Graphs with no unfriendly partitions

Saharon Shelah* and E. C. Milner \dagger

Abstract

An unfriendly n-partition of a graph $G=(V, E)$ is a map $c: V \rightarrow$ $\{0,1, \ldots, n-1\}$ such that, for every vertex x, there holds $$
|\{y \in E(x): c(x)=c(y)\}| \leqslant|\{y \in E(x): c(x) \neq c(y)\}|,
$$ where $E(x)$ is the set of vertices joined to x by an edge of G. We disprove a conjecture of Cowen \& Emerson by showing that there is a graph which has no unfriendly 2 -partition. However, we also show that every graph has an unfriendly 3 -partition.

1 Introduction

Let $G=(V, E)$ be a simple graph. A map $c: V \rightarrow\{0,1, \ldots, n-1\}$ is called an unfriendly n-partition of G (see [1]) if, for every vertex x, there holds

$$
|\{y \in E(x): c(x)=c(y)\}| \leqslant|\{y \in E(x): c(x) \neq c(y)\}|,
$$

where $E(x)$ is the set of vertices joined to x by an edge of G.
It is easily seen that any finite graph has an unfriendly 2 -partition and hence, by compactness, so does every locally finite graph. Cowan \& Emerson [2] conjectured that every graph has an unfriendly 2-partition and Aharoni, Milner \& Prikry [1] proved this for graphs satisfying either (1) there are only finitely many vertices with infinite degrees, or (2) there are a finite number of infinite cardinals $m_{0}<m_{1}<\cdots<m_{k}$ such that

* No. 356. The first author wishes to express his thanks to the Niedersächsches Ministerium für Wissenshaft und Kunst for partially supporting this research.
\dagger Research supported by NSERC grant \#A5198.
m_{i} is regular for $0<i \leqslant k$, every vertex of infinite degree has degree m_{i} for some $i \leqslant k$ and the number of vertices of finite degree is less than m_{0}.

The following result disproves the conjecture of [2]. For a cardinal $\lambda=\omega_{\alpha}$ and an ordinal β, we use the notation $\lambda^{(+\beta)}$ to denote the cardinal $\omega_{\alpha+\beta}$.

Theorem 1 There is a graph $G=(V, E)$, of size $|V|=\left(2^{\omega}\right)^{(+\omega)}$, which has no unfriendly 2-partition and in which every vertex has infinite degree.

A similar argument also proves the following more general version of Theorem 1.

Theorem 2 For any infinite cardinal λ, there is a graph $G=(V, E)$, of size $|V|=\kappa=\left(2^{\lambda}\right)^{(+\omega)}$, which has no unfriendly 2-partition and in which every vertex has infinite degree.

Before giving proofs of these results, we shall prove the following consistency result which, although weaker, illustrates the main idea in a simpler setting.

Theorem 3 It is consistent that there is a graph $G=(V, E)$ of size $|V|=\omega_{\omega}$ which has no unfriendly 2-partition and the degree of each vertex is either ω, or ω_{1}, or ω_{ω}.

We conclude the paper with a proof of the following positive result.
Theorem 4 Every graph has an unfriendly 3-partition.

2 Proof of Theorem 3

For subsets A and B of ω, we write $A>B$ if $|A \backslash B|=\omega$ and $|B \backslash A|<\omega$. It is well known that the following statement (*) is independent of the axioms of set theory. (For example, $\mathrm{CH} \Rightarrow(*)$ and $\left(\mathrm{MA}+2^{\omega}>\omega_{1}\right) \Rightarrow \neg(*)$.)
(*) There is a uniform, non-principal ultrafilter \mathfrak{U} on ω which is generated by ω_{1} sets $A_{\xi}\left(\xi<\omega_{1}\right)$ such that $A_{\xi}>A_{\zeta}$ for $\xi<\zeta<\omega_{1}$ so that, for any set $A \in \mathfrak{U}$, there is some $\xi<\omega_{1}$ such that $\left|A_{\zeta} \backslash A\right|<\omega$ for $\xi \leqslant \zeta<\omega_{1}$.
We show that $(*)$ implies there is a graph with the properties stated in Theorem 3.

We construct the desired graph $G=(V, E)$ as follows. Let $V=$ $X \cup Y \cup Z$, where $X=\left\{x_{n}: n<\omega\right\}, Y=\left\{y_{\alpha, \xi}: \alpha<\omega_{\omega}, \xi<\omega_{1}\right\}$ and
$Z=\left\{z_{\alpha}: \alpha<\omega_{\omega}\right\}$ and let $E=E_{1} \cup E_{2} \cup E_{3}$, where

$$
\begin{aligned}
& E_{1}=\left\{\left(x_{n}, y_{\alpha, \xi}\right): \alpha \leqslant \omega, \xi<\omega_{1}, n \in A_{\xi}\right\} \\
& E_{2}=\left\{\left(y_{\alpha, \xi}, z_{\alpha}\right): \alpha<\omega_{\omega}, \xi<\omega_{1}\right\} \\
& E_{3}=\left\{\left(x_{n}, z_{\alpha}\right): \alpha<\omega_{\omega}, n<\omega\right\}
\end{aligned}
$$

Note that each vertex of X has degree ω_{ω}, each vetex of Y has degree ω and each vertex of Z has degree ω_{1}.

