w) and

(α ∈ w)”.

Proof. 1) We can easily find I(∗), w(∗) such that C ⊆ B(I(∗), w(∗)), w ⊆ w(∗) ⊆
α∗, |w(∗)\w| ≤ ℵ0, I ⊆ I(∗) ⊆ ω>λ, I(∗) is closed under initial segments, |I(∗)\I| ≤
ℵ0, and if α ∈ w(∗)\w, then ṡα

m, dα
m ∈ B(I(∗), w(∗)) hence {ηα↾m : m < w} ⊆ I(∗).

Let w(∗) \ w = {αℓ : ℓ < ω} for notational simplicity, and we choose by induction
on ℓ a natural number kℓ < ω, such that the sets

{ν ∈ ω>λ : ν appears in ṡαℓ
m for some m ≥ kℓ}

are pairwise disjoint and disjoint to I (possible by the demand sα
m ∈ 〈xρ : ηα ↾ m ⊳

ρ, ρ ∈ ω>λ〉Bc
0

in clause ⊛α(2) of stage A in the beginning of the proof of 3.1 and
(∗)I,w). First assume that

⊡ for every α, 〈supp(sα
m) : m < ω〉 is a sequence of pairwise disjoint sets.

Now we can extend the identity map on B(I, w) to a projection h0 from B(I(∗), w)
onto B(I, w) such that

(a): if ν ∈ I(∗) \ I then h0(xν) ∈ {0, 1}
(b): if ℓ < ω, m > kℓ, then h0(s

αℓ
m ) = 0.

This is possible as B(I(∗), w) is generated by B(I, w) ∪ {xν : ν ∈ I(∗) \ I} freely
except the equations which hold in B(I, w) and ⊡ above as 〈dαℓ

m : m ∈ (kℓ, ω)〉
is a sequence of pairwise disjoint elements. Now we can define by induction on
α ∈ (w(∗) \ w) ∪ {α∗} a projection hα from B(I(∗), w ∪ (w(∗) ∩ α)) onto B(I, w)
extending hβ for any β < α satisfying β ∈ (w(∗) \ w) ∪ {0}. For α = 0 we have
defined it, for α = α∗ we get the desired conclusion, and in limit stages take the
union. In successive stages there is no problem by the choice of h0, and of the kℓ’s
(and ⊛(2) of stage A).

If ⊡ fails, we just define hξ = h↾(B(I(∗), w(∗))∩Bξ) by induction on ξ ≤ λ such
that (it is the identity on B(I, w) ∩ Dom(hξ)) and

(a)′ if ν ∈ I(∗) \ I and xν ∈ Dom(hξ) then hξ(xν) ∈ {0, 1}
(b)′ if ℓ < ω, m > kℓ and hξ(d

αℓ
m ) is well defined then sαℓ

m ∩ dαℓ
m does not belong

to the filter on Bc
0 generated by {d ∈ Dom(hξ) : hξ(d) = 1}.

2) The proof of part 1) gives this.
3) Note that by clause (a)′, in clause (b)′, if hξ(s

αℓ
m ∩ dαℓ

m ) is well defined then it is
0B0

This is possible by the choice of 〈kℓ : ℓ < ω〉 and as 〈dαℓ
m : m < ω〉 is a sequence

of pairwise disjoint elements of Bc
0. 3.8

{3.9}
Claim 3.9. If B′ is an uncountable subalgebra of Bα∗ then there is an antichain
{dn : n < ω} ⊆ B′ such that for no x ∈ Bα∗ do we have x ∩ d2n = 0, x ∩ d2n+1 =
d2n+1 for every n, provided that

(*): no single countable I ⊆ ω>λ is a support for every a ∈ B′.

Proof: We choose by induction on α < ω1, dα, Iα, such that:

(i): Iα ⊆ ω>λ is countable, closed under initial segments
(ii):

⋃

β<α

Iβ ⊆ Iα and for α limit, equality holds,

(iii): dα ∈ B′ is based on Iα+1 but not on Iα.

There is no problem doing this as we are assuming (*).
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14 SAHARON SHELAH

By clause (iii), for each α there are a non zero s0
α ∈ 〈xη : η ∈ Iα〉Bc

0
and non-zero

s1
α, s2

α ∈ 〈xη : η ∈ Iα+1 \Iα〉Bc
0

such that s1
α∩s2

α = 0, s0
α∩s1

α ≤ dα, s0
α∩s2

α ≤ 1−dα.
By Fodor’s lemma, as we can replace Iα by Ih(α) if h : ω1 → ω1 is increasing

continuous, without loss of generality, s0
α = s0 (i.e., does not depend on α). For

each α there is n(α) < ω such that

s0 = s0
α ∈ 〈xη : η ∈ Iα ∩ n(α)≥λ〉Bc

0
,

s1
α, s2

α ∈ 〈xη : η ∈ (Iα+1 \ Iα) ∩ n(α)≥λ〉Bc
0
.

Again, by renaming without loss of generality n(α) = n(∗) for every α. For n < ω
let dn = dn −

⋃

ℓ<n

dℓ, sn = s0 ∩
⋂

ℓ<n

s2
ℓ ∩ s1

n, so easily dn ∈ B′, 〈dn : n < ω〉 is

an antichain, sn ≤ dn and sn ∈ 〈xη : η ∈ n(∗)≥λ〉Bc
0

and by the choice of B0

easily 0 < sn. Suppose x ∈ Bα satisfies: for each n < ω, we have x ∩ d2n = 0,
x ∩ d2n+1 = d2n+1. Then for n < ω, x ∩ s2n = 0, x ∩ s2n+1 = s2n+1. But by 3.8(1)
(for I = n(∗)≥λ, w = ∅ and C = {x}), there is such x in 〈xη : η ∈ n(∗)≥λ〉Bc

0
, an

easy contradiction. 3.9

Hence we have proved in particular that for every ℵ1- compact B′ ⊆ Bα∗ , some
countable I ⊆ ω>λ supports every x ∈ B′.

{3.10}
Claim 3.10 (Crucial Claim). No infinite subalgebra B′ of Bα∗ is ℵ1-compact.

Proof. Suppose that there is such subalgebra, and let ξ be minimal such that there
is an infinite ℵ1–compact B′ ⊆ B[ξ]. The proof is broken into five parts.

Part I If

(a): B′ ⊆ Bα∗ is ℵ1-compact and infinite (subalgebra)
(b): B′ ⊆ B[ξ],

then

(c): for every ζ < ξ, finite J ⊆ ω>λ and x ∈ B′ \ {y : {z ∈ B′ : z ≤ y} is
finite}, there is x1 ∈ B′, x1 ≤ x such that for no y ∈ 〈B[ζ]∪{xν : ν ∈ J}〉Bc

0
,

do we have y ∩ x = x1.

So toward contradiction assume B′ satisfies (a) and (b), but it fails (c) for ζ < ξ,
a finite J ⊆ ω>λ and x ∈ B′, hence {y : y ≤ x, y ∈ B′} is infinite. So for every
z ∈ B′, there is g(z) ∈ 〈B[ζ]∪{xν : ν ∈ J}〉Bc

0
. such that g(z)∩x = z∩x (otherwise

we can use x1 = z∩x). Let Ba be the Boolean subalgebra of 〈B[ζ]∪{xν : ν ∈ J}〉Bc
0

generated by {g(z) : z ∈ B′}, so z ∈ B′ ⇒ z ∩ x ∈ Ba. Clearly

{y ∈ B′ : y ≤ x} = {t ∩ x : t ∈ Ba}.

Let x∗ = prζ,J(x) (it is in B[ζ] by 3.7(1) if J = ∅, 3.7(3) otherwise), and let

Bb = {t ∩ x∗ : t ∈ Ba} ∪ {t ∪ (1 − x∗) : t ∈ Ba}.

Clearly Bb is a subalgebra of 〈B[ζ] ∪ {xν : ν ∈ J}〉Bc
0
, and 1− x∗ is an atom of Bb.

