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CRITERIA FOR EXACT SATURATION AND SINGULAR
COMPACTNESS

ITAY KAPLAN, NICHOLAS RAMSEY, AND SAHARON SHELAH

ABSTRACT. We introduce the class of unshreddable theories, which contains
the simple and NIP theories, and prove that such theories have exactly satu-
rated models in singular cardinals, satisfying certain set-theoretic hypotheses.
We also give criteria for a theory to have singular compactness.
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1. INTRODUCTION

The construction of saturated models of a theory T is sensitive to the combinato-
rial properties of sets definable in 7. Consequently, properties of saturated models
and their constructions are often reflected in model-theoretic dividing lines, defined
in terms of synactic properties of a formula. For example, it is well known that a
stable theory has a saturated model in every cardinal in which it is stable [13, The-
orem II1.3.12]. In a similar vein, the third-named author characterized the simple
theories in terms of the saturation spectrum of a theory, namely, the set of car-
dinal pairs (A, k) with A > k and every model of size A\ extends to a k-saturated
model of the same size [12, Theorem 4.10]. Subsequent work on transferring satu-
ration, Keisler’s order, and the interpretability order all suggest that comparisons
between saturated models and their constructions yield meaningful measures of
model-theoretic complexity [1,4,9].

A theory T is said to have exact saturation at the cardinal x if there is a k-
saturated model of T' which is not x*-saturated. If x is regular and > |T|, every
theory has models with exact saturation at s [8, Theorem 2.4, Fact 2. 5], but
for singular x, this property connects with notions from classification theory. The
simplest example of a theory without exact saturation at singular  is the theory of
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n fact, the argument of [8, Theorem 2.4, Fact 2.5] show this for every regular .
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dense linear orders. Given a singular cardinal x and a k-saturated dense linear order
I and given any subsets A < B from I with |A| = |B| = &, there are cofinal and
coinitial subsets Ag and By of A and B respectively with |Ag| = |Bo| < x. It follows
from the x-saturation of I that there is some ¢ € I with a < ¢ < b for all a € Ag
and b € By, hence for all a € A and b € B. By quantifier elimination for the theory
of dense linear orders, it follows that I is xT-saturated. This example suggests that
failures of exact saturation are related to the presence of orders. Indeed, it was
shown in [8, Theorem 4.10] that an NIP theory T has exact saturation at a singular
cardinal x if and only if T is not distal (assuming 2% = ™).

Additionally, [8, Theorem 3.3] showed that if T is simple then T has exactly
p-saturated models for singular p of cofinality greater than |T'| (again assuming
2# = pt and, additionally, [J,,)). In the unstable case, this argument started from a
witness ¢(x;y) to the independence property along an indiscernible sequence I of
length x and inductively constructed a model M containing I so that every type
over fewer than u parameters is realized and also so that, for every tuple ¢ from M,
there is an interval from the indiscernible sequence that is indiscernible over ¢. This
ensures that the model is both p-saturated yet omits the type {p(x;a;)? ¢V i € I}.
Simplicity theory, via the independence theorem and the forking calculus, played
an important role in this argument.

Here, we are interested in both finding criteria for exact saturation in broader
model-theoretic contexts but also understanding the reach of the argument of [§],
which was tailored to simple theories. We introduce shredding, a notion that re-
fines forking and exactly captures the obstacle to ensuring that one can realize a
formula such that a large interval of a given indiscernible sequence is additionally
indiscernible over the realization. This notion is defined with exact saturation in
mind, but it appears to be a fairly fundamental notion and may have uses beyond
the context explored here. We use shredding to define the class of unshreddable the-
ories, which are roughly the theories with a bound on the number of times a type
can shred, and observe that both NIP and simple theories are unshreddable. Our
main theorem is that one may construct exactly saturated models of unshreddable
theories with the independence property for singular cardinals satisfying certain
set-theoretic hypotheses. We follow the rough outline of the argument of [8] but, in
contrast to the approach taken there, which faced considerable technical issues in
adapting the tools of simplicity theory for the construction of a exactly saturated
model, our proof, in addition to being more general, is considerably simpler and
more direct.

In section 4, we focus on the way that the class of unshreddable theories compares
to other classes from classification theory. We show that there is an unshreddable
theory with SOPj3, which suggests that the class of unshreddable theories is sub-
stantially broader than the simple theories. However, we show subsequently that
neither NSOP; nor NTP; imply that a theory is unshreddable.

In section 5, we consider the dual problem of which conditions on a theory imply
the inability to construct exactly saturated models, which we call singular com-
pactness. We formulate one such criterion and show that this condition entails
a considerable amount of complexity: theories that meet our condition for every
formula has TPy and SOP,, for all n. Nonetheless, we show that our condition
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restricted to a fixed finite set of formulas implies a local version of singular com-
pactness. For this local variant, we show that there is an example which satisfies
the condition for a fixed finite set of formulas which is NSOPy.

2. SHREDDING

2.1. Basic definitions. From now on, T will denote a complete first-order theory
with monster model M. In this subsection, we will describe shredding and show
that it can be given a finitary characterization.

Definition 2.1. Let A be a set of parameters and A an infinite cardinal.