We want to show that G has no unfriendly 2-partition. Suppose for a contradiction that $c: V \rightarrow\{0,1\}$ is an unfriendly partition of G. Since \mathfrak{U} is an ultrafilter on ω, there are $\epsilon<2$ and $A \in \mathfrak{U}$ such that $c\left(x_{n}\right)=\epsilon$ if and only if $n \in A$. There is $\xi<\omega_{1}$ such that $\left|A_{\zeta} \backslash A\right|<\omega$ for $\xi \leqslant \zeta<\omega_{1}$. Since, by assumption, c is an unfriendly partition, since

$$
E\left(y_{\alpha, \zeta}\right)=\left\{z_{\alpha}\right\} \cup\left\{x_{n}: n \in A_{\zeta}, \alpha \leqslant \omega_{n}\right\} \quad\left(\alpha<\omega_{\omega}, \zeta<\omega_{1}\right)
$$

and since $c\left(x_{n}\right)=\epsilon$ for $n \in A$, it follows that $c\left(y_{\alpha, \zeta}\right)=1-\epsilon$ for $\alpha<\omega_{\omega}$ and $\xi \leqslant \zeta<\omega_{1}$. Further, since $E\left(z_{\alpha}\right)=X \cup\left\{y_{\alpha, \zeta}: \zeta<\omega_{1}\right\}$ for $\alpha<\omega_{\omega}$, we must also have $c\left(z_{\alpha}\right)=\epsilon$. But, for $n \in A$,

$$
E\left(x_{n}\right)=\left\{y_{\alpha, \zeta}: n \in A_{\zeta}, \alpha \leqslant \omega_{n}\right\} \cup Z
$$

and this contradicts the assumption that c is an unfriendly partition since $c\left(x_{n}\right)=c(z)(z \in Z)$ and $\left|E\left(x_{n}\right) \backslash Z\right|<|Z|$.

3 Proof of Theorem 1

We will use the following notation. For an ordinal we α define $\|\alpha\|$ to be $|\alpha|$ if α is infinite and 0 if α is finite. If $u=\left(u_{0}, u_{1}, \ldots, u_{l-1}\right)$ is a sequence of ordinals, the length of \mathfrak{u} is $l(\mathfrak{u})=l$, and the last term of \mathfrak{u} is

$$
\operatorname{lt}(u)=\left\{\begin{array}{cc}
u_{l-1} & \text { if } l \geqslant 1 \\
2^{\omega} & \text { if } l=0
\end{array}\right.
$$

If $\mathfrak{v}=\left(v_{0}, v_{1}, \ldots, v_{l}\right)$ has length $l+1$ and $v_{i}=u_{i}(i<l)$, then we write $\mathfrak{v}=\mathfrak{u}^{\wedge} v_{l}$ and we also write $\mathfrak{u}=\mathfrak{b}^{*}$ to indicate that \mathfrak{u} is obtained from \mathfrak{v} by omitting the last term v_{l}. Put

$$
\begin{aligned}
& \mathscr{I}=\left\{\left(u_{0}, u_{1}, \ldots, u_{l-1}\right): 2^{\omega}>\left\|u_{0}\right\|>\left\|u_{1}\right\|>\ldots>\left\|u_{l-1}\right\|\right\}, \\
& \mathscr{I}=\left\{\left(v_{0}, v_{1}, \ldots, v_{l-1}\right): v_{i}<\omega_{1}(i<l)\right\} .
\end{aligned}
$$

Let \mathfrak{U} be a uniform, non-principal ultrafilter on ω. We shall define sets $A_{\mathfrak{i}, \rho} \in \mathfrak{U}$ for $\mathfrak{i} \in \mathscr{I}$ and $\rho<|\operatorname{lt}(\mathfrak{i})|$ by induction on $l(i)$ as follows. Let $A_{\square, \rho}\left(\rho<2^{\omega}\right)$ be any enumeration of the members of \mathfrak{U}, where
denotes the empty sequence. Now suppose that $A_{\mathrm{i}, \rho}$ has been defined for $\mathfrak{i} \in \mathscr{I}, l(i) \leqslant l$ and $\rho<|l \mathbf{l}(\mathrm{i})|$. For $\mathfrak{i} \in \mathscr{I}, l(\mathrm{i})=l+1$ and $\rho<|\operatorname{lt}(\mathrm{i})|$, put

$$
A_{i, \rho}=A_{i^{*}, h(\theta, \rho)}
$$

where $\theta=\operatorname{lt}(\mathrm{i})$ and $h(\theta, \cdot)$ is any one-one map from $|\theta|$ onto θ.
Put $\kappa_{n}=\left(2^{\omega}\right)^{(+n)}$ and $\kappa=\sum\left\{\kappa_{n}: n<\omega\right\}$. We define the graph $G=(V, E)$ of size κ as follows. Put $V=X \cup Y \cup Z$, where

$$
\begin{array}{ll}
X=\left\{x_{n}: n<\omega\right\}, \quad & Y=\left\{y_{\mathrm{i}, \mathrm{i}}^{\alpha}: \alpha<\kappa, \mathfrak{i} \in \mathscr{I}, \mathfrak{i} \in \mathscr{F}, l(\mathrm{j})=l(\mathfrak{i})+1\right\} \\
& Z=\left\{z_{\mathrm{i}, \mathrm{i}}^{\alpha}: \alpha<\kappa, \mathfrak{i} \in \mathscr{I}, \mathfrak{i} \in \mathscr{F}, l(\mathfrak{j})=l(\mathfrak{i})\right\}
\end{array}
$$