Now Bb is infinite, why? there are distinct xn ≤ x in B′ (for n < ω), so g(xn) ∈ Ba

and hence g(xn) ∩ x∗ ∈ Bb. As x ≤ x∗ and

n 6= m ⇒ g(xn) ∩ x = xn ∩ x = xn 6= xm = xm ∩ x = g(xm) ∩ x,

clearly [n 6= m ⇒ g(xn)∩ x∗ 6= g(xn)∩ x∗] so Bb is really infinite. We shall prove
that Bb is ℵ1-compact, thus contradicting the choice of ξ. Let dn ∈ Bb be pairwise
disjoint, and we would like to find t ∈ Bb satisfying t ∩ d2n = 0, t ∩ d2n+1 = d2n+1

for n < ω. Clearly without loss of generality dn ≤ x∗ (as 1 − x∗ is an atom of Bb).
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 15

So dn = tn ∩ x∗ for some tn ∈ Ba, hence easily tn ∩ x ∈ B′ so for some xn ∈ B′,
xn ≤ x and tn ∩ x = xn ∩ x = xn. So xn = g(xn) ∩ x.

For n 6= m,

xn ∩ xm = (tn ∩ x) ∩ (tm ∩ x) ≤ (tn ∩ x∗) ∩ (tm ∩ x∗) = dn ∩ dm = 0.

As B′ is ℵ1-compact there is y ∈ B′ satisfying y ∩ x2n = 0, y ∩ x2n+1 = x2n+1 for
n < ω. Now g(y), dn, tn belong to 〈B[ζ] ∪ {xν : ν ∈ J}〉Bc

0
and (as xn ≤ x ≤ x∗

and dn = tn ∩ x∗, tn ∩ x = xn):

(i): g(y) ∩ d2n ∩ x = g(y) ∩ t2n ∩ x = g(y) ∩ x2n ∩ x = y ∩ x2n ∩ x = 0,
(ii): g(y)∩ d2n+1 ∩ x = g(y)∩ t2n+1 ∩ x = g(y)∩ x2n+1 ∩ x = y ∩ x2n+1 ∩ x =

x2n+1 ∩ x = t2n+1 ∩ x = d2n+1 ∩ x.

Now, by the definition of x∗ = prζ,J(x),

s ∈ 〈B[ζ] ∪ {xν : ν ∈ J}〉Bc
0
&s ∩ x = 0 ⇒ s ∩ x∗ = 0

(as 1− s ∈ 〈〈B′
[ζ] ∪ {xν : ν ∈ J}〉Bc

0
and by the left side x ≤ 1− s), hence by clause

(i) (for s = g(y) ∩ d2n):

(iii): g(y) ∩ d2n ∩ x∗ = 0.

Also, by the definition of x∗ = prζ,J(x),

s1, s2 ∈ 〈B[ζ] ∪ {xν : ν ∈ J}Bc
0

& s1 ∩ x = s2 ∩ x ⇒ s1 ∩ x∗ = s2 ∩ x∗

(as s1 − s2 ∈ B[ζ] ∪ {xν : ν ∈ J}〉Bc
0

and by the left side x ≤ 1− (s1 − s2) hence as
above x∗ ≤ 1 − (s1 − s2) and similarly x∗ ≤ 1 − (s2 − s1)). Hence by clause (ii)

(iv): g(y) ∩ d2n+1 ∩ x∗ = d2n+1 ∩ x∗.

But dn ≤ x∗, so from (iii) and (iv), (g(y)∩x∗)∩d2n = 0, (g(y)∩x∗)∩d2n+1 = d2n+1,
and g(y) ∈ Ba, hence g(y) ∩ x∗ ∈ Bb. So Bb is ℵ1–compact and this contradicts
the minimality of ξ, hence we finish proving Part I.

Part II: If B1 ⊆ Bα∗ is ℵ1– compact, B1 ⊆ B2, B2 = 〈B1 ∪ {z}〉B2 then B2 is
ℵ1–compact.
The proof is straightforward. [If dn ∈ B2 are pairwise disjoint, let dn = d0

n∪(d1
n∩z)∪

(d2
n−z) for some disjoint d0

n, d1
n, d2

n ∈ B1. As Bα∗ satisfies the c.c.c. also B1 satisfies
the c.c.c., hence being ℵ1-compact, is complete. Now the each of the sets each
Jℓ(ℓ < 3) is an ideal of B1 and their union J0∪J1∪J2 is a dense subset of B1 where
Jℓ = {x ∈ B1 : x > 0 satisfies ℓ = 0 ⇒ B2 |= x ∩ z = 0 and ℓ = 1 ⇒ B2 |= x ≤ z
and ℓ = 2 ⇒ B2 |= (∀y)(0 < y ≤ x & y ∈ B1 ⇒ y ∩ z 6= 0 6= y − z)}. As B1 is
complete without loss of generality dℓ

m ∈ J0∪J1∪J2 for m < ω, ℓ < 3. Also there is
a maximal antichain 〈xn : n < γ ≤ ω〉B1 of B1 consisting of elements of this family.
Similarly without loss of generality for each n we have xn ≤ dℓ

m for some m < ω1

and ℓ < 3; or x∩ dℓ
m = 0 for every m. Without loss of generality d1

n 6= 0 ⇒ d1
n ∈ J2

and d2
n 6= 0 ⇒ d2

n ∈ J2 and necessarily d0
n ∩ (d1

m ∪ d2
m) = 0 for n, m < ω. Now,

necessarily d0
n ∩ d0

m = 0 for n 6= m and without loss of generality, d1
n ∩ d1

m = 0 for
n 6= m — otherwise replace them by d1

n −
⋃

ℓ<n

d1
ℓ ; similarly d2

n ∩ d2
m = 0, for n 6= m.

So, for ℓ = 0, 1, 2, there is yℓ ∈ B1 such that for every n < ω we have:

yℓ ∩ dℓ
2n = 0, yℓ ∩ dℓ

2n+1 = dℓ
2n+1.

Hence y0 ∪ (y1 ∩ z − y′) ∪ (y2 ∩ z − y′) is a solution.]

Part III: ξ cannot be a successor ordinal.
Proof: Let B′ satisfy clauses (a), (b) (hence (c)) of Part I.
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16 SAHARON SHELAH

Suppose toward contradiction that ξ = ζ + 1, and by 3.9 there is a countable
I ⊆ ω>ξ which supports every a ∈ B′; without loss of generality, I is closed under
initial segments and, under those demands, |I \ ω>ζ| ≤ ℵ0 is minimal. Now, by
applying Part I we get

⊡: for every finite J ⊆ ω>λ, and x ∈ B′ for which {y ∈ B′ : y ≤ x} is infinite,
there is x1 ∈ B′, x1 ≤ x such that for no y ∈ 〈B[ζ] ∪ {xη : η ∈ J}〉Bc

0
do we

have y ∩ x = x1.

Now, I \ ω>ζ is infinite. [Why? Otherwise let B′′ = 〈B′ ∪ {xη : η ∈ I \ ω>ζ}〉Bc
0
;

it is infinite and ℵ1- compact by Part II, and we shall we apply Part I to it. Let
k = |I \ ω>ζ| and let I \ ω>ζ = {η0, . . . , ηk−1} and for u ⊆ {0, . . . , k − 1}, let

xu
def
=

⋂

{xηℓ
: ℓ ∈ u} ∩

⋂

{1 − xηℓ
: ℓ < k, and ℓ /∈ u}.

So xu ∈ B′′, 1 =
⋃

{xu : u ⊆ {0, . . . , k−1}}, hence for some u, {y ∈ B′′ : y ≤ xu}
is infinite; now ζ, xu contradict the conclusion of Part I.]