(1) We say that ¢(x;a) A-shreds over A when there is b such that:
(a) b= (by : a <)) is an indiscernible sequence over A.
(b) For no a < A and ¢ € p(M, a) is bs,, is an indiscernible sequence over
Ac.

(2) We say a type A-shreds over A if it implies a formula that A-shreds over A,
respectively.

(3) We say p € S(B) A-shreds over A with a built-in witness if A C B and an
indiscernible sequence witnessing A-shredding is contained in B.

(4) For the above notions, we may omit A when A\ = (|T| + |A])™.

(5) We define K}, .4(T") to be the minimal regular cardinal s such that there is
no increasing continuous sequence of models (M; : i < k) and p € S™(M,)
so that p [ M;y1 shreds over M; with a built-in witness, if such a cardi-
nal exists. Otherwise, we set sl 4(T) = co. The cardinal kehred(T) =
SuP, K‘glllrcd (T) '

(6) We say T is unshreddable if Kghreda(T) < 0.

Remark 2.2. Though we do not use it, it is natural to additionally introduce an asso-
ciated notion of forking: say ¢(x;a) A-shred-forks over A if p(z;a) =\, o\ ¥i(; a;)
where each ;(x;a;) A-shreds over A. This satisfies extension, by the same argu-
ment as for forking.

The following lemma gives a finitary equivalent to A-shredding.

Lemma 2.3. Assume A = cf(A) > |T| + |A|. The following are equivalent:

(1) The formula p(z;a) A-shreds over A.
(2) There aren, b, i, and ¢ satisfying:
(a) b= (by :a < \) is an A-indiscernible sequence.
(b) T=(n i< k) is a finite sequence of increasing functions in ™(2n).
(c) ¥ = (Wbi(z;90, - yn—1;a]) : | < k) is a sequence of formulas with
a; € A.
(d) For every 6 < A divisible by 2n (or just for every limit 6 < \), we have

o(x;a) - \/ [i(25 b5, . .., bspn—1,a1) <> =5 Ds40(0)s - - - » Vst (n—1)>a1)] -
<k
Proof. (2) = (1) is clear by definition of A-shredding.
(1) = (2). Suppose @(z;a) A-shreds over A witnessed by the indiscernible
sequence (b, : @ < A). Then for each § < A consider the set of formulas I's(x)
containing ¢(z;a) and every formula of the form

X308, ..y b5 4m—1) < X(25b540(0)s - - - > Dstv(m—1))



Paper Sh:1192, version 2020-02-27. See https://shelah.logic.at/papers/1192/ for possible updates.

4 ITAY KAPLAN, NICHOLAS RAMSEY, AND SAHARON SHELAH

for every m < w, x € L(A), and increasing function v € ™\. Note that if ¢ |= T's(z),
then b>; is Ac-indiscernible so I's(x) is inconsistent for all § < A by the definition
of A-shredding. It follows by compactness that, for each § < A, there is a finite
sequence Y° = (x?(z;ys) : | < ks), and (after adding dummy variables to ensure all
formulas in y have the same parameter variables) there are ms < w and a sequence
of increasing functions s = (vs; : | < ks) from ™ A such that

p(w;a) - \/ X (@5 b6, -« bssms—1) > =X (T505400(0)s - « - D5 (ms—1))-
I1<ks
Let us = {i : 9 < mg} U{v(7) : i <ms,l < ks}. Let ns be the least natural number
such that |us| < ns.

By the pigeonhole principle and the regularity of A, there is a subset of limit
ordinals X C X of size A, n,m < w and ¥ = (x; : | < k) so that § € X implies
ns =n, ks = k, ms = m, and X5 = X. Further refining X, we may assume ¢ < ¢’
from X implies 0 +¢ < ¢’ for all i € us. Let Y = {d+i:0 € X,i € us}. Let
(ov; 19 < A) be an increasing enumeration of a subset of A containing Y so that
((2n)s + 1 < A) enumerates X (which is possible by the choice of n). Then if
§ = Qan).; € X, we can find for each [ < k an increasing function 7s; € ™(2n) so
that

6+ v5,1(1) = 2n)jnsa (i)
for all i < m (we do not place any constraints on 7;,;(i) for m < i < n). Write 7, for
this sequence of functions. By one last application of the pigeonhole principle, we
can find X’ C X of size A and 77 so that 6 € X’ implies 7 = 75 and let (o} : i < A)
be an increasing enumeration of {a;4; : ¢ € X', j < 2n}. Write b= O i < A)
for the subsequence of b defined by b, = ba;. Note that if § is divisible by 2n, then
de X'
Unravelling definitions, we see that if § = a; € X', then

p(w;a) - \/ xi(; b, - "bZSerfl) A ﬁXl(fcébem(o)v R g+m(m71))7
1<k

for all § < A divisible by 2n. Because m < n, by adding dummy variables to each
X1, we obtain formulas ; so that

p(xa) - \/ (s b5, born—1) < (@i 0y - Db mno1))s
1<k
as desired. O

Remark 2.4. The proof shows, in fact, that any sequence witnessing that ¢(z;a)
A-shreds over A gives rise to a sequence b as in (2) by restricting to a subsequence.