The edge set of G is $E=E_{1} \cup E_{2} \cup E_{3}$, where

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{l}
\left\{x_{n}, y_{\mathrm{i}, \mathrm{i}}^{\alpha}\right\}: y_{\mathrm{i}, \mathrm{i}}^{\alpha} \in Y, k=\operatorname{lt}(\mathrm{i})<\omega, n \in \bigcap\left\{A_{\mathrm{i}, \rho}: \rho<k\right\} \\
\left.\quad \text { and } \alpha \leqslant \kappa_{n}\right\}, \\
E_{2}=\left\{\left\{y_{\mathrm{i}, \mathrm{i}}^{\alpha}, z_{\mathrm{i}_{1}, \mathrm{i}_{1}}^{\alpha}\right\}: y_{\mathrm{i}, \mathrm{i}}^{\alpha} \in Y, z_{\mathrm{i}_{1}, \mathrm{i}_{1}}^{\alpha} \in Z, \alpha<\kappa\right.
\end{array}\right. \\
& \left.\quad \text { and either } \mathfrak{i}=\mathrm{i}_{1}^{*}, \mathrm{i}_{1}=\mathrm{i} \text { or } \mathfrak{i}=\mathrm{i}_{1}, \mathrm{i}_{1}=\mathrm{i}^{*}\right\}, \\
& E_{3}=\left\{\left\{x_{n}, z_{\square, \square}^{\alpha}\right\}: n<\omega, \alpha<\kappa\right\} .
\end{aligned}
$$

Note that every vertex has infinite degree.
We will assume that there is an unfriendly partition $c: V \rightarrow\{0,1\}$ of G and derive a contradiction.

Since \mathfrak{U} is an utrafilter, there are $A \in \mathfrak{U}$ and $\epsilon \in\{0,1\}$ such that $c\left(x_{n}\right)=\epsilon$ if and only if $n \in A$. We will prove that, whenever

$$
\begin{equation*}
\alpha<\kappa, \quad \mathfrak{i} \in \mathscr{I}, \quad \mathfrak{i} \in \mathscr{I}, \quad l(\mathfrak{i})=l(\mathfrak{i})+1, \quad \gamma=\operatorname{lt}(\mathfrak{i}) \tag{1}
\end{equation*}
$$

and there is a $\rho<\gamma$ such that $A_{\mathrm{i}, \rho}=A$ holds, then

$$
\begin{equation*}
c\left(y_{i, j}^{\alpha}\right)=1-\epsilon \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
c\left(z_{\mathrm{i}, \mathrm{i}^{*}}^{\alpha}\right)=\epsilon \tag{3}
\end{equation*}
$$

Note first that (3) follows from (2). For $E\left(z_{i, i^{*}}^{\alpha}\right)=C_{1} \cup C_{2}$, where

$$
C_{1}=\left\{y_{i, i^{*} \zeta}^{\alpha}: \zeta<\omega_{1}\right\} \quad \text { and } \quad C_{2}=\left\{\begin{array}{cl}
\left\{y_{i^{\alpha}}^{\alpha}, \mathfrak{i}^{*}\right\} & \text { if } \mathfrak{i} \neq \square, \\
X & \text { if } \mathfrak{i}=\mathrm{i}^{*}=\square .
\end{array}\right.
$$

Since $\left|C_{1}\right|=\omega_{1}>\left|C_{2}\right|$ and since, by (2), $c\left(y_{i, i^{*} \wedge}\right)=1-\epsilon$, (3) follows.
We will prove (2) by induction on $\gamma=\operatorname{lt}(\mathfrak{i})$.
Consider first the case when $\gamma<\omega$. In this case there is no $\mathfrak{i}_{1} \in \mathscr{I}$ such that $\mathfrak{i}=\mathfrak{i}_{1}^{*}$. Therefore,

$$
E\left(y_{\mathrm{i}, \mathrm{i}}^{\alpha}\right)=\left\{x_{n}: \kappa_{n}>\alpha \text { and } n \in \bigcap\left\{A_{\mathrm{i}, \sigma}: \sigma<\gamma\right\} \cup\left\{z_{\mathrm{i}, \mathrm{i}^{*}}^{\alpha}\right\} .\right.
$$

But $\bigcap\left\{A_{\mathrm{i}, \sigma}: \sigma<\gamma\right\}$ is an infinite subset of $A_{\mathrm{i}, \rho}=A$ and only finitely many $n<\omega$ fail to satisfy the condition $\kappa_{n}>\alpha$. Therefore, since c is an unfriendly partition of G, it follows that $c\left(y_{i, j}^{\alpha}\right)=1-\epsilon$.

Now suppose that $\gamma \geqslant \omega$. In this case,

$$
E\left(y_{\mathrm{i}, \mathrm{i}}^{\alpha}\right)=\left\{z_{\mathfrak{i}_{\tau, \mathrm{i}}^{\alpha}}^{\alpha}: \tau<|\gamma|\right\} \cup\left\{z_{\mathfrak{i}, \mathrm{i}^{*}}^{\alpha}\right\} .
$$

By the hypothesis (1), there is some $\rho<|\gamma|$ such that $A=A_{\mathrm{i}, \rho}$. Also, for any τ such that $\rho<\tau<|\gamma|$, there is some $\sigma<|\tau|$ such that $h(\tau, \sigma)=\rho$, and so

$$
A_{i^{\wedge} \tau, \sigma}=A_{\mathrm{i}, \rho}=A .
$$

Thus, by the inductive hypothesis, $c\left(z_{i}^{\chi} \tau, \mathfrak{j}\right)=\epsilon$. It follows that $c\left(y_{\mathrm{i}, \mathrm{j}}^{\alpha}\right)=$ $1-\epsilon$, and this completes the proof of (2) and (3) under the hypothesis (1).

