Graphs with no unfriendly partitions

Saharon Shelah* and E. C. Milnert

Abstract

An unfriendly n-partition of a graph G = (V,E) is a map ¢: V—
{0,1,...,n—1} such that, for every vertex x, there holds

Hy € Ex): clx) = c(0)} < [{y € E(®): c(x) # c(»},

where E(x) is the set of vertices joined to x by an edge of G. We
disprove a conjecture of Cowen & Emerson by showing that there is a
graph which has no unfriendly 2-partition. However, we also show that
every graph has an unfriendly 3-partition.

1 Introduction

Let G = (V,E) be a simple graph. A map c: V— {0,1,...,n—1} is
called an unfriendly n-partition of G (see [1]) if, for every vertex x,
there holds

H{y € E®): cx)=c(y}| < |{y € E(x): c(x) # c(},

where E(x) is the set of vertices joined to x by an edge of G.

It is easily seen that any finite graph has an unfriendly 2-partition and
hence, by compactness, so does every locally finite graph. Cowan &
Emerson [2] conjectured that every graph has an unfriendly 2-partition
and Aharoni, Milner & Prikry [1] proved this for graphs satisfying either
(1) there are only finitely many vertices with infinite degrees, or (2) there
are a finite number of infinite cardinals my < m; < - -+ < my such that
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m; is regular for 0 < i < k, every vertex of infinite degree has degree m
for some i < k and the number of vertices of finite degree is less than my.

The following result disproves the conjecture of [2]. For a cardinal
A = w, and an ordinal 8, we use the notation AP to denote the cardi-
nal @, 5.

Theorem 1 There is a graph G = (V,E), of size |V| = 2°)"*®), which
has no unfriendly 2-partition and in which every vertex has infinite
degree.

A similar argument also proves the following more general version of
Theorem 1.

Theorem 2 For any infinite cardinal A, there is a graph G = (V,E), of
size |V| =« =Y, which has no unfriendly 2-partition and in
which every vertex has infinite degree.

Before giving proofs of these results, we shall prove the following
consistency result which, although weaker, illustrates the main idea in a
simpler setting.

Theorem 3 It is consistent that there is a graph G = (V,E) of size
|V| = w, which has no unfriendly 2-partition and the degree of each ver-
tex is either w, or w,, Or w,,.

We conclude the paper with a proof of the following positive result.

Theorem 4 Every graph has an unfriendly 3-partition.

2 Proof of Theorem 3

For subsets A and B of w, we writt A > B if |A\B| = w and
|B\A| < w. It is well known that the following statement (*) is
independent of the axioms of set theory. (For example, CH = (*) and
(MA+2° > @) = —(%).)

(*) There is a uniform, non-principal ultrafilter 11 on  which is gen-
erated by w; sets A, (£ < w;) such that A, > A, for § <{ < w;
so that, for any set A € lI, there is some & < w; such that
|ANA| < o for ¢ < ¢ < wy.

We show that (*) implies there is a graph with the properties stated in

Theorem 3.
We construct the desired graph G = (V,E) as follows. Let V =
XUYUZ, where X={x,:n<o}, Y={y,;:a<ow,,{<w} and
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Graphs with no unfriendly partitions 375

Z={,:a<w,}andlet E = E;UE,UE,, where
E;={(n,yo,0) @ <0, §<w,n € A},
Ey ={(ya¢:24): @ < 0,, & <o},
Eys={(x,,2,): a < w,,n < w}.

Note that each vertex of X has degree w,,, each vetex of Y has degree o
and each vertex of Z has degree ;.

We want to show that G has no unfriendly 2-partition. Suppose for a
contradiction that c¢: V — {0, 1} is an unfriendly partition of G. Since I
is an ultrafilter on w, there are € < 2 and A € Ul such that c(x,) = € if
and only if n € A. There is £ <w; such that |[A\A| < for
¢ < { < w;. Since, by assumption, c¢ is an unfriendly partition, since

E(ya,{) ={za}U{xn:nEA§’aswn} (a<ww’{<w1)
and since c(x,) =€ for n € A, it follows that c(y, ;) = 1—¢€ for
a < w, and §{ < { < w;. Further, since E(z,) = XU{yq ;: { < @} for
a < w,, we must also have ¢(z,) = €. But, forn € A,
E(x,,) = {ya’{ ‘n €€ A{, a < wn}UZ,

and this contradicts the assumption that ¢ is an unfriendly partition since
cx,) = c(2) (z € Z) and |E(x,)\Z| < |Z|. O

3 Proof of Theorem 1

We will use the following notation. For an ordinal we a define |« to
be |a| if a is infinite and O if a is finite. If u = (ug, uq,..., %) is a
sequence of ordinals, the length of u is /(1) = I, and the last term of u is
S| ifl= 1,
ltw) { 2 ifl=0.
If b= (vy,v4,...,0;) has length I+1 and v; = u; (i <), then we
write b = u*y; and we also write 1 = b* to indicate that u is obtained
from b by omitting the last term v;. Put

$ = {luo,ur,..,up-1) 1 2° > [lugl| > Jlugll > ... > i},
$ = {wo,v1,--,021) 1 v; < @y ( < D}

Let I1 be a uniform, non-principal ultrafilter on @. We shall define
sets A; , €Ul for i € $ and p < [It(i)| by induction on /(i) as follows.
Let Ag , (p < 2“) be any enumeration of the members of 1, where O
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denotes the empty sequence. Now suppose that A; , has been defined
for i€ $, I(i) <! and p < [It(})|. For i € 9, I(i):= I+1 and p < [It(i)|,
put
Aip = A no,p)
where 6 = It(i) and k(6,-) is any one—one map from || onto 6.
Put k, = 2°)"" and k = Y {k,:n < w}. We define the graph
G = (V,E) of size k as follows. Put V= XUYUZ, where

X={,:n<w}, Y={f:a<xk i€ i€ I(=I1)+1},
Z={f:a<k i€$,i€ 1) =ID).
The edge set of G is E = E;UE,UE;, where
E; = {{x,,y5} v €Y, k=1t(i)) <w,n € N{A;,: p <k}
and a < k,},
E,={{yd, 25y €Y, 25, €EZ,a<k
and either i = if, j; = jori =1y, j; = i*},
E3 = {{x",ZE’D} n<o,a<< K}.
Note that every vertex has infinite degree.
We will assume that there is an unfriendly partition c¢: V — {0,1} of
G and derive a contradiction.
Since U is an utrafilter, there are A € I and € € {0,1} such that
c(x,) = e if and only if n € A. We will prove that, whenever
a<k, 1€9% j€F I)=I)+1, y=1d, @)
and there is a p < y such that 4; , = A holds, then
C(yi?i) =1-e€ (2)
and
c(zf+) = €. 3)
Note first that (3) follows from (2). For E(z{%:) = C;UC,, where
e} ifi#0,
X ift =j* =0.
Since |C;| = w; > |C,| and since, by (2), c(y; j+¢) = 1—¢€, (3) follows.
We will prove (2) by induction on y = It(i).
Consider first the case when y < w. In this case there is no i) € $
such that 1 = if. Therefore,

Cl = {yit’li*/\gi { < wl} and C2 = {
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E(y?) = {x,:x, >aand n € N{4;,: 0 <y U{z8}.

But M {A; ,: 0 <} is an infinite subset of A; , = A and only finitely
many n < w fail to satisfy the condition «,, > a. Therefore, since c is
an unfriendly partition of G, it follows that c(y;%;) = 1-e.

Now suppose that ¥ = w. In this case,

E(y&)) = {z i 7 < |y[} Uiz}

By the hypothesis (1), there is some p < |y| such that A = 4; ,. Also,
for any = such that p <7 < |y|, there is some o < |r| such that
h(r,0) = p, and so

AiAf,o' = Ai,p = A.

Thus, by the inductive hypothesis, c(z, ;) = €. It follows that c(y;) =
1—e€, and this completes the proof of (2) and (3) under the hypothesis
(1).

In particular, by (3), c(z8,q) = € for every a < k.

For n € A, we have that

E(x,) = D1UD,,
where
Di={y€EY:y=1t() <w,n € N{A;,:p<v}and a <k},
D, = {z850: a <k}

Since |D,| < |¥|k, < k = |D,| and c(x,) = c(z) for all z € D,, this
contradicts the assumption that c is an unfriendly partition. O

4 Sketch of the proof of Theorem 2

The proof is similar to the proof of Theorem 1. First we choose an
ultrafilter I on A such that

B,={wa+n:a<r} gl (n < w).

Now continue as in the proof of Theorem 1 using this ultrafilter and
replacing 2° by 2*, w; by A%, the cardinal successor of A, X by
{x¢ : &€ < A} and replacing E; by
eyt iy=1d) <o, 6€N{Ai,:p <7}
and @n)¢ €B,anda < «,)}. O
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5 Unfriendly 3-partitions

The following Bernstein-type lemma is probably known.

Lemma 1 Let sl = (A;:i € 1) be a family of sets such that |A;| =
|I| = w. Then there are pairwise disjoint sets B; C A; (i € I) such that
|B;| = |Ail.

Proof Let
D={A;]:iel}, R={ke€D:xk>3{u:pn<k,u€ D}}

and, for k ER, let I(x) = {i € I:|A;| = «}. We can inductively
choose subsets A;(k) C A; for k € R and i € I(x) so that |A;(x)| = «
and so that A,(k) NA{(n) = Dif (k,i) # (u,)). The sets

B;=U{Aik):i€ Ik), x € R} Gebh
satisfy the conditions of the lemma. []
Let G = (V,E) be a graph. For a subset A C V, we define
nbly(A) = {x € V: |[E(x)NA| = |E®)|}.

The set A is closed if nbly(A) C A, and the closure of A is A, the smal-
lest closed set containing A. Note that, if we write A* = A Unbly(4),
then A = A, , where (Af : £ < a) is a continuous increasing sequence of
sets such that Ay = A, A;,; = A} and A; = A,. Thus we may write
A\A = {a;:i < A}, where

|E(a)| = |E(a;)N(AU{a;: j<i}|  (E<A).

If 4 is a function defined on a subset A C V, then we say that h is
satisfactory for the element a € A if

{y € ANE@): h(y) = h@@)}| < [{y € ANE(a): h(y) # h(a)}|,
and h is completely satisfactory for a if
[{y € E(@): y & A or h(y) = h(@}| < [{y € ANE(@): h(y) # h(a)}|.

Of course, if & is satisfactory on the set B C A, then it is completely
satisfactory on BNnbly(A). It is also clear that, if 4 is completely satis-
factory on B C A, then so also is any extension of . In particular, if
the domain of & is V, the terms satisfactory and completely satisfactory
coincide. An unfriendly 3-partition of the graph G is a function
h: V— {0,1,2} which is satisfactory for every vertex.
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Lemma 2 Let A, B C V, B infinite and ANB = &, and suppose that,
for z € B,

|E@)\A| < |B| = E(2)\A C B,
|[E\A| > |B| = |[E(2)\A]NB| = |B|.

If h: AUB— {0,1,2}, then there is g: AUB — {0,1,2} extending h
which is satisfactory for every element of [AUB\(AUB)]UB’, where
B'={b € B:|Eb)N[AUB\(AUB)]| > |[E(b)N(AUB)|}.

Proof Let b € B'. If |[E(b)\A| < |B|, then E(b)\A C B and so
E(b)NAUB = E(b)N(AUB),

which is a contradiction. Therefore, |E(b)\A| > |B| and hence

|[[E(bNAINB| = |B].

It follows that
|E() N[AUB\(AUB)]| > |B|

for b € B’ and, hence, by Lemma 1, there are pairwise disjoint sets

F(b) C E(b))N[AUB\(AUB)] (b€ B')

such that |F(b)| = |E(b))NAUB|.
Let {z;:i < A} be an enumeration of the elements of AUB\(AUB)
such that

|E(z)| = |E(z;)N(AUBU{z;: j < i})] (i <A).

We extend h to the function g: AUB— {0,1,2} by choosing
g(z;) € {0,1,2} inductively for i < A. At the i-th step there are two
possible choices for g(z;) that will ensure that g is satisfactory for z;;
conseql/lently, if z; € F(b) for some b € B’, then we may also choose

g(z;) different from g(b). The function g so constructed satisfies the
requirements of the lemma. O

We now prove Theorem 4 that every graph has an unfriendly 3-
partition.

Proof We will prove by induction on the infinite cardinal p that the fol-
lowing assertion holds.

Py: Let G = (V,E) be a graph and let A, B C V be subsets such that
A=A, AUB=V, ANB=, |B|=u.
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If x€B, ¢<3 and h: A— {0,1,2}, then there is g: V— {0,1,2}
extending h such that g(x) # c and g is satisfactory for every element of B.

The theorem follows from this since every finite graph has an
unfriendly 2-partition and &, (with A = and B = V) implies that
every graph of cardinality ¢ has an unfriendly 3-partition.

Case u = w.

Since A is closed and B is denumerable, it follows that 0 <
|E(y)| < for y € B. We define an ordinal @ < w; and subsets By
(B < a) of B so that

By ={y € B: |E(y)| < o},

Bﬁ={ye3\u B,:

Y<B

Epy)nU BI =w} 0O<B<a)
<8

and E(y)ﬂUB<a Bg is finite for all y € B, = B\Uﬂ<a Bg. Let

{e1,€2,€3} = {0,1,2} be such that

ce {eo, €2} if x € B,
{eo, €1} if x & By.

We will construct the extension g of h so that range(g } By) C {€o, €5}
and range(g } B\B,) C {€,€;}. This will ensure that g(x) # c.

First define g; = {(y,€1): y € B;}. Now inductively define gg: Bg —
{€0, €1} for 1 < 8 < @ in such a way that, for each y € Bg,

Hz:z€ B, (1 <vy<B),8,/) # g} = o

The set B, is either empty or denumerable and. every vertex of G | B,
has infinite degree; so there is a map g,: B, — {€g,€;} that is satisfac-
tory for every element of B,. The function g’ = hUU1sﬁsa 8>
defined on W\B,, is completely satisfactory for the elements of
U1<Bsa B B

We now imitate the proof that any locally finite graph has an
unfriendly 2-partition to define g": By —> {¢y,€;}. For each finite set
K C By, we can choose a map gg: K — {gg,€,} so that ggUg’ is satis-
factory for elements of K. Since every vertex of By has finite degree, it
follows by compactness that there is g: V — {0,1,2} extending g’ which
is satisfactory for elements of B, and satisfies range(g } By) C {eo,€5}.
Since g is constantly €, on By, it follows that g is satisfactory for all
elements of B.
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Case u > w.

We may assume without loss of generality that

(a) AUB’ # V for B’ C B with |B’| < |B|.
For, suppose that AUB' =V, where w <k = |B'| <u. We can
assume that x € B’ and also that, for ally € B’ ,

|EGN\A| < k = E(Y)\A C B,
|[EyN\A| > k = |[EG)N\AINB’'| = «.

By the inductive hypothesis, %, holds and so there is an extension
h': AUB’' — {0,1,2} of h which is satisfactory for elements of B’. Now
it follows from Lemma 2 that there is g: V = AUB’ — {0,1,2} extend-
ing k' which is satisfactory for all elements of [V\(AUB’)]UB”, where

B"={y € B': |[E())N[VMAUB"]| > |E(y)N(AUB")[}.

But if y € B'\B”, then |E(y)| = |E(y)N(AUB’)| and so k' is com-
pletely satisfactory for y and, hence, so also is g. Thus g is satisfactory
for all the elements of B = V\A.

By the assumption (a) it follows that there are subsets A, (a < u)
and B, (a < p) of V such that

(b) Ag= A, Ays1 = A,UB,, A, = U Ag (x alimit) and 4, = V;

B<a

(c) x€ By and B, C B\A4, (a < p);
(d) B, = Jif a is a limit;
(e) if a is a non-limit then
|Be| = la| +e
and, for everyy € U Bg,
B=a

|[EON\A,| < |a|+o = E(y)\A4, C B,,
|EON\A,| > |a]+o = |[[E(Y)\A,]NB,| = |B,].

If « < u and Bg has been defined for 8 < a, then A, is defined by (b);
and it follows by (a) and the fact that (¢) holds for 8 < a that
|B\A,| = |B|, and so we can choose B, satisfying (c), (d) and (e). At
the same time, at non-limit stages, we can also choose the set B, so that
it contains the first element of B\A, in some well ordering of B (in type
w); this will ensure that the construction stops with 4, = V.

For an infinite cardinal k < p, denote by Y, the set of all elements
y € UB<K+ Bg such that IE(y)ﬁUlKK+ Bg| = «™. Since |Y, | <«¥,
it follows that there are pairwise disjoint sets I.(y) C {a: k < a <k}
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(y € Y,) each of cardinality x* such that E(y)NB,# & for a € I(y).
Now choose elements x, € B, for non-limit « < g so that x, = x and
X, €EE(yifa€l(y) forsomex <pu andy € YKﬁUB<a Bg (and x,
is chosen arbitrarily in B,, if there is no such y).

We shall define inductively a continuously increasing sequence of
functions g,: A, —> {0,1,2} for @ < u so that, at non-limit stages, the
following conditions hold:

) go+1(xa+1) # g(y) if there are k <pu and y €Y, such that

a+1 € L(y);
(8) 8a+1 is satisfactory for every element of

[Aa+1\(Aa UBa )] UB(’x ’

where
B, = {y € BU Bg: |E(y)N[A,+1\A4,UB,)]| > IE(y)ﬂ(AaUBa)|]~

Put go = h. At limit stages we define g, = U <o 8B Suppose that
a < p and that g,: A, = {0,1,2} has already been defined. We want
to define g, so that (f) and (g) hold. If a is a non-limit, then A, is
closed and so, by the inductive hypothesis &, |, applied to the sub-
graph G, = G }A,UB,, there is g,: A,UB, — {0,1,2} which extends
g and which is satisfactory for every element of B,. Further, we may
assume that g.(x,) # c,, where ¢, = g,(y) if @« € I (y) for some k < p
and y € Y,, and ¢, = ¢ otherwise. If a is a limit ordinal, we simply
put g, = ga-

We want to apply Lemma 2, with

A=Aa\U B; and B= U Bg.

B<a B=a

Letze U Bg. If

B=a
s\ (.| U ) < | 5] e
then
E(Z)\(Aa \BlsJa Bp) c BLsJa Bg  by(e);
if
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E(z)\(Aa\ U BB) - |u s,
B=a B=a
then
[E(z)\(Aa\ U] Bﬁ)]nBa U By
B=<a B=a

Thus the conditions of the lemma are satisfied. Therefore, there is a
function g,,1: Aa+1 — {0, 1,2} extending g, which satisfies both (f) and

(8)-
This defines the g, for @ < pu. It remains to show that g = g, is
satisfactory for every element of B. Letz € B. If z ¢ Ua < B, , then

z € A,+{\4,UB,) for some o« < p. Since A,,{ is the closure of
A,UB,, it follows that |E(z)| = |E(z)NA,4+|. Since g,.; is satisfac-
tory for z, it is completely satisfactory and, hence, g is also satisfactory
for z. Suppose now that z € B, for some non-limit « < . LetB<sp
be minimal such that |E(z)| = |E(z)NAg|. Then B > a since A, is
closed and z & A,. In order to show that g is satisfactory for z we
shall consider separately the following cases.

Case 1 B = y+1 is a successor ordinal.

Case 1(i) |E(z)| = |E(z)NB,|.

For non-limit £ (a < ¢ < y), there holds |E(2)\A;| > |£|+w, other-
wise E(z) C A;UB,; C A,, which contradicts the choice of 8. If y > a,
then

|E@)NA,| = Z{|é|+w:a<é<y} =|y|+o = |B,| = |E@)|.
This again is a contradiction, and so vy = a. Therefore,
|E(z)| = |E(z) NB,|.

Since g, is satisfactory for z, it is completely satisfactory and, hence, so
isg.

Case 1(ii) |E(z)| > |E(z)NB,].
Since |E(z)| > |E(z) N A, |, it follows that

E@)| = |E@NAyui| = |E@)N[A,41M4,UB)]|
> |E(z)N(A,UB,)|.

Therefore, g, .1 is completly satisfactory for z, and so is g.
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Case 2 f3 is a limit ordinal.

Case 2(i) |E(2)|<|B|.
For non-limit § (a <¢<p), we have |E(2)\A;| > [£[+w (else
E(z) C Ag+1) and, hence, E(z) NB; # &. It follows that || = B and
[{€: a < ¢ <B,¢ € L(2) for some k < B}| = |B].

Since g (z) # gg(x;) if £ € [, (2), it follows that gg is completely satisfac-
tory for z, and therefore so is g.
Case 2(ii) |E(z)| > |B].

In this case |E(z)| = A is singular and there are an increasing

sequence of cardinals A, (v < cf(A)) and an increasing sequence of ordi-
nals 8, (¢ < cf(A)) such that A = supA,, B = supp, and

|E(z)N[Ag +1\MAg UBg)]| = A, > |E(2)N(Ag UBg)|.
But this implies that gg . (¢« < cf(d)) is satisfactory for z, i.e.
Hy € E@)NAg +1:85(») # 8s (@ = A, (¢ <cf@)).

From this it follows that g is satisfactory for z, and this completes the
proof. O
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