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EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS

SAHARON SHELAH

ABSTRACT. How many endomorphisms does a Boolean algebra have? Can we
find Boolean algebras with as few endomorphisms as possible? Of course from
any ultrafilter of the Boolean algebra we can define an endomorphism, and
we can combine finitely many such endomorphisms in some reasonable ways.
We prove that in any cardinality A\ = AR0 there is a Boolean algebra with no
other endomorphisms. For this we use the so called “black boxes”, but in a self
contained way. We comment on how necessary the restriction on the cardinal
is.

0. INTRODUCTION

In this paper we prove the existence of a Boolean algebra of any cardinality
X = A% which has as few endomorphisms as possible, in some natural sense. Note
that every ultrafilter D of a Boolean algebra B induces an endomorphism hp of B:
hp(z) is 1g for € D and Op otherwise. Also we can combine endomorphisms: if
h¢ is a homomorphism from B [ a, into B [ by for £ = 1,2 and a1Uay = 1g = by Ubs,
a1 Nag = 0g = by N by, then there is a unique endomorphism h of B extending
both h; and hs, and for any endomorphism h of B and a € B, h | (B [ a) is a
homomorphism from B | a into the Boolean algebra B | h(a).

Also if 7,7, are ideals of B satisfying 7, N7, = {0} and {a; Uay : a1 €
fl, as € Ig} is a maximal ideal of B, then there is an endomorphism h of B such
that h | 7y = idz, and h | 7, is constantly zero; but possibly there are no such
non-zero ideals 71,75, (then we call B indecomposable).

In §2 we define the family of such endomorphisms (those defined by a schema
and those defined by a simple schema) and investigate this a little. Our main result
(in §3) is that for any A > X there is a Boolean algebra of cardinality A (and even
density character A\) with only endomorphisms as above, of course there are A0
such Boolean algebras with no non trivial homomorphism from one to a distinct
other (see 3.1, 3.15, 3.16); we also show that “cardinality ANo” is a reasonable
restriction (see 3.17, 3.18, 3.19).

For simplicity, we concentrate on the case of cf(\) > Np; note that this affect
only the density character as cf(\) = Rg = AR = (AT)¥. How do we construct
such B? The algebra B extends the Boolean algebra B which is freely generated
by {z, : 1 € “” A} and is a subalgebra of its completion B§. In fact, B = (BoU{aq :

a < o*})Be, with a, chosen by induction on «, has the form (J(d; N s5y), where
n
(d% : n < w) is a maximal anti-chain of B, for each d we have already decided that
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it will belong to B and is based on (= in the completion of the subalgebra generated
by) {z,, : n € “7&} for some £ < () < A, and for some increasing 7, with the limit
((a), s* € (z, N [0 < v)Be. Why these restrictions? We would like to “kill”
undesirable endomorphisms and we shall omit appropriate countable (quantifier
free) types which the image of a,, if exists, has to realize, so such restrictions give
us tight control and so helps us to “diagonalize” over all possible endomorphisms.
To diagonalize we use a black box — it is presented in §1, but its existence is not
proved here (it is proved in [Sh:309]).

* * *

In [Sh:89], answering a question of Monk, we have explicated the notion of “a
Boolean algebra with no endomorphisms except the ones induced by ultrafilters
on it” (see §2 here) and proved the existence of one with density character Ry,
assuming first {x, and then only CH. The idea was that if & is an endomorphism
of B, not among the “trivial” ones, then there are pairwise disjoint d,, € B with
h(d,) € d,,. Then we can add, for some S C w, an element z such that d,, < z for
ne€ S,xNd, =0 for n ¢ S while forbidding a solution for

{yNh(d,) =h(d,) :neStu{ynh(d,) =0:n ¢S}

Later, further analysis had showed that the point is that we are omitting positive
quantifier free types. Continuing this, Monk succeeded to prove in ZFC, the exis-
tence of such Boolean algebras of cardinality 28°. In his proof he replaced some
uses of the countable density character by the N;—chain condition. Also, generally
it is hard to omit < 2% many types but because of the special character of the
types (as said above, positive quantifier free) and models involved, using 2% al-
most disjoint subsets of w, he succeeded in doing this. Lastly, for another step in
the proof (ensuring idecomposability - see Definition 2.1) he (and independently
Nyikos) found it is in fact easier to do this when for every countable set Y C B
there is € B free over it.

The question of the existence of such Boolean algebras in other cardinalities
remained open (See [vDMR80] and a preliminary list of problems for the handbook
of Boolean algebras by Monk).

In [Sh:229] it is proved (in ZFC) that there exist such B of density character
A and cardinality A¥0 whenever A > Rg; from this follows answers to some other
questions from Monk’s list, (combining 3.1 with 2.7).

Almost all the present work is a revised version of [Sh:229] but 3.17 - 3.19 were
added; here as in [Sh:229] §2 repeats [Sh:89].

1. A BLACK BOX

Explanation 1.1. We shall let By be the Boolean algebra freely generated by {7 :
n € > A}, B§ its completion and we can interpret B as a subset of M = Hcy, ()

(each a € B§ has the form |J s, where s, is a Boolean combination of members
n<w
of “ZX). As the n € “Z X may be over-used, we replace them for this purpose by z,

(for example below let ' € 7y be a unary function symbol, z,, = F(n)).

Our desired Boolean algebra B will be a subalgebra of the competition Bf of
By hence it extend By. For our diagonalization, i.e. the omitting type, we need
the following case (we shall use kK = Rg). That is we need a family of subalgebras
with endomorphism, for each we add an element and promise to omit the type of
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the supposed image. The family is sparse enough so that we can do it (i.e. with
the different promises not hindering one another too much), but dense enough so
that every endomorphism of the Boolean Algebra we construct is approximated.
See more accurate explanation in 1.4.

Convention 1.2. We fiz k > Nq for this section.

Definition 1.3. (1): Let 1, for n < w, be fized vocabularies (= signatures),
|Tn| < Kk, T C Tny1, (with each predicate and function symbol finitary for
simplicity). Let Py, € Tyq1\Tn be unary predicates. Let M = (H. .+ (), €).

(2): For n < w let F, be the family of sets (or sequences) of the form
{(fe, Ne) : £ < n} satisfying:
(a): fo: %Kk — *2 ) is a tree embedding, i.e.,
(1): fe is length preserving, that is, n, fe(n) have the same length,
(ii): fe is order preserving (of <), moreover, for n,v € ‘2K we have
nav iff fo(n) < fe(v),
(b): fey1 extends fo (when £+1<n),
(c): Ny is an T;-model of cardinality < k, |N;| C |[M|, where 1) C 1,
(d): 7p., N7 =1, and Nyy1 | 7 extends Ny,
(e): if Py, € 7}y q, then PNt = |N,,| when m < ¢ < n, and
(£): if x,y € Ny then {z,y} € Ny and ) € Ny.
(8): Rang(fr) € Ne
(3): Let F,, be the family of pairs (f, N) such that for some sequence {(fo, Ng) :
¢ < w) the following hold:
(1): {(fe, Ne) : £ < n} belongs to Fy, for n < w,
(i@): f= U fo N= U Mo, (i IN = U INal, 7(V) = Ur(Na),

I<w n<w n<w
and N [ 7(N,) = U N [ 7(Np)).
n<m<w

(4): For any (f,N) € Fu let ((fn,Nn) : n < w) be as above (if P, € 74
for n < w then it is easy to show that (fn, Ny) is uniquely determined by
(f, N)- notice clauses (d), (e) in (2)), so for each (f*, N*) as in 1.10 below
(f¥,N2) for n < w are defined as above.

(5): A branch of Rang(f) or of f (for f as in (3)) is just any n € “X such
that for every n < w we have 1 | n € Rang(f).

Explanation of our Intended Plan 1.4. (of Constructing for example the
Boolean algebra)

We will be given W = {(f* N%) : a < a*}, so that every branch n of f*
converges to some ¢(a), ¢() non-decreasing (in o). We have a free object generated
by “ZX (i.e., by (x, : n € “Z\), this is By in our case), and by induction on a we
define B, and a,, for a < a*, such that B, is increasing and continuous, By is
an extension of B, aq € Bayt1 \ B, (usually B, 41 is generated by B, and a,, and
is included in the completion of By). Every element will depend on few (usually
< k) members of “~ )\, and a, “depends” in a peculiar way: the set Y, C “” )\ on
which it “depends” is Y, U Y.}, where Y2 is bounded below ((a) (i.e., Y C “>¢

for some ¢ < ¢(a)) and ;! is a branch of f® or something similar. See more in 1.8.

Definition of the Game 1.5. We define for W C F,, a game O(W), which lasts
w-moves.
In the n-th mowve:

{1.24}

(1.3}

(1.4}

{1.5}
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Player II: Chooses fn, a tree-embedding of "k into "=\, extending |J fe, such

£<n
that Rang(fn) \ U Rang(fe) is disjoint to |J |Nel|;
£<n I<n
then

Player I: chooses Ny, such that {(fe, N¢) : £ <n} € F,.
In the end player I wins i when( |J fn, U Nn) € W.
n<w n<w

Remark 1.6. We shall be interested in W such that player IT wins (or at least does
not lose) the game, but W is “thin”. Sometimes we need a strengthening of the
first player in two respects: he can demand (in the n-th move) that Rang(fn+1) \
Rang(f,) is outside a “small” set, and in the zero move he can determine an
arbitrary initial segment of the play.

Definition 1.7. We define, for W C F,,, a game O'(W) which lasts w-moves.

In the zero move:
Player I chooses k < w and {(fe, N¢) : £ <k} € Fi, and Xo C“7 A, | Xo| < A

In the n-th move, n > 0:
Player II chooses fiyn, a tree embedding of *+™Zk into F+™2 X, with Rang( frin)\

U Rang(fe) disjoint to |J NeU U Xo.
L<k+n L<k+n I<n
Player I chooses Nty such that {(fo,Ng) : £ < k+n} € Frin and he chooses
X, C 92\ satisfying | X, | < .

In the end of the play, player II wins when (\J fn, U Nn) € W

n<w n<w

Remark 1.8. What do we want from W? First that by adding an element (to
By) for each (f,N), we can “kill” every undesirable endomorphism, for this W
has to “encounter” every possible endomorphism, and this will be served by “W a
barrier” defined below. For this W = F_, is O.K. but we also want W to be thin
enough so that various demands will have small interaction. For this, disjointness
and more are demanded.