In particular, by (3), $c\left(z_{\square, \square}^{\alpha}\right)=\epsilon$ for every $\alpha<\kappa$.
For $n \in A$, we have that

$$
E\left(x_{n}\right)=D_{1} \cup D_{2}
$$

where

$$
\begin{aligned}
& D_{1}=\left\{y_{\mathrm{i}, \mathrm{i}}^{\alpha} \in Y: \gamma=\operatorname{lt}(\mathrm{i})<\omega, n \in \bigcap\left\{A_{\mathrm{i}, \rho}: \rho<\gamma\right\} \text { and } \alpha \leqslant \kappa_{n}\right\}, \\
& D_{2}=\left\{z_{\square, \square}^{\alpha}: \alpha<\kappa\right\} .
\end{aligned}
$$

Since $\left|D_{1}\right| \leqslant|\mathscr{F}| \kappa_{n}<\kappa=\left|D_{2}\right|$ and $c\left(x_{n}\right)=c(z)$ for all $z \in D_{2}$, this contradicts the assumption that c is an unfriendly partition.

4 Sketch of the proof of Theorem 2

The proof is similar to the proof of Theorem 1. First we choose an ultrafilter $\mathfrak{U l}$ on λ such that

$$
B_{n}=\{\omega \alpha+n: \alpha<\lambda\} \notin \mathfrak{U} \quad(n<\omega)
$$

Now continue as in the proof of Theorem 1 using this ultrafilter and replacing 2^{ω} by $2^{\lambda}, \omega_{1}$ by λ^{+}, the cardinal successor of λ, X by $\left\{x_{\xi}: \xi<\lambda\right\}$ and replacing E_{1} by

$$
\begin{aligned}
\left\{\left\{x_{\xi}, y_{i, i}^{\alpha}\right\}: \gamma=\operatorname{lt}(\mathfrak{i})<\omega, \xi \in \bigcap\right. & \left\{A_{\mathrm{i}, \rho}: \rho<\gamma\right\} \\
& \text { and } \left.(\exists n)\left(\xi \in B_{n} \text { and } \alpha \leqslant \kappa_{n}\right)\right\} .
\end{aligned}
$$

5 Unfriendly 3-partitions

The following Rernstein-type lemma is probably known.
Lemma 1 Let $\mathscr{A}=\left\langle A_{i}: i \in I\right\rangle$ be a family of sets such that $\left|A_{i}\right| \geqslant$ $|I| \geqslant \omega$. Then there are pairwise disjoint sets $B_{i} \subseteq A_{i}(i \in I)$ such that $\left|B_{i}\right|=\left|A_{i}\right|$.

Proof Let

$$
D=\left\{\left|A_{i}\right|: i \in I\right\}, \quad R=\left\{\kappa \in D: \kappa>\sum\{\mu: \mu<\kappa, \mu \in D\}\right\}
$$

and, for $\kappa \in R$, let $I(\kappa)=\left\{i \in I:\left|A_{i}\right| \geqslant \kappa\right\}$. We can inductively choose subsets $A_{i}(\kappa) \subseteq A_{i}$ for $\kappa \in R$ and $i \in I(\kappa)$ so that $\left|A_{i}(\kappa)\right|=\kappa$ and so that $A_{i}(\kappa) \cap A_{j}(\mu)=\varnothing$ if $(\kappa, i) \neq(\mu, j)$. The sets

$$
B_{i}=\bigcup\left\{A_{i}(\kappa): i \in I(\kappa), \kappa \in R\right\} \quad(i \in I)
$$

satisfy the conditions of the lemma.
Let $G=(V, E)$ be a graph. For a subset $A \subseteq V$, we define

$$
\operatorname{nbly}(A)=\{x \in V:|E(x) \cap A|=|E(x)|\}
$$

The set A is closed if $\operatorname{nbly}(A) \subseteq A$, and the closure of A is \bar{A}, the smallest closed set containing A. Note that, if we write $A^{*}=A \cup \operatorname{nbly}(A)$, then $\bar{A}=A_{\alpha}$, where $\left\langle A_{\xi}: \xi \leqslant \alpha\right\rangle$ is a continuous increasing sequence of sets such that $A_{0}=A, A_{\xi+1}=A_{\xi}^{*}$ and $A_{\alpha}^{*}=A_{\alpha}$. Thus we may write $\bar{A} \backslash A=\left\{a_{i}: i<\lambda\right\}$, where

$$
\left|E\left(a_{i}\right)\right|=\mid E\left(a_{i}\right) \cap\left(A \cup\left\{a_{j}: j<i\right\} \mid \quad(i<\lambda)\right.
$$

If h is a function defined on a subset $A \subseteq V$, then we say that h is satisfactory for the element $a \in A$ if

$$
|\{y \in A \cap E(a): h(y)=h(a)\}| \leqslant|\{y \in A \cap E(a): h(y) \neq h(a)\}|
$$

and h is completely satisfactory for a if

$$
\mid\{y \in E(a): y \notin A \text { or } h(y)=h(a)\}|\leqslant|\{y \in A \cap E(a): h(y) \neq h(a)\}| .
$$

Of course, if h is satisfactory on the set $B \subseteq A$, then it is completely satisfactory on $B \cap \operatorname{nbly}(A)$. It is also clear that, if h is completely satisfactory on $B \subseteq A$, then so also is any extension of h. In particular, if the domain of h is V, the terms satisfactory and completely satisfactory coincide. An unfriendly 3-partition of the graph G is a function $h: V \rightarrow\{0,1,2\}$ which is satisfactory for every vertex.