Corollary 2.5. Assume A = ¢fiA) > |T|+ |A| and ¢(x;a) A-shreds over A. Then
there is an A-indiscernible sequence (bq : @ < A) and m < w so that

o ((bmasbm-atls- - sbmatm—1): a < A) is Aa-indiscernible.
o (b 1 ax < \) witnesses that p(x; a) A-shreds over A and, additionally, for ev-
eryc € (M, a) and o < X, the finite sequence (b bm-a+1s -« - bm-atm—1)

18 not Ac-indiscernible.

Proof. Suppose ¢(z;a) A-shreds over A. By Lemma 2.3, there is an A-indiscernible
sequence {c, : a < A), a number n < w, a sequence of L(A)-formulas ¢ =
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(Wi(x; 90, -, Yn—1) : Il < k), and a sequence 7] = (n; : | < k) with each n; € ™(2n)
an increasing function, such that, for every § < A divisible by 2n,

p(z;a) B \/ [wl(x; Csy s Cotn—1) & ~1(T; Cspmy(0)s - - - ,c(;er(n,l))] i

1<k
Let m = 2n and extract an Aa-indiscernible sequence ((bim-o, Dm-at1y - - - s Om-atm—1) :
a < A) from ((¢m-asCm-atls s Cmatm—1) : @ < A). Then for all § < X\ divisible
by 2n,
p(r;a) - \/ [i(x; b5, . . ., bspn—1) <> (T3 D540 0)s - - - > bstm(n—1))] -
1<k
and (b, : @ < A) is an A-indiscernible sequence, so we are done. ]

From Lemma 2.3, we obtain a variant of shredding that is somewhat more cum-
bersome and less natural, but will be useful in the arguments below.

Definition 2.6. For an infinite cardinal A, we say ¢(x;a) explicitly A-shreds over
Aif there are m, b, 7, and 1) satisfying:

(1) b= (by : @ < A) is an A-indiscernible sequence.

(2) 1= (m :1 < k) is a finite sequence of increasing functions in "(2n).
(3) ¥ = (Wi(z;Y0, - yn—1;a}) : | < k) is a sequence of formulas with a € A.
(4) For every ¢ < A divisible by 2n, we have

QO((E, a) F \/ I:’l/Jl(.’L', b57 LN} b5+n717a2) « ﬁlﬁl(x; b5+m(0)7 R b§+m(n—1)u a;)] .
<k

We will often say that the tuple (b, n,7, ) witnesses that ¢(x; a) explicitly A-shreds
over A. We say o(z;a) explicitly shreds over A if it explicitly A-shreds over A for
some A. As before, we will say that a type p over B O A explicitly shreds over A
if it implies some formula that does, and it explicitly shreds over A with a built-in
witness if the witnessing A-indiscernible sequence b may be chosen to be contained
in B.

The point of introducing this definition is that explicit shredding is a notion that
lends itself to compactness arguments, as in the following easy lemma:

Lemma 2.7. The following are equivalent:

(1) The formula p(x;a) shreds over A.
(2) The formula p(x;a) explicitly shreds over A.
(8) The formula p(x;a) explicitly Ro-shreds over A.

Proof. (1) = (2) is Lemma 2.3, and (2) = (3) is immediate, by restricting the
witnessing indiscernible sequence to an initial segment of length w.

(3) = (1) Let A = (|A| +|T])" and suppose p(z;a) explicitly Ro-shreds, wit-
nessed by (b,n,7,1), where b = (b; : i < w). Define b; = (bap.i,--.,ban.iton—1)
for all ¢+ < w. The sequence (b, : i < w) is also A-indiscernible and, without loss
of generality, by (the proof of) Corollary 2.5, we may assume further that it is
Aa-indiscernible. Then applying compactness, we can stretch it to b= i< A)
with o, = (ban.s,...,boniron—1) for all i < A Then the sequence (b; : i < A)
is A-indiscernible and, together with n, 7, and 1 witnesses that o(x;a) explicitly
A-shreds, hence A-shreds. This shows (1). O
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Lemma 2.8. Suppose A is a set of parameters and B C A. The following are
equivalent:

(1) (x;a) shreds over A. ~

(2) There is an A-indiscernible sequence b = (b; : i < \) for X = (JA| +|T|)*
such that for no ¢ € ¢(M;a) and for no a < A is b>o indiscernible over
Be.

(3) w(x;a) explicitly shreds over A witnessed by a tuple (b,n,m,1), where the

formulas 1 have no parameters (i.e. are over the empty set).

Proof. (2) = (1) is clear by the definition of shredding, since in particular (2)
entails that for no ¢ € p(M;a) and o < X is b>,, indiscernible over Ac.

(3) = (2) since, if b= (b, : a < A), then, for all § < X divisible by 2n, we have
the implication

QO((E, a) F \/ [7/11(55: b57 EERX b5+n717 a;) < _‘¢l($; b5+m(0)7 R b§+m(n—1)7 a;)] .
<k

which implies that no end segment of b can be indiscernible over a realization of
¢(z;a) (with no additional parameters). A fortiori, no end segment of b can be
indiscernible over a set consisting of B and a realization of ¢(z;a).