As B′ is ℵ1–compact, for any x ∈ B′ such that {y ∈ B′ : y ≤ x} is infinite, x can
be splitted in B′ to two elements satisfying the same, i.e., x = x1 ∪x2, x1 ∩x2 = 0,
{y ∈ B′ : y ≤ xℓ} is infinite for ℓ = 1, 2. Let I \ ω>ζ = {ηℓ : ℓ < ω}, so we can find
pairwise disjoint ẏn ∈ B′ such that {y ∈ B′ : y ≤ ẏn} is infinite. Now, by ⊡ above,
for each n we can find d2n, d2n+1 satisfying ẏn = d2n ∪ d2n+1, d2n ∩ d2n+1 = 0 and
such that for no y ∈ 〈B[ζ] ∪ {xηℓ

: ℓ < n}〉Bc
0

do we have y ∩ (d2n ∪ d2n+1) = d2n+1.
Since B′ is ℵ1–compact there is y ∈ B′ such that y ∩ (d2n ∪ d2n+1) = d2n+1

for every n < ω. As y ∈ B′ clearly y ∈ B[ξ] = B[ζ+1], and y is based on {xν :
ν ∈ ω>ζ} ∪ {xηℓ

: ℓ < ω}, so by 3.7(2) we have y′ = prζ,{ηℓ:ℓ<ω}(x) belong to

〈B[ζ] ∪ {xηℓ
: ℓ < ω}〉Bc

0
. Hence y′ ∈ 〈B[ζ] ∪ {xηℓ

: ℓ < n}〉Bc
0

for some n < ω. This
is a contradiction to y′ ∩ (d2n ∪ d2n+1) = d2n+1 which holds as by the choice of
d2n, d2n+1, so y ∩ d2n = 0, y ∩ d2n+1 = d2n+1 and d2n, d2n+1 ∈ 〈B[ζ] ∪ {xηℓ

: ℓ <
ω}〉Bc

0
so y′ ∩ d2n = 0, y′ ∩ d2n+1 = d2n+1.

Part IV: Let B′ satisfy clauses (a), (b) of Part I (and hence clause (c) too). By
3.9, for some countable I ⊆ ω>ξ, every b ∈ B′ is based on I. By Part III, ξ is
not a successor ordinal and trivially it is not zero hence ξ is a limit ordinal. Now
by 3.5(6) (i.e. the definition of B[ζ] for ζ ≤ λ) for no ζ < ξ is I ⊆ ω>ζ, hence
necessarily cf(ξ) = ℵ0. Let

Fi(B′) = {x ∈ B′ : {y ∈ B′ : y ≤ x} is finite}.

Next we shall show:

(∗∗): for some finite w∗ ⊆ {α < α∗ : ζ̇(α) = ξ} and x∗ ∈ B′ \ Fi(B′), for
every y ≤ x∗ from B′, for some z ∈ 〈∪ζ<ξB[ζ] ∪ {aα : α ∈ w∗}〉Bc

0
we have

z ∩ x∗ = y.

Suppose (∗∗) fails and we choose by induction on n < ω, xn, yn, wn such that:

(i): xn ∈ B′, and m < n ⇒ xm ∩ xn = 0,
(ii): 1 −

⋃

i<n

xi 6∈ Fi(B′),

(iii): wn ⊆ {α : ζ̇(α) = ξ} is finite,
(iv): wn ⊆ wn+1,
(v): yn ≤ xn and yn ∈ B′,
(vi): for no z ∈ 〈

⋃

ζ<ξ

B[ζ] ∪ {aα : α ∈ wn}〉Bc
0

do we have z ∩ xn = yn.
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 17

For n = 0 we have 1 /∈ Fi(B′), hence (ii) is satisfied.

For each n let wn be a finite subset of {α : ζ̇(α) = ξ} extending
⋃

ℓ<n

wℓ such that

for every ℓ < n, xℓ, yℓ ∈ 〈
⋃

ζ<ξ

B[ζ] ∪ {aα : α ∈ wn}〉Bc
0
, it exists by 3.5(6). Then, as

1 −
⋃

ℓ<n

xℓ /∈ Fi(B′), and as B′ is ℵ1–compact, there is xn ≤ 1 −
⋃

i<n

xi satisfying

xn ∈ B′ such that 1 −
⋃

ℓ≤n

xℓ /∈ Fi(B′) and xn /∈ Fi(B′). Now, as (**) fails,

necessarily wn, xn do not satisfy the requirements on w∗, x∗ in (∗∗), so there is
yn ∈ B′, yn ≤ xn such that for no z ∈ 〈

⋃

ζ<ξ

B[ζ] ∪ {aα : α ∈ wn}〉Bc
0

do we have

z∩xn = yn. So we can carry the definition. As B′ is ℵ1– compact, for some z∗ ∈ B′

we have z∗ ∩ xn = yn for every n.
As z∗ ∈ B′ and B′ ⊆ B[ξ], for some finite w∗ ⊆ {α < α∗ : ζ̇(α) = ξ} we have

z∗ = σ(. . . , aα, . . . , . . . , bℓ, . . .)α∈w∗,ℓ<n ∈ 〈
⋃

ε<ξ

B[ε] ∪ {aα : α ∈ w∗}〉Bc
0

where σ is a Boolean term, and ℓ < n ⇒ bℓ ∈
⋃

ǫ<ξ

B[ǫ]. As w∗ is finite, for some

n(∗) < ω we have w∗ ∩ (
⋃

n<ω

wn) ⊆ wn(∗).

Let k∗ < ω be such that there are no repetitions in 〈ηα ↾ k∗ : α ∈ wn(∗)+1〉 and
k∗ > n(∗). Let ζ < ξ be such that: supp(dα

n) ⊆ ω>ζ for α ∈ wn(∗)+1 ∪ w∗, n < ω
and supp(ṡα

k ) ⊆ ω>ζ for α ∈ wn(∗)+1 ∪ w∗, k < k∗, and

xn, yn ∈ 〈B[ζ] ∪ {aα : α ∈ wn(∗)+1}〉Bc
0

for n < n(∗) + 1 and z∗ ∈ 〈B[ζ] ∪ {aα : α ∈ w∗}〉Bc
0

We shall now apply 3.8 with I, w, C there standing for

I ′ = {η : η ∈ ω>ζ or η ⊳ ν where ν ∈ supp(ṡα
n) for some α ∈ wn(∗)+1, n < ω},

w′ =: {α < α∗ : (∀n < ω)(ηα ↾ n ∈ I)} and C′ =: {z∗} here; clearly the demands

there hold, recalling supp(ṡα
n) is a finite subset of {ρ ∈ ω>ζ̇(α) : ηα↾n⊳ρ} by ⊛α(2).

So there is a projection f from 〈B(I ′, w′)∪{z∗}〉Bc
0

onto B(I ′, w′), and so by 3.8(2)

clearly f(z∗) is based on I ′. As clearly w′ ⊆ {α : ζ̇(α) < ξ} ∪ wn(∗)+1, we get

f(z∗) ∈ B(I ′, w′) ⊆ 〈
⋃

ε<ξ

B[ε] ∪ {aα : α ∈ wn(∗)+1}〉Bc
0
,

So f(z∗) belongs to B(I ′, w′), which is ⊆ 〈
⋃

ε<ξ

B[ε] ∪ {aα : α ∈ wn(∗)}〉Bc
0
. Also

f(xn(∗)) = xn(∗) and f(yn(∗)) = yn(∗) as xn(∗), yn(∗) ∈ B(I ′, w′) , so as z∗ ∩ xn(∗) =
yn(∗) by the choice of z∗, necessarily f(z∗) ∩ xn(∗) = yn(∗), so by the previous
sentence we get a contradiction to clause (vi) for n(∗). So (∗∗) holds.
Part V. We continue the first paragraph of Part IV, and let (∗∗) of Part IV hold
for w∗ and x∗.

Let d0, . . . , dm ∈ B[ξ] be such that

⊠: (a)
m
⋃

ℓ=0

dℓ = 1 and

(b) (∀ℓ ≤ m)(∀α ∈ w∗)(dℓ ≤ aα ∨ dℓ ∩ aα = 0).