Lemma 2 Let $A, B \subseteq V, B$ infinite and $A \cap B=\varnothing$, and suppose that, for $z \in B$,

$$
\begin{aligned}
& |E(z) \backslash A| \leqslant|B| \Rightarrow E(z) \backslash A \subseteq B \\
& |E(z) \backslash A|>|B| \Rightarrow|[E(z) \backslash A] \cap B|=|B|
\end{aligned}
$$

If $h: A \cup B \rightarrow\{0,1,2\}$, then there is $g: \overline{A \cup B} \rightarrow\{0,1,2\}$ extending h which is satisfactory for every element of $[\overline{A \cup B} \backslash(A \cup B)] \cup B^{\prime}$, where $B^{\prime}=\{b \in B:|E(b) \cap[\overline{A \cup B} \backslash(A \cup B)]|>|E(b) \cap(A \cup B)|\}$.

Proof Let $b \in B^{\prime}$. If $|E(b) \backslash A| \leqslant|B|$, then $E(b) \backslash A \subseteq B$ and so

$$
E(b) \cap \overline{A \cup B}=E(b) \cap(A \cup B)
$$

which is a contradiction. Therefore, $|E(b) \backslash A|>|B|$ and hence

$$
|[E(b) \backslash A] \cap B|=|B|
$$

It follows that

$$
|E(b) \cap[\overline{A \cup B} \backslash(A \cup B)]|>|B|
$$

for $b \in B^{\prime}$ and, hence, by Lemma 1 , there are pairwise disjoint sets

$$
F(b) \subseteq E(b) \cap[\overline{A \cup B} \backslash(A \cup B)] \quad\left(b \in B^{\prime}\right)
$$

such that $|F(b)|=|E(b) \cap \overline{A \cup B}|$.
Let $\left\{z_{i}: i<\lambda\right\}$ be an enumeration of the elements of $\overline{A \cup B} \backslash(A \cup B)$ such that

$$
\left|E\left(z_{i}\right)\right|=\left|E\left(z_{i}\right) \cap\left(A \cup B \cup\left\{z_{j}: j<i\right\}\right)\right| \quad(i<\lambda)
$$

We extend h to the function $g: \overline{A \cup B} \rightarrow\{0,1,2\}$ by choosing $g\left(z_{i}\right) \in\{0,1,2\}$ inductively for $i<\lambda$. At the i-th step there are two possible choices for $g\left(z_{i}\right)$ that will ensure that g is satisfactory for z_{i}; consequently, if $z_{i} \in F(b)$ for some $b \in B^{\prime}$, then we may also choose $g\left(z_{i}\right)$ different from $g(b)$. The function g so constructed satisfies the requirements of the lemma.

We now prove Theorem 4 that every graph has an unfriendly 3partition.

Proof We will prove by induction on the infinite cardinal μ that the following assertion holds.
$\mathscr{P}_{\mu}:$ Let $G=(V, E)$ be a graph and let $A, B \subseteq V$ be subsets such that

$$
A=\bar{A}, \quad A \cup B=V, \quad A \cap B=\varnothing, \quad|B|=\mu
$$

If $x \in B, c<3$ and $h: A \rightarrow\{0,1,2\}$, then there is $g: V \rightarrow\{0,1,2\}$ extending h such that $g(x) \neq c$ and g is satisfactory for every element of B.

The theorem follows from this since every finite graph has an unfriendly 2-partition and \mathscr{P}_{μ} (with $A=\varnothing$ and $B=V$) implies that every graph of cardinality μ has an unfriendly 3-partition.

Case $\mu=\omega$.

Since A is closed and B is denumerable, it follows that $0<$ $|E(y)| \leqslant \omega$ for $y \in B$. We define an ordinal $\alpha<\omega_{1}$ and subsets B_{β} $(\beta \leqslant \alpha)$ of B so that

$$
\begin{aligned}
& B_{0}=\{y \in B:|E(y)|<\omega\} \\
& B_{\beta}=\left\{y \in B\left|\bigcup_{\gamma<\beta} B_{\gamma}:\left|E(y) \cap \bigcup_{\gamma<\beta} B\right|=\omega\right\} \quad(0<\beta<\alpha)\right.
\end{aligned}
$$

and $E(y) \cap \bigcup_{\beta<\alpha} B_{\beta}$ is finite for all $y \in B_{\alpha}=B \backslash \bigcup_{\beta<\alpha} B_{\beta}$. Let $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}=\{0,1,2\}$ be such that

$$
c \notin \begin{cases}\left\{\epsilon_{0}, \epsilon_{2}\right\} & \text { if } x \in B_{0} \\ \left\{\epsilon_{0}, \epsilon_{1}\right\} & \text { if } x \notin B_{0}\end{cases}
$$

We will construct the extension g of h so that range $\left(g \upharpoonright B_{0}\right) \subseteq\left\{\epsilon_{0}, \epsilon_{2}\right\}$ and range $\left(g \upharpoonright B \backslash B_{0}\right) \subseteq\left\{\epsilon_{0}, \epsilon_{1}\right\}$. This will ensure that $g(x) \neq c$.