To prove (1) = (3), we know, by Lemma 2.7, p(z;a) explicitly shreds over A,
witnessed by the tuple (b,n,7,%). Let ¢ be a tuple enumerating the parameters
occuring in the ¢ and let d be the sequence d = {(bs,c) : a < A), which is A-
indiscernible since b was assumed to be A-indiscernible and ¢ comes from A. Then
it is easily seen that by merely adding dummy variables to the formulas i, we get

1 = (¢ : I < k) such that for every § < A divisible by 2n, we have

p(xsa) b\ [¥)(@ids, .. dspn1) < V(x5 Ao (o) - - Dotmn-1))] -
1<k

Then ¢(x;a) explicitly shreds, witnessed by the tuple (d,n,7, El), where the for-
mulas El have no parameters. (I

The direction (1) = (2) of Lemma 2.8 gives base monotonicity for shredding:

Corollary 2.9. Suppose B C A and ¢(x;a) shreds over A, then p(x;a) shreds over
B.

Proposition 2.10. Suppose k is a reqular cardinal and m < w. The following are

equivalent:
(1) There is an increasing sequence A = (A; 1 i < k) with A, = J,_,. A; and
p € S™(AL) and such that p (explicitly) shreds over A,.

(2) There is an increasing continuous sequence of models M = (M; : i < k)
with My, = J,; .. M; and some p € S™(M,) such that p [ M; 1 shreds over

M; with a built-in witness.

<K

Proof. The direction (2) = (1) is immediate by Lemma 2.7, taking A; = M; for
all 7+ < k.

(1) = (2): for each i < &, fix a formula ¢;(z;a;) € p that explicitly shreds over
Aj;, witnessed by (b;, n;,7;,1;). By Lemma 2.8, we may assume that b; and v, have
been chosen so that the formulas in v; have no parameters. By the regularity of &,
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after replacing the sequence with a subsequence, we may assume @(z;a;) € p | Aj1.
Moreover, without loss of generality, we may assume b; = (bi,j 1 j <w) foralli < k.

Our assumption that 1), contains no parameters entails that ¢(x;a;) explicitly
shreds over any subset of A4; and, in particular, that ¢(z;a;) shreds over a;.
Therefore we may replace A; by a~; and p by p | a<, and, hence, without loss of
generality, the sequence (A; : ¢ < k) is increasing and continuous.

Let A\ = ()\; : i < k) be an increasing and continuous sequence of cardinals
> |T| with A; > |A;] and A;41 regular for all i < k. Denote lim;., A; by p. Let
¥ = (y; : 7 < p) be a sequence of variables of length p and denote by ¥; the
restriction (y; : j < A;) to the first A; variables.

Let I'(y,%; : i < k) be a partial type over A, such that the variables z; = (z; ;
j < Aix1) have length A;y1, and which naturally expresses the following, for all
1 < K:

(1) The sequence g; enumerates a model containing A;.

(2) The sequence 7; is indiscernible over y;, realizes the same EM-type over A;
as b;, and is contained in ¥, ;.

(3) The formula ¢(x;a;) explicitly shreds over 7;, witnessed by (Z;, ni,;,0;)-

It suffices to show that this partial type is consistent, as to conclude we may take any
complete type over the union of models realizing the 7; containing {¢(z;a;) : i < K}.
By compactness, it suffices to show this for  finite. By induction on x < w, we
will show that we can find models and sequences satisfying the conditions in the
partial type above. Suppose this has been shown for k = [. By induction, we know
there are models (M; : j < I) and sequences (C; : j < [) satisfying the requirements.
Choose an arbitrary model M of size A\; containing A;M; 1¢;_1. Extract an M-
indiscernible sequence 52 from b;. Then B; =4, b; so there is an automorphism
o € Aut(M/A;) with 0(5;) = b;. For each j < [, define M} = o(M;) and ¢; = o(¢;),
and then put M| = o(M).

Finally, let m = n; and consider the sequence ((b; 2m-i, - - -, b 2m-i+2m—1) 1 & < w).
Let b, = (( m-is s Dom.ivom—1) © © < Aiy1) be an Mjaj-indiscernible sequence
realizing the same EM-type over M;_1A;a; as ((biamei,-- -0 2meitom—1) © & < w).

Then defining ¢ = (b} : i < A\j41), we have that ¢} is an M/-indiscernible sequence

and ¢y (x;a;) explicitly shreds over M/, witnessed by (¢}, n,7;,%,). It follows that
(M} :j <1+1)and (¢; : j <1+ 1) satisfy the requirements, completing the
induction and the proof. ([l

Remark 2.11. Note that, in the course of the proof Proposition 2.10, we were able
to replace each A; with a.;, in which case we clearly have |A;| + 8o = |i| + Xg (in
fact, for finite ¢ we have |A;| = l(ag)i and for infinite ¢ we have |4;| = |i|.

It follows, then, that if x is a cardinal and &}, .4(T) > kT, then we can find a
witness of the form (M; : i < k) and p € S™(M) with |My| an arbitrary regular
cardinal > |T'|, {|M;] : ¢ < k) an increasing and continuous sequence of cardinals,
and with |M;;1]| a regular cardinal for all i < k.