Definition 1.9. (1): We call W C F,, a strong barrier if Player II wins
in the game O(W) and even O'(W) (which just means he has a winning
strategy.)

(2): We call W a barrier if Player I does not win in the game O(W) and
even, does not win in O'(W).

(3): We call W disjoint if for any distinct (f*,N*) €¢ W (¢ = 1,2), f! and
% have no common branch.

The Existence Theorem 1.10. (1): If A% = X\®_ cf(\) > R then there is
a strong disjoint barrier.
(2): Suppose \¥° = \*, cf(\) > Rg. Then there is

W={(f*"NY):a<a'} CF,

and a non-decreasing function C s — X such that:
(a): W is a strong disjoint barrier, moreover for every stationary S C
{6 < X :cf(0) = Ro}, the set {(f*,N?) : a < o,{(a) € S} is a
disjoint barrier,

(b): cf({(a)) = Rg for o < o,
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(c): every branch of f* is an increasing sequence converging to ((«),

(d): each N2 is transitive, i.e.: if M =% € b”, b € N2, b ¢ A, then
a € NY, (we call {(fe, Ne) : £ < n}, transitive if each Ny is transitive
and similarly {(fe, Ne) : £ < w} and W).

(e): if {(B) = {(a), B+ KN < a < o andn is a branch of f*, then
nlk&NP for somek < w,

(F): when A\ = \* we can demand: if n is a branch of f* andn | k € N?
for all k < w (where a, B < a*) then N C NP (and even for every
n<w, N> NP).

Proof: See [Sh:309, 3.11], [Sh:309, 3.16].

2. PRELIMINARIES ON BOOLEAN ALGEBRAS

We present here some easy material.

Definition 2.1. (1): For any endomorphism h of a Boolean Algebra B, let

ExKer(h)
ExKer* (h)

{z1Uzs: h(z1) =0, and h(y) =y for every y < a2},
{z € B: in B/ExKer(h), below z/ExKer(h),

there are only finitely many elements}.

(2.1}

(2): A Boolean algebra is endo-rigid if for every endomorphism h of B, B/ExKer(h)

is finite (equivalently: 1p € ExKer*(h)).

(3): A Boolean algebra is indecomposable if there are no two disjoint ideals
Zo, I1 of B (except O of course), each with no mazimal member, which
generate a mazimal ideal of B (that is {ag Uay : ag € Zo,a1 € T1}).

(4): A Boolean algebra B is Ry-compact if for every pairwise disjoint d, € B
(for n < w) for some x € B, we have zN dont1 =0, N day = doy-

Lemma 2.2. (1): A Boolean algebra B is endo-rigid if and only if every en-
domorphism of B is the endomorphism of some scheme (see Definition
2.4(1),(3) below).

(2): A Boolean algebra B is endo-rigid and indecomposable if and only if ev-
ery endomorphism of B is the endomorphism of some simple scheme (see
Def 2.4(2) below).

(3): For every scheme of an endomorphism of B there is one and only one
endomorphism of the scheme.

Proof. Easy.

Remark 2.3. (1) In fact, for a Boolean algebra B, we have {h : h is an endo-
morphism of B defined by a scheme} is a sub-semi-group of End(B), even
a normal one (as (B,End(B)) is interpretable in End(B)).
(2) Similarly for simple schemes.

Definition 2.4. (1): A scheme of an endomorphism of B consists of a parti-
tion ag, a1, bo, . .., bn—1, Co,--.,cm—1 in B of 1y, with mazximal non-principal
ideals Ij below by for £ < n (in other words jg is a mazximal ideal of Blby)
and non-principal ideals fg,I} below ¢y for £ < m such that j? UI.tiL gener-
ates a mazimal non principal ideal below c; and j? QI} = {0B}, a number

{2.2}

{2.28}

(2.3}
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k <mn, and a partition by, ..., b5 _1,¢5, ..., Ch_1 0f agUboU---Ubg_1. We
assume also that

k+m>0 = ap=0], [(n=k)+m>0 = a =0

and except possibly ag,ay there are no zero elements in the partition ag, a1,
bo, .. .,bn_l,CQ, ceeyCm—1-
(2): The scheme is simple if m = 0.
(3): The endomorphism of the scheme is the unique endomorphism h : B —
B such that:
(i): h(z) =0 when x < ag orx €Ly, L <k, orx €LY, £ < m,
(ii): h(x) =z when z < aq orzely, k<l<n OTIGI}, {<m,
(iii): h(be) = bj when ¢ <k,
(iv): h(be) =beUDb; when k < <mn,
(v): h(ce) = ceUc when £ < m.

So, an endomorphism of a scheme is a “trivial” endomorphism defined by ideals,
essentially maximal ones, and finitely many elements.

Claim 2.5. (1) Ifh is an endomorphism of a Boolean Algebra B, and B/ExKer(h)

is infinite then there are pairwise disjoint d, € B (for n < w) such that
(dn) £ dp.
(2) We can demand that: h(d,) Ndny1 # 0, and if B satisfies the c.c.c.,then

{dy, : n < w} is a mazimal antichain.

Proof. (1) As B/ExKer(h) is infinite we can choose inductively d,, € B such that

d, ¢ ExKer(h), [{ <n = dyNd, =0g] and {z/ExKer(h) :z2 e B& zn | d¢ =
<n

Op} is infinite. It is enough for each n to find d} < d, such that h(d}) £ d. Since

d, ¢ ExKer(h), clearly (by the definition of ExKer(h)) we have h(d,) > Og and for

some d!, < d,, h(d,) #d,,.

Case 1: h(d,) £ dp, let &t = d,,.

Case 2: h(dy) = d,.

Now if h(d]) £ d}, let d = d,, and otherwise h(d},)
we have h(d}) < h(dy), let &, = d,, — d,, so h(d}) = h(
d, —d, = d¥ so d is as required.

Case 3: Neither case 1 nor case 2.

So h(d,) < d,, but h(d,) # d, hence h(d,) < d,. So h(d
OB) = (dn) is disjoint from d,, — h(d,), so if h(d, — h(d

— h(dy). So assume not, so d, — h(d,) € Ker(h) C

( (dn)) = h(0B U h(dn)) = h((dn = h(dn)) U h(dn)) =
h(d,) ¢ ExKer(h) (as d,, ¢ ExKer(h), d,, — h(d,) € ExKer(h
to h(d,) and we are done.
(2) Lete,=h(d,)—d,>0,som#n = d,Nd,, =08 = ¢, Ne¢, =0 and
dpNep =dy N (h(dy) —dy) <d,N(—d,) =08
so dy, Ne, = 0B.
By Ramsey theorem,without loss of generality, for all m < n the truth value of
dpy N ¢, = 0 is the same and of ¢, N d,,, = O is the same.
Now we prove
(%): for some (d), : n < w) we have d), € B, h(d),) £ d], moreover h(d],) N
d,, 1 >0and n <m = d, Nd,, =0g.

SO by the choice of d,

<
dn) = h(d}) = dy, — h(d,) >

/
n

d
)

n — h(dy)) < h(d, —
n)) > O we let d¥ =
)

;-./—\

ExKer(h), and hence
h(d,) and necessarily
hence case 2 apply

\_/&‘

(d
);
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Case 1: coNd; > 0g.
Let d), = dont2 U (c2n Ndant1); now (d, : n < w) are pairwise disjoint as the
d,’s are. Now as h(d,,) > ¢, for m < w clearly

h(d},) > h(dant2) > canto > Canto Ndanys > O

dy, 11 > Ccany2 Ndangs > 0B,
so h(d,)Nd, 1 > conyaNdanys > 0B.

Case 2: ¢; Ndy > 0p.

Let d!, = dop+s U (cant1 Ndan). Now (dl, : n < w) are pairwise disjoint (as
(don U dopys : n < w) are), h(d)) > h(dant3) > Cant3 > Congs Ndapya > 0
and d'/n,+1 Z 02(n+1)+1 n d2(n+l) = Co2n+3 N d2n+2 > 0. So Clearly I’L(d;’) n d'/n,+1 Z
Can+3 Ndany2 > 0.

Case 3: Neither Case 1 nor Case 2.

As we have noted above d,, Nc,, = O by the case assumption’s we have d,, N¢,, =
Op for every m,n < w and of course n # m = d, Nd,, = 0B & ¢, N¢y = 0B.
Lastly let d, = dp41 U ¢y, they are as required e.g. h(dy,) Nd;, 1 = (h(dps1) U
h(Cn)) n (dn+2 @] Cn+1) > h(dn+1) Ncn+1 = Cpt+1 > OB.

So we have proved (x). Now renaming d, as d,, (d, : n < w) satisfies (part (1)
and) the first demand of part (2).

If B satisfies the c.c.c., we can find o € [w,w1) and dg for § € [w, ) such that
(dg : B < a) is a maximal antichain of B, without loss of generality, o < w + w.
Now let d, be d,, Ud1n if w+n < «, and d,, otherwise. Son #m = d/, Nd,, =0
and h(d;)Nd;, > h(dp) Ndpg1 >0, 50 (d), : n < w) is as required. [ Py

Definition 2.6. A Boolean Algebra B is Hopfian if every onto endomorphism
of B is one-to-one. A Boolean Algebra B is dual Hopfian if every one to one
endomorphism is onto.

Lemma 2.7. (1): Every atomless endo-rigid Boolean Algebra B is Hopfian
and dual Hopfian.
(2): Also B + B is Hopfian (and dual Hopfian), however it is not rigid.

Proof: Easy to check using 2.2, 2.4.

3. THE CONSTRUCTION

Main Theorem 3.1. Suppose cf(\) > Rg. Then there is a Boolean algebra B such
that:

(a): B satisfies the c.c.c and is atomless,
(b): B has power A¥° and has algebraic density \ (in the Boolean cardinal
invariant notation, m(B) = X\), this means:

min{|X|: X CB\{0g} and (Vy € B)(Fzr € X)(y >0 = z <y)},

(c): B is endo-rigid and indecomposable.

Proof. Let 7, for n < w be as in §1 for kK = Vg, we use 7/, with 7} having unary
predicate @, binary predicate <, individual constants 1, 0, binary function symbols
U,N, — and unary function symbol H (and more) and P, ¢ 7/, \ 7,. We shall
use Theorem 1.10(2) for A and k = R, and let W = {(f*, N?) : a < a*}, the

{2.4u}

{2.5}

(3.1}
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function ¢, the model M = (Hy, (A), €) and 7 = “> X be as there. We call @ < o*
a candidate if

BN = B[NY] = (QN, 1V, 0N, UN" nN", N <N

is a Boolean algebra and ho = HN" | BN is an endomorphism of BY”; of course
UN® means UN" | QN etc and we are demanding that all the relevant predicates
and function symbols belongs to 7.