First define $g_{1}=\left\{\left(y, \epsilon_{1}\right): y \in B_{1}\right\}$. Now inductively define $g_{\beta}: B_{\beta} \rightarrow$ $\left\{\epsilon_{0}, \epsilon_{1}\right\}$ for $1<\beta<\alpha$ in such a way that, for each $y \in B_{\beta}$,

$$
\left|\left\{z: z \in B_{\gamma}(1 \leqslant \gamma<\beta), g_{\gamma}(z) \neq g_{\beta}(y)\right\}\right|=\omega .
$$

The set B_{α} is either empty or denumerable and every vertex of $G \upharpoonleft B_{\alpha}$ has infinite degree; so there is a map $g_{\alpha}: B_{\alpha} \rightarrow\left\{\epsilon_{0}, \epsilon_{1}\right\}$ that is satisfactory for every element of B_{α}. The function $g^{\prime}=h \cup \bigcup_{1 \leqslant \beta \leqslant \alpha} g_{\beta}$, defined on $V B_{0}$, is completely satisfactory for the elements of $\bigcup_{1<\beta \leqslant \alpha} B_{\beta}$.

We now imitate the proof that any locally finite graph has an unfriendly 2-partition to define $g^{\prime \prime}: B_{0} \rightarrow\left\{\epsilon_{0}, \epsilon_{1}\right\}$. For each finite set $K \subseteq B_{0}$, we can choose a map $g_{K}: K \rightarrow\left\{\epsilon_{0}, \epsilon_{2}\right\}$ so that $g_{K} \cup g^{\prime}$ is satisfactory for elements of K. Since every vertex of B_{0} has finite degree, it follows by compactness that there is $g: V \rightarrow\{0,1,2\}$ extending g^{\prime}. which is satisfactory for elements of B_{0} and satisfies range $\left(g \uparrow B_{0}\right) \subseteq\left\{\epsilon_{0}, \epsilon_{2}\right\}$. Since g is constantly ϵ_{1} on B_{1}, it follows that g is satisfactory for all elements of B.

Case $\boldsymbol{\mu}>\boldsymbol{\omega}$.

We may assume without loss of generality that
(a) $\overline{A \cup B^{\prime}} \neq V$ for $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right|<|B|$.

For, suppose that $\overline{A \cup B^{\prime}}=V$, where $\omega \leqslant \kappa=\left|B^{\prime}\right|<\mu$. We can assume that $x \in B^{\prime}$ and also that, for all $y \in B^{\prime}$,

$$
\begin{aligned}
& |E(y) \backslash A| \leqslant \kappa \Rightarrow E(y) \backslash A \subseteq B^{\prime}, \\
& |E(y) \backslash A|>\kappa \Rightarrow\left|[E(y) \backslash A] \cap B^{\prime}\right|=\kappa .
\end{aligned}
$$

By the inductive hypothesis, \mathscr{P}_{κ} holds and so there is an extension $h^{\prime}: A \cup B^{\prime} \rightarrow\{0,1,2\}$ of h which is satisfactory for elements of B^{\prime}. Now it follows from Lemma 2 that there is $g: V=\overline{A \cup B^{\prime}} \rightarrow\{0,1,2\}$ extending h^{\prime} which is satisfactory for all elements of $\left[\zeta\left(A \cup B^{\prime}\right)\right] \cup B^{\prime \prime}$, where

$$
B^{\prime \prime}=\left\{y \in B^{\prime}:\left|E(y) \cap\left[V\left(A \cup B^{\prime}\right)\right]\right|>\left|E(y) \cap\left(A \cup B^{\prime}\right)\right|\right\}
$$

But if $y \in B^{\prime} \backslash B^{\prime \prime}$, then $|E(y)|=\left|E(y) \cap\left(A \cup B^{\prime}\right)\right|$ and so h^{\prime} is completely satisfactory for y and, hence, so also is g. Thus g is satisfactory for all the elements of $B=V \backslash A$.

By the assumption (a) it follows that there are subsets $A_{\alpha}(\alpha \leqslant \mu)$ and $B_{\alpha}(\alpha<\mu)$ of V such that
(b) $A_{0}=A, A_{\alpha+1}=\overline{A_{\alpha} \cup B_{\alpha}}, A_{\alpha}=\bigcup_{\beta<\alpha} A_{\beta}\left(\alpha\right.$ a limit) and $A_{\mu}=V$;
(c) $x \in B_{0}$ and $B_{\alpha} \subseteq B \backslash A_{\alpha}(\alpha<\mu)$;
(d) $B_{\alpha}=\varnothing$ if α is a limit;
(e) if α is a non-limit then

$$
\left|B_{\alpha}\right|=|\alpha|+\omega
$$

and, for every $y \in \bigcup_{\beta \leqslant \alpha} B_{\beta}$,

$$
\begin{aligned}
& \left|E(y) \backslash A_{\alpha}\right| \leqslant|\alpha|+\omega \Rightarrow E(y) \backslash A_{\alpha} \subseteq B_{\alpha}, \\
& \left|E(y) \backslash A_{\alpha}\right|>|\alpha|+\omega \Rightarrow\left|\left[E(y) \backslash A_{\alpha}\right] \cap B_{\alpha}\right|=\left|B_{\alpha}\right|
\end{aligned}
$$

If $\alpha<\mu$ and B_{β} has been defined for $\beta<\alpha$, then A_{α} is defined by (b); and it follows by (a) and the fact that (e) holds for $\beta<\alpha$ that $\left|B \backslash A_{\alpha}\right|=|B|$, and so we can choose B_{α} satisfying (c), (d) and (e). At the same time, at non-limit stages, we can also choose the set B_{α} so that it contains the first element of $B \backslash A_{\alpha}$ in some well ordering of B (in type μ); this will ensure that the construction stops with $A_{\mu}=V$.