2.2. Shredding and classification theory. Here we establish some preliminary
connections between the concepts of shredding and unshreddable theories with NIP
and simplicity.
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Definition 2.12. The formula ¢(x;y) has the independence property if for every
n, there are ag, ..., a,—1 and tuples b,, for every w C {0,...,n — 1} so that

E olai,by) < i€ w.

A theory is said to have the independence property if some formula does modulo
T, otherwise T is NIP.

Equivalently, the formula ¢(z;y) has the independence property if there is an
indiscernible sequence (a; : i < w) and b so that = ¢(a;,b) if and only if ¢ is even
(see, e.g., [15, Lemma 2.7]).

Proposition 2.13. If A = ¢f(A) > |T| + |A| and some consistent formula o(x;a)
A-shreds over A, then T has the independence property.
Proof. Suppose ¢(x;a) A-shreds over A. Then by Lemma 2.7, it explicitly A\-shreds
so we may fix k, n, ¢, 7, and b = (b, : @ < A) as in the definition of explicit
shredding. Let ¢ be an arbitrary element of ¢(M;a). By the pigeonhole principle,
there is a subset X C X of size A\, I <k, and t € {0, 1} so that

}: 1/11(0; bw-ou BERE) bw-aJrnfla a;)t A 1/’1(6; bw~a+m(0)7 SRR bwu—i-m(n_l), a;)lit
for all & € X. Let (a; : i < A) be an increasing enumeration of X. For ¢ < A
even, we define d; = (by.a;s---sbw-a;4n—1) and for i < A odd, we define d; =
(bo-ai4m(0)s - - > Duseas4my (n—1))- Then (d; : i < A) is an A-indiscernible sequence, by
the A-indiscernibility of b, and we have

c b {wi(z,di,a))' - i < Xeven} U {¢y(x;d;,a))* ™" i < X odd},
which shows x(z, z;y) = ¥i(z,y, z) has the independence property. O

Recall that a formula ¢(z;ag) divides over a set A if there is an A-indiscernible
sequence (a; : i < w) such that {¢(x;a;) : i < w} is inconsistent. A formula p(z;b)
forks over A if p(z;b) = \/,_, ¥(x;a;) where each ;(x;a;) divides over A. A type
divides or forks over A if it implies a formula that respectively divides or forks over
A. A theory is called simple if there is a cardinal x such that, whenever p is a type
(in finitely many variables) over A, there is B C A over which p does not fork with
|B| < k. The least such cardinal & is called x(T") and the least such regular cardinal
is called k. (T).

Proposition 2.14. If p(x;a) shreds over A then ¢(x;a) forks over A.

Proof. Suppose A = (|T| + |A|])™ and, by Lemma 2.7, we know ¢(z;a) explicitly
A-shreds over A. Hence, there are is an A-indiscernible sequence b = (b; : i < \)
such that that there is a sequence of L(A)-formulas (¢;(x;yo,...,Yn—1) : | < k)
and a sequence (n; : | < k) with the property that that

o(x;a) F \/ Yi(@5 s, -+ b5 4n—1) < 21(5 0510, (0)5 - - b5ty (n—1))s
1<k
for all § < A divisible by 2n. Given a < A, let ECL: (bw-at+i : © < w). By the proof

of Corollary 2.5, we can moreover assume that (b, : @ < A) is an Aa-indiscernible
sequence. We will choose (aq)a<x so that

(1) For all a < A, aq = tp(a/Ab.y).

(2) For all a < A, b, is an a4 A-indiscernible sequence.
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Given (ag)g<a, to choose aq,, first apply Ramsey and compactness to extract from

*
ba asequence b, = (b}, .

: i < w) which is Aa5<a—indiscernible. Then as b, = Ab-.,
5:;, we can choose a,, so that a,b, =Ab.. aEZ. The sequence (aq)a< satisfies both
(1) and (2) by construction. By Ramsey, compactness, and automorphism, we may
moreover assume the sequence ((aq,bq) : @ < A) is an A-indiscernible sequence.
By the finite Ramsey theorem, there is n, so that n, — (2n)},. Let A = {v €
"(n,) : v increasing} and for v € A, let bay = (by.atu(i))iczn- Let @ (25ba,0)

(suppressing parameters from A) denote the formula

/\ wl (.13, bw~a+u(0)7 v abw~a+u(n71)) A wl (.I‘, bw~o¢+u(m [((O)EERER) bw-a«H}(m(nfl)))-
i<k

Let ¢.(; Gq, ba,) denote the formula ¢(x;aq) A ¢'(2;ba)-

Claim 1: ¢(z;a0) F \, cp 04 (25 a0, bo,y).

