Graphs with no unfriendly partitions

Saharon Shelah* and E. C. Milner†

Abstract

An unfriendly *n*-partition of a graph G = (V, E) is a map $c: V \rightarrow \{0, 1, ..., n-1\}$ such that, for every vertex x, there holds

$$|\{y \in E(x) : c(x) = c(y)\}| \le |\{y \in E(x) : c(x) \neq c(y)\}|,\$$

where E(x) is the set of vertices joined to x by an edge of G. We disprove a conjecture of Cowen & Emerson by showing that there is a graph which has no unfriendly 2-partition. However, we also show that every graph has an unfriendly 3-partition.

1 Introduction

Let G = (V, E) be a simple graph. A map $c: V \to \{0, 1, ..., n-1\}$ is called an unfriendly *n*-partition of G (see [1]) if, for every vertex x, there holds

$$|\{y \in E(x) : c(x) = c(y)\}| \le |\{y \in E(x) : c(x) \neq c(y)\}|,\$$

where E(x) is the set of vertices joined to x by an edge of G.

It is easily seen that any finite graph has an unfriendly 2-partition and hence, by compactness, so does every locally finite graph. Cowan & Emerson [2] conjectured that every graph has an unfriendly 2-partition and Aharoni, Milner & Prikry [1] proved this for graphs satisfying either (1) there are only finitely many vertices with infinite degrees, or (2) there are a finite number of infinite cardinals $m_0 < m_1 < \cdots < m_k$ such that

† Research supported by NSERC grant #A5198.

^{*} No. 356. The first author wishes to express his thanks to the Niedersächsches Ministerium für Wissenshaft und Kunst for partially supporting this research.

 m_i is regular for $0 < i \le k$, every vertex of infinite degree has degree m_i for some $i \le k$ and the number of vertices of finite degree is less than m_0 .

The following result disproves the conjecture of [2]. For a cardinal $\lambda = \omega_{\alpha}$ and an ordinal β , we use the notation $\lambda^{(+\beta)}$ to denote the cardinal $\omega_{\alpha+\beta}$.

Theorem 1 There is a graph G = (V, E), of size $|V| = (2^{\omega})^{(+\omega)}$, which has no unfriendly 2-partition and in which every vertex has infinite degree.

A similar argument also proves the following more general version of Theorem 1.

Theorem 2 For any infinite cardinal λ , there is a graph G = (V, E), of size $|V| = \kappa = (2^{\lambda})^{(+\omega)}$, which has no unfriendly 2-partition and in which every vertex has infinite degree.

Before giving proofs of these results, we shall prove the following consistency result which, although weaker, illustrates the main idea in a simpler setting.

Theorem 3 It is consistent that there is a graph G = (V, E) of size $|V| = \omega_{\omega}$ which has no unfriendly 2-partition and the degree of each vertex is either ω , or ω_1 , or ω_{ω} .

We conclude the paper with a proof of the following positive result.

Theorem 4 Every graph has an unfriendly 3-partition.

2 Proof of Theorem 3

For subsets A and B of ω , we write A > B if $|A \setminus B| = \omega$ and $|B \setminus A| < \omega$. It is well known that the following statement (*) is independent of the axioms of set theory. (For example, CH \Rightarrow (*) and (MA + 2^{ω} > ω_1) $\Rightarrow \neg$ (*).)

(*) There is a uniform, non-principal ultrafilter \mathfrak{ll} on ω which is generated by ω_1 sets A_{ξ} ($\xi < \omega_1$) such that $A_{\xi} > A_{\zeta}$ for $\xi < \zeta < \omega_1$ so that, for any set $A \in \mathfrak{ll}$, there is some $\xi < \omega_1$ such that $|A_{\zeta} \setminus A| < \omega$ for $\xi \leq \zeta < \omega_1$.

We show that (*) implies there is a graph with the properties stated in Theorem 3.

We construct the desired graph G = (V, E) as follows. Let $V = X \cup Y \cup Z$, where $X = \{x_n : n < \omega\}$, $Y = \{y_{\alpha, \xi} : \alpha < \omega_{\omega}, \xi < \omega_1\}$ and

$$Z = \{z_{\alpha} : \alpha < \omega_{\omega}\} \text{ and let } E = E_1 \cup E_2 \cup E_3, \text{ where}$$
$$E_1 = \{(x_n, y_{\alpha, \xi}) : \alpha \leq \omega, \xi < \omega_1, n \in A_{\xi}\},$$
$$E_2 = \{(y_{\alpha, \xi}, z_{\alpha}) : \alpha < \omega_{\omega}, \xi < \omega_1\},$$
$$E_3 = \{(x_n, z_{\alpha}) : \alpha < \omega_{\omega}, n < \omega\}.$$

Note that each vertex of X has degree ω_{ω} , each vetex of Y has degree ω and each vertex of Z has degree ω_1 .