For an infinite cardinal $\kappa<\mu$, denote by Y_{κ} the set of all elements $y \in \bigcup_{\beta<\kappa^{+}} B_{\beta}$ such that $\left|E(y) \cap \bigcup_{\beta<\kappa^{+}} B_{\beta}\right|=\kappa^{+}$. Since $\left|Y_{\kappa}\right| \leqslant \kappa^{+}$, it follows that there are pairwise disjoint sets $I_{\kappa}(y) \subseteq\left\{\alpha: \kappa \leqslant \alpha<\kappa^{+}\right\}$
$\left(y \in Y_{\kappa}\right)$ each of cardinality κ^{+}such that $E(y) \cap B_{\alpha} \neq \varnothing$ for $\alpha \in I(y)$. Now choose elements $x_{\alpha} \in B_{\alpha}$ for non-limit $\alpha<\mu$ so that $x_{0}=x$ and $x_{\alpha} \in E_{\kappa}(y)$ if $\alpha \in I_{\kappa}(y)$ for some $\kappa<\mu$ and $y \in Y_{\kappa} \cap \bigcup_{\beta<\alpha} B_{\beta}$ (and x_{α} is chosen arbitrarily in B_{α} if there is no such y).

We shall define inductively a continuously increasing sequence of functions $g_{\alpha}: A_{\alpha} \rightarrow\{0,1,2\}$ for $\alpha<\mu$ so that, at non-limit stages, the following conditions hold:
(f) $g_{\alpha+1}\left(x_{\alpha+1}\right) \neq g(y)$ if there are $\kappa<\mu$ and $y \in Y_{\kappa}$ such that $\alpha+1 \in I_{\kappa}(y) ;$
(g) $g_{\alpha+1}$ is satisfactory for every element of

$$
\left[A_{\alpha+1} \backslash\left(A_{\alpha} \cup B_{\alpha}\right)\right] \cup B_{\alpha}^{\prime}
$$

where

$$
B_{\alpha}^{\prime}=\left\{y \in \bigcup_{\beta \leqslant \alpha} B_{\beta}:\left|E(y) \cap\left[A_{\alpha+1} \backslash\left(A_{\alpha} \cup B_{\alpha}\right)\right]\right|>\left|E(y) \cap\left(A_{\alpha} \cup B_{\alpha}\right)\right|\right\}
$$

Put $g_{0}=h$. At limit stages we define $g_{\alpha}=\bigcup_{\beta<\alpha} g_{\beta}$. Suppose that $\alpha<\mu$ and that $g_{\alpha}: A_{\alpha} \rightarrow\{0,1,2\}$ has already been defined. We want to define $g_{\alpha+1}$ so that (f) and (g) hold. If α is a non-limit, then A_{α} is closed and so, by the inductive hypothesis $\mathscr{P}_{|\alpha|+\omega}$ applied to the subgraph $G_{\alpha}=G \upharpoonright A_{\alpha} \cup B_{\alpha}$, there is $g_{\alpha}^{\prime}: A_{\alpha} \cup B_{\alpha} \rightarrow\{0,1,2\}$ which extends g and which is satisfactory for every element of B_{α}. Further, we may assume that $g_{\alpha}^{\prime}\left(x_{\alpha}\right) \neq c_{\alpha}$, where $c_{\alpha}=g_{\alpha}(y)$ if $\alpha \in I_{\kappa}(y)$ for some $\kappa<\mu$ and $y \in Y_{\kappa}$, and $c_{\alpha}=c$ otherwise. If α is a limit ordinal, we simply put $g_{\alpha}^{\prime}=g_{\alpha}$.

We want to apply Lemma 2, with

$$
A=\left.A_{\alpha}\right|_{\beta \leqslant \alpha} B_{\beta} \quad \text { and } \quad B=\bigcup_{\beta \leqslant \alpha} B_{\beta}
$$

Let $z \in \bigcup_{\boldsymbol{\beta} \leqslant \boldsymbol{\alpha}} \boldsymbol{B}_{\boldsymbol{\beta}}$. If

$$
|E(z)|\left(A_{\alpha} \mid \bigcup_{\beta \leqslant \alpha} B_{\beta}\right)\left|\leqslant\left|\bigcup_{\beta \leqslant \alpha} B_{\beta}\right|=|\alpha|+\omega\right.
$$

then

$$
E(z) \\left(A_{\alpha} \mid \bigcup_{\beta \leqslant \alpha} B_{\beta}\right) \subseteq \bigcup_{\beta \leqslant \alpha} B_{\beta} \quad \text { by }(\mathrm{e})
$$

if

$$
|E(z)|\left(A_{\alpha} \mid \bigcup_{\beta \leqslant \alpha} B_{\beta}\right)\left|>\left|\bigcup_{\beta \leqslant \alpha} B_{\beta}\right|\right.
$$

then

$$
\left|\left[E(z) \backslash\left(A_{\alpha} \mid \bigcup_{\beta \leqslant \alpha} B_{\beta}\right)\right] \cap B_{\alpha}\right|=\left|\bigcup_{\beta \leqslant \alpha} B_{\beta}\right| .
$$

Thus the conditions of the lemma are satisfied. Therefore, there is a function $g_{\alpha+1}: A_{\alpha+1} \rightarrow\{0,1,2\}$ extending g_{α}^{\prime} which satisfies both (f) and (g).

