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ABSTRACT: THEOREM. The topological partition relation w* + (Y): 

(a) Fails for every space Y with I Y 1 2 2c; 
(b) Holds for Y discrete if and only if IYI s c; 
(c) Holds for certain nondiscrete P-spaces Y; 
(d) Fails for Y = w U (p]  withp E o*; 
(e) Fails for Y infinite and countably compact. 

1. INTRODUCTION 

For topological spacesXand Ywe writeX = Y ifXand Yare homeomorphic, and 
we write f : X = Y if f i s  a homeomorphism of X onto Y. The “topological inclusion 
relation” is dcnoted by Ch; that is, we write Y Cl, X if there is Y‘ C Xsuch that Y = 
Y’. 

The symbol o denotes both the least infinite cardinal and the countably infinite 
discrete space; the Stone-Cech remainder P(w)\o is denoted o*. 

For a space X we denotc by WX and dX the weight and density character of X ,  
respectivdy. Following [7], forA C_ w we write A* = (clpcw>A)\o. 

For proofs of the following statements, and for other basic information on 
topological and combinatorial properties of the space o*, see [7], [3], [12]. 

THEOREM 1.1: (a) [ c l p ~ + 4  : A C w) is a basis for the open sets of P(w); thus 
w(P(w)) = c. 
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COMFORT et al.: TOPOLOGICAL PARTITION RELATIONS 71 

(h) There is an (almost disjoint) family d of subsets of w such that 1-M' I = c and 

(c) o* contains a family of 2'-many pairwisc disjoint copies of p(o). 
(d) Every infinite, closed subspace Y of w* contains a copy of p(w), so (YI = 

For cardinals K and A and topological spacesXand Y, the symbol X-* (Y); means 
that if the set [XIK of all K-membered subsets of X is written in the form [XIK = 
U,,,P,, then there are i < A and Y' C Xsuch that Y = Y' and [Y'IK C P,. Our present 
primary interest is in topological arrow relations of the form X -+ (Y)! (with X = w*). 
For spaccs X and Y,  the rclation X --f (Y): reduces to this: if X = Po U P1, then either 
Y Ch Po or Y C h  PI .  

The relation X -+ (Yo, Y,)] indicates that if X = Po U PI, then either y0 Ch Po or 
Yl Gh PI. 

It is obvious that if X and Yare spaccs such that Y Gh X fails, thenX -+ (Y): fails. 
By way of introduction it is enough here to observe that the classical theorem of 

F. Bernstein, according to which there is a subset S of the real line R such that 
neither S nor its complement R\S contains an uncountable closed set, is captured by 
the assertion that the relation R + ( { O ,  1)O): fails; in the positive direction, it is easy to 
see that the relation Q -+ (Q); holds for Q the space of rationals. 

For a report on the present-day "state of the art" concerning topological 
partition relations, and for references to the literature and opcn questions, the 
reader may consult [14-161. 

This paper is organized as follows. Section 2 shows that o* -+ (Y): fails for every 
infinite compact space Y. Section 3 characterizes those discrete spaces Y for which 
w* -+ (Y);,  and Section 4 shows that o* -+ (Y): holds for certain nondiscrete spaces 
Y. Section 5 shows that w* -+ (Y): fails for spaces of the form Y = w U { p) withp E 
a*, hcncc fails for every infinite countably compact space Y. The results of Sections 
2-5 prompt several questions, and these are given in Section 6. 

We announced some of our results in the abstract [2]. See also [l] for related 
results. 

* : A E &&} is pairwise disjoint. 

IP(o)I = 2L'. 

2. o* -H (Y):  FOR ( Y (  2 2c 

Y} 1 = 2'. LEMMA 2.1: If Y & o*, then I I.1 2 w *  : A 

Proof: The inequality 2 is immediate from Theorem l.l(c). For I, it is enough 
to fix (a copy of) Y C w *  and to notice that since dY I WY I w ( w * )  = c [by Theorem 
l.l(a)], thc number of continuous functions from Y into w*  does not exceed 
I(w*)dYI I (2L')E = 2'. 

THEOREM 2.2: If Y is a space such that I Y (  2 2', then w* -H (Y);. 