We will think of the game as follows: Player I tries to produce a non trivial
endomorphism h. Player II supplies (via the range of f;) elements in By (see
Stage A below) and challenges Player I for defining h on them. So Player I plays
models Ny in the vocabulary 7, which is mainly a subalgebra of the Boolean algebra
we are constructing, with additional elements and expanded by, in particular, the
distinguished function symbol H € 7} which is interpreted as an endomorphism of
Boolean algebras. In the end, as W is a barrier, for some such play we will get a

model N® € W, in the vocabulary J 7; which includes a function symbol H. We
I<w

can think of N® as a Boolean algebra C B with an endomorphism h, = HYe.

Stage A Let By be the Boolean algebra freely generated by {x, : n € “> A}, and
Bf be its completion. For A C Bf let (A)g: be the Boolean subalgebra of Bf that
A generates. As By satisfies the c.c.c. every element of B§ can be represented as
a countable union of members of By, and as By is free we get |B§|| = A¥o. We
say x € B§ is based on (or supported by) J C “> X if it is based on (or supported
by) {z, : v € J} that is B§ = “c = |J w.”, where each y, is in the subalgebra

n<w

generated by {x, : v € J}; we shall also say that J is a support of z. Let supp(z) be
the minimal such J; it is easy to prove its existence. [Why? Let x = |J vy, where

nw
Yn = opn(... ,:JC;MJZ oo De<k,; as if yn = U Yn,e we can replace Ypn, BY Un,0, - - -5 Un k-1,
<k
hence without loss of generality, for each n, for some disjoint finite u,,v, € ¥\
we have y, = (] xz, N [) (—xy,). Also we can replace u,, by any v C w, such
NEUR IS
that y' = () z, N [ (—z,) satisfies y’ < 2. So without loss of generality
new NEVR
uCuy & usu, = mxnﬂ ﬂ (—z,) —z > 0.
new NEVR

Similarly without loss of generality

vCu, &vH£v, = ﬂ xnﬂﬂ(—xn)—x>0.

NEUR nev

Lastly let J = |J u,U |J v, clearly J is a support of z. If J is not minimal then

n<w n<w

let J' be a support of x such that J € J' as witness e.g. by (y/, : n < w). So for
some n, u, Uv, € J', by symmetry without loss of generality u, € J’, but then
u' = wu, NJ’ contradicts the statement above.]

Without loss of generality, not only B C M but € Bf implies that the transitive
closure of {z} in M includes supp(x). We shall now define by induction on a < o,
the truth value of “a € Yy” (£ = 1,2,3), “a € Y7, “a € Y'”, the sequence 14,
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and members aq, b3, ¢%, d%, s of B for m < w when a € Y’ such that,
YUY UYoUY3 C Y’ and letting B, = (BoU{ay : v < a, v € Y'})Bg we have ":
®qt (1) 1 is a branch of Rang(f®), and n, # ng for 5 < a;

(2) if a € Y, then for some & < ((a):

ae = U (s& Nd%), where (d% : m < w) is a maximal antichain of
m<w
non zero elements (of Bf), d% € B, [Usupp(dy,) C “7¢, s% € (x, :
m

Na | M < p, p€“”NBe, and dy, > spy, Ndsy, > 0, and b, ci; € B, are
based on “>((a) and a, ¢ Ba;

(3) if @ € Y, then b2, d¥ € N, ¢, s¥ € N® (hence, by clause (g) of
Definition 1.3(2) each is based on {z, : v € “”)\, v € N}), and
by Nbe, =0 for n # m;

(4) if B<a, BeEY, then (8 €Y’ and) B, omits the type

ps={znNbl=cl: n<wl
Before we carry out the construction observe:

Crucial Fact 3.2. For any x € B, letting ( = é(a) there are a finite subset J of
WA k<w, < andag <...<ag_1 < a such that

(a): C(ao) = ((a1) = ((az) = -~ = {(ar-1) = ¢,
(b): x is based on

{x, : v € JUYE orv e supp(sy) for some £ < k, m < w}.

(c): 2 =0(aags---»Gan_y500,---sbn_1), for some Boolean term o,

and by, ..., bp—1 € (BoU{aq : ((a) < &}),
and if v € Bg then k =0 and n is minimal.

Continuation of the proof of 3.1 Stage B Let us carry out the construction on a.
For £ < A\, w C o™ let

Icw={v:ve“Cor ve U supp(sy,)}-
m<w,yeEw
We call « a good candidate if (« < a* and) B[N?] is a subalgebra of B, = €
B[N“] = supp(z) € N of course and h, = HY<|BMe is an endomorphism
of B[N?] (note that h, maps B[NZ] into B[NZ]| for n < w). We let a« € Y
if and only if

®L (@) ais a good candidate
(B): there are d, € N N B, for m < w, d%, # 0, d%, Ndy = 0 for
m # ¢, such that (d% : m < w) is a maximal antichain of B§ and for
some & < ((a) each d2, is based on “>¢, and there are a branch 7, of
Rang(f®) and s, € N*N B, (m < w) as in (1), (2) above,
(7): in addition if we add | (s¥ Nd%) to B, then

n<w

(a): each pg (B € Y Na) is still omitted
(D)1t pa = {zNha(d2) = he(dX,NsY,) : m < w} is omitted.

Let a € Y3 if and only if o ¢ Y7 and ®2 holds where

1actually the @ € Y/ \'Y =Y’ \ Y7 have no real role here, but have in 3.15 later.

(3.2}
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®2 is defined like @ replacing clause (b); by
(b)2: the type pl, is realized where pl, = {x N hqa(dan Udont1) =
ha(dan) :n < w} and ha(s2,) = 1, ha(s2nt1) =0 and (d,, : n < w) €
N§ but B[N?®] omit pl,.
Let o € Vs iff ¢ Y7 UY> and
®3 we have (a) + (8) + (7)(a) from ®L.

Let Y =Y, Y =Y, UY>UY3 and for a € Y} let ®, mean ®°,.

If « € Y/ we choose n®, d%, s% , satisfying ®, so also B,41 is well defined and
if £ =11et b2 = ho(d%), ¢ = ho(d, NsS) for m < w , if £ € {2,3} we can still
choose b2, ¢, for m < w such that ®, holds (e.g. {(n) :n <w} C N§ by clause
(f) of 1.3(2), s0 by = z(2n11y — U Tant1y, ¢ = by N 2(an)).

m<n

If « € a* \'Y' we leave aq, 1o and d%, s& (for n < w) undefined, and so
B.,+1 = B,. So we have carried the induction.

So “a € Y'” means that Player I played Boolean Algebras and endomorphisms
as in the previous remark and we get in the end a Boolean Algebra with the same
properties.

The desired Boolean algebra B is By« = U{B, : a < o*}. We shall investigate
it and eventually prove that it is endo-rigid (in 3.11) and indecomposable (in 3.14)
thus proving B« is as required in clause (c) of 3.1, where (3.1(a), 3.1(b) hold
trivially noting that |By-|is < |Bg| < |Bo|™ = A and is > |Y’| > A¥ which will
be proved later (see 3.13) and a,, ¢ B, by (2) from stage A). The rest of the proof
is broken to facts and claims in this framework.

Note also
Fact 3.3. (1): For v € “ZX, x, is free over {z,, : n € Y7\, n# v} in By
hence also over the subalgebra of B§ of those elements based on {x, : n €
N, n# v

(2): Ifn is a branch of f hence necessarily n # 1 for €Y' Na, € < {(a),
andw C anNY’, is finite then there is k < w such that {p:n [ k < p € “Z)\}
is disjoint to

(“>§)UU{NBH“’>)\ (B ew, f+2%0 < a}UU{supp(sg) :n<w,f € wl

Proof. (1) Should be clear.
(2) Remember clauses (a),(c),(e) of Theorem 1.10(2) and clause (1) of ®,, from
stage A. [ P
From 3.2 we can derive:

Fact 3.4. If ¢ < ((B), B < a, and J C “>\ is finite, then every element of By
which is based on JU“>¢ belongs to Bg.

Proof. We now prove by induction on vy € [3, o] that [z € B,\Bg = supp(A)\“~¢ is
infinite]. For v = { this is empty, and for  limit it follows as B, = U{B¢ : { < ~}.
For v+ 1 < «, let « be a counterexample;without loss of generality = ¢ B,; if
B, ;1 = B, this is impossible so a,, ((d},s}) : n < w) are well defined. Now x is
necessarily of the form yoU(y1 Nay) N (y2 —ay) where yo, Y1, y2 are disjoint members
of B,,. Clearly y1Na, ¢ B, or y2 —a., ¢ B., so without loss of generality the former
(otherwise use —z which also € B, 41 \ B, and has the same support). We can (by

3.2) find n such that J* = {p: ny[n<ap € “7A} is disjoint to J and to supp(yi).
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Asay N U d] € By clearly yoNay — |J d] ¢ B,. As (d}, : m < w) is a maximal
<n <n

antichain of B§, we can find m € (n, w)_such that d), N (y2Nay— U d})) > 0B,
<n

hence y2 Nd), > Op,,, and s7 has support C J* whereas yl,dzl:x has support
disjoint to J*. But y; Nd}, Nz = (y1 Nay)Nd}), = (y1Nd),)Ns? easy contradiction.
B4

Notation 3.5. (1): Let B¢ be the set of a € B§ based on “>¢.
(2): For z € Bj, £ < Alet pre(z) =N{a € B : z < a}.
(3): For ¢ < X and v € “>¢ let BS be the set of a € BS based on Jg, =: {p €
“>¢: (v < p)}. For z € B let pre , (2) = ({a € BS : 2 < a}.
(4): For vy <a*let By = ({zy: n€“7C(v)}U{ag: BE€vNY'})Be.
(5): For I C“? X and w C o* let
B(l,w) = ({zy,: n€l}U{ag: B €wnY'})ps and for x € Bf,{ < A
we let
pre . (7) = N{y € B U{z,: ve whpe 1 v <y}

(6): For { <Alet By = ({z,: ne€“7&U{ag: ((B)<€&andfe Y'})Be.
(7): For J € “ZX and & < A let pre ;(A) = N{y € B§J : < y} where
B = (B U{z, : v € J)Bg, when well defined.