This defines the g_{α} for $\alpha \leqslant \mu$. It remains to show that $g=g_{\mu}$ is satisfactory for every element of B. Let $z \in B$. If $z \notin \bigcup_{\alpha<\mu} B_{\alpha}$, then $z \in A_{\alpha+1} \backslash\left(A_{\alpha} \cup B_{\alpha}\right)$ for some $\alpha<\mu$. Since $A_{\alpha+1}$ is the closure of $A_{\alpha} \cup B_{\alpha}$, it follows that $|E(z)|=\left|E(z) \cap A_{\alpha+1}\right|$. Since $g_{\alpha+1}$ is satisfactory for z, it is completely satisfactory and, hence, g is also satisfactory for z. Suppose now that $z \in B_{\alpha}$ for some non-limit $\alpha<\mu$. Let $\beta \leqslant \mu$ be minimal such that $|E(z)|=\left|E(z) \cap A_{\beta}\right|$. Then $\beta>\alpha$ since A_{α} is closed and $z \notin A_{\alpha}$. In order to show that g is satisfactory for z we shall consider separately the following cases.

Case $1 \beta=\gamma+1$ is a successor ordinal.
Case $1(i)|E(z)|=\left|E(z) \cap B_{\gamma}\right|$.
For non-limit $\xi(\alpha \leqslant \xi<\gamma)$, there holds $\left|E(z) \backslash A_{\xi}\right|>|\xi|+\omega$, otherwise $E(z) \subseteq A_{\xi} \cup B_{\xi} \subseteq A_{\gamma}$, which contradicts the choice of β. If $\gamma>\alpha$, then

$$
\left|E(z) \cap A_{\gamma}\right| \geqslant \sum\{|\xi|+\omega: \alpha \leqslant \xi<\gamma\}=|\gamma|+\omega=\left|B_{\gamma}\right| \geqslant|E(z)| .
$$

This again is a contradiction, and so $\gamma=\alpha$. Therefore,

$$
|E(z)|=\left|E(z) \cap B_{\alpha}\right|
$$

Since g_{α}^{\prime} is satisfactory for z, it is completely satisfactory and, hence, so is g.

Case 1 (ii) $|E(z)|>\left|E(z) \cap B_{\gamma}\right|$.
Since $|E(z)|>\left|E(z) \cap A_{\gamma}\right|$, it follows that

$$
\begin{aligned}
|E(z)|=\left|E(z) \cap A_{\gamma+1}\right| & =\left|E(z) \cap\left[A_{\gamma+1} \backslash\left(A_{\gamma} \cup B_{\gamma}\right)\right]\right| \\
& >\left|E(z) \cap\left(A_{\gamma} \cup B_{\gamma}\right)\right|
\end{aligned}
$$

Therefore, $g_{\gamma+1}$ is completly satisfactory for z, and so is g.

Case 2β is a limit ordinal.
Case 2(i) $|E(z)| \leqslant|\beta|$.
For non-limit $\xi(\alpha \leqslant \xi<\beta)$, we have $\left|E(z) \backslash A_{\xi}\right|>|\xi|+\omega$ (else $\left.E(z) \subseteq A_{\xi+1}\right)$ and, hence, $E(z) \cap B_{\xi} \neq \varnothing$. It follows that $|\beta|=\beta$ and

$$
\mid\left\{\xi: \alpha \leqslant \xi<\beta, \xi \in I_{\kappa}(z) \text { for some } \kappa<\beta\right\}|=|\beta|
$$

Since $g_{\xi}(z) \neq g_{\xi}\left(x_{\xi}\right)$ if $\xi \in I_{\kappa}(z)$, it follows that g_{β} is completely satisfactory for z, and therefore so is g.

Case 2(ii) $|E(z)|>|\beta|$.
In this case $|E(z)|=\lambda$ is singular and there are an increasing sequence of cardinals $\lambda_{\iota}(\iota<\operatorname{cf}(\lambda))$ and an increasing sequence of ordinals $\beta_{\imath}(\iota<\operatorname{cf}(\lambda))$ such that $\lambda=\sup \lambda_{\imath}, \beta=\sup \beta_{\imath}$ and

$$
\left|E(z) \cap\left[A_{\beta_{\imath}+1} \backslash\left(A_{\beta_{\imath}} \cup B_{\beta_{\imath}}\right)\right]\right|=\lambda_{\imath}>\left|E(z) \cap\left(A_{\beta_{\imath}} \cup B_{\beta_{\imath}}\right)\right| .
$$

But this implies that $g_{\beta_{\iota}+1}(\iota<\operatorname{cf}(\lambda))$ is satisfactory for z, i.e.

$$
\left|\left\{y \in E(z) \cap A_{\beta_{\imath}+1}: g_{\beta_{\imath}}(y) \neq g_{\beta_{\imath}}(z)\right\}\right|=\lambda_{\imath} \quad(\iota<\operatorname{cf}(\lambda))
$$

From this it follows that g is satisfactory for z, and this completes the proof.

References

[1] R. Aharoni, E. C. Milner \& K. Prikry, Unfriendly partitions of a graph (to appear in J. Combin. Theory)
[2] R. Cowen \& W. Emerson, Proportional colorings of graphs (unpublished)