Proof: We assume Y Ch w* (in particular we assume ( Y (  = I w *  I = 2c), since 
otherwise w *  -f* (Y): is obvious. Following Lcmma 2.1 let : 5 < 2c] enumerate 
(A C w* : A = Y ] ,  choose distinct po, qo E A,,, and recursively, if 5 < 2' and p?, q,, 
have been chosen for all q < 5, choose distinct 

PQ 4r. E As\(lP, : rl < 51 u {ql 7 < SI). 
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It is then clear, writing 

Po = (pl, : 5 < 2c] and P,  = o*\Po, 

that the relations Y ch Po and Y Lh P I  both fail. 0 
The following statement is an immediate consequence of Theorems 2.2 and 

COROLLARY 2.3: The relation o* + (Y): fails for every infinite compact space Y. 

By less elementary methods we strengthen Corollary 2.3 in Theorem 5.14 below. 

l.l(d). 

3. CONCERNING THE RELATION w* + (Y):  FOR Y DISCRETE 

The very simple result of this section, included in the interest of completeness, 
shows for discrete spaces Y that w* --* (Y): if and only if Y C h  a*. 

THEOREM 3.1: For a discrete space Y, the following conditions are equivalent. 

(a) IYI 5 c; 
(b) o* + (Y):; 
(c> a* + (G; 
(d) YC_ho*. 

Proof (a) * (b). [Here we profit from a suggestion offered by the referee.] Given 
o* = U,,, P,, recall from [10,(2.2)] or [12,(3.3.2)] this theorem of Kunen: there is a 
matrix @f : 5 < c, 1 < c) of clopen subsets of w*  such that 

(i) For each i < c the family (A: : 5 < c) is pairwise disjoint; 
(ii) EachfE cc satisfies n, , ,A{(’)  f 0 

Now if one of the sets P, meets A! for each 5 < c (saypt E A:), then the discrete set 
D = (pt, : 5 < c) satisfies Y Ch D C Pt; otherwise, for each i < c there isf ( i )  such that 
P, n@) = 0, SO 0 # nt,c&) G o*\u,,c~,. 

That (b) * (c) and (c) * (d) are clear. 
(d) =. (a). Theorem l.l(a) gives IYI = WY I w(p(w)) = c. 0 

4. w* + (Y): FOR CERTAIN NONDISCRETE Y 

For an infinite cardinal K we denote by P, the ordinal space K + 1 = K U (K] 

topologized to be “discrete below K” and with a neighborhood base at K the same as 
in the usual interval topology. That is, a subset U of K + 1 is open in P, if and only if 
either U C_ K or some 5 < K satisfies (5 ,  K] C U. 

THEOREM 4.1: For cardinals K 2 w and mo, ml < o, the space P, satisfies 

Proof Let PI = Xo U XI and 111 = mo + ml and suppose without loss of generality 
that the point c = ( c ~ ) ~ ~ ~  with ci = K (all i E I )  satisfies c E Xo. Let Z = 10 U ZI with 

K (Py, P;’)] pmo+mi +, 
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/I01 = mot lZ1 I = ml, and set D = P,\(K), and for x E DIo define 

S ( x )  = b) x [y E P: : maxCv, : i E I,) < min(y, : i E Ill). 

If some x E DIo satisfies S(x) C XI, we have PT1 = S(x) C_ X I  and the proof is 
complete. Otherwise for eachx E D'o there is&) E S(x) n XO and then 

p;o = (p(x) : x E D'OJ u (c) C X", 

as required. 0 
COROLLARY 4.2: Every infinite cardinal K satisifcs P, x P, + (PK):. 

We say as usual that a topological space X = (X, ,7) is a P-space if each % C 7 
with 1 ?Z I I o satisfies r l  ?Z E 9: Since (clearly) P, is a nondiscrete P-space if and 
only if Cf(K) > a, the following theorem shows the existence of a nondiscrete Y such 
that X -+ (Y);. 

THEOREM 4.3: Let 01 I K 5 c satisfy cf(K) > o. Then o* + (PK)k. 

Proof It is a theorem of E. K. van Douwen that every P-space X such that WX I c 
satisfies X Ch o*. (For a proof of this result, see [4] or [12]). Thus for K as 
hypothesized we have P, X P, G h  a*, so the relation w* + (P,): is immediate from 
Corollary 4.2. 0 

REMARKS 4.4: (a) The following simple result, suggested by the proof of Theorem 
4.1, is peripheral to the principal thrust of our paper. Here as usual for a space X= 
(X, 9) we denote by PX = (PX, PY) the set X with the smallest topology PY such 
that P 7  2 Y and PXis a P-space; thus, { n % : % C Y, I W I I o) is a base for PZ 

THEOREM. For a P-space Y, the following conditions are equivalent. 

(i) o* + (Y);; 
(ii) {0, IJe + (Y):; 

(iii) P(w*) + (Y);; 
(iv) P({0,1lC) + (Y):. 
ProoJ The implications (iii) =$ (iv) =$ (i) * (ii) follow, respectively, from the 

inclusions P(o*)  Ch P({O, 1Ic) Gh o* Ch (0, lIc. (Of these three inclusions the third 
follows from Theorem 1.1, the first from the third, and the second from van 
Douwen's theorem cited earlier.) That (ii) =$ (iii) follows from P((0, 1)') Ch o* 
(whence P((0, 1Ic) Ch P(o*)) and the case A = {O, B = Y = PY of this general 
observation: ifA -+ (B); ,  then PA -+ (PB):.  0 

(b) We note in passing the following result, from which (with Theorem 4.1) it 
follows that for K 2 o the space P, satisfies PT;" -+ (P,)fi+,. 

THEOREM: Let S be a space such that Smo+"l - (Sm4 Sml)l for mo, ml < o. Then 

S' + (s):+~ for n < o. (*I 
Proof Statement (*) is trivial when n = 0, and is given by the case m0 = ml = 1 of 

the hypothesis when n = 1. 
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Now suppose (*) holds for n = k, and let S$’” = Ufzt 4. With Yo = X ,  and Yl = 
Uf?; Xi, it follows from S2k+2k + (SZk, S2k) that there is T C S2k+’ such that T = S2k 
and either T C YO or T C Y,. In the first case we have S Ch T C XO, and in the second 
case from T C_ Uf;; X, and (*) at k there exists i such that 1 5 i I k + 1 and S L,, XI,  
as required. 

(c) The method of proof of Theorem 4.1 and Corollary 4.2 applies to many spaces 
other than those of the form P,. The reader may easily verify, for example, denoting 
by C, thc one-point compactification of the discrete space K, that C, x C ,  + (CK)i, 
and hence {O, l}K --* (CK)i, for all K 2 w. For a proof due to S. TodorCevii: of a much 
stronger topological partition relation, namely [O, lJK --* (CK)&, see Weiss [15]. 

5. w* ++ (Y) :  FOR Y INFINITE AND COUNTABLY COMPACT 

To prove this result, we show first that the relation o* + (w U {p)):  fails for every 
p E o*. While this can be proved directly by combinatorial arguments, we find it 
convenient (givenp E o*) to introduce and use as a tool a new topology B(p) on w*.  

Givenf : o + o*, we dcnote b y j  : p(o) -+ o* the Stone extension off. For X C 
o* we set 

XP =xu { T ( p )  :f: w Z f [ W ]  C X ) ;  

that is, X p  is X together with its “p-limits through discrete countable sets.” 

LEMMA 5.1: There is a topology . ! ! ( p )  for o* such that eachX C o* satisfies: X is 
T(p)-closed if and only ifX = Xp. 

hoo t  It is enough to show 

(a) 0 = @; 
(b) w *  = (w*)P; 

(c) X,, U XI = (Xo U X,)r, ifX, = X; (i = 0,l);  and 
(d) nlE,X1 = ( r l t E , X , ) p  if eachX, satisfiesX, = X f .  

Now (a) and (b) are obvious, as are the inclusions C of (c) and (d). 
(c) (1) Iff : o = f [w] L Xo U X1 satisfiesf(p) = x E (Xo U X#, then with A, = 

{n < o : f ( n )  EX,) we have A. U A,  E p ,  and hence A; E p for suitable i E (0, 11; 
changing the values off on w\p;  if necessary (to ensuref[o] LL A;), we conclude that 
x = 7 (p) E xr = X ;  L x,, u x,. 

(d) (2). Ifx = f ( p )  withf : 

REMARKS 5.2: (a) In the terminology of Lemma 5.1, the topology Y ( p )  is defined 

= f [w]  C nJ,, thenx E n,( Xf) = n,X,. 

by the relation 

Y ( p )  = {o*\X : X C w*,  X is Y(p)-closed]. 

(b) For notational convenience we denote byZ(p) the set of .:T(p)-isolatcd points 
of w*, and we write A ( p )  = o*\Z(p). Clearly, x E I ( p )  if and only if x is not a 
“discrete limit” of points in o*\[x}, that is, if and only if everyf : w = f[o] C o* \ (x ]  
satisfiesf(p) f x. The fact that I ( p )  f 0 has been known for many years. Indeed, 
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Kunen [lo] has shown that there exist 2‘-many pointsx E w* such thatx 4 
wheneverA C w * \ k ]  and IA I I 0. (These are the so-called weak-P-points of w*.) 

and p-inaccessible points, respectively. 

o* is determined by the following iterative procedure (cf. also [l]). 

As a mnemonic device one may think ofA(p) and Z(p)  as the sets ofp-accessible 

(c) For X C w* the set Xp may fail to be closed. Indeed, the Y(p)-closure of X C 

LEMMA 5.3: Let X C w* .  For 5 o+ define& by: 

X” = x; 
X ,  = U, <5 X ,  if 5 is a limit ordinal; 

X E + ,  = XT. 

ThenX,. = Y ( p )  - clX. 

The following fact, noted in [S], [5 ] ,  [6], is crucial to many studies of w* (see also 
[3, (16.13)] for a proof). One may capture the thrust of this lemma by paraphrasing 
the picturesque terminology of Frolik [6]: “No type produces itself.” 

LEMMA 5.4: No homeomorphism form p(o) into w* has a fixed point. 
LEMMA 5.5: Let A and B be countable, discrete subsets of w*,  withA G B *. Then 

AP f l  B p  = 0. 

Proofi Ifx E AP n B p ,  we may suppose without loss of generality that there are f : 
o = A a n d g : o  =Bsuch tha tx - f (p )=z (p ) .The func t ionh=fog- ’ :B  Z A G  
B * satisifies 

_ -  - 
f o g - ’ = h :  p ( B )  = P ( A ) G B *  

and h(x) = x E B *, contrary to Lemma 5.4. 0 
COROLLARY 5.6: Let A and B be countably infinite, discrete subsets of o* such 

thatA n B = 0. ThenAP n Bp = 0. 
Proof: Letx E AP fl Bp and letf : w -+f[o] & A  andg : o -+g[w] C_ B satisfyx = 

f (p) = g ( p ) .  Leavingfandg unchanged on suitably chosen elements ofp, but making 
modifications elsewhere if necessary, we assume without loss of generality that either 
f [ w 1  (g[wl)* org[wI G (f[wI)* o r f b l  n (gbl )*  = ( f lwl )*  n gb l  = 0. BY 
Lemma 5.5 the first of these possibilities, and by symmetry the second, cannot occur. 
We conclude thatf[w] U g[o]  is a countable, discrete subset of w* such thatf [w] n 
g[w] = 0; it follows that (f[w])* n (g[w])* = 0, since every countable (discrete) 
subset of w* is C*-embedded (cf. [7, (14.27, 14N.S)], [3, (16.15)]). This contradicts 
the relationx E (f[w])* n (g[w])*. 0 

COROLLARY 5 . 7  If w* 2 X E Y ( p ) ,  then Xp E Y ( p ) .  
Proof: If o*\Xp is not Y ( p ) -  closed, then there isf : w = f [o] = A  C w*\Xp such 

thatx = f ( p )  EXP. SinceXE Y ( p ) ,  we havex EXp\X, so there isg : o = g[w] = 
B C Xsuch thatx = g(p).  From A n B = 0 and Corollary 5.6 now follows x E AP r l  
BP = 0, a contradiction. 0 
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COROLLARY 5.8: If w* 2 X E F ( p ) ,  then Y ( p )  - c lX E 9Q). 

Proof: This is immediate from Lemma 5.3 and Corollary 5.7. 

Our goal is to 2-color the points of o* in such a way that every copy of w U { p ]  
receives two colors. First we consider how to extend a given coloring function. 

LEMMA 5.9: Let o* 2 X E Y ( p )  and let c: X + 2 = (0, 11 be a function with no 
monochromatic copy of w U { p ]  (that is, if X 2 Y = w U ( p ) ,  then c- l ({ i ) )  n Y f 0 
for i E [ O ,  11). Then c extends to E : Xp + 2 with no monochromatic copy of w U ( p ] .  

Roo$ Se tx i  = c- l ({ i ) )  for i E 2 = ( O , l \ ,  so thatXP = Xf, U X$ by Lemma 5.l(c), 

0 

and 

by Corollary 5.6. Since {X, X{\X, XT\X] is a partition of Xp, the function E : X p  + 2, 
given by the rule 

E(x) = c(x) ifx E X 

= 1 ifx EX{\X 

= 0 ifx E X{\X, 

in well-defined. To see that 2 is as required, let h : o U { p )  = A U 1x1 G Xp with h : 
o = A,  h(p) = x. Modifying h (as before) if necessary, we assume without loss of 
generality that either (i) A C Xo or (ii) A C q \ X  (the cases A G XI, A G X:\X are 
treated symmetrically). In case (i) we have E = 0 onA and E(x) = 1 (since eitherx E X 
orx f X$\X); case (ii) cannot arise, sincex E XviolatesX E Y ( p ) ,  whilex E Xp\X 
violates Corollary 5.6. 0 

Combining Lemmas 5.9 and 5.3 yields this. 

LEMMA 5.10: Let w* 2 X E .Y(p),  and let c : X + (0, 11 be a function with no 
monochromatic copy of w U ( p ] .  Then c extends to E : 9 ( p )  - clX + (0,1] with no 
monochromatic copy of w U ( p ] .  

The preccding lemma indicates how to extend a coloring function from X E 
. Y ( p )  over . S ( p )  - cl X, but it remains to initiate the coloring procedure. For this 
purpose it is convenient to consider a particular base 9 ( p )  for the topology Y ( p ) .  
We call the elements of 9 ( p )  thep-satellite sets. 

DEFINITION 5.11: Letx E w*. A set S = S(x) is ap-satellite set based atx if there 
are a tree T L w<w = U, < w  on (ordered by containment), and for s E T a pointx, E S 
and Us 2 w* such that 

(i) Us is open-and-closed in the usual topology of a*; 
(ii) x = xO, with ( ) the empty sequence; 

(iii) V,, = w*; 
(iv) Ifx, E S(x) and xs E A ( p ) ,  then {x,.,, : n < w]  enumerates the range of a 

functionfsuch thatf : w = f[o] G w* withf(p) = x,, and (Us-, : n < w) is a 
painvise disjoint family such that x v m ,  E Uv-, C Us; 
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(v) If x, E S(x) and x, E I ( p ) ,  then s is a maximal node in T (and x,-,, U5en are 
defined for no n < 0). 

REMARK 5.12 It is not difficult to see that for everyx E X E Y ( p )  there is S = 
S(x) E 9 ( p )  such that x E S C X. (Ifx E I (p ) ,  one takes S = b); if x, E S n X has 
been defined, one uses (iv) andX E Y ( p )  to choosex,-,, E S n X i f g  E A ( p ) . )  That 
each of the sets S(x)  is F(p)-open is immediate from Corollary 5.6. It follows that 
9 ( p )  is indeed a base for F ( p ) .  

THEOREM 5.13: Everyp E w* satisfies w* * (w U {p)): .  

Proofi Let (S(x(i))  : i E Z] be a maximal pairwise disjoint subfamily of Y ( p ) .  For 
each i E Z define ci : S(x(i))  +. 2 by 

ci(x(i),) = 0, 

= 1, 

if length of s is even 

if length of s is odd. 

It is clear from Corollary 5.6 that not only each function ci on S(x( i ) ) ,  but also the 
function 

c = UiE,Cj : UjE,S(X(i)) --* 2 

is monochromatic on no copy of w U { p ] .  Since UiEl S ( x ( i ) )  is Y(p)-open and 
.7(p)-dense in w*, the desired result follows from Lemma 5.10. 0 

THEOREM 5.14: The relation w* -+ (Y):fails for every infinite, countably compact 
space Y. 

Proot Given infinite Y L w* there is f : w = f [w]  C Y, and if Y is countably 
compact, there i sp  E o* such thatf ( p )  E Y. Sinccf[w] is C*-embedded in o* we 
have 

so w* f~ (Y): follows from W* -+, (w u (p]): .  

REMARKS 5.15: (a) We cite three facts that (taken together) show that the index 
set Z used in the proof of Theorem 5.13 satisfies 111 = 2c: (i) The set W of 
weak-P-points of W* introduced by Kunen [lo] satisifes I WI = 2c; (ii) each S(x) E 
P ( p )  satisfies IS(x) I s W; (iii) W C Z(p), so W C  UielS(x(i)). 