Proof of claim: Let ¢ be any tuple with M | ¢(c;a9). Given any increasing
§ € "(n.), define x(§) = {l < k: M = ¥i(c;be(oys - - -, ben—1),a7) }. This defines a
coloring with 2* possible colors. As n, — (2n)%,, there is v € A so that v is an
increasing enumeration of a homogeneous subset of n, of size 2n. For each | < k,
both (v(0),...,v(n — 1)) and (v(m:(0)),...,v(m(n —1))) take on the same value
with respect to the coloring x, hence

M ’: /\ 7/’1(0; by(O)v SERE) bv(n—l)) A wl(c; bu(m(O))v s 7bu(m(n—1)))~
i<k

This shows M = ¢, (; ag, by, ), proving the claim. O
Claim 2: For each v € A, . (x; a9, bp,,) divides over A.
Proof of claim: Let v, = (0,...,2n —1). We will first show that ¢.(z;ag, bo,v.)
divides over A. By assumption,

¢(x; a) F = /\ 1/11(35; bu-as- s bw~a+n—1) A4 1/11(96; bw~a+m(0)v cee abw~(x+m(n—1))v
<k

and therefore ¢(x;a) F —¢/(2;b4,, ) for all @ < X. For all a, we have a, =45 @

so if B < @, then ¢(z;a4) F =¢'(z;bs,,.). Therefore, when 3 < a, we have
@4 (@3 a0, ba ) F =i (2308, b5,0.),

from which it follows that {p.(z;aa,bau,.) : @ < A} is 2-inconsistent. Since
{(@asbap,) s @ < A) is an A-indiscernible sequence, we have shown ¢, (7;ag, bo ., )
divides over A.

Finally, as by is an Aagp-indiscernible sequence, we have Eo,u = Aa, Do, for all
v € A. It follows that ¢.(z;a0,bo,) divides over A for all v € A. This proves the
claim and therefore proves the proposition, by Claim 1. ]

As a corollary, we obtain the following;:
Proposition 2.15. If T is simple, then Ksnred(T) < kr(T).

Proof. Suppose not. Let x = cf(k) > |T'| and suppose we have the following:
(M; : i < k) is an increasing sequence of models of T

p(z) = {p(z;a;) : i < K} is a consistent partial type.

p(x;a;) shreds over M;.

a; € Mi+1-
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Then by Proposition 2.14, p forks over M; for all i < s. Let M, = ;.. M;. As T
is simple, there is subset A C M,; with |A| < k,(T) such that p does not fork over
A. As k is regular, there is some i < k so that A C M;, from which it follows that
p does not fork over M; as well, a contradiction to the definition of x. (7). O

Corollary 2.16. The class of unshreddable theories contains the NIP and simple
theories.

Proof. This follows immediately from Proposition 2.13 and Proposition 2.15. O

3. RESPECT AND EXACT SATURATION

3.1. Respect. For the entirety of this subsection, we fix a singular cardinal pu.
Writing cf(u) = &, we will assume there is an increasing and continuous sequence of
cardinals A = (); : i < k) such that \g > &, A;y1 is regular for all i < k, and A\x = p.
We will assume we have fixed for each ¢ < x a sequence @; = (a;; : 7 < Aiy1),
which is @.;-indiscernible. Additionally, we will assume that T is a theory with
khread(T) < K

shred — v

Definition 3.1. Suppose i < k and A is a set of parameters.

(1) We say that A respects @; when for any finite subset C' C A, there is
o < Aj41 such that @; >, is C-indiscernible.

(2) We say p € S<“(A) respects a; when, for every ¢ |= p, the set Ac respects
;.

Remark 3.2. In Definition 3.1(1), by the regularity of A;;1, we could have instead
asked for the existence of such an a < A\;41 for any C C A with |C| < A;41, since
there are fewer than \; 11 finite subsets of any such C.

Definition 3.3. We define K to be the class of A such that:

(1) A= (A;:i < k) is increasing continuous.

(2) |Ai] = A; for all i < k.
(3) a; C Ai—i—l for all i < k.
(4) A, respects @; for all i < k, i.e. there is some o < A;11 such that @; > is

A;-indiscernible, using Remark 3.2.

Given A,B € K, we say A <g Bif A; C B; for all j < k. We say A <g; B if
A; C Bj for all j satisfying ¢ < j < k and A <k, B if A <g; B for some i < k.
We may omit the K subscript when it is clear from context.

Lemma 3.4. Suppose p is a partial 1-type over A, with |dom(p)| < X\;. Then there
is some i’ >4 and p' 2 p such that |dom(p')| < Ay and, if i > i’ and q is a type
over A, extending p’, then q does not shred over A .

Proof. Suppose not. Then we will construct an increasing sequence of types (p; :
J < k) extending p and an increasing sequence of ordinals (i; : j < k) such that
lpj| = \i; and p; shreds over A;, for all j < x. To begin, we use our assumption to
find some iy > i and pg D p such that py shreds over A;,. We may assume dom(pg)
contains A;, and has cardinality \;;. Given any (p; : j < ) and (i; : j < «) for
a>1, we put p/ = Uj<apj and i’ = SUP;cq Uj (here we make use of the fact that
k is regular). Then [p/| = A\y. Let p” be any extension of p’ over A, that has
size Ayy1. Then p” properly extends p and ' + 1 > i so, by hypothesis, there is
some type po 2 p” and i, > i + 1 > ¢’ such that p, shreds over A;_ . As this will
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be witnessed by a single formula, we may assume |p,| = A;_, which completes the

induction.
Let p, = Uj<ﬁpj. Then, by construction, we have p. shreds over A;, for all
j < k. By Proposition 2.10, this contradicts £}, .4(T) < k. O

Lemma 3.5. If A € K and p is a 1-type over A, of cardinality < 1, then there is
A' €K such that A <g A and some c € Al realizes p(z).