Fact 3.6. (1): For € < X\, Bt is a complete Boolean subalgebra of B§. For
€< Xandv e“>¢, BS is a complete subalgebra of BE.

(2): If € < X and x € B then pre(x) is well defined and belongs to BE.
Similarly, if £ < X\, v € “7¢€ and x € Bf then pre () is well defined and
belongs to BS.

(3): If o <& < A, w € B§ then prg, (pre, (z)) = pre, (2).

(4): If £ < X and w C o* is finite then the function x +— pre ,(x) is well
defined for x € B and the value is in (B¢ U {aq : & € w})Be, of course
which is a complete subalgebra of B.

(5): If € < X and v € “7¢ and x € Bf then pre ,(pre(z)) = pre (). If in
addition § < & and v ¢ “= (&) then pre (v) = pre, (pre, ().

(6): Big C B¢ and if € < (() then By C B, and B(I,w) C B,-

Proof. Easy.

Fact 3.7. (1): For x € Box, £ < A, the element pre(x) belongs to Byg.
(2): If 2 € Bor, £ < X and J C “Z(£ 4 1) not necessarily finite, then the
element pre ;(x) belongs to (Big U{zy, : v € J})Bg.
(8): Like part (2) but J C“>X (and not necessarily J C“>(£+1)) and J is
finite

Proof. (1) We prove this for z € B,, by induction on « (for all ). Note that

CJ prE(U xp) = U pre(ze) for  @o,...,xzn-1 € BE.
<n l<n

Casei: a =0, or even just (V8 < o)[¢(8) <¢&].
Easy. Clearly we can find o, ys, vx (¢ < n, k < m) such that © = o(yo, ..., Yn—1,
Tyy, .-y, _, ), where o is a Boolean term, y, € By, vy € “A\“7¢; by the remark

(3.5}

(3.6}

{3.7}



nodi fi ed: 2011- 05- 09

revi sion: 2011-05-09

( E58)

(3.8}

12 SAHARON SHELAH

above without loss of generality z = () s¢, where s € {yg, 1 — y¢} when ¢ <mn,
{<n+m
and s¢ € {z,, ,,1—x,, ,} whenn < /¢ < n+m, and the sequence (z,,,...,Zy,_,)
is without repetitions. Now by 3.3 clearly prg(x) = [ s¢ which belongs to Bigj;
<n
Case ii:  « is limit.
Trivial as B, = |J Bg.
B<a
Caseiii: a« = g+ 1.
By the induction hypothesis without loss of generality & Bg hence 8 € Y'. As
x € B, there are disjoint 9o, 31, ¥2 € Bg such that 2 = goU (g1 Nag) U (g2 —ag). It
suffices to prove that pre(yo), pre(91Nag), pre(Y2 —ap) € Bie; the first holds by the
induction hypothesis and without loss of generality we concentrate on the second.
Remembering clause ®(1) of stage (A), by 3.2 applied to B, y1 we have: there are
o < ¢(B) and k < w such that 3 is based on J defw> )\ \{p:mp l k<pe“r}l
Now without loss of generality each d? (n < w) is based on “>¢; (recall clause &4
(2) of stage A) and “>&y C J (this holds if ng [ k ¢ “>&y, and as ng is increasing
with limit ¢(/) this is easy to obtain). By Case i, we can assume that & < {(0)
hence (as we can increase k and &) without loss of generality £ < &, and by
the induction hypothesis and 3.6(3),(5), letting v =: ng | k, it suffices to prove
pre, ,(J1Nag) € Bg. Asm <w = agnd? € B¢ () and [ above, without loss of
generality 71 Nd2 = 0 for m < k. Now clearly for proving pre, (91 Nag) =3 it is
enough to show, for each m < w, that pre(j1 NdJ, N $%) = g1 NdY, as (d :n < w)
is a maximal antichain of B§ and as ag N d?, = 2, both by ®3(2). If m < k then
Y1 N dfn = 0 so this is trivial. If m > k this holds because dfn, y1 are based on J,
w>¢y C J and §2, is based on “> A\ J and is §2 > 0.
(2),(3) Same proof. [ P

Lemma 3.8. 1) Suppose that I, w satisfy:

(K)rw: L CY9N wCa*NY’', I is closed under initial segments,
acw&n<w = n,lnel,

and for every a < o, if N\ (na | m € I) then s%,,d%, are based on I and

m<w
belong to B(I,w) and o € w; see Definition 3.5(5).
Then for any countable C' C By~ there is a projection h from (B(I,w),C)Bs onto
B(I,w).
2) If (*)1. holds then every member of B(I,w) is based on I.
3) We can add
(a): ifan € C\B(l,w), and {d% :n < w} CB{,w) and{na [n:n<w} CI
then h(as) has support C“>¢ for some ¢ < {(a).
(b): ifve“> X and x, € C then h(zx,) € {0,2,,1}
(c): ifc=0(aags--->0ar_1500;---,bn_1) where o is a Boolean term o, ...op_1 €
w and {(ag) < ... < ((agp_1) < € and by € B(I,w) and supp(be) € “>( for
some ¢ < § and aq, € C then h(c) = o(ag,...,a)_1,bo,...,bn—1) (where
(L <k = a;=hlay,)) is in |J B.
e<€



nodi fi ed: 2011- 05- 09

revi sion: 2011-05-09

( E58)

EXISTENCE OF ENDO-RIGID BOOLEAN ALGEBRAS 13

Remark: In (%), the last phrase can be weakened to “for some m, < w, for
every m € [mq,w) the elements s&,d%, are based on I (and belong to B(Z,w) and
(0 € w)”.

Proof. 1) We can easily find I(x), w(x) such that C C B(I(x),w(x*)), w C w(x) C
o, lw(x)\w| < Vo, I C I(x) C“> A, I(x)is closed under initial segments, |I(x)\I| <
Vo, and if @ € w(x)\w, then 52,,d%, € B(I(x),w(*)) hence {nym : m < w} C I(x).
Let w(x) \ w = {ay : £ < w} for notational simplicity, and we choose by induction
on ¢ a natural number k; < w, such that the sets

{v € “ZX: v appears in $%¢ for some m > k;}

are pairwise disjoint and disjoint to I (possible by the demand s%, € (z, : 17, [ M <
psp € “7A)Bg in clause ®4(2) of stage A in the beginning of the proof of 3.1 and
(*)1,w). First assume that

[ for every a, (supp(s?,) : m < w) is a sequence of pairwise disjoint sets.
Now we can extend the identity map on B(I,w) to a projection hq from B(I(x),w)
onto B(I,w) such that

(a): if v € I(x)\ I then hg(x,) € {0,1}
(b): if £ < w, m > kg, then ho(s&) = 0.

This is possible as B(I(x),w) is generated by B(I,w) U{z, : v € I(x) \ I} freely
except the equations which hold in B(I,w) and [ above as (d% : m € (kg,w))
is a sequence of pairwise disjoint elements. Now we can define by induction on
a € (w(x) \ w) U {a*} a projection h,, from B(I(x),w U (w(*) N «a)) onto B(I,w)
extending hg for any § < « satistying 8 € (w(*) \ w) U {0}. For @ = 0 we have
defined it, for &« = o we get the desired conclusion, and in limit stages take the
union. In successive stages there is no problem by the choice of hgy, and of the k;’s
(and ®(2) of stage A).

If [J fails, we just define he = h[(B(I(*), w(x)) N B%) by induction on £ < A such
that (it is the identity on B(I,w) N Dom(h¢)) and

(a) if v € I(x)\ I and x, € Dom(h¢) then he(z,) € {0,1}

(b)" if ¢ <w,m > k; and he(dY) is well defined then s8¢ Nd%¢ does not belong

to the filter on B§ generated by {d € Dom(h¢) : he(d) = 1}.

2) The proof of part 1) gives this.
3) Note that by clause (a)’, in clause (b)’, if he(s& N d2e) is well defined then it is
0, This is possible by the choice of (k; : £ < w) and as (d%¢ : m < w) is a sequence
of pairwise disjoint elements of B. [ B

Claim 3.9. If B’ is an uncountable subalgebra of By« then there is an antichain
{d, : n < w} C B’ such that for no x € By+ do we have x Nday, =0, x Ndopt1 =
don41 for every n, provided that

(*): no single countable I C “> X is a support for every a € B'.

Proof: We choose by induction on a < w1, dy, I, such that:

(i): I, C“> )\ is countable, closed under initial segments
(ii): U Ig C I, and for a limit, equality holds,

B<a
(iii): d, € B’ is based on 1,41 but not on I,.

There is no problem doing this as we are assuming (*).

(3.9}
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By clause (iii), for each a there are a non zero s9, € (z, : ) € I,)B: and non-zero
sty st e(x,ine Ia+1\Ia>Bg such that st Ns? =0, sYNsk < dg, sONs? < 1—d,.

By Fodor’s lemma, as we can replace I, by Iy if h: w1 — wi is increasing
continuous, without loss of generality, s = s° (i.e., does not depend on «). For
each « there is n(a) < w such that

0= sg € (xy:nelysn "(O‘)Z)QBS,
1 .2 . n(a)>
Sg, S5 € (X N € (Tag1 \ Ia) N A B
Again, by renaming without loss of generality n(a) = n(x) for every a. For n < w
let d" =d, — U de, s" = 5N (] s2Nsl, soeasily d" € B, (d" : n < w) is
<n I<n

an antichain, s" < d" and s" € (z,, : n € ”(*)Z)QBS and by the choice of By
easily 0 < s". Suppose = € B, satisfies: for each n < w, we have x N d*" = 0,
xNd?>" Tt = @?"*1 Then for n < w, N s?" =0, 2N 2" = s27T1 But by 3.8(1)
(for I =2\ w = 0 and C = {z}), there is such z in (z, : n € "WZ)\)g;, an
easy contradiction. ks

Hence we have proved in particular that for every N;i- compact B’ C B+, some
countable I C “> )\ supports every z € B’.

Claim 3.10 (Crucial Claim). No infinite subalgebra B’ of B~ is Ni-compact.

Proof. Suppose that there is such subalgebra, and let £ be minimal such that there
is an infinite R;—compact B’ C Bj¢. The proof is broken into five parts.