There is an ℓ ≤ m such that {y ∩ dℓ : y ≤ x∗ and y ∈ B′} is infinite. It is clear (by
Part II) that B′′ = 〈B′, dℓ〉Bc

0
is ℵ1– compact; also x∗ ∩ dℓ ∈ B′′ \ Fi(B′′).
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18 SAHARON SHELAH

Now, assume that y ∈ B′′, y ≤ x∗ ∩ dℓ. Clearly for some y′ ∈ B′ we have
y = y′ ∩ dℓ and without loss of generality y′ ≤ x∗. By (∗∗), that is the choice
of w∗, x∗ for some z ∈ 〈

⋃

ζ<ξ

B[ζ] ∪ {aα : α ∈ w∗}〉Bc
0

we have z ∩ x∗ = y′. Hence

z ∩ (x∗ ∩ dℓ) = y, and by the choice of dℓ that is ⊠(b) and the choice of z, for some
z′ ∈

⋃

ζ<ξ

B[ζ], the equation z′ ∩ (x∗ ∩ dℓ) = z ∩ (x∗ ∩ dℓ) = y holds.

So by the previous paragraph, in B′′ the element x∗∗ def
= x∗ ∩ dℓ satisfies the

requirements in (∗∗) for w∗∗ =: ∅ . Now we use (c) of part I. As cf(ξ) = ℵ0, let
ξ =

⋃

n<ω

ζn with ζn < ζn+1 < ω, and by induction on n < ω we choose xn, yn such

that:

(i): xn ∈ B′′, xn ≤ x∗∗, and m < n ⇒ xm ∩ xn = 0,
(ii): x∗∗ −

⋃

ℓ<n

xi /∈ Fi(B′′),

(iii): yn ∈ B
′′

, yn ≤ xn,
(iv): for no z ∈ B[ζn] do we have z ∩ xn = yn.

As B′′ is ℵ1–compact, for some z∗ ∈ B′′ we have z∗ ∩ xn = yn for every n.
Now, as B′′, x∗∗, w∗∗ = ∅ satisfy (∗∗), for some z∗∗ ∈

⋃

ζ<ξ

B[ζ] we have z∗∩x∗∗ =

z∗∗ ∩ x∗∗. So for some n, z∗∗ ∈ B[ζn], contradicting clause (iv) above. Thus we
have finished the proof of 3.10. 3.10{3.11}
Claim 3.11. Bα∗ is endo-rigid.

Before proving 3.11 we prove the subclaim 3.12 (For endomorphism h of Bα∗ we
shall try to find α ∈ Y ′ such that h(aα) has to realize pα to get contradiction, but
before choosing α we try to choose appropriate 〈dα

n : n < ω〉, this is what 3.12 does
for us):

{3.11A}
Subclaim 3.12. Assume that h is an endomorphism of Bα∗ and Bα∗/ExKer(h)
is an infinite Boolean algebra. Then we can find ρ∗ and d̄ such that

(A): d̄ = 〈dn : n < ω〉 and ρ∗ ∈ ω>λ,
(B): {dn : n < ω} is a maximal antichain of Bα∗ and dn > 0 of course,
(C): at least one of ⊠1, ⊠2, ⊠3 hold, where

⊠1: (a): if ρ∗ ⊳ ρ∗∗ ∈ ω>λ and n ∈ (0, ω) then for some s ∈ 〈xν :
ρ∗∗ ⊳ ν ∈ ω>λ〉Bc

0
\ {0, 1} we have h(s) ∩ dn = 0,

(b): for no x ∈ Bc
0 do we have n < ω ⇒ x ∩ h(d2n ∪ d2n+1) =

h(d2n+1).
⊠2: for no x ∈ Bc

0 do we have: for every n ∈ (2, ω)

n is odd ⇒ x ∩ h(dn) ∩ d0 = h(dn) ∩ d0, and
n is even ⇒ x ∩ h(dn) ∩ d0 = 0.

Proof. As in the proof of 2.5(2), we can ignore the maximality requirement in clause
(B) (call it (B)−).

Recall

ExKer∗(h) = {a ∈ Bα∗ : {x/ExKer(h) : x ≤ a} is finite}.

Let İh = {a ∈ Bα∗ : the set {h(d) : d ≤ a in Bα∗} is finite}, clearly it is an ideal of

Bα∗ included in ExKer∗(h) hence 1Bα∗ /∈ İh

Case α: For some ρ∗ ∈ ω>λ and a∗ ∈ Bα∗ \ İ∗(h) we have: for every ρ satisfying
ρ∗ ⊳ ρ ∈ ω>λ there is s ∈ 〈{xη : ρ ⊳ η ∈ ω>λ}〉Bc

0
\ {0Bc

0
} such that h(s ∩ a∗) = 0.
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 19

Without loss of generality supp(a∗) ⊆ {ρ ∈ ω>λ : ¬(ρ∗ ⊳ ρ)}, hence above s ∩ a∗ 6=
0Bc

0
. Let Ba = {h(d) : d ≤ a∗}∪ {1− h(d) : d ≤ a∗}. This is a Boolean subalgebra

of Bc
0 and 1 − h(a∗) is an atom in it (or zero). As a∗ /∈ İh, clearly Ba is infinite,

hence by 3.10 there is an antichain 〈yn : n < ω〉 of Ba such that for no x ∈ Bc
0 do

we have x ∩ (y2n ∪ y2n+1) = y2n. Without loss of generalityyn ≤ h(a∗) as at most
one yn fails this. Let dn be such that h(dn) = yn and without loss of generality
dn ≤ a∗; of course yn > 0, hence dn > 0. Without loss of generality {dn : n < ω}
is an antichain (as we can use dn −

⋃

m<n

dm).

Let d′0 = 1 − a∗, d′1 = d0 ∪ d1 and d′2+n = d2+n. So clearly clauses (A), (B)−,
(C)⊠1 hold for 〈d′n : n < ω〉, and our ρ∗.

Case β: For some a∗ ∈ Bα, {h(x) − a∗ : x ∈ Bα∗ , x ≤ a∗} is infinite.
Clearly

Ba = {h(x) − a∗ : x ∈ Bα∗ & x ≤ a∗} ∪ {1 − (h(x) − a∗) : x ∈ Bα∗ & x ≤ a∗}

is a subalgebra of Bα∗ (and a∗ is an atom in it). By the assumption (of this case)
Ba is infinite. So by 3.10 there are pairwise disjoint yn ∈ Ba \ {0} such that
¬(∃x ∈ Ba)

∧

n<ω

(x ≥ y2n+1 & x ∩ y2n = 0). As a∗ is an atom of Ba, without

loss of generality yn ≤ 1 − a∗, hence there are dn ∈ Bα∗ such that dn ≤ a∗ and
h(dn) − a∗ = yn. Clearly

h(dn −
⋃

ℓ<n

dℓ) = yn −
⋃

ℓ<n

yℓ = yn

hence without loss of generality the dn are pairwise disjoint. Let d′0 = 1 − a∗, d′1 =
d0 ∪ d1 and d′2+n = d2+n, so 〈d′n : n < ω〉 is an antichain and h(d′n) ∩ d0 =
h(dn) − a∗ = ẏn for n = 2, 3, . . ., hence for no x ∈ Bα∗ do we have n < ω ⇒
x ∩ h(d′2+2n ∪ d′2+2n+1) = h(d′2+2n+1). So 〈d′n : n < ω〉 are as requested in ⊠2.

Why the two sub-cases exhaust all possibilities?

Suppose none of Cases (α), (β) occurs. As case (α) fail for a∗ = 1Bα∗ necessarily
for some ρ0 ∈ ω>λ we have

(a) h(s) > 0 for every s ∈ 〈{xη : ρ0 E η ∈ ω>λ}〉Bc
0
\ {0, 1}.

Clearly a ∈ 〈{xη : ρ0 ⊳ η ∈ ω>λ{〉Bc
0
\ {0} implies that a /∈ İh. As clause

(β) fail clearly for every a ∈ Bα∗ the set {h(d) − a : d ≤ a, d ∈ Bα∗} is
finite. Next we note that:
⊞ if ρ0 ⊳ ρ ∈ ω>λ then for some s ∈ 〈{xη : ρ ⊳ η ∈ ω>λ}〉B0

\ {0, 1} we have
h(s) = s.

[Why? for each α < ω1 let nα = ({h(d)−xρ⌢〈α〉 : d ≤ xρ⌢〈α〉})+|{h(d)−
(−xρ⌢〈α〉) : d ≤ (−xρ⌢〈α〉)}|, so we know that nα is enough, so for some
n(∗) the set Z = {α < ω1 : nα = n(∗)} is infinite. By Ramsey theorem for
some a we have: if α < β are from Z and t1, t2 ∈ {0, 1} are truth values
then h(xt1

ρ⌢〈α〉∩xt2

ρ⌢〈β〉)−xt1

ρ⌢〈α〉 = at1,t2 ∈ Bα, h(xt1

ρ⌢〈α〉∩xt2

ρ⌢〈β〉)∩xt2

ρ⌢〈β〉 =

bt1,t2 ∈ Bα where xt is x if t is 1 and is −x if t is 0. Let α0 < α1 < α2 < α3

be from Z and let s = xρ⌢〈α0〉 ∩ (−xρ⌢〈α1〉) ∩ xρ⌢〈α2〉 ∩ (−xρ⌢〈α3〉). Now
h(s) ≤ xρ⌢〈α0〉 as h(xρ⌢〈α2〉) − xρ⌢〈α0〉 = h(xρ⌢〈α3〉) − xρ⌢〈α0〉 and the
equation above, similarly h(s) ≤ xρ⌢〈α1〉 and also h(s) ≤ xρ⌢〈α2〉 (using
xρ⌢〈α0〉, xρ⌢〈α1〉) and h(s) ≤ (−xρ⌢〈α3〉) together h(s) ≤ s. Now s1 =
s − h(0) > 0. Easily s > 0 and s is disjoint to b∗ = ∪{at1,t2 ∪ bt,t2 : t1, t2
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20 SAHARON SHELAH

truth values}. If (t0, t1) 6= (1, 0) and s1 ∩ h(xt0

ρ⌢〈α0〉
∩ xt1

ρ⌢〈α1〉
) > 0, as

s ∩ b∗ = 0Bα
we get easy contradiction. Similarly for (xρ⌢〈α2〉, xρ⌢〈α3〉)

hence h(s) = s.
So ⊞ holds. Let a∗ ∈ Bα∗ be such that h(a∗) � a∗ (exists by 2.5), and

let a∗∗ = h(a∗) − a∗ > 0. By “not Case (α)” and ⊞, for some ρ0 ∈ ω>λ,
(b) h(s) ∩ a∗∗ 6= 0 for every s ∈ 〈xη : ρ0 ⊳ η ∈ ω>λ〉Bc

0
\ {0, 1}.

Possibly increasing ρ0 the set {η : ρ0 ⊳ η ∈ ω>λ} is disjoint to supp(a∗)∪
supp(h(a∗)). Let sn = xρ0⌢〈n〉 −

⋃

m<n

xρ0⌢〈m〉) for n < ω, so the sn’s are

pairwise disjoint non-zero members of Bα∗ and by (a) we have h(sn)∩a∗∗ 6=
0. But h(sn) ∩ h(a∗) − a∗ = h(sn) ∩ (h(a∗) − a∗) = h(sn) ∩ a∗∗ > 0. So
clearly the assumption of case (β) holds (for a∗).

3.12

Proof of 3.11. Suppose h is a counterexample, i.e., h is an endomorphism of Bα∗

but Bα∗/ExKer(h) is infinite, and we shall get a contradiction.
Clearly if for some good candidate α, hα ⊆ h and α ∈ Y1 (see Stage B) then

h(aα) realizes the type pα = {x ∩ bα
n = cα

n : n < ω}, a contradiction (as by clause
⊛(4) of stage A, Bα∗ omits pα). So we shall try to find such α which satisfies the
requirements ⊛1

α of stage B (hence implicitly ⊛α of stage A) for belonging to Y1.
Let ρ∗, 〈dn : n < ω〉 be as in 3.12 (ρ∗ is needed only if ⊠1 of (C) of 3.12 holds
otherwise we can let ρ∗ = 〈〉) and let ξ < λ be such that

⋃

{supp(dn) ∪ supp(h(dn)) : n < ω} ⊆ ω>ξ

Let n(∗) = lg(ρ∗). Let Z ⊆ ω>λ , it will be used only in 3.13. We can find a good
candidate α < α∗ such that

(a): hα ⊆ h, and ζ̇(α) > ξ
(b): dn ∈ B[Nα

0 ] for n < ω and ρ∗ ∈ Rang(fα), and 〈dn : n < ω〉 ∈ Nα
0

(c): Nα
0 is an elementary submodel of the expansion

(H<ℵ1
(λ),∈,Bα∗ , h, {(η, xη) : η ∈ ω>λ}, Z) of M

so in particular Nα
n is closed under the functions implicit in the choice of Bα

0 and
ρ∗, 〈dn : n < ω〉, i.e.,

(d): a ∈ B[Nα
0 ] ⇒ supp(a) ⊆ Nα

0 ,
(e): η ∈ Nα

m ∩ ω>λ ⇔ xη ∈ B[Nα
m],

(f): (ω>λ)∩Nα
m is closed under initial segments, and each node has infinitely

many immediate successors,
(g): if ⊠1 of clause C of 3.12 holds and if ρ∗ ⊳ ρ∗∗ ∈ Nα

n , and n is large
enough then there is s ∈ Nα

n as required in 3.12(C)⊠1 so h(s) − d0 = 0.

As W is a barrier this is possible (using the game a′(W) and not a(W) because
of the requirement ρ∗ ∈ Rang(fα) recalling Definition 1.7, that is we choose a
strategy for player I, choosing the Nn-s and in the zeroth move also fℓ for ℓ =
1, . . . , ℓg(ρ∗) + 1. So for some play of the game, player II wins while player I uses
the strategy described above so the play is 〈(Nα

n , fα
n ) : n < ω〉 for some α < α∗, so

we are done). Note that the proof of 3.13 below use the rest of the present proof,
only ignoring case III below. We then will choose ηα, an ω–branch of Rang(fα)
above ρ∗; but W is a disjoint barrier (see Definition 1.9(3)) hence ηα hence distinct
from ηβ for β < α and we will choose sn ∈ Nα in 〈xν : ηα ↾ n ⊳ ν ∈ ω>λ〉Bc

0
\ {0, 1}

and let bn = h(dn), cn = h(dn ∩ sn) for n < ω, pα = {x ∩ bn = cn : n < ω}, and
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 21

aα =
⋃

n<ω

(dn ∩ sn) ∈ Bc
0. All should have superscript s (where s = 〈sn : n < ω〉),

but we usually omit it or write aα[s], pα[s] etc. It is enough to prove that for at
least one such s̄ we have aα[s̄], s̄[dn : n < ω] exemplify that α ∈ Y1.

The choice of s (and ηα which is determined by s) is done by listing the demands
on them (see Stage B) and showing that a solution exists. The only problematic
one is (4) (omitting pβ for β ≤ α, β ∈ Y1) and we partition it to three cases:

(I): ζ̇(β) < ζ̇(α) or ζ̇(β) = ζ̇(α), β + 2ℵ0 ≤ α,

(II): ζ̇(β) = ζ̇(α), β < α < β + 2ℵ0 ,
(III): β = α.

We shall prove first that every s is O.K. for (I), second that for any family
{(ηi, si) : i < 2ℵ0} (ηi is a branch of Rang(fα) above ρ∗, etc.) with pairwise
distinct ηi’s, all except < 2ℵ0 many are O.K. for any instance of (II), and third
that for every η (a branch of Rang(fα) above ρ∗) there is s such that (η, s) satisfies
(III). This clearly suffices (as for each branch η of Rang(fα) choose sf such that
(η, sη) satisfies III, and then chose η such that (η, sη) satisfies II) .