(b) With no attempt at a complete topological classification, we note five 
elementary properties enjoyed by each of our topologies 9 ( p )  on w * .  

(i) Y ( p )  refines the usual topology of w*, so Y ( p )  is a Hausdorff topology. 
(ii) Y ( p )  has 2'-many isolated points. (Indeed, we have noted already that the 

set Wof weak-P-points satisfies I WI = 2c and WC_ Z(p) . )  
(iii) Since Y ( p )  is a base for . 7 ( p )  and each S ( x )  E . V ( p )  satisfies IS(x)l 5 w, 

the topology S ( p )  is locally countable. 
(iv) FromTheorem l.l(b) it is easy to see that if S ( x )  E Y ( p )  and IS@)\ = w, 

then I Y ( p )  - cl S(x)  I = c. Thus Y ( p )  is not a regular topology for w*. 
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(v) According to Corollary 5.8, the .Y(p)-closure of each Y(p)-open subset of 
w* is itself Y(p)-open. Such a topology is said to be extremally discon- 
nected. 

(c) In our development of Y ( p )  and its properties we did not introduce 
explicitly the Rudin-Frolik preorder c on w* (see [S], [6], or [13], or (31 for an 
expository treatment), since doing so does not appear to simplify the arguments. We 
note, however (as in [l]), that the relation E lies close to our work. Forx,p E w* one 
hasp x if and only if somef : w = f[w] C w* satisfiesf (p) = x. 

6. QUESTIONS 

Perhaps this paper is best viewed as establishing some boundary conditions that 
may help lead to a solution of the following ambitious general problem. 

PROBLEM 6.1: Characterize those spaces Ysuch that w* 3 (Y);. 
There are P-spaces Y such that I YI = 2c and Y Ch w*. (For example, according to 

van Douwen's theorem cited earlier, one may take Y = P(w*).) According to 
Theorem 2.2, the relation w* + (Y): fails for each such Y. This situation suggests the 
following question. 

QUESTION 6.2 Does w* -+ (Y); for every P-space Y such that Y Ch w* and I YI < 

We have no example of a non-P-space Y such that a* -+ (Y);, so we are 

QUESTION 6.3: If Y is a space such that w *  + (Y):, must Y be a P-space? 

For I YI = w, Question 6.3 takes the following simple form. 

QUESTION 6.4: If Y is a countable space such that w* + (Y):, must Y be discrete? 

REMARK 6.5: In connection with Question 6.4 it should be noted that there exists 

2c? What if IYI = c? 

compelled to ask the following. 

a countable, dense-in-itself subset C of w* such that everyx E C satisfies 

x 4 cI,,(~) D whenever D is discrete and D C C\k) (9 
(equivalently, w U ( p ]  Ch C fails for every p E w*). To find such C we follow the 
construction ofvan Mill [ll, (3.3), pp. 53-54]. Let E be the absolute (i.e., the Gleason 
cover) of the Cantor set {O, l ) O ,  let 7~ : E + (0, lJW be perfect and irreducible, and 
embed E into w *  as a c-OK set; then every countableF C w*\E satisfies E n c&($ = 
0. Now by the method of [ll, (3.3)] fort E {O, lIw choosex, E ~ r - ' ( { t ] )  such that evcry 
discrete D C E\kJ satisfies x, $Z cIe(,,,P, and take C = [xt : t E Co] with C,, a 
countable, dense subset of {O,l)'. Since T is irreducible, the set C is dense in E and is 
dcnsc-in-itself, and it is easy to see that condition (*) is satisfied. 

Of course no element of C is a P-point of o*. The existence in ZFC of 
non-P-points x E o* such that x 6L cl,(,P whenever D is a countable, discrete, 
subspace of @*\{XI is given explicitly by van Mill [ll]; see also Kunen [9] for a 
construction in ZFC + CH (or, in ZFC + MA) of a set C as above. 
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For the set C constructed earlier, the relation w U (p i  Gh C fails for everyp E w*, 
so the following question, closely related to Question 6.4, is apparently not answered 
by the methods of this paper. 

QUESTION 6.6: Let C be a countable, dense-in-itself subset of w *  such that w U 
( p )  !& C fails for everyp E w* .  Is the relation w*  + (C):valid? 
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