PartI If

(a): B’ C By~ is Rj-compact and infinite (subalgebra)

(b): B/ g B[g],
then

(c): for every ¢ < &, finite J C“”Xandz € B \{y:{z € B : 2z <y}is

finite}, there is 21 € B', x; < x such that for no y € (BjqU{z, : v € J})Be,
do we have y Nz = x.
So toward contradiction assume B’ satisfies (a) and (b), but it fails (c¢) for ¢ <&,
a finite J C “>X and = € B’, hence {y : y < z, y € B’} is infinite. So for every
z € B/, there is g(z) € (BjgU{w, : v € J})Bg. such that g(z) Nz = zNx (otherwise
we can use 1 = zNx). Let B® be the Boolean subalgebra of (BjqjU{z, : ¥ € J})B¢
generated by {g(z) : z € B'},s0 z € B = znuz € B% Clearly
{yeB' :y<z}={tnz:te B}
Let o* = pr, ;(z) (it is in By by 3.7(1) if J = 0, 3.7(3) otherwise), and let
Bl ={tnz*: teB}U{tU(l —z*):tcB*}.
Clearly B’ is a subalgebra of (Bj¢)U{z, : v € J})Be, and 1 — 2* is an atom of B”.
Now B is infinite, why? there are distinct z,, < z in B’ (for n < w), so g(x,) € B¢
and hence g(z,) Nz* € B®. As x < z* and
nZm = g@,)Ne=x,NT ==y # Ty =Ty Nz = g(xy) N,

clearly [n #m = g(z,)Naz* # g(x,) Nz*] so B is really infinite. We shall prove
that B? is X;-compact, thus contradicting the choice of €. Let d,, € B be pairwise

disjoint, and we would like to find ¢ € B? satisfying t N da, = 0, t Ndopt1 = dopi1
for n < w. Clearly without loss of generality d,, < 2* (as 1 — 2* is an atom of B?).
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So d,, = t, Nz* for some t, € B?, hence easily t, Nx € B’ so for some z,, € B,
Zp <zand t, Nz =z, Nz =2, Sox, =g(z,) Nz
For n # m,

T N Ty = (tn N) Nt Nx) < (E, Nz*) N (Em N2*) =dp Ndy =0.

As B’ is Nj-compact there is y € B’ satisfying y N 22, = 0, y N 2,11 = Topy1 for
n < w. Now g(y), dn, t, belong to (BjgU{z, : v € J})B: and (as z, <z < z*
and d,, =t, Nz*, t, Nz =x,):
(1): gly)Ndan Nz =g(y) Ntan Nz =g(y) Nxay, Nx =y Nag, Nz =0,
(ii): g(y) Ndans1 Nz =g(y) Ntant1 N = g(y) NT2nt1 NT = yNT2pp1 NT =
T2n+1 Nx = t2n+1 Nz = d2n+1 Nx.
Now, by the definition of z* = pr, ;(z),

s€(BU{r,:veh)p&sne=0 = sna*=0
(as 1 —s € ((B{yU{ay : v € J})Bg and by the left side 2 < 1 —s), hence by clause
(i) (for s = g(y) Ndan):
(iii): g(y) Ndan, Nz* = 0.
Also, by the definition of z* = pr, ;(z),
51,820 € (BgU{z,:veJips&siNe=sNr = s Naz*=syNa”

(as 51— s2 € BjgU{z, : v € J})Bg and by the left side <1 — (s1 — s2) hence as

above 2* <1 — (81 — $2) and similarly 2* <1 — (s2 — s1)). Hence by clause (ii)
(iv): g(y) Ndans1 Na* = dopir N ™.

But d,, < x*, so from (iii) and (iv), (¢(y)Na*)Ndan, = 0, (9(y)Nz*)Ndant1 = doni1,

and g(y) € B?, hence g(y) Nz* € B®. So B’ is X;—compact and this contradicts

the minimality of &, hence we finish proving Part I.

Part II: If B* C B,- is Ry~ compact, B! C B2, B2 = (B! U {z})g: then B? is
Ny —compact.

The proof is straightforward. [If d,, € B? are pairwise disjoint, let d,, = d2U(d}Nz)U
(d% —2) for some disjoint d%, d},, d% € B'. As B,- satisfies the c.c.c. also B! satisfies
the c.c.c., hence being Nj-compact, is complete. Now the each of the sets each
Jo(¢ < 3) is an ideal of B! and their union JoUJ; UJs is a dense subset of B! where
Jy={zeB':z>0satisfies (=0=>B*’EzrNz=0and{=1=B*Ex <2
and /=2=B? = (V) 0<y<z&yeB'=ynz#0#y—2)} AsBlis
complete without loss of generality d’, € JoUJ;UJs for m < w, £ < 3. Also there is
a maximal antichain (z, : n <y < w)p: of B! consisting of elements of this family.
Similarly without loss of generality for each n we have z,, < d’, for some m < w;
and £ < 3; or xNd’, = 0 for every m. Without loss of generality d’, # 0 = d, € J,
and d? # 0 = d2 € Jo and necessarily d2 N (d}, Ud?) = 0 for n,m < w. Now,
necessarily d) Nd2, = 0 for n # m and without loss of generality, d} Nd}, = 0 for
n # m — otherwise replace them by d}, — |J d}; similarly d? Nd2, = 0, for n # m.

<n
So, for £ = 0,1,2, there is y* € B! such that for every n < w we have:

0~ b P, ¢
y Ndy, =0, Yy Ndy, ) = dyyys-
Hence y° U (y! Nz —y") U (y> N2z — ') is a solution.]

Part III: £ cannot be a successor ordinal.
Proof: Let B’ satisfy clauses (a), (b) (hence (c)) of Part L.
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Suppose toward contradiction that £ = ( 4+ 1, and by 3.9 there is a countable
I C “>¢ which supports every a € B’; without loss of generality, I is closed under
initial segments and, under those demands, |I \ “~(| < Ny is minimal. Now, by
applying Part I we get
[z for every finite J C “” A, and € B’ for which {y € B’ : y < x} is infinite,
there is x1 € B’, 1 < x such that for no y € (BjqyU{z, : n € J})B: do we
have yNx = z7.
Now, I\ “Z( is infinite. [Why? Otherwise let B” = (B’ U {z,, : n € I\ “”(})B¢;
it is infinite and N;- compact by Part II, and we shall we apply Part I to it. Let
kE=1]I\“>¢|and let I\“”C={no,...,nk—1} and for u C {0,...,k — 1}, let

xudéfﬂ{xm;éeu}ﬂﬂ{l—xm:€<k, and ¢ ¢ u}.

Soz, € B",1=U{zy:uC{0,...,k—1}}, hence for some u, {y € B : y <z, }
is infinite; now ¢, x,, contradict the conclusion of Part 1.]

As B’ is Ny—compact, for any = € B’ such that {y € B’ : y < z} is infinite, z can
be splitted in B’ to two elements satisfying the same, i.e., z = z! Uz?, 2! Nx? = 0,
{y € B’ : y < 2%} is infinite for £ =1,2. Let I\ “>( = {n;: £ < w}, so we can find
pairwise disjoint ¢, € B’ such that {y € B’ : y < ¢, } is infinite. Now, by [J above,
for each n we can find day,, doyy1 satisfying ¢, = dop Udopnt1, dop Ndapyr1 = 0 and
such that for no y € (B U{w,, : £ < n}}B(c) do we have y N (dap, Udant1) = dapt1-

Since B’ is Wy—compact there is y € B’ such that y N (doy, U dont1) = dont1
for every n < w. As y € B’ clearly y € Bjg) = Bj¢4q), and y is based on {z, :
v € “7(}U{m, : £ < w}, so by 3.7(2) we have y' = pr¢ 1,,.c.}(2) belong to
(Big U{my, 1 £ <w})pg. Hence y' € (BjgU{zy, : £ < n})pg for some n < w. This
is a contradiction to 3’ N (d2n U dapt+1) = dan41 which holds as by the choice of
don,don+1, 50 yNday = 0, y Ndapt1 = dopy1 and doy, dopy1 € <B[<] @] {LL‘W <
whse 50 y' Nday =0,y Ndapy1 = dant1-

Part IV: Let B’ satisfy clauses (a), (b) of Part I (and hence clause (c) too). By
3.9, for some countable I C “~¢, every b € B’ is based on I. By Part III, ¢ is
not a successor ordinal and trivially it is not zero hence ¢ is a limit ordinal. Now
by 3.5(6) (i.e. the definition of By for ¢ < X) for no ¢ < & is I C “~(, hence
necessarily cf(§) = Rg. Let

Fi(B')={z e B': {y € B : y < x} is finite}.

Next we shall show:

(xx): for some finite w* C {a < a* : ((a) = £} and 2* € B’ \ Fi(B’), for
every y < x* from B’, for some z € (Uc<¢Bj¢jU{aa : @ € w*})B: we have
zNx* =y.

Suppose (xx) fails and we choose by induction on n < w, Zy, Yn, Wy, such that:

(i): zp, €Band m<n = x, Nx, =0,
(ii): 1— U z; € Fi(B'),
i<n
(iii): w, C {o: {(a) = £} is finite,
(iv): wn, C w1,
(v): yp <, and y, € B/,
(vi): forno z € (|J By U{an : @ € wy})Bs do we have 2Nz, = yn.
(<€
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For n =0 we have 1 ¢ Fi(B’), hence (ii) is satisfied.
For each n let w, be a finite subset of {« : () = £} extending |J wy such that

£<n
for every £ <n, x¢, yo € (U B U{aa : @ € w,})Bg, it exists by 3.5(6). Then, as

(<€
1— U z¢ ¢ Fi(B’), and as B’ is Ny—compact, there is z,, <1 — |J z; satisfying
<n i<n
zn, € B’ such that 1 — |J z¢ ¢ Fi(B’) and z, ¢ Fi(B’). Now, as (**) fails,
<n

*

necessarily w,, =, do not satisfy the requirements on w*, z* in (x%), so there is
Yn € B, yn < xp, such that for no z € (|J B U {aa : @ € wy,})Be do we have
¢<g

2N&Ty = Yn. So we can carry the definition. As B’ is X;— compact, for some z* € B’
we have z* Nz, =y, for every n. .
As z* € B and B’ C By, for some finite w* C {a < o* : {(a) = £} we have

25 =0(. . Qayeeeyeeyboy e )acwr p<n € (U B U{aa:a€w'})pg
e<€
where o is a Boolean term, and £ < n = by € |J Bg. As w* is finite, for some
e<§
n(*) <w we have w* N (|J wn) C wp(y)-
n<w
Let k* < w be such that there are no repetitions in (1, [ £* : a € wy(4)41) and

E* > n(x). Let ¢ < & be such that: supp(dy) C “~( for @ € wy()41 Uw*, n < w
and supp(sf) € “7¢ for a € wy (41 Uw*, k < k*, and

Tn,Yn € (B U{aa 1 @ € wyy41})Bg
for n <n(x)+1and z* € (B U {aa: @ € w*})Be
We shall now apply 3.8 with I, w,C there standing for
I'={n:ne“(orn<v where v € supp(s;) for some o € wy(4)41,n < w},

w ={a<a*:(Vn <w)(ne | ne€l)}and C" =: {z*} here; clearly the demands
there hold, recalling supp(s2) is a finite subset of {p € “>{(a) : 7o [n<p} by ®a(2).
So there is a projection f from (B(I’,w")U{z*})p¢ onto B(I’,w"), and so by 3.8(2)
clearly f(z*) is based on I’. As clearly w’ C {a: {(a) < £} U Wy ()41, We get

f(z) e B(I'w') € (| By U{aa : @ € w41 })ms,
e<&
So f(2*) belongs to B(I',w'), which is C ({J Bjg U {aa : & € wy})Be. Also
e<€

f(xn(*)) = :En(*) and f(yn(*)) = yn(*) as xn(*)a yn(*) € B(Ilu ’U}/) , SO as z* mwn(*) =
Yn(+) Dy the choice of z*, necessarily f(2*) N y(s) = Yn(x), S0 by the previous
sentence we get a contradiction to clause (vi) for n(x). So (xx) holds.

Part V. We continue the first paragraph of Part IV, and let (xx) of Part IV hold
for w* and z*.

Let do, . ..,dm € B¢ be such that

X: (a) U de=1and
=0

(b) (V¢ < m)(Va € w)(de < aa V de Naq = 0).
There is an ¢ < m such that {yNd, : y < z* and y € B’} is infinite. It is clear (by
Part II) that B” = (B’, d¢)Be is X1~ compact; also * N dy € B” \ Fi(B").
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Now, assume that y € B”, y < z* Ndy. Clearly for some y' € B’ we have
y = 3y’ Ndy and without loss of generality y' < z*. By (*x), that is the choice
of w*,z* for some z € <<L<J§B[d U{aq : @ € w*})Be we have z N z* = y'. Hence

zN(xz*Ndy) =y, and by the choice of dy that is X(b) and the choice of z, for some
2" € |J By, the equation 2’ N (x* Ndy) = 2N (z* Ndy) = y holds.
(<€
So by the previous paragraph, in B” the element z** ©f dy satisfies the
requirements in (x*) for w** =: ) . Now we use (¢) of part I. As cf(§) = Ry, let
&= U G with ¢, < {p41 < w, and by induction on n < w we choose z, Y, such
n<w
that:
(i): zp €B", z, <z*™ and m<n = =z, Nz, =0,
(ii): o** — U z; ¢ Fi(B"),
<n
(iii): yn € B, yn < zp,
(iv): for no z € By¢,] do we have z Nz, = yn.
As B” is Nj—compact, for some z* € B” we have z* Nz, = y, for every n.

Now, as B”, 2**, w** = () satisfy (), for some 2** € J By we have z*Naz** =
¢<g

Z** Nz**. So for some n, z** € By, ], contradicting clause (iv) above. Thus we

have finished the proof of 3.10. 510

Claim 3.11. B, is endo-rigid.

Before proving 3.11 we prove the subclaim 3.12 (For endomorphism h of B+ we
shall try to find o € Y’ such that h(a,) has to realize p, to get contradiction, but
before choosing « we try to choose appropriate (d% : n < w), this is what 3.12 does
for us):

Subclaim 3.12. Assume that h is an endomorphism of By~ and B~ /ExKer(h)
is an infinite Boolean algebra. Then we can find p* and d such that
(A): d=(d, :n <w) and p* € “> ],
(B): {d, : n < w} is a mazimal antichain of By« and d,, > 0 of course,
(C): at least one of Xy, Ky, K3 hold, where
Xz (a): if p* < p* € X and n € (0,w) then for some s € (x, :
P <v €N\ {0,1} we have h(s) Nd, =0,
(b): for no x € B§ do we have n < w = x N h(dap Udant1) =
h(d2n+1)-
Ko: for no x € B§ do we have: for every n € (2,w)
nis odd = xNh(d,) Ndy=h(d,)Ndy, and
n is even = xNh(d,)Ndy=0.

Proof. Asin the proof of 2.5(2), we can ignore the maximality requirement in clause
(B) (call it (B)7).
Recall
ExKer*(h) = {a € By~ : {x/ExKer(h) : x < a} is finite}.

Let Z, = {a € By : the set {h(d) : d < a in B,-} is finite}, clearly it is an ideal of
B,- included in ExKer*(h) hence 1g_. ¢ Zj

Case a:  For some p* € “>\ and a* € B,- \ Z*(h) we have: for every p satisfying
p*<Ap e Athereis s € ({z,: p<n € A})Be \ {OBg} such that h(sNa*) = 0.
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Without loss of generality supp(a*) C {p € “ZX: =(p* < p)}, hence above s Na* #
OBe . Let B* = {h(d) : d <a*} U{1—h(d) : d < a*}. This is a Boolean subalgebra
of BS and 1 — h(a*) is an atom in it (or zero). As a* ¢ Ty, clearly B® is infinite,
hence by 3.10 there is an antichain (y, : n < w) of B® such that for no z € Bf do
we have N (Y2, U Yan+1) = Yon. Without loss of generalityy,, < h(a*) as at most
one y, fails this. Let d,, be such that h(d,) = y, and without loss of generality
d, < a*; of course y, > 0, hence d,, > 0. Without loss of generality {d, : n < w}

is an antichain (as we can use d, — |J dm).
m<n

Let dy =1—a*, dy = doUd; and dj,,, = dagy. So clearly clauses (A), (B)~,
(C)®y hold for (d!, : n < w), and our p*.
Case 3: For some a* € By, {h(z) —a* : x € B+, x < a*} is infinite.
Clearly

B={h(z)—a":2€By &z <a’'}U{l—(h(z) —a") : 2 € By & 2 <a"}

is a subalgebra of B~ (and a* is an atom in it). By the assumption (of this case)
B¢ is infinite. So by 3.10 there are pairwise disjoint y, € B, \ {0} such that
—(3z € By) A (& > yont1 & 2Ny, = 0). As a* is an atom of B?, without

n<w

loss of generality y, < 1 — a*, hence there are d,, € B, such that d,, < a* and
h(d,) — a* = y,. Clearly

h(dn = |J de) = yn = J ve = vn

l<n <n

hence without loss of generality the d,, are pairwise disjoint. Let dj =1 —a*,d} =

doUdy and d5,,, = dagn, so (d,, : n < w) is an antichain and h(d;,) Ndy =

h(d,) —a* = g, for n = 2,3,..., hence for no z € B, do we have n < w =

x N h(dyy g, Udy oy 1) = h(dy s, 1). So (d), : n < w) are as requested in X.
Why the two sub-cases exhaust all possibilities?

Suppose none of Cases (a), () occurs. As case (a) fail for a* = 1ga- necessarily
for some py € ¥~ \ we have
(a) h(s) >0 for every s € ({y, : po A1 € “7A})Bg \ {0,1}.
Clearly a € ({z; : po<n € “ZA{)B: \ {0} implies that a ¢ Th. As clause
(B) fail clearly for every a € By~ the set {h(d) —a : d < a,d € By} is
finite. Next we note that:
B if po<p € “Z A then for some s € ({z;, : pan € “ZA})g, \ {0,1} we have
h(s) = s.

[Why? for each o < wy let ng = ({h(d) =2 p~a) : d < Tp~(ay })+{A(d) —
(=2p~y) + d < (=2p~y)}], so we know that n, is enough, so for some
n(x) the set Z = {a < w1 : ng = n(x)} is infinite. By Ramsey theorem for
some a we have: if & < 3 are from Z and t;,t2 € {0,1} are truth values
then Azl (o N2 ) =@t ) = Gtaa € Bay Wby NT2 )02 ) =
be, t, € By where 2t is zif t is 1 and is —z if t is 0. Let ap < a1 < aa < a3
be from Z and let 5 = Z,~(a0) N (—=Zp—~(a1)) N Zp—~(as) N (—Zp—~(ag)). Now
h(s) < Tp~(ag) 38 MTp~(as)) = Tp~(a0) = M(Zp—~(as)) = Tp—(ao) and the
equation above, similarly h(s) < #,~(,,) and also h(s) < x,~(4,) (using
Tp~(ao)s Tp~(ay)) and h(s) < (=x,~(a,)) together h(s) < s. Now s; =
s —h(0) > 0. Easily s > 0 and s is disjoint to b* = U{as, ¢, U bet, : t1,t2
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truth values}. If (tg,t1) # (1,0) and s3 N h(xE‘L<a0> N IZL<QI>) > 0, as
sNb* = 0, we get easy contradiction. Similarly for (,~(a.),%p~(as))
hence h(s) = s.

So H holds. Let a* € B+ be such that h(a*) £ a* (exists by 2.5), and
let a** = h(a*) —a* > 0. By “not Case (a)” and H, for some py € “~ A,

(b) h(s)Na** #0 for every s € (x, : po <n € “”N)Bg \ {0, 1}.

Possibly increasing pg the set {n : pg <7 € ¥~ A} is disjoint to supp(a*)U

supp(h(a*)). Let sp = xpo~my — U Tpo~my) for n < w, so the s,’s are
m<n

pairwise disjoint non-zero members of B,« and by (a) we have h(s,)Na** #
0. But h(sp) Nh(a*) —a* = h(sp) N (h(a*) —a*) = h(sp) Na™ > 0. So
clearly the assumption of case () holds (for a*).

| ERD)

Proof of 3.11. Suppose h is a counterexample, i.e., h is an endomorphism of B«
but B, /ExKer(h) is infinite, and we shall get a contradiction.

Clearly if for some good candidate a, h, C h and o € Y7 (see Stage B) then
h(aq) realizes the type p, = {x NbY = ¢& : n < w}, a contradiction (as by clause
®(4) of stage A, B,~ omits p,). So we shall try to find such o which satisfies the
requirements ®? of stage B (hence implicitly ®,, of stage A) for belonging to Y;.
Let p*, (dy : n < w) be as in 3.12 (p* is needed only if Xy of (C) of 3.12 holds
otherwise we can let p* = ()) and let £ < A be such that

(U{supp(dn) Usupp(h(dn)) : n < w} € ¢

Let n(x) = lg(p*). Let Z C“> X, it will be used only in 3.13. We can find a good
candidate o < o such that
(a): ho Ch, and (a) > ¢
(b): d,, € BIN§] for n < w and p* € Rang(f®), and (d,, : n < w) € N§
(c): N§ is an elementary submodel of the expansion
(Hex, (), €, B, by {(n, ) : m € “Z A}, Z) of M
so in particular N is closed under the functions implicit in the choice of B§ and
p*, {dy i n < w), le.,
(d): a € B[N§] = supp(a) C N§,
(e): ne N2 NY>X & z, € BINY],
(£): (*”A)NNZ is closed under initial segments, and each node has infinitely
many immediate successors,
(g): if Xy of clause C of 3.12 holds and if p* < p** € N, and n is large
enough then there is s € N as required in 3.12(C)K; so h(s) — do = 0.

As W is a barrier this is possible (using the game ©'(W) and not o(W) because
of the requirement p* € Rang(f®) recalling Definition 1.7, that is we choose a
strategy for player I, choosing the N,-s and in the zeroth move also fy for £ =
1,...,0g(p*) + 1. So for some play of the game, player II wins while player I uses
the strategy described above so the play is (N2, f2) : n < w) for some a < a*, so
we are done). Note that the proof of 3.13 below use the rest of the present proof,
only ignoring case III below. We then will choose 7,, an w—branch of Rang(f%)
above p*; but W is a disjoint barrier (see Definition 1.9(3)) hence 1, hence distinct
from 7 for 3 < a and we will choose s, € N® in (z, : 1 [ n < v € “ZA)ge \ {0, 1}
and let b, = h(d,), ¢ = h(d, Nsy) for n < w, po, = {xNb, = ¢, : 1 < w}, and
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ao = J (dn Nsp) € B§. All should have superscript $ (where 3 = (s, : n < w)),
n<w
but we usually omit it or write a,[S], po[S] etc. It is enough to prove that for at
least one such § we have a,[3], 5[d, : n < w| exemplify that o € 7.
The choice of 5 (and 7, which is determined by 3) is done by listing the demands
on them (see Stage B) and showing that a solution exists. The only problematic
one is (4) (omitting pg for 8 < o, B € Y1) and we partition it to three cases:

(1): {(B) < () or ((B) ={(a), f+2% < a,

(ID: ¢(8) = ((a), B <a < f+2%,
(I1I1): 3 = «.

We shall prove first that every 5 is O.K. for (I), second that for any family
{(n",3") i < 2%} (n' is a branch of Rang(f®) above p*, etc.) with pairwise
distinet 7'’s, all except < 28 many are O.K. for any instance of (II), and third
that for every n (a branch of Rang(f*) above p*) there is § such that (77,3) satisfies
(III). This clearly suffices (as for each branch 7 of Rang(f“) choose Sy such that

(n,5,) satisfies III, and then chose n such that (7,3,) satisfies II) .
Case I {(B) < {(a) or ((B) =((a), f+2% <a

Let 5 be as above. Suppose some z € (By,aq[5])Be realize ps. Clearly there is a
partition (y, : £ < 4) of 1 (in By) such that z = yo U (y1 N aa[S]) U (y2 — aal3]).
Choose ¢ < ((«) large enough and finite k < w so that

O [C(B) < C(e) = ((B) < €], and dyy, ha(dy), b2, are based on {z, : v € “>¢}
(for n < w) and ¢ (for n < w), Yo, Y1, Y2, y3 are based on J = {z, : v €
“>X, Na | k #4 v}, where k < w also satisfies that 1, (k) > &, 74 [ k ¢ NP

(where 1, € “ is the one determined by 3).
These are possible because of 3.2 and 1.10(2)(e).

We claim:
(*): there is m < w such that b* = (b, N (y1 Uy2)) — U dn #0.
n<k
For suppose (*) fails, then as a,[$] N (J dn) € By; without loss of generality
n<k
Uy N | dn=0
n<k

n<k n<k
Y=Yy — U dn,
n<k
vo=y2— U dn
n<k

So for every m < w, b3 N (v} Uys) = 0. We should now check that the demands on
k in [¢ . are still satisfied (for £ there is no change)].

Thus, if = realizes pg then so does yg, but yg € B, contradicting the induction
hypothesis. So (*) holds.

Now as (d, : n < w) is a maximal antichain in B, for some ¢ < w,

de b =dy N (b, N (11 Uya) — | dn)) #0.
n<k



nodi fi ed: 2011- 05- 09

revi sion: 2011-05-09

( E58)

22 SAHARON SHELAH

Necessarily £ > k. So for some i € {1,2} we have dp Nb* Ny; # 0. As x realizes pg,
necessarily = N (d, N b5, Ny;) = dy N Ny;, which is based on J. But we know that
:Eﬂ(dgﬂbgnﬂyi) is

de MO8 Ny Nayl3] =deNbE Nyr Nsy (ifi =1)
or dgNb2 Nya N (1 —an(35]) =de N3 Nya N (1 —5sp) (if i = 2).

As dg N b2 Ny; # 0is based on J, £ > k, no(k) > &, clearly s, is free over
{x, : v € J} (see Fact 3.3(1)). Asd,Nb2 Ny, >deNb*Ny; >0 and s, ¢ 0,1
necessarily x N (d¢ N b2, N y;) is not based on J, contradiction.

CaseIl: B<a< 3+ 2%,
We shall prove that if 7, 5° are appropriate (for i = 1,2) and ' # 7> then pg
cannot be realized in both (B, as[5")Be. (So as B < a < B+ 2%, there are less
than 280 non-appropriate pairs (n*, 5)).

So toward contradiction, for i = 1,2, let 2* € (B, aq [Ei]>138 realize pg. Clearly
there is a partition (y} : £ < 4) of 1 (in B,) such that

2’ =gy U (Y1 Naal5']) U (45 — aals)).
Choose £ < é(a) large enough and finite k£ < w such that

(i)t dn,ha(dy), b2 (for n < w) are based on {z, : n € “>¢},
(ii): yi (for i = 1,2 and £ < 4) and ¢ (for n < w) are based on

J={z, v e X&'k Av & n*lk 4 v},

(iii): n'(k) > & n?(k) > € and n' | k # 0% | k.
We claim that

(*): there is m < w such that 0 < b* =: b2, — (y§ Uys Uy Uy3) — Uk dp.
n<

[Why? Otherwise a’ =: a, [El] N(ys Uyl U |J dn) belongs to B, for i = 1,2 and
n<k
a' U a? realizes pg, a contradiction.]

Clearly b* is based on J.

As (d, : n < w) is a maximal antichain in B§ (and hence in B,), for some
¢ < w we have 0 < dy Nb*; clearly £ > k. So for some j(1),7(2) € {1,2} we have
0<b™ =:dyNdb* ﬂyjl.(l) ﬂy?(z) (just recall yi Uys =1— (yi Uyt)). Clearly also b**
is based on J and b** < d, Nb* < d; NS, by the choice of b**,b* respectively. So
by the last two sentences, as x° realizes pg, clearly z° N (dy Nb2,) = d, N, but the
latter does not depend on i. Hence x! Nb** = 22 Nb**. But as a,[5"] = J(dn N s%,)

n
we know that z' Ndy is dyNsh if j(i) = 1 and is d¢ — s! if j(i) = 2. We can conclude
that
either b*™* Nsp =b"Ns? or b Ns;=0b"N(-s?)
(the other 2 possibilities are reduced to those). But b** is based on J whereas
supp(s;), supp(s?) are disjoint subsets of {z,, : n € “>A}\ J and 0 < s} < 1, a
contradiction.

Case III: (= a.
This case is splitted into two sub-cases. Let 7, be any w-branch of f* such that
p* 4nq, so necessarily 1, # 13 whenever 8 < a. The proof splits to cases according
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which ¢ € {1,2} is such that X, of 3.12(2) is satisfied by p*,d. Choose p¥ €
NN (“>)) such that

lg(py) =Lg(p*) +n+1, py, I (lg(py) —1) <na and p;, A 79

Sub-case 1: X holds.
We choose s, € B[N®], satisfying s, € (x, : p, <v € “ZN)Be, 5, # 0,1 and

B n=2m = h(s,) =0, n=2m+1 = h(s,) =1

this means x N h(dz, U dan11) = h(dz2,) (this is possible by X; applied to p¥ and
using s, or 1 — s,).

Assume toward contradiction that z € (Ba U aa[s])Bg satisfies x N h(d,) =
h(d, N sy) hence x N h(day, U dapt1) = h(day,) for n < w. Let (y; : £ < 4) be a
partition of 1 in B, such that z = yo U (y1 N an[3]) U (y2 — a[8]). As the type
q = {2’ Nh(d2n Udant1) = h(dayn) : n < w} is not realized in B, and (yo, y1, Y2, y3)
is a partition of 1 in B, clearly for some ¢ < 4 the type

¢ = {2’ N h(dan Udapi1) Ny = h(dont1) Ny; i n < w}
Let k() < w be such that {n : n,lk(x) < n € “>A} is disjoint to supp(y;) for
1 < 4 and & < no(k(x) — 1) is not realized in B,. By the choice of the y,’s and
the choice of x, necessarily ¢ € {1,2} and for notational simplicity let ¢ = 1. So

U =:{n : h(dan U haps1) Ny1- > 0} is infinite, and as (dy : k < w) is a maximal
antichain of B§ hence of B, clearly for each n € U, the set

Un, = {k : h(day U dzny1) Ndy Ny; > 0}

is nonempty. Clearly k € U, = x N h(de, U dapy1) Ndr Ny1 = sk N h(de, U
dan+1)Ndg Ny; hence k(x) < k € U, = supp(sx) C supp((zNh(dan)Udan+1) Nyi)-
Hence if n € U and U,, is infinite then x N h(da, U dapt1) Ny is not in B, easy
contradiction as h(da,) € Ba;son e U = 1 < |Uy,| < Ro. If U{Up, : n < w} is
finite then d* = U{d, : £ € U,, for some n < w (so n € U)} belong to B, (as a
finite union of members) and n < w = h(da, Udap+1) < d* and x Nd* € B, s0 ¢;
is realized and we get easy contradiction. Let f: U — w, f(n) = max(U,). Recall
that k() < w and € < ((a) are large enough. For n € U with f(n) > k(x), clearly.

x N (h(don Udapy1) Ny Ny € {h(don Udany1) NVys N Sfeny,

h(dzn U dzni1) Nyi O (=Spn))}
by the choice of the G4[5]’s and

x N h(dan Udang1) Ny = h(dan) Nys

by the choice of z. But the latter, h(da,) Ny; is supported by {z, : p} 4 v € Y7 A}
(as the pf,’s are pairwise <—incomparable), whereas the former is not by the choice
of £, and k(x).

Sub-case 2: X holds.

We choose s, € (z, : p;, < v € ““NBe, 5, € B[N\ {0B,,1B,}. Now for
i€{1,2,3,4} we let 5 = (s{, : n < w) be defined as follows: s, is s, if n+i is even
and —s, if n+1 is odd. If for some i the Boolean algebra (B U aq[5'])Bs omit the
type pi, = {xNh(d,)Ndo = h(s,)Nh(d,)Ndp : n < w} then we are done, so assume
that 2 € (B; U {aa[5]})Bg realizes pf,, hence y; =: ' N dy realizes pl, and belong
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to B,. But then y; realizes {x N h(d2p U dant1) Ndo = h(dant1) Ndo : n < w} but
this contradict the choice of (d,, : n < w), see M3 of 3.12, so we are done.
So we finish the proof of 3.11; so By~ is endo-rigid. [ PRE

Claim 3.13. There are \¥° ordinal o < o* which belongs to Y' (even to Ya).

Proof: Let h be the identity on B,«. In the proof of 3.11, guessing the good
candidate o we have AN possible choices as Z C “> \ was arbitrary and we could use
Z ={nn:n < w} for any n € “A. We can find a maximal antichain (d,, : n < w)
of By included in ({z(,y : v < XA moreover < v >€ Ng'})B,. For any n € lim(f?)
and 5 = (s, : n < w) where s, € ({z, : (nn)"(n(n) + 1) <p})B: we can define
aa[3] = U{dn, Nsp, : n < w} € B§. As in the proof of 3.11 for some such (7, 3)
the fitting 7o, = 71, aq = @o[5], all the demands for a € Y5 (see ® in Stage B) are
satisfied.

Lemma 3.14. B, is indecomposable.

Proof: Suppose Jg, J; are disjoint ideals of B+, each with no maximal member,
which generate a maximal ideal of B,+. For £ = 0,1 let {d% : £ < w} be a maximal
antichain C J, \ {Og_. } (maximal as subset of J; \ {Og_. }), they are countable as
B, - satisfies the c.c.c., and may be chosen infinite as ¢ < 2 = J, # {0} (and B~
is atomless). Let J be the ideal generated by Jo U J;.

Now, for example for some & < A, {d% : £ < 2, n < w} C By, so easily for
some a € Y, ((a) > €. Clearly a, € J or 1 —a, € J. For notational simplicity
assume aq € J. So a, = P U B, bt € J,. Now, prg(bé) € By and is disjoint
to each d;,~* so by the maximality of {d},™* : n < w}, pre(b*) is disjoint to every
member of J1_y. As JgUJ; generates a maximal ideal of B, clearly prg(bl) elJ,
[otherwise pre(b*) = 1 —c® U ¢!, for some ¢ € Jy, ¢' € Jy, and then ¢!~ is
necessarily a maximal member of Jy_,, so J;_; is principal, a contradiction]. So

2
pre (b°) Upre(b') < 1, but 1 = pre(aa) = U pre(b), a contradiction. [ EE
, , o Pl
ER
Of course,

Claim 3.15. If cf()\) > Ny then there are B; for i < 22" such that
(a) B; is Boolean algebra of cardinality A\ °, density character X, and this holds
even for B; [ a for a € B; \ {0g,},
(b) B; is endo-rigid indecomposable,
(c) any homomorphism from any B, to B; (i # j) has a finite range.

Proof: We can repeat the proof of 3.1. Now we build B, (Z) for every Z C “\,
such that for each o we try to guess not B,+ and an endomorphism of it but we
try to guess B'[N?] = (Bo(Z1))[N®, B2[N?| = (Bo(Z2))[N® and h = HN" an
homomorphism from B![N¢] into B?[N¢], and we “kill” i.e., guarantee h cannot
be extended to a homomorphism from B(Z%), to B(Z2) when B(Z¢)|N® = Bf[N©]

15

Claim 3.16. In 3.1, 3.15 we can replace the assumption cf(\) > Rg by A > V.
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Proof: We replace “” A, S by “~ (A X wy),{A X §:d < w; a limits ordinal} so we
use [Sh:309, 3.17] instead of [Sh:309, 3.11, 3.16]. W16
Also note:

Observation 3.17. Assume 2% < XA < A®_ and B is c.c.c. Boolean algebra
of cardinality \, and there is p,pu < A < pi°, hence without loss of generality
A > p=min{p: pto > A}
(1) There is a free Boolean algebra B, of cardinality p such that By C B.
(2) There is B such that
(a) B= (B, :n<w),
(b) B, is a Boolean subalgebra of B,
(¢c) B, CB,y1 and B= |J B,
n<w
(d) there is A, C B,41 independent over B,? of cardinality p.
(3) B is not endo-rigid.
(4) There are projections® of B whose range are atomless countable Boolean
algebra.
(5) there are \Y° atomless Boolean subalgebras B’ of B such that there is a
projection from B onto B’

Proof: By cardinal arithmetic (V& < p)(k™0 < p) and cf(u) = No. Let u =
; Hns Un < [n41, M:io = Hn-
(1), (2) By [Sh:92, Lemma 4.9, p.88], we can find (b, : o < p) independent in
B. Let B, be the subalgebra of B generated by {b, : @ < u}, and let B¢ be
the completion of B,. Let h* be a homomorphism from B into B¢ extending
idg, , (it is well known that such homomorphism exists) and let B’ = Rang(h*), so
B. C B’ C B¢, |B.| < |B’| < A. For each a € B’ there is a countable u, C u such
that a is based on (i.e., belongs to the completion inside B¢ of) the set {by : & € 14}

We can find pairwise distinct 7, € [] b for a < A¥ such that n,[(n + 1) #

n<w

nal(n+1) = na(n) + pn # ng(n) + py. Now for each a € B’ the set

wg = {a: (3%n)(ua N [tn X Na(n), fin X Na(n) + pn) # 0)}

has cardinality < 2%. But [B’| + 2% < X\ < A% hence for some o < A®0 we have

N & J{wa : a € B}
Let
B/, =: {2z €B’:h*(z) is based on A}
where
AL =:{bg : if n>m then B ¢ [1n X 1a(n), i X 1a(n) + pn)} -

The sequence (B!, : n < w) is as required except that in clause (d) if we naturally
let A7 = {bg : B € [un X na(N), in X Na(n) + pn)} we get |AZ| > p, instead

Qi.e., for every a € By, \ {0B,, } and a non-trivial Boolean combination b of members of A, we

have anb >0
3i.e homomorphism h from B into B such that = € B = h(h(z)) = h(z)
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|A”] > p. So let w be the disjoint union of the infinite sets v, for n < w, and let
B,, = {z € B: h*(x) is based on A,,}, where

Ay ={bg: ifn<w and
n ¢ Up<m O then B ¢ [y X 0o (1), ttn X Na(n) + fin)}-
Then the sequence (B, : m < w) is as required.

(3) Follows by (4).
(4) Choose a,, € A, for n < w. Now we define by induction on n, a projection
hy, from the Boolean algebra B,, onto the subalgebra B of B,, generated by {a, :
¢ < n} freely and extending h,, for m < n. For n = 0, let Dy be any ultrafilter
of By and let ho(z) be 1g, = 1 if z € Dy and Op, = O if z € By \ Dy. For
n=m+1let (a}* : k < 2™) list the atoms of B%,, which is a finite Boolean algebra,
and for k < 2™ let D} = {z € B, : a]' C h(z) € B}, this is an ultrafilter of
B,.. For each k we can find two ultrafilters DZ?O, D}C’fl of B,, = B,,+1 extending
Dy such that a,, € Dgfl and a,, ¢ DZ?O. Lastly define h,, = hpy1 : B, — B by
ho(x) = U{a! Nam 1 @ € DI} UU{al — am - @ € DYy}, it is easy to check that
hp, is @ homomorphism from B,, onto B}, and is the identity on B}, and extend h,.
Clearly h = U{h,, : n < w} is a projection of B = U{B,, : n < w} onto
B* = U{B} : n < w}, so h, B* are as required.
(5) By the proof of part (4), that is the arbitrary choice of (a, : n < w) € [ An.

n<w
B3.17

Discussion 3.18. (1) In 3.17 the only use of the c.c.c. is to find a free subal-
gebra of B of cardinality p.

(2) What about |B| < 2% 2 S.Koppelberg and the author noted (independently)
that under MA (or just p = 2%°) such Boolean algebras are not endo-rigid.
Why? let a, € B\ {0} be pairwise disjoint, let D,, be an ultrafilter of B
to which a,, belong, and for x € B let U, = {n : x € D,}. By MA there is
an infinite U C w such that for every x € U the set U NU, is finite or the
set U\ Uy is finite. Let h € Ext(B) be h(z) = U{an :n € Uy} if U NUy is
finite and h(x) = 1g — U{an :n e U\ Uy} if U\ Uy is finite.

(3) Assume pp = > {un :n < w}, puf = pp < piny1. If B is a Boolean algebra
satisfying the k- c.c. such that p < |B| < p®° then the construction of
3.17 holds. The proof is similar.

Discussion 3.19. We may wonder whether Claims 3.9, 3.10 can be improved to:
if dn, € Box (for n < w) are pairwise disjoint non—zero, then for some w C w there
is no x € By« satisfying

mnew = znd,=d,] and Pew\w = znd,=0]
The problem is that {n, : a < o*} C “X may contain a perfect set and if we are

not careful about the s&-s mentioned above we may fail. If X = pt, uR° = u, then
we may try to demand, for each ¢* < A, that

(| supp(sy) : @ < @*,¢(a) = ¢)

is a sequence of pairwise disjoint sets. Alternatively we may look for a thinner black
boz (of course, preferably more then just no perfect set of no.’s), see [Sh:309, §3].
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