Case I: ζ̇(β) < ζ̇(α) or ζ̇(β) = ζ(α), β + 2ℵ0 ≤ α
Let s be as above. Suppose some x ∈ 〈Bα, aα[s]〉Bc

0
realize pβ . Clearly there is a

partition 〈yℓ : ℓ < 4〉 of 1 (in Bα) such that x = y0 ∪ (y1 ∩ aα[s]) ∪ (y2 − aα[s]).

Choose ξ < ζ̇(α) large enough and finite k < ω so that

⊡ [ζ̇(β) < ζ̇(α) ⇒ ζ̇(β) < ξ], and dn, hα(dn), bβ
n, are based on {xν : ν ∈ ω>ξ}

(for n < ω) and cβ
n (for n < ω), y0, y1, y2, y3 are based on J = {xν : ν ∈

ω>λ, ηα ↾ k 6⊳ ν}, where k < ω also satisfies that ηα(k) > ξ, ηα ↾ k /∈ Nβ

(where ηα ∈ ωλ is the one determined by s).

These are possible because of 3.2 and 1.10(2)(e).
We claim:

(*): there is m < ω such that b∗ = (bβ
m ∩ (y1 ∪ y2)) −

⋃

n≤k

dn 6= 0.

For suppose (*) fails, then as aα[ṡ] ∩ (
⋃

n≤k

dn) ∈ Bα; without loss of generality

(y1 ∪ y2) ∩
⋃

n≤k

dn = 0

[Why? otherwise let

y′
0 = y0 ∪ (y1 ∩ aα[s] ∩

⋃

n≤k

dn) ∪ (y2 ∩ (
⋃

n≤k

dn − aα[s]))

y′
1 = y1 −

⋃

n≤k

dn,

y′
2 = y2 −

⋃

n≤k

dn .

So for every m < ω, bβ
m ∩ (y′

1 ∪ y′
2) = 0. We should now check that the demands on

k in ⊡ξ,k are still satisfied (for ξ there is no change)].
Thus, if x realizes pβ then so does y0, but y0 ∈ Bα contradicting the induction

hypothesis. So (*) holds.
Now as 〈dn : n < ω〉 is a maximal antichain in Bα, for some ℓ < ω,

dℓ ∩ b∗ = dℓ ∩ (bβ
m ∩ ((y1 ∪ y2) −

⋃

n≤k

dn)) 6= 0.
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22 SAHARON SHELAH

Necessarily ℓ > k. So for some i ∈ {1, 2} we have dℓ ∩ b∗ ∩ yi 6= 0. As x realizes pβ,
necessarily x∩ (dℓ ∩ bβ

m ∩ yi) = dℓ ∩ cβ
n ∩ yi, which is based on J . But we know that

x ∩ (dℓ ∩ bβ
m ∩ yi) is

dℓ ∩ bβ
m ∩ y1 ∩ aα[s] = dℓ ∩ bβ

m ∩ y1 ∩ sℓ (if i = 1)
or dℓ ∩ bβ

m ∩ y2 ∩ (1 − aα([s]) = dℓ ∩ bβ
m ∩ y2 ∩ (1 − sℓ) (if i = 2).

As dℓ ∩ bβ
m ∩ yi 6= 0 is based on J , ℓ > k, ηα(k) > ξ, clearly sℓ is free over

{xν : ν ∈ J} (see Fact 3.3(1)). As dℓ ∩ bβ
m ∩ yi ≥ dℓ ∩ b∗ ∩ yi > 0 and sn /∈ 0, 1

necessarily x ∩ (dℓ ∩ bβ
m ∩ yi) is not based on J , contradiction.

Case II: β < α < β + 2ℵ0 .
We shall prove that if ηi, s̄i are appropriate (for i = 1, 2) and η1 6= η2 then pβ

cannot be realized in both 〈Bα, aα[s̄i]〉Bc
0
. (So as β < α < β + 2ℵ0 , there are less

than 2ℵ0 non-appropriate pairs (ηi, s̄i)).
So toward contradiction, for i = 1, 2, let xi ∈ 〈Bα, aα[si]〉Bc

0
realize pβ. Clearly

there is a partition 〈yi
ℓ : ℓ < 4〉 of 1 (in Bα) such that

xi = yi
0 ∪ (yi

1 ∩ aα[si]) ∪ (yi
2 − aα[si]).

Choose ξ < ζ̇(α) large enough and finite k < ω such that

(i): dn, hα(dn), bβ
n (for n < ω) are based on {xη : η ∈ ω>ξ},

(ii): yi
ℓ (for i = 1, 2 and ℓ < 4) and cβ

n (for n < ω) are based on

J = {xν : ν ∈ ω>λ & η1↾k 6⊳ ν & η2↾k 6⊳ ν},

(iii): η1(k) > ξ, η2(k) > ξ and η1 ↾ k 6= η2 ↾ k.

We claim that

(∗): there is m < ω such that 0 < b∗ =: bβ
m − (y1

0 ∪ y1
3 ∪ y2

0 ∪ y2
3) −

⋃

n≤k

dn.

[Why? Otherwise ai =: aα[ṡ
i
] ∩ (yi

0 ∪ yi
3 ∪

⋃

n≤k

dn) belongs to Bα for i = 1, 2 and

a1 ∪ a2 realizes pβ , a contradiction.]
Clearly b∗ is based on J .
As 〈dn : n < ω〉 is a maximal antichain in Bc

0 (and hence in Bα), for some
ℓ < ω we have 0 < dℓ ∩ b∗; clearly ℓ > k. So for some j(1), j(2) ∈ {1, 2} we have
0 < b∗∗ =: dℓ ∩ b∗ ∩ y1

j(1) ∩ y2
j(2) (just recall yi

1 ∪ yi
2 = 1− (yi

0 ∪ yi
3)). Clearly also b∗∗

is based on J and b∗∗ ≤ dℓ ∩ b∗ ≤ dℓ ∩ bβ
m by the choice of b∗∗, b∗ respectively. So

by the last two sentences, as xi realizes pβ , clearly xi ∩ (dℓ ∩ bβ
m) = dℓ ∩ cβ

m, but the
latter does not depend on i. Hence x1 ∩ b∗∗ = x2 ∩ b∗∗. But as aα[si] =

⋃

n

(dn ∩ si
n)

we know that xi ∩dℓ is dℓ ∩si
2 if j(i) = 1 and is dℓ −si

ℓ if j(i) = 2. We can conclude
that

either b∗∗ ∩ s1
ℓ = b∗∗ ∩ s2

ℓ or b∗∗ ∩ s1
ℓ = b∗∗ ∩ (−s2

ℓ)

(the other 2 possibilities are reduced to those). But b∗∗ is based on J whereas
supp(s1

ℓ), supp(s2
ℓ) are disjoint subsets of {xη : η ∈ ω>λ} \ J and 0 < si

ℓ < 1, a
contradiction.

Case III: β = α.
This case is splitted into two sub-cases. Let ηα be any ω-branch of fα such that
ρ∗ ⊳ ηα, so necessarily ηα 6= ηβ whenever β < α. The proof splits to cases according
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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 23

which ℓ ∈ {1, 2} is such that ⊠ℓ of 3.12(2) is satisfied by ρ∗,d̄. Choose ρ∗n ∈
Nα ∩ (ω>λ) such that

ℓg(ρ∗n) = ℓg(ρ∗) + n + 1, ρ∗n ↾ (ℓg(ρ∗n) − 1) ⊳ ηα and ρ∗n 6⊳ ηα.

Sub-case 1: ⊠1 holds.
We choose sn ∈ B[Nα], satisfying sn ∈ 〈xν : ρ∗n ⊳ ν ∈ ω>λ〉Bc

0
, sn 6= 0, 1 and

⊞ n = 2m ⇒ h(sn) = 0, n = 2m + 1 ⇒ h(sn) = 1

this means x ∩ h(d2n ∪ d2n+1) = h(d2n) (this is possible by ⊠1 applied to ρ∗n and
using sn or 1 − sn).

Assume toward contradiction that x ∈ 〈Bα ∪ aα[s̄]〉Bc
0

satisfies x ∩ h(dn) =
h(dn ∩ sn) hence x ∩ h(d2n ∪ d2n+1) = h(d2n) for n < ω. Let 〈yℓ : ℓ < 4〉 be a
partition of 1 in Bα such that x = y0 ∪ (y1 ∩ aα[s̄]) ∪ (y2 − aα[s̄]). As the type
q = {x′ ∩h(d2n ∪d2n+1) = h(d2n) : n < ω} is not realized in Bα, and 〈y0, y1, y2, y3〉
is a partition of 1 in Bα clearly for some i < 4 the type

qi = {x′ ∩ h(d2n ∪ d2n+1) ∩ yi = h(d2n+1) ∩ yi : n < ω}

Let k(∗) < ω be such that {η : ηα↾k(∗) E η ∈ ω>λ} is disjoint to supp(yi) for
i < 4 and ξ < ηα(k(∗) − 1) is not realized in Bα. By the choice of the yℓ’s and
the choice of x, necessarily i ∈ {1, 2} and for notational simplicity let i = 1. So
U =: {n : h(d2n ∪ h2n+1) ∩ y1· > 0} is infinite, and as 〈dk : k < ω〉 is a maximal
antichain of Bc

0 hence of Bα, clearly for each n ∈ U , the set

Un = {k : h(d2n ∪ d2n+1) ∩ dk ∩ y1̇ > 0}

is nonempty. Clearly k ∈ Un ⇒ x ∩ h(d2n ∪ d2n+1) ∩ dk ∩ y1 = sk ∩ h(d2n ∪
d2n+1)∩dk ∩yi hence k(∗) ≤ k ∈ Un ⇒ supp(sk) ⊆ supp((x∩h(d2n)∪d2n+1)∩yi).
Hence if n ∈ U and Un is infinite then x ∩ h(d2n ∪ d2n+1) ∩ y1 is not in Bα, easy
contradiction as h(d2n) ∈ Bα; so n ∈ U ⇒ 1 ≤ |Un| < ℵ0. If ∪{Um : n < ω} is
finite then d∗ = ∪{dℓ : ℓ ∈ Un for some n < ω (so n ∈ U)} belong to Bα (as a
finite union of members) and n < ω ⇒ h(d2n ∪ d2n+1) ≤ d∗ and x ∩ d∗ ∈ Bα so qi

is realized and we get easy contradiction. Let f : U → ω, f(n) = max(Un). Recall

that k(∗) < ω and ξ < ζ̇(α) are large enough. For n ∈ U with f(n) ≥ k(∗), clearly.

x ∩ (h(d2n ∪ d2n+1) ∩ yi ∩ df(n) ∈ {h(d2n ∪ d2n+1) ∩ yi ∩ sf(n),

h(d2n ∪ d2n+1) ∩ yi ∩ (−sf(n))}

by the choice of the āα[s̄]’s and

x ∩ h(d2n ∪ d2n+1) ∩ yi = h(d2n) ∩ yi

by the choice of x. But the latter, h(d2n)∩ yi is supported by {xν : ρ∗n 6⊳ ν ∈ ω>λ}
(as the ρ∗m’s are pairwise ⊳–incomparable), whereas the former is not by the choice
of ξ, and k(∗).

Sub-case 2: ⊠2 holds.
We choose sn ∈ 〈xν : ρ∗n ⊳ ν ∈ ω>λ〉Bc

0
, sn ∈ B[Nα] \ {0Bα

, 1Bα
}. Now for

i ∈ {1, 2, 3, 4} we let s̄i = 〈si
n : n < ω〉 be defined as follows: si

n is sn if n+ i is even
and −si

n if n + i is odd. If for some i the Boolean algebra 〈Bα ∪ āα[s̄i]〉Bc
0

omit the

type pi
α = {x∩h(dn)∩d0 = h(si

n)∩h(dn)∩d0 : n < ω} then we are done, so assume
that xi ∈ 〈Bi ∪ {aα[s̄i]}〉Bc

0
realizes pi

α, hence yi =: xi ∩ d0 realizes pi
α and belong
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24 SAHARON SHELAH

to Bα. But then y1 realizes {x ∩ h(d2n ∪ d2n+1) ∩ d0 = h(d2n+1) ∩ d0 : n < ω} but
this contradict the choice of 〈dn : n < ω〉, see ⊠2 of 3.12, so we are done.

So we finish the proof of 3.11; so Bα∗ is endo-rigid. 3.11
{3.12AT}

Claim 3.13. There are λℵ0 ordinal α < α∗ which belongs to Y ′ (even to Y2).

Proof: Let h be the identity on Bα∗ . In the proof of 3.11, guessing the good
candidate α we have λℵ0 possible choices as Z ⊆ ω>λ was arbitrary and we could use
Z = {η↾n : n < ω} for any η ∈ ωλ. We can find a maximal antichain 〈dn : n < ω〉
of B0 included in 〈{x〈γ〉 : γ < λ moreover < γ >∈ Nα

0 }〉B0
. For any η ∈ lim(fα)

and s̄ = 〈sn : n < ω〉 where sn ∈ 〈{xρ : (η↾n)∧〈η(n) + 1〉 ⊳ ρ}〉Bc
0

we can define
āα[s̄] = ∪{dn ∩ sn : n < ω} ∈ Bc

0. As in the proof of 3.11 for some such (η, s̄)
the fitting ηα = η, aα = āα[s̄], all the demands for α ∈ Y2 (see ⊗ in Stage B) are
satisfied.

{3.12}

Lemma 3.14. Bα∗ is indecomposable.

Proof: Suppose J0,J1 are disjoint ideals of Bα∗ , each with no maximal member,
which generate a maximal ideal of Bα∗ . For ℓ = 0, 1 let {dℓ

n : ℓ < ω} be a maximal
antichain ⊆ Jℓ \ {0Bα∗} (maximal as subset of Jℓ \ {0Bα∗}), they are countable as
Bα∗ satisfies the c.c.c., and may be chosen infinite as ℓ < 2 ⇒ Jℓ 6= {0} (and Bα∗

is atomless). Let J be the ideal generated by J0 ∪ J1.
Now, for example for some ξ < λ, {dℓ

n : ℓ < 2, n < ω} ⊆ B[ξ], so easily for

some α ∈ Y2, ζ̇(α) > ξ. Clearly aα ∈ J or 1 − aα ∈ J. For notational simplicity
assume aα ∈ J. So aα = b0 ∪ b1, bℓ ∈ Jℓ. Now, prξ(b

ℓ) ∈ B[ξ] and is disjoint

to each d1−ℓ
n so by the maximality of {d1−ℓ

n : n < ω}, prξ(b
ℓ) is disjoint to every

member of J1−ℓ. As J0 ∪J1 generates a maximal ideal of Bα∗ , clearly prξ(b
ℓ) ∈ Jℓ

[otherwise prξ(b
ℓ) = 1 − c0 ∪ c1, for some c0 ∈ J1, c1 ∈ J1, and then c1−ℓ is

necessarily a maximal member of J1−ℓ, so J1−ℓ is principal, a contradiction]. So

prξ(b
0) ∪ prξ(b

1) < 1, but 1 = prξ(aα) =
2
⋃

ℓ=0

prξ(b
ℓ), a contradiction. 3.14

3.1

Of course,
{3.13}

Claim 3.15. If cf(λ) > ℵ0 then there are Bi for i < 2λℵ0

such that

(a) Bi is Boolean algebra of cardinality λℵ0 , density character λ, and this holds
even for Bi ↾ a for a ∈ Bi \ {0Bi

},
(b) Bi is endo-rigid indecomposable,
(c) any homomorphism from any Bi to Bj (i 6= j) has a finite range.

Proof: We can repeat the proof of 3.1. Now we build Bα〈Z〉 for every Z ⊆ ωλ,
such that for each α we try to guess not Bα∗ and an endomorphism of it but we
try to guess B1[Nα] = (Bα〈Z1〉)↾Nα, B2[Nα] = (Bα〈Z2〉)↾Nα and h = HNα

an
homomorphism from B1[Nα] into B2[Nα], and we “kill” i.e., guarantee h cannot
be extended to a homomorphism from B〈Z1〉, to B〈Z2〉 when B〈Zℓ〉↾Nα = Bℓ[Nα]

3.15
{3.14}

Claim 3.16. In 3.1, 3.15 we can replace the assumption cf(λ) > ℵ0 by λ > ℵ0.
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Proof: We replace ω>λ, S by ω>(λ × ω1), {λ × δ : δ < ω1 a limits ordinal} so we
use [Sh:309, 3.17] instead of [Sh:309, 3.11, 3.16]. 3.16

Also note:
{3.15}

Observation 3.17. Assume 2ℵ0 < λ < λℵ0 , and B is c.c.c. Boolean algebra
of cardinality λ, and there is µ, µ < λ < µℵ0 , hence without loss of generality
λ > µ = min{µ : µℵ0 ≥ λ}.

(1) There is a free Boolean algebra Bx of cardinality µ such that B0 ⊆ B.
(2) There is B̄ such that

(a) B̄ = 〈Bn : n < ω〉,
(b) Bn is a Boolean subalgebra of B,
(c) Bn ⊆ Bn+1 and B =

⋃

n<ω

Bn,

(d) there is An ⊆ Bn+1 independent over Bn
2 of cardinality µ.

(3) B is not endo-rigid.
(4) There are projections3 of B whose range are atomless countable Boolean

algebra.
(5) there are λℵ0 atomless Boolean subalgebras B′ of B such that there is a

projection from B onto B′

Proof: By cardinal arithmetic (∀κ < µ)(κℵ0 < µ) and cf(µ) = ℵ0. Let µ =
∑

n<ω

µn, µn < µn+1, µℵ0
n = µn.

(1), (2) By [Sh:92, Lemma 4.9, p.88], we can find 〈bα : α < µ〉 independent in
B. Let B∗ be the subalgebra of B generated by {bα : α < µ}, and let Bc

∗ be
the completion of B∗. Let h∗ be a homomorphism from B into Bc

∗ extending
idB∗

, (it is well known that such homomorphism exists) and let B′ = Rang(h∗), so
B∗ ⊆ B′ ⊆ Bc

∗, |B∗| ≤ |B′| ≤ λ. For each a ∈ B′ there is a countable ua ⊆ µ such
that a is based on (i.e., belongs to the completion inside Bc

∗ of) the set {bα : α ∈ ua}.
We can find pairwise distinct ηα ∈

∏

n<ω

µ+
n for α < λℵ0 such that ηα↾(n + 1) 6=

ηβ↾(n + 1) ⇒ ηα(n) + µn 6= ηβ(n) + µn. Now for each a ∈ B′ the set

wa = {α : (∃∞n)(ua ∩ [µn × ηα(n), µn × ηα(n) + µn) 6= ∅)}

has cardinality ≤ 2ℵ0 . But |B′| + 2ℵ0 ≤ λ < λℵ0 , hence for some α < λℵ0 we have

ηα /∈
⋃

{wa : a ∈ B′}

Let

B′
m =:

{

x ∈ B′ : h∗(x) is based on A′
n}

where

A′
m =: {bβ : if n ≥ m then β /∈ [µn × ηα(n), µn × ηα(n) + µn)}

}

.

The sequence 〈B′
n : n < ω〉 is as required except that in clause (d) if we naturally

let A′′
n = {bβ : β ∈ [µn × ηα(n), µn × ηα(n) + µn)} we get |A′′

n| ≥ µn instead

2i.e., for every a ∈ Bn \ {0Bn} and a non-trivial Boolean combination b of members of An we

have a ∩ b > 0
3i.e homomorphism h from B into B such that x ∈ B ⇒ h(h(x)) = h(x)
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26 SAHARON SHELAH

|A′′
n| ≥ µ. So let ω be the disjoint union of the infinite sets vn for n < ω, and let

Bm = {x ∈ B : h∗(x) is based on Am}, where

Am = {bβ : if n < ω and
n /∈

⋃

k≤m vk then β /∈ [µn × ηα(n), µn × ηα(n) + µn)}.

Then the sequence 〈Bm : m < ω〉 is as required.

(3) Follows by (4).
(4) Choose an ∈ An for n < ω. Now we define by induction on n, a projection
hn from the Boolean algebra Bn onto the subalgebra B∗

n of Bn generated by {aℓ :
ℓ < n} freely and extending hm for m < n. For n = 0, let D0 be any ultrafilter
of B0 and let h0(x) be 1B0

= 1B if x ∈ D0 and 0B0
= 0B if x ∈ B0 \ D0. For

n = m+1 let 〈am
k : k < 2m〉 list the atoms of B∗

m, which is a finite Boolean algebra,
and for k < 2m let Dm

k = {x ∈ Bm : am
k ⊆ h(x) ∈ B∗

m}, this is an ultrafilter of
Bm. For each k we can find two ultrafilters Dm

k,0, D
m
k,1 of Bn = Bm+1 extending

Dm
k such that am ∈ Dm

k,1 and am /∈ Dm
k,0. Lastly define hn = hm+1 : Bn → B∗

n by

hn(x) =
⋃

{am
k ∩ am : x ∈ Dm

k,1} ∪
⋃

{am
k − am : x ∈ Dm

k,0}, it is easy to check that
hn is a homomorphism from Bn onto B∗

n and is the identity on B∗
n and extend hm.

Clearly h = ∪{hn : n < ω} is a projection of B = ∪{Bn : n < ω} onto
B∗ = ∪{B∗

n : n < ω}, so h,B∗ are as required.
(5) By the proof of part (4), that is the arbitrary choice of 〈an : n < ω〉 ∈

∏

n<ω

An.

3.17

{3.16AT}
Discussion 3.18. (1) In 3.17 the only use of the c.c.c. is to find a free subal-

gebra of B of cardinality µ.
(2) What about |B| < 2ℵ0? S.Koppelberg and the author noted (independently)

that under MA (or just p = 2ℵ0) such Boolean algebras are not endo-rigid.
Why? let an ∈ B \ {0B} be pairwise disjoint, let Dn be an ultrafilter of B
to which an belong, and for x ∈ B let Ux = {n : x ∈ Dn}. By MA there is
an infinite U ⊆ ω such that for every x ∈ U the set U ∩ Ux is finite or the
set U \ Ux is finite. Let h ∈ Ext(B) be h(x) = ∪{an : n ∈ Ux} if U ∩ Ux is
finite and h(x) = 1B − ∪{an : n ∈ U \ Ux} if U \ Ux is finite.

(3) Assume µ =
∑

{µn : n < ω}, µκ
n = µn < µn+1. If B is a Boolean algebra

satisfying the κ+- c.c. such that µ < |B| < µℵ0 then the construction of
3.17 holds. The proof is similar.

{4.20}
Discussion 3.19. We may wonder whether Claims 3.9, 3.10 can be improved to:
if dn ∈ Bα∗ (for n < ω) are pairwise disjoint non–zero, then for some w ⊆ ω there
is no x ∈ Bα∗ satisfying

[n ∈ w ⇒ x ∩ dn = dn] and [n ∈ ω \ w ⇒ x ∩ dn = 0].

The problem is that {ηα : α < α∗} ⊆ ωλ may contain a perfect set and if we are
not careful about the sα

n-s mentioned above we may fail. If λ = µ+, µℵ0 = µ, then
we may try to demand, for each ζ∗ < λ, that

〈
⋃

n<ω

supp(sα
n) : α < α∗, ζ(α) = ζ∗〉

is a sequence of pairwise disjoint sets. Alternatively we may look for a thinner black
box (of course, preferably more then just no perfect set of ηα’s), see [Sh:309, §3].
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