We want to show that G has no unfriendly 2-partition. Suppose for a contradiction that $c: V \to \{0, 1\}$ is an unfriendly partition of G. Since \mathfrak{ll} is an ultrafilter on ω , there are $\epsilon < 2$ and $A \in \mathfrak{ll}$ such that $c(x_n) = \epsilon$ if and only if $n \in A$. There is $\xi < \omega_1$ such that $|A_{\zeta} \setminus A| < \omega$ for $\xi \leq \zeta < \omega_1$. Since, by assumption, c is an unfriendly partition, since

$$E(y_{\alpha,\zeta}) = \{z_{\alpha}\} \cup \{x_n : n \in A_{\zeta}, \alpha \leq \omega_n\} \qquad (\alpha < \omega_{\omega}, \zeta < \omega_1)$$

and since $c(x_n) = \epsilon$ for $n \in A$, it follows that $c(y_{\alpha,\zeta}) = 1 - \epsilon$ for $\alpha < \omega_{\omega}$ and $\xi \leq \zeta < \omega_1$. Further, since $E(z_{\alpha}) = X \cup \{y_{\alpha,\zeta} : \zeta < \omega_1\}$ for $\alpha < \omega_{\omega}$, we must also have $c(z_{\alpha}) = \epsilon$. But, for $n \in A$,

$$E(x_n) = \{y_{\alpha,\zeta} : n \in A_{\zeta}, \alpha \leq \omega_n\} \cup Z,$$

and this contradicts the assumption that c is an unfriendly partition since $c(x_n) = c(z)$ ($z \in Z$) and $|E(x_n) \setminus Z| < |Z|$. \Box

3 Proof of Theorem 1

We will use the following notation. For an ordinal we α define $\|\alpha\|$ to be $|\alpha|$ if α is infinite and 0 if α is finite. If $u = (u_0, u_1, \dots, u_{l-1})$ is a sequence of ordinals, the length of u is l(u) = l, and the *last term* of u is

$$lt(u) = \begin{cases} u_{l-1} & \text{if } l \ge 1, \\ 2^{\omega} & \text{if } l = 0. \end{cases}$$

If $\mathfrak{v} = (v_0, v_1, \dots, v_l)$ has length l+1 and $v_i = u_i$ (i < l), then we write $\mathfrak{v} = \mathfrak{u}^{\wedge} v_l$ and we also write $\mathfrak{u} = \mathfrak{v}^*$ to indicate that \mathfrak{u} is obtained from \mathfrak{v} by omitting the last term v_l . Put

$$\mathscr{I} = \{ (u_0, u_1, \dots, u_{l-1}) : 2^{\omega} > ||u_0|| > ||u_1|| > \dots > ||u_{l-1}|| \},$$

$$\mathscr{I} = \{ (v_0, v_1, \dots, v_{l-1}) : v_i < \omega_1 \ (i < l) \}.$$

Let \mathfrak{l} be a uniform, non-principal ultrafilter on ω . We shall define sets $A_{i,\rho} \in \mathfrak{l}$ for $i \in \mathcal{I}$ and $\rho < |\mathrm{lt}(i)|$ by induction on l(i) as follows. Let $A_{\Box,\rho}$ ($\rho < 2^{\omega}$) be any enumeration of the members of \mathfrak{l} , where \Box denotes the empty sequence. Now suppose that $A_{i,\rho}$ has been defined for $i \in \mathcal{I}$, $l(i) \leq l$ and $\rho < |lt(i)|$. For $i \in \mathcal{I}$, l(i) = l+1 and $\rho < |lt(i)|$, put

$$A_{\mathfrak{i},\rho} = A_{\mathfrak{i}^*,h(\theta,\rho)}$$

where $\theta = lt(i)$ and $h(\theta, \cdot)$ is any one-one map from $|\theta|$ onto θ .

Put $\kappa_n = (2^{\omega})^{(+n)}$ and $\kappa = \sum {\kappa_n : n < \omega}$. We define the graph G = (V, E) of size κ as follows. Put $V = X \cup Y \cup Z$, where

$$X = \{x_n : n < \omega\}, \qquad Y = \{y_{i,j}^{\alpha} : \alpha < \kappa, i \in \mathcal{I}, j \in \mathcal{I}, l(j) = l(i) + 1\},$$
$$Z = \{z_{i,j}^{\alpha} : \alpha < \kappa, i \in \mathcal{I}, j \in \mathcal{I}, l(j) = l(i)\}.$$

The edge set of G is $E = E_1 \cup E_2 \cup E_3$, where

$$E_1 = \{\{x_n, y_{i,j}^{\alpha}\} : y_{i,j}^{\alpha} \in Y, \ k = \operatorname{lt}(i) < \omega, \ n \in \bigcap \{A_{i,\rho} : \rho < k\}$$

and $\alpha \leq \kappa_n\},$

$$E_2 = \{\{y_{i,j}^{\alpha}, z_{i_1,j_1}^{\alpha}\} : y_{i,j}^{\alpha} \in Y, \ z_{i_1,j_1}^{\alpha} \in Z, \ \alpha < \kappa$$

and either $i = i_1^*, \ j_1 = j \text{ or } i = i_1, \ j_1 = j^*\},$

$$E_3 = \{\{x_n, z_{\Box, \Box}^{\alpha}\} : n < \omega, \alpha < \kappa\}$$

Note that every vertex has infinite degree.

We will assume that there is an unfriendly partition $c: V \rightarrow \{0, 1\}$ of G and derive a contradiction.

Since \mathfrak{l} is an utrafilter, there are $A \in \mathfrak{l}$ and $\epsilon \in \{0, 1\}$ such that $c(x_n) = \epsilon$ if and only if $n \in A$. We will prove that, whenever

$$\alpha < \kappa, \quad i \in \mathcal{I}, \quad j \in \mathcal{J}, \quad l(j) = l(i) + 1, \quad \gamma = lt(i), \quad (1)$$

and there is a $\rho < \gamma$ such that $A_{i,\rho} = A$ holds, then

$$c(y_{i,i}^{\alpha}) = 1 - \epsilon \tag{2}$$

and

$$c(z_{i,j^*}^{\alpha}) = \epsilon. \tag{3}$$

Note first that (3) follows from (2). For $E(z_{i,i^*}^{\alpha}) = C_1 \cup C_2$, where

$$C_1 = \{ y_{i,j^*}^{\alpha} : \zeta < \omega_1 \} \quad \text{and} \quad C_2 = \begin{cases} \{ y_{i^*,j^*}^{\alpha} \} & \text{if } i \neq \Box, \\ X & \text{if } i = j^* = \Box. \end{cases}$$

Since $|C_1| = \omega_1 > |C_2|$ and since, by (2), $c(y_{i,j}*\zeta) = 1 - \epsilon$, (3) follows. We will prove (2) by induction on $\gamma = \text{lt}(i)$.

Consider first the case when $\gamma < \omega$. In this case there is no $i_1 \in \mathcal{I}$ such that $i = i_1^*$. Therefore,

$$E(y_{i,j}^{\alpha}) = \{x_n : \kappa_n > \alpha \text{ and } n \in \bigcap \{A_{i,\sigma} : \sigma < \gamma\} \cup \{z_{i,j^*}^{\alpha}\}$$

But $\bigcap \{A_{i,\sigma} : \sigma < \gamma\}$ is an infinite subset of $A_{i,\rho} = A$ and only finitely many $n < \omega$ fail to satisfy the condition $\kappa_n > \alpha$. Therefore, since c is an unfriendly partition of G, it follows that $c(y_{i,i}^{\alpha}) = 1 - \epsilon$.

Now suppose that $\gamma \ge \omega$. In this case,

$$E(y_{i,j}^{\alpha}) = \{z_{i\uparrow\tau,j}^{\alpha} : \tau < |\gamma|\} \cup \{z_{i,j}^{\alpha}\}.$$

By the hypothesis (1), there is some $\rho < |\gamma|$ such that $A = A_{i,\rho}$. Also, for any τ such that $\rho < \tau < |\gamma|$, there is some $\sigma < |\tau|$ such that $h(\tau, \sigma) = \rho$, and so

$$A_{\mathfrak{i}^{\wedge}\tau,\sigma}=A_{\mathfrak{i},\rho}=A.$$

Thus, by the inductive hypothesis, $c(z_{i,\tau,i}^{\alpha}) = \epsilon$. It follows that $c(y_{i,j}^{\alpha}) = 1 - \epsilon$, and this completes the proof of (2) and (3) under the hypothesis (1).

In particular, by (3), $c(z_{\Box,\Box}^{\alpha}) = \epsilon$ for every $\alpha < \kappa$.

For $n \in A$, we have that

$$E(x_n) = D_1 \cup D_2,$$

where

$$D_1 = \{ y_{i,j}^{\alpha} \in Y : \gamma = \operatorname{lt}(i) < \omega, n \in \bigcap \{ A_{i,\rho} : \rho < \gamma \} \text{ and } \alpha \leq \kappa_n \},\$$
$$D_2 = \{ z_{\Box,\Box}^{\alpha} : \alpha < \kappa \}.$$

Since $|D_1| \leq |\mathcal{I}| \kappa_n < \kappa = |D_2|$ and $c(x_n) = c(z)$ for all $z \in D_2$, this contradicts the assumption that c is an unfriendly partition. \Box

4 Sketch of the proof of Theorem 2

The proof is similar to the proof of Theorem 1. First we choose an ultrafilter \mathfrak{U} on λ such that

$$B_n = \{\omega \alpha + n : \alpha < \lambda\} \notin \mathbb{I} \qquad (n < \omega).$$

Now continue as in the proof of Theorem 1 using this ultrafilter and replacing 2^{ω} by 2^{λ} , ω_1 by λ^+ , the cardinal successor of λ , X by $\{x_{\xi}: \xi < \lambda\}$ and replacing E_1 by

$$\{\{x_{\xi}, y_{i,j}^{\alpha}\} : \gamma = \operatorname{lt}(i) < \omega, \xi \in \bigcap \{A_{i,\rho} : \rho < \gamma\}$$

and $(\exists n)(\xi \in B_n \text{ and } \alpha \leq \kappa_n)\}. \square$

5 Unfriendly 3-partitions

The following Bernstein-type lemma is probably known.

Lemma 1 Let $\mathcal{A} = \langle A_i : i \in I \rangle$ be a family of sets such that $|A_i| \ge |I| \ge \omega$. Then there are pairwise disjoint sets $B_i \subseteq A_i$ $(i \in I)$ such that $|B_i| = |A_i|$.

Proof Let

$$D = \{ |A_i| : i \in I \}, \qquad R = \{ \kappa \in D : \kappa > \sum \{ \mu : \mu < \kappa, \mu \in D \} \}$$

and, for $\kappa \in R$, let $I(\kappa) = \{i \in I : |A_i| \ge \kappa\}$. We can inductively choose subsets $A_i(\kappa) \subseteq A_i$ for $\kappa \in R$ and $i \in I(\kappa)$ so that $|A_i(\kappa)| = \kappa$ and so that $A_i(\kappa) \cap A_i(\mu) = \emptyset$ if $(\kappa, i) \neq (\mu, j)$. The sets

$$B_i = \bigcup \{A_i(\kappa) : i \in I(\kappa), \kappa \in R\} \quad (i \in I)$$

satisfy the conditions of the lemma. \Box

Let G = (V, E) be a graph. For a subset $A \subseteq V$, we define

$$nbly(A) = \{x \in V : |E(x) \cap A| = |E(x)|\}$$

The set A is *closed* if $nbly(A) \subseteq A$, and the *closure* of A is \overline{A} , the smallest closed set containing A. Note that, if we write $A^* = A \cup nbly(A)$, then $\overline{A} = A_{\alpha}$, where $\langle A_{\xi} : \xi \leq \alpha \rangle$ is a continuous increasing sequence of sets such that $A_0 = A$, $A_{\xi+1} = A_{\xi}^*$ and $A_{\alpha}^* = A_{\alpha}$. Thus we may write $\overline{A \setminus A} = \{a_i : i < \lambda\}$, where

$$|E(a_i)| = |E(a_i) \cap (A \cup \{a_i : j < i\}| \qquad (i < \lambda).$$

If h is a function defined on a subset $A \subseteq V$, then we say that h is *satisfactory* for the element $a \in A$ if

$$|\{y \in A \cap E(a) : h(y) = h(a)\}| \leq |\{y \in A \cap E(a) : h(y) \neq h(a)\}|,$$

and h is completely satisfactory for a if

$$|\{y \in E(a) : y \notin A \text{ or } h(y) = h(a)\}| \leq |\{y \in A \cap E(a) : h(y) \neq h(a)\}|.$$

Of course, if h is satisfactory on the set $B \subseteq A$, then it is completely satisfactory on $B \cap nbly(A)$. It is also clear that, if h is completely satisfactory on $B \subseteq A$, then so also is any extension of h. In particular, if the domain of h is V, the terms satisfactory and completely satisfactory coincide. An *unfriendly 3-partition* of the graph G is a function $h: V \to \{0, 1, 2\}$ which is satisfactory for every vertex. **Lemma 2** Let $A, B \subseteq V, B$ infinite and $A \cap B = \emptyset$, and suppose that, for $z \in B$,

$$|E(z) \setminus A| \le |B| \Rightarrow E(z) \setminus A \subseteq B,$$

$$|E(z) \setminus A| > |B| \Rightarrow |[E(z) \setminus A] \cap B| = |B|$$

If $h: A \cup B \to \{0, 1, 2\}$, then there is $g: \overline{A \cup B} \to \{0, 1, 2\}$ extending h which is satisfactory for every element of $[\overline{A \cup B} \setminus (A \cup B)] \cup B'$, where $B' = \{b \in B : |E(b) \cap [\overline{A \cup B} \setminus (A \cup B)]| > |E(b) \cap (A \cup B)|\}.$

Proof Let $b \in B'$. If $|E(b) \setminus A| \leq |B|$, then $E(b) \setminus A \subseteq B$ and so $E(b) \cap \overline{A \cup B} = E(b) \cap (A \cup B)$,

which is a contradiction. Therefore, $|E(b) \setminus A| > |B|$ and hence

$$|[E(b) \setminus A] \cap B| = |B|.$$

It follows that

$$|E(b) \cap [\overline{A \cup B} \setminus (A \cup B)]| > |B|$$

for $b \in B'$ and, hence, by Lemma 1, there are pairwise disjoint sets

 $F(b) \subseteq E(b) \cap [\overline{A \cup B} \setminus (A \cup B)] \qquad (b \in B')$

such that $|F(b)| = |E(b) \cap \overline{A \cup B}|$.

Let $\{z_i : i < \lambda\}$ be an enumeration of the elements of $\overline{A \cup B} \setminus (A \cup B)$ such that

$$|E(z_i)| = |E(z_i) \cap (A \cup B \cup \{z_j : j < i\})| \qquad (i < \lambda).$$

We extend h to the function $g: \overline{A \cup B} \to \{0, 1, 2\}$ by choosing $g(z_i) \in \{0, 1, 2\}$ inductively for $i < \lambda$. At the *i*-th step there are two possible choices for $g(z_i)$ that will ensure that g is satisfactory for z_i ; consequently, if $z_i \in F(b)$ for some $b \in B'$, then we may also choose $g(z_i)$ different from g(b). The function g so constructed satisfies the requirements of the lemma. \Box

We now prove Theorem 4 that every graph has an unfriendly 3-partition.

Proof We will prove by induction on the infinite cardinal μ that the following assertion holds.

$$\mathcal{P}_{\mu}: Let \ G = (V, E) \ be \ a \ graph \ and \ let \ A, B \subseteq V \ be \ subsets \ such \ that$$
$$A = \overline{A}, \qquad A \cup B = V, \qquad A \cap B = \emptyset, \qquad |B| = \mu.$$

If $x \in B$, c < 3 and $h: A \to \{0, 1, 2\}$, then there is $g: V \to \{0, 1, 2\}$ extending h such that $g(x) \neq c$ and g is satisfactory for every element of B.

The theorem follows from this since every finite graph has an unfriendly 2-partition and \mathcal{P}_{μ} (with $A = \emptyset$ and B = V) implies that every graph of cardinality μ has an unfriendly 3-partition.

Case $\mu = \omega$.

Since A is closed and B is denumerable, it follows that $0 < |E(y)| \le \omega$ for $y \in B$. We define an ordinal $\alpha < \omega_1$ and subsets B_β $(\beta \le \alpha)$ of B so that

$$B_{0} = \{ y \in B : |E(y)| < \omega \},\$$

$$B_{\beta} = \left\{ y \in B \setminus \bigcup_{\gamma < \beta} B_{\gamma} : \left| E(y) \cap \bigcup_{\gamma < \beta} B \right| = \omega \right\} \quad (0 < \beta < \alpha)$$

and $E(y) \cap \bigcup_{\beta < \alpha} B_{\beta}$ is finite for all $y \in B_{\alpha} = B \setminus \bigcup_{\beta < \alpha} B_{\beta}$. Let $\{\epsilon_1, \epsilon_2, \epsilon_3\} = \{0, 1, 2\}$ be such that

$$c \notin \begin{cases} \{\epsilon_0, \epsilon_2\} & \text{if } x \in B_0, \\ \{\epsilon_0, \epsilon_1\} & \text{if } x \notin B_0. \end{cases}$$

We will construct the extension g of h so that range $(g \mid B_0) \subseteq \{\epsilon_0, \epsilon_2\}$ and range $(g \mid B \mid B_0) \subseteq \{\epsilon_0, \epsilon_1\}$. This will ensure that $g(x) \neq c$.

First define $g_1 = \{(y, \epsilon_1) : y \in B_1\}$. Now inductively define $g_\beta : B_\beta \rightarrow \{\epsilon_0, \epsilon_1\}$ for $1 < \beta < \alpha$ in such a way that, for each $y \in B_\beta$,

$$|\{z: z \in B_{\gamma} \ (1 \leq \gamma < \beta), \ g_{\gamma}(z) \neq g_{\beta}(y)\}| = \omega.$$

The set B_{α} is either empty or denumerable and every vertex of $G \mid B_{\alpha}$ has infinite degree; so there is a map $g_{\alpha} \colon B_{\alpha} \to {\epsilon_0, \epsilon_1}$ that is satisfactory for every element of B_{α} . The function $g' = h \cup \bigcup_{1 \le \beta \le \alpha} g_{\beta}$, defined on $V \setminus B_0$, is completely satisfactory for the elements of $\bigcup_{1 \le \beta \le \alpha} B_{\beta}$.

We now imitate the proof that any locally finite graph has an unfriendly 2-partition to define $g'': B_0 \to {\epsilon_0, \epsilon_1}$. For each finite set $K \subseteq B_0$, we can choose a map $g_K: K \to {\epsilon_0, \epsilon_2}$ so that $g_K \cup g'$ is satisfactory for elements of K. Since every vertex of B_0 has finite degree, it follows by compactness that there is $g: V \to {0, 1, 2}$ extending g' which is satisfactory for elements of B_0 and satisfies range $(g \mid B_0) \subseteq {\epsilon_0, \epsilon_2}$. Since g is constantly ϵ_1 on B_1 , it follows that g is satisfactory for all elements of B.

Case $\mu > \omega$.

We may assume without loss of generality that

(a) $\overline{A \cup B'} \neq V$ for $B' \subseteq B$ with |B'| < |B|.

For, suppose that $\overline{A \cup B'} = V$, where $\omega \le \kappa = |B'| < \mu$. We can assume that $x \in B'$ and also that, for all $y \in B'$,

$$\begin{aligned} |E(y) \setminus A| &\leq \kappa \Rightarrow E(y) \setminus A \subseteq B', \\ |E(y) \setminus A| &> \kappa \Rightarrow |[E(y) \setminus A] \cap B'| = \kappa \end{aligned}$$

By the inductive hypothesis, \mathcal{P}_{κ} holds and so there is an extension $h': A \cup B' \to \{0, 1, 2\}$ of h which is satisfactory for elements of B'. Now it follows from Lemma 2 that there is $g: V = \overline{A \cup B'} \to \{0, 1, 2\}$ extending h' which is satisfactory for all elements of $[V \setminus (A \cup B')] \cup B''$, where

$$B'' = \{y \in B' : |E(y) \cap [V \setminus (A \cup B')]| > |E(y) \cap (A \cup B')|\}$$

But if $y \in B' \setminus B''$, then $|E(y)| = |E(y) \cap (A \cup B')|$ and so h' is completely satisfactory for y and, hence, so also is g. Thus g is satisfactory for all the elements of $B = V \setminus A$.

By the assumption (a) it follows that there are subsets A_{α} ($\alpha \leq \mu$) and B_{α} ($\alpha < \mu$) of V such that

- (d) $B_{\alpha} = \emptyset$ if α is a limit;
- (e) if α is a non-limit then

$$|B_{\alpha}| = |\alpha| + \omega$$

and, for every
$$y \in \bigcup_{\beta \le \alpha} B_{\beta}$$
,
 $|E(y) \setminus A_{\alpha}| \le |\alpha| + \omega \Rightarrow E(y) \setminus A_{\alpha} \subseteq B_{\alpha}$,
 $|E(y) \setminus A_{\alpha}| > |\alpha| + \omega \Rightarrow |[E(y) \setminus A_{\alpha}] \cap B_{\alpha}| = |B_{\alpha}|$

If $\alpha < \mu$ and B_{β} has been defined for $\beta < \alpha$, then A_{α} is defined by (b); and it follows by (a) and the fact that (e) holds for $\beta < \alpha$ that $|B \setminus A_{\alpha}| = |B|$, and so we can choose B_{α} satisfying (c), (d) and (e). At the same time, at non-limit stages, we can also choose the set B_{α} so that it contains the first element of $B \setminus A_{\alpha}$ in some well ordering of B (in type μ); this will ensure that the construction stops with $A_{\mu} = V$.

For an infinite cardinal $\kappa < \mu$, denote by Y_{κ} the set of all elements $y \in \bigcup_{\beta < \kappa^+} B_{\beta}$ such that $|E(y) \cap \bigcup_{\beta < \kappa^+} B_{\beta}| = \kappa^+$. Since $|Y_{\kappa}| \le \kappa^+$, it follows that there are pairwise disjoint sets $I_{\kappa}(y) \subseteq \{\alpha : \kappa \le \alpha < \kappa^+\}$

 $(y \in Y_{\kappa})$ each of cardinality κ^+ such that $E(y) \cap B_{\alpha} \neq \emptyset$ for $\alpha \in I(y)$. Now choose elements $x_{\alpha} \in B_{\alpha}$ for non-limit $\alpha < \mu$ so that $x_0 = x$ and $x_{\alpha} \in E_{\kappa}(y)$ if $\alpha \in I_{\kappa}(y)$ for some $\kappa < \mu$ and $y \in Y_{\kappa} \cap \bigcup_{\beta < \alpha} B_{\beta}$ (and x_{α} is chosen arbitrarily in B_{α} if there is no such y).

We shall define inductively a continuously increasing sequence of functions $g_{\alpha}: A_{\alpha} \rightarrow \{0, 1, 2\}$ for $\alpha < \mu$ so that, at non-limit stages, the following conditions hold:

- (f) $g_{\alpha+1}(x_{\alpha+1}) \neq g(y)$ if there are $\kappa < \mu$ and $y \in Y_{\kappa}$ such that $\alpha+1 \in I_{\kappa}(y)$;
- (g) $g_{\alpha+1}$ is satisfactory for every element of

$$[A_{\alpha+1} \setminus (A_{\alpha} \cup B_{\alpha})] \cup B'_{\alpha},$$

where

$$B'_{\alpha} = \left\{ y \in \bigcup_{\beta \leq \alpha} B_{\beta} : |E(y) \cap [A_{\alpha+1} \setminus (A_{\alpha} \cup B_{\alpha})]| > |E(y) \cap (A_{\alpha} \cup B_{\alpha})| \right\}.$$

Put $g_0 = h$. At limit stages we define $g_{\alpha} = \bigcup_{\beta < \alpha} g_{\beta}$. Suppose that $\alpha < \mu$ and that $g_{\alpha} \colon A_{\alpha} \to \{0, 1, 2\}$ has already been defined. We want to define $g_{\alpha+1}$ so that (f) and (g) hold. If α is a non-limit, then A_{α} is closed and so, by the inductive hypothesis $\mathcal{P}_{|\alpha|+\omega}$ applied to the subgraph $G_{\alpha} = G \mid A_{\alpha} \cup B_{\alpha}$, there is $g'_{\alpha} \colon A_{\alpha} \cup B_{\alpha} \to \{0, 1, 2\}$ which extends g and which is satisfactory for every element of B_{α} . Further, we may assume that $g'_{\alpha}(x_{\alpha}) \neq c_{\alpha}$, where $c_{\alpha} = g_{\alpha}(y)$ if $\alpha \in I_{\kappa}(y)$ for some $\kappa < \mu$ and $y \in Y_{\kappa}$, and $c_{\alpha} = c$ otherwise. If α is a limit ordinal, we simply put $g'_{\alpha} = g_{\alpha}$.

We want to apply Lemma 2, with

$$A = A_{\alpha} \bigvee_{\beta \leq \alpha} B_{\beta}$$
 and $B = \bigcup_{\beta \leq \alpha} B_{\beta}$.

Let $z \in \bigcup_{\beta \leq \alpha} B_{\beta}$. If $\left| E(z) \setminus \left(A_{\alpha} \setminus \bigcup_{\beta \leq \alpha} B_{\beta} \right) \right| \leq \left| \bigcup_{\beta \leq \alpha} B_{\beta} \right| = |\alpha| + \omega,$

then

$$E(z) \setminus \left(A_{\alpha} \setminus \bigcup_{\beta \leqslant \alpha} B_{\beta} \right) \subseteq \bigcup_{\beta \leqslant \alpha} B_{\beta} \qquad \text{by (e)};$$

if

Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 27 Jun 2018 at 12:48:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511983917.031

$$\left| E(z) \setminus \left(A_{\alpha} \setminus \bigcup_{\beta \leq \alpha} B_{\beta} \right) \right| > \left| \bigcup_{\beta \leq \alpha} B_{\beta} \right|$$

then

$$\left| \left[E(z) \setminus \left(A_{\alpha} \setminus \bigcup_{\beta \leq \alpha} B_{\beta} \right) \right] \cap B_{\alpha} \right| = \left| \bigcup_{\beta \leq \alpha} B_{\beta} \right|.$$

Thus the conditions of the lemma are satisfied. Therefore, there is a function $g_{\alpha+1}: A_{\alpha+1} \rightarrow \{0, 1, 2\}$ extending g'_{α} which satisfies both (f) and (g).

This defines the g_{α} for $\alpha \leq \mu$. It remains to show that $g = g_{\mu}$ is satisfactory for every element of *B*. Let $z \in B$. If $z \notin \bigcup_{\alpha < \mu} B_{\alpha}$, then $z \in A_{\alpha+1} \setminus (A_{\alpha} \cup B_{\alpha})$ for some $\alpha < \mu$. Since $A_{\alpha+1}$ is the closure of $A_{\alpha} \cup B_{\alpha}$, it follows that $|E(z)| = |E(z) \cap A_{\alpha+1}|$. Since $g_{\alpha+1}$ is satisfactory for *z*, it is completely satisfactory and, hence, *g* is also satisfactory for *z*. Suppose now that $z \in B_{\alpha}$ for some non-limit $\alpha < \mu$. Let $\beta \leq \mu$ be minimal such that $|E(z)| = |E(z) \cap A_{\beta}|$. Then $\beta > \alpha$ since A_{α} is closed and $z \notin A_{\alpha}$. In order to show that *g* is satisfactory for *z* we shall consider separately the following cases.

Case 1 $\beta = \gamma + 1$ is a successor ordinal.

Case 1(i) $|E(z)| = |E(z) \cap B_{\gamma}|$.

For non-limit ξ ($\alpha \leq \xi < \gamma$), there holds $|E(z) \setminus A_{\xi}| > |\xi| + \omega$, otherwise $E(z) \subseteq A_{\xi} \cup B_{\xi} \subseteq A_{\gamma}$, which contradicts the choice of β . If $\gamma > \alpha$, then

$$|E(z) \cap A_{\gamma}| \geq \sum \{|\xi| + \omega : \alpha \leq \xi < \gamma\} = |\gamma| + \omega = |B_{\gamma}| \geq |E(z)|.$$

This again is a contradiction, and so $\gamma = \alpha$. Therefore,

$$|E(z)| = |E(z) \cap B_{\alpha}|.$$

Since g'_{α} is satisfactory for z, it is completely satisfactory and, hence, so is g.

Case 1(ii)
$$|E(z)| > |E(z) \cap B_{\gamma}|$$
.
Since $|E(z)| > |E(z) \cap A_{\gamma}|$, it follows that
 $|E(z)| = |E(z) \cap A_{\gamma+1}| = |E(z) \cap [A_{\gamma+1} \setminus (A_{\gamma} \cup B_{\gamma})]|$
 $> |E(z) \cap (A_{\gamma} \cup B_{\gamma})|$.

Therefore, $g_{\gamma+1}$ is completly satisfactory for z, and so is g.

Case 2 β is a limit ordinal.

Case 2(i) $|E(z)| \leq |\beta|$.

For non-limit ξ ($\alpha \leq \xi < \beta$), we have $|E(z) \setminus A_{\xi}| > |\xi| + \omega$ (else $E(z) \subseteq A_{\xi+1}$) and, hence, $E(z) \cap B_{\xi} \neq \emptyset$. It follows that $|\beta| = \beta$ and

 $|\{\xi : \alpha \leq \xi < \beta, \xi \in I_{\kappa}(z) \text{ for some } \kappa < \beta\}| = |\beta|.$

Since $g_{\xi}(z) \neq g_{\xi}(x_{\xi})$ if $\xi \in I_{\kappa}(z)$, it follows that g_{β} is completely satisfactory for z, and therefore so is g.

Case 2(*ii*) $|E(z)| > |\beta|$.

In this case $|E(z)| = \lambda$ is singular and there are an increasing sequence of cardinals λ_{ι} ($\iota < cf(\lambda)$) and an increasing sequence of ordinals β_{ι} ($\iota < cf(\lambda)$) such that $\lambda = \sup \lambda_{\iota}$, $\beta = \sup \beta_{\iota}$ and

$$|E(z)\cap [A_{\beta_{\iota}}\cup B_{\beta_{\iota}})]| = \lambda_{\iota} > |E(z)\cap (A_{\beta_{\iota}}\cup B_{\beta_{\iota}})|.$$

But this implies that $g_{\beta,+1}$ ($\iota < cf(\lambda)$) is satisfactory for z, i.e.

$$|\{y \in E(z) \cap A_{\beta_{\iota}+1} : g_{\beta_{\iota}}(y) \neq g_{\beta_{\iota}}(z)\}| = \lambda_{\iota} \qquad (\iota < \mathrm{cf}(\lambda)).$$

From this it follows that g is satisfactory for z, and this completes the proof. \Box

References

- [1] R. Aharoni, E. C. Milner & K. Prikry, Unfriendly partitions of a graph (to appear in *J. Combin. Theory*)
- [2] R. Cowen & W. Emerson, Proportional colorings of graphs (unpublished)