Proof. By Lemma 3.4 and the choice of p, we may extend p to a type p’ such that,
for some i < k, |[dom(p’)| < A; and no type extending p’ over A, shreds over A;
for any i’ > i. Without loss of generality, we may assume p = p'.

By induction on j € [i, k], we will define types p; € S'(4;) so that

(1) The types p; are increasing with j.

(2) For all j € [i, k), p; Up is consistent.

(3) For all j € [i,k), if ¢ = pji1, then for some o < Aji1, Tj > is Ajc-
indiscernible.

Let p; € S'(A;) be any type consistent with p. Given p;, we note that p U p;
extends p and therefore does not explicitly shred over A;. Because [pUp;| < \ji1,
by compactness and the fact that A; respects @;, there is a realization ¢ = p U p;
and a < Ajy1 such that @; >, is Ajc-indiscernible. We put p;41 = tp(c/A 41).
Finally, given (p; : j € [¢,06)) for 6 limit > 4, we set ps = Uje[i,é) Dj.

Define p,;, = Uje[m) p;. Let crealize p,; and define A, by A = Ajforallj <i+1
and A% = Ajcfor all j > i+1. For all j € [i, x), as c realizes p;1, we know there is
o < Aj41 such that @; >, is cAj-indiscernible. It follows that A, € K, completing
the proof. O

3.2. A one variable theorem.
Theorem 3.6. For all m, we have 7. 4(T) + N = £k, 4(T) + No.

Proof. The inequality &7 4(T) > k1, .4(T) is clear, so it suffices to show k1, 4 (T)+
Nog > 67 q(T) + No. Suppose £ >kl 4 (T) + Ry is a regular cardinal, (\; : i < k)
is an increasing continuous sequence of cardinals with Ag > £+ |T| and \; 11 regular
for all ¢ < k. Let p = sup; ., Ai-

By Remark 2.11, we may assume (M; : ¢ < k) is an increasing continuous
sequence of models with |M;| = A; and p(xg,...,xm—1) € S™(M,) is a type such
that p | M1, shreds over M; with a built-in witness @;. We will prove by induction
on m that there is an increasing and continuous sequence of models (M/ : i < k)
and ¢(y) € S1(M),) such that ¢ [ M/, , shreds over M. By our assumption that
K> H;hred(T) and Proposition 2.10, this shows that there can be no such m-type,
giving the desired conclusion.

When m = 1, there is nothing to show.

Suppose it has been proven for m and suppose (M; : i < k) is an increasing
continuous sequence of models with |M;| = \; and p(zo, ..., z,) € S™H(M,) is
a type such that p | M, shreds over M; with a built-in witness b;, witnessed by
the formula ¢;(zo, ..., Tm;m;) € p | M;y1. Then because b; is M;-indiscernible,
we have (M; : i < k) € K in the notation of Subsection 3.1 with the b; playing the
role of @;.
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Let p'(xo, ..., xm) = {@(x0, ..., Tm;m;) 1 i < k} and let p”(x,,) be defined by

p/l(xm) = (Hm()a"'7xm71)/\p/(x07-~-axm>
= {(3zo,...,Tm-1) /\ o(xo, ..., Tm—1) : w C p’ finite}.
pew

Note that |[p”| = k < p. By Lemma 3.5, there is N = (N; : i < k) € K such
M <g N and such that p” is realized by some ¢ € N,. By the definition of K,
for each ¢ < k, there is some a; < A;41 such that Bi,Zai is N;-indiscernible. Let 1,
be minimal such that ¢ € N;, and let ¢(zq,...,zm—1) = p'(z0, ..., Tm—1,¢). Let
¢ € S(N,) be any completion of g. Then for all i > i,, we have that ¢’ | N1
shreds over IN; with the built-in witness 5i72ai. Reindexing by setting M| = N;, 4,
and a; j = b; o, +; for all ¢ < k and j < A;41, we may apply the induction hypothesis
to complete the proof. (Il

3.3. Exact saturation. As in Subsection 3.1, we fix a singular cardinal p. Writing
cf(p) = K, we will assume there is an increasing and continuous sequence of cardinals
A= (\; 17 < k) such that A\g > K, \;41 is regular for all i < , and A\, = p.

We write I to denote {(i,a) : i < K, < Aj41} ordered lexicographically. We
write I; >3 = {(j, ) : j =i and o > S} and we write I; for I; >o. We also fix an
indiscernible sequence @ = (a; : t € I). We similarly write @; > for (a; : t € I, )
and a; for (a; :t € I;). If i < K, and oo < B < A1, we write @; o g for the sequence
(aj :j=1,7 € [a,B)). Note that, in particular, we have @, is a<;-indiscernible.
In this subsection, we will write K to refer to A as in Definition 3.3 with respect to
the sequences @; described above.

Additionally, we will assume that T is a theory with x} .4(T) < &k = cf(u)
and with the independence property witnessed by the formula (z;y) along the
sequence (a; : i € I)—that is, for all X C I, we have that {¢(z;a;)€X) i € I}
is consistent.

We will construct a model containing (a, : ¢ € I) that is p-saturated but every
finite tuple from this model has the property that there are intervals from our fixed
indiscernible sequence (a; : ¢ € I) which are indiscernible over it. Because we as-
sume T has the independence property, witnessed along this indiscernible sequence,
it will follow that {¢(x;a;) : i even} U {—¢(z;a;) : i odd} is an omitted type, which
means that the model produced by our construction is not u™-saturated. Our proof
pursues the same strategy as the construction of an exactly satured model of a sim-
ple theory from [8, Theorem 3.3], but with kgnred (T) < 00 replacing the assumption
of simplicity.

In order to organize the construction, we will use the following combinatorial
principle:

Definition 3.7. Suppose k is an uncountable cardinal. For a club C', we write
Lim(C) for the set {a« € C : sup(C Na) = a}. We write O, for the following
assertion: there is a sequence (Cy, : @ € Lim(x™)) such that

(1) Co C avis club.

(2) If B € Lim(Cy,) then Cg = C, N B.

(3) If cf(a) < K, then |Cy| < k.

We call such a sequence a square sequence (for k).
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The following remark was noted in [8, Remark 3.2] —it will play a similar role
in our deduction of the main theorem.

Remark 3.8. Suppose (C,, : @ € Lim(k™)) is a square sequence and C’, = Lim(C,,).
Then we have the following:
(1) If C, # 0 then if sup(C.,) # « then C’, has a last element and cf(a) = w.
If C!, = 0 then cf(a) = w.
(2) Forall B € Cp, Cy =Ci N p.
(3) If cf(a) < K, then |CY)] < k.

The following is the main theorem of the section. The proof follows [8, Theorem
3.3].

Theorem 3.9. If T has the independence property and Ksnrea(T) < 00, then T has
an ezactly p-saturated model for any singular p > |T| of cofinality k > Kshrea(T')
such that O, and 2" = p*.

Proof. Let (Cy : a € Lim(u™)) be a sequence as in Remark 3.8. Note that, for all
a € Lim(pt), we have that |C,| < p by condition (3) of Remark 3.8, as a@ < p*
and hence cf(a) < p. Partition p* into {S, : @ < p} so that each S, has size put.
By induction, we will construct a sequence of pairs ((A4,pa) : o < put) such that
(1) Ay = (Ani:i<k) €K
(2) Do = (Pap : B € Sa \ @) is an enumeration of all complete 1-types over
subsets of |J; Aa,; of size < p (using |T'| < p and 2* = pu™).
(3) If B < a, then Zg <, A,.
(4) If @ € S, and v < a, then A, contains a realization of p, 4.
(5) If a is a limit, then for any ¢ < & such that |Cy| < A; and 8 € Cy,, then we
have that Ag <; A,.
At stage 0, we define Ay to be the minimal sequence in K—that is, A = U«
for all i < k. For the successor case, use Lemma 3.5.

Now we handle the limit cases.

Case 1: sup(Cy) = a. Let ip = min{i < s : |Cq| < A\;} which is necessarily a
successor ordinal. For ¢ < iy, we define A, ; = @«; and for ¢ > iy successor, we let
Aai = Upgec,, Ap,i- Note that [Ag;| < A; for all i < &, and for i limit we define
Aq,; by continuity, setting

Avi= |J Ay
j<i
J successor

Note that it follows, then, that for i limit, we also have Aa ;i = Ugeq, As,i-

We have to check (1),(3), and (5). First we show that A, € K. The only thing
to check is that 7 > iy implies A, ; respects a;. Now if w C A, ; is a finite set, for
each e € w, there is some . € C, so that e € Ag_ ;. Let § = max{f. : e € w}.
Then C, NS = Cs. By (5), the fact that |Cg| < A;,, and induction, we have g, < /3
implies 8, € Cg and Ap, <;, Ag so Ag.; C Ag,. It follows that w C Ag,. As
Zlg € K, we know Ag ; respects @;, so there is some § < ;1 such that @; >s is w-
indiscernible. As w C A, ; is arbitrary, this shows A, ; respects @; and, therefore,
A, € K. Next, if 3 < a, then, because sup(C,) = a, there is 3’ € C, such that
B < . By induction, Ag <, Ag and, by construction, Ag <;, A, from which it
follows that Ag <, A,, which shows (3). Finally (5) is by construction.
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Case 2: sup(C,) < a. We know in this case C,, has a maximum element v and
cf(a) = w. Choose an increasing cofinal sequence (3, : n < w) in a with By = 7.
Then, by induction, we may choose an increasing sequence of successor ordinals
(in : n < w) so that Ag, <; Ag,,,. Setting iy = 0 and i = sup{i,, : n < w},
we define A, as follows: for successor j € [i,_1,i,), we put A, j = Ag, ; and for
successor j > i, we put Ay j =, ,, 4p,,;- For limit ordinals j, A, ; is defined by
continuity. It is easy to see that this satisfies (1) and (3), so we check (5).

First, observe that A, < A,. To see this, it suffices to show by induction on n,
that if j > 4,1, then A, ; C Ag_ ;. For n = 0 this is by definition. Assuming it is
true for n, we can consider an arbitrary j > i,. Then by choice of i,, Ag, <;, Ag, ,
soAg, j € