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In this paper we address a conjecture of the second author, namely 

that in L , for any cardinal < > M and any prescription of cardinals 
-- I 

I p ~ <* to the primes p , there exists an abelian group A for which 

90(A) = K + = the rank of the torsion free part of Ext(A,~) , and 

Ip = ~ (A) = the rank of the p-part of Ext(A,~) . 
P 

It is well known that these cardinals characterize the divisible 

group Ext(A,~) for torsion free A . The conjecture is false for 

countable A , where it has been shown by C. Jensen [11] that ~ (A) 
P 

2 ~° (A) < ~o(A). Similarly Hulanicki is either finite or and ~p _ 

[8,9] has shown that for divisible abelian groups which admit a compact 

~p(A) ~ 90(A) and ~p(A) is finite or of the form 2 I, topology 

infinite. However we have shown that the conjecture is true for 

K = MI = IAI under ZFC + GCH alone, see [12], and Eklof and Huber 

this volume, [4]. Just using the fact that EXtp(@Ai,~) = HEXtp(Ai,~) 

it is now easy to see that for any cardinal K ~ M, and successor 

cardinals lp < ~+ there exists an abelian group for which iAl = < 

and ~ (A) = lp. 
P 

The question remains ~hether we can have 9p(A) = IAI or Vp(A) 

singular or ~p(A) inaccessible. We show that the conjecture is not 

true in all generality by proving that 

THEOREM. If A is a torsion free abelian group of weakly compact 

cardinality < and ~ (A) > < , then ~ (A) = 2 < p -- p 

Since weak compactness is consistent with V = L , provided it is 

consistent with ZFC ,the above theorem displays some restriction of 

the conjecture. 

There are a number of equivalent definitions of weak compactness 

[1,10]; a suitable one for a non logician is: 

~This work has been partially supported by The National Science 

Foundation (grant No. 710646). 
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DEFINITION. (i) A cardinal < has the tree property iff, for every 

tree, T , of height < with levels of cardinality << has a branch 

of length < . (ii) < is weakl[ compact iff it is inaccessible and 

has the tree property. 

Weak compactness was originally introduced in relation to com- 

pactness of certain infinitary languages which in turn can be readily 

related to the following equivalent property for inaccessible < : 

Any <-complete filter D in a <-complete field B of subsets of 

< can be extended to a <-complete prime filter in B . 

As for the tree property: R0 has the tree property by K6enigs 

lemma and it is also a well known result of Aronszajn that RI does 

not have the tree property; moreover singular cardinals, and with GCH, 

also successor to regular cardinals do not have the tree property. 

The treatment of Ext (A,~) is based on the following theorem. 
P 

DEFINITION. Let H: Hom(A,Z~) ~ Hom(A,ZZ/pZZ) be the natural homomor- 

phism defined by: 

[H(h)] (x) = h(x)/pZ~ , h 6 Hom(A,Z~) , x 6 A, p a prime. 

THEOREM. For abelian torsion free A 

Extp(A,Z~) ~ Hom(A,~/ p~) /H[Hom A,ZZ] 

Proof: The exact sequence O ~ p~ s~ ZZ B Z~/ pZ~ ~ O, a the 

identity embedding, B natural, induces the long exact sequence 

O ~ Hom(A,p~ ) ~ Hom(A,Z~) ~ Hom(A,ZZ/ pZ~) 

E, C~, ~, 
Ext(A,pZZ) ~ Ext(A,ZS) ~ Ext(A,ZZ/ p2Z) ~ O 

(see Fuchs [6]). Since the sequence is exact, 

J = Hom(A,ZZ/ pZ~) /H[Hom(A,Z~ ) ] T Ker(A,) : Ira(E,) 

Zg , p~ are isomorphic; hence also Ext(A,ZZ ), Ext(A,p2Z) ; in particular 

elements of order p of Ext(A,Z~) , are represented by elements of order 

p in Ext(A,pZZ). All elements of J are of order p. Hence it 

suffices to show that all extension E 6 Ext(A,pZ~ ) of order p are 

mapped to 0 by ~, Let E 6 Ext(A,p2Z) ,pE = O, be represented by 

a factor set f: A x A ~ pZZ . Thus for some function g: A ~ p~ with 

g(o) = 0 , pf(x,y) = g(x) + g(y) - g(x + y) 6 Trans(A,~) , V x,y 6 A. 
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Since s is an injection, s~(E) can be represented by the same 

f . Now since A,~ are torsion free, there is a unique g': A ~ 

such that pg'(x) = g(x), V x 6 A. Therefore 

f(x,y) = g'(x) + g'(y) - g'(x + y), hence also s~(E) = O . 

THEOREM (ZFC) If G is a group of weakly compact cardinality, 

for which ~p(G) ~ K , then ~p(G) = 2 < . 

K I 

Proof: Let G be a group of weakly compact cardinality < with 

(G) > < . We shall show that v (G) = 2 ~ This is done by construc- p -- p 

ting a filtration <G~: a ~ <> of G , and a tree of homomorphisms 

h : G ~ ~/ p~ , ~ 6 a2, ordered by inclusion (n c n' ~ h c h ) and 
n ~ R R' 

continuous , i.e. if C = {hnB : ~ < a, hn~ ~ Hom(GB,~/ p~ )} is a chain 

with a limit and n = ~B ~B , then h n = 6~ e hnB . We will construct 

the tree T , such that at each level a , {h : n 6 ~2} = T are in- 
n 

dependent homomorphisms mod H[Hom(G ,~)] , where H is the operation 

described above. It is easy to see that this property will be preserved 

at limit ordinals. 

We first exploit the tree property of < to obtain the following 

lemma: 

LEMMA. If D c Hom(G,~ /p~) are independent mod H[Hom(G,~)] and 

IDI < K , then for any subgroup G' c G , IG'I < < there exists a 

subgroup G" G' < G" IG" , < G, i < ~ such that {h [ G" : h 6 D} are 

independent mod H[Hom(G,~)] 

Proof: If not, then there exists a continuous strictly increasing 

> with IG I < < and G = G', sequence of subgroups of G , ( G a<< a o 

= G, such that V~ < < , h',h" 6 D,h' ~ h" and h' ~ G = G< a 

h" ~ G rood (H[Hom(G ,~)]) 

! , - h" Notation. Henceforth we denote for h , h" 6 Hom(G,~/ pZZ ) h' :~ 

iff h' - h" mod (H[Hom(G ,~) ]) 

- h" ~ G ~ h' ~ G~ h" ~ G 6 Moreover Now for ~ < a , h' ~ Ga =a s -B " 

= h" ~ G + h/pZZ then if h £ Hom(G ,2Z) is such that h' ~ G a ~ , 

h' ~ G~ = h" ~ G B + h [ GB/pZZ Clearly if h' , h" 6 D , a < K and 

G B h" ~GB,VZ , a < B < < . Therefore, h' [ G O ~ h" ~ Sa, then h' [ ~ B -- - -  
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, ~ h** [ G ° For these Bh* h** 6 D such that Vo < < h* ~ Go o 

= = h *~ ~ G + h/p~} fixed h ~ , h ~ let K ° {h 6 Hom(Go,~) : h ~ ~ Go o 

Clearly {h [ G B : h 6 K O} ~ K B , 6 < o and ]K O] < < . If 

K = K ° and K is partially ordered by extension, < , then (K,~) is 

a tree of height < with levels of cardinality less than < . Thus 

by weak compactness there exists a branch b of length < , 

b = {h : a < <} . Then ~h = h 6 Hom(G,~) and h • = h* *  + h/p~ • 

This is a contradiction. [] 

Construction of the filtration and respective tree, T , of homomorphismsm 

For o = O , we set G = o , T = ~ . For o = I , we choose 
o o 

G I c G of cardinality <K such that 3 ho,h I 6 Hom(G1,~/ p~ ) which 

are independent mod H[Hom(GI,~)] Such ho,h I exist by the lemma. 

We set T I = {ho,hl} For a limit we just take unions, i.e. 

G O = U G B , and T = { U h : b is a branch through U T 8} For o q 

o = 6+ i successor, we first choose GS+ I > G$ such that 

I G 6 1 ) +  
~p(GB+ I) > ( 2 . This is again possible by our lemma. For every 

q 6 82 let hn0 be any extension of h n in Hom(Ga,~ / p~) . These 

will be independent mod H[Hom(Go,~)] since the {h : q 6 82} are 

i n d e p e n d e n t  m o d  H [ H o m ( G S , ~ ) ]  We m u s t  c h o o s e  t h e  h s o  t h a t  t h e y  
n 

1 

are all similarly independent. By our choice of G~+ I we can find a 

IGsL 
family of (2 )+ homomorphisms containing {hq0: n 6 B2} which 

are independent mod H[Hom(Ga,~ )] Again from our cardinality 

assumptions, we can choose from these, hG~] distinct disjoint pairs 

' = h" ~ G B Thus we can of homomorphisms (h',h") such that h ~ G 8 

assign from these to every q 6 B2 a distinct pair (h' ,h" ) and 
q q 

set h = h + (h' - h") Thus we clearly have 
ql  qO n q 

hqo ~ G~ = hnl ~ G B = h : and the (T~=) {h ,h : n 6 82) are in- 
n nO ql  

dependent mod H[Hom(GB+I,~ )] 

Since G = G , T = T c Hom(G,~/ p~) - H[Hom(G,~)] 
K K- 

IT I 2 K < = , we have ~p(G) = 2 K [] 

and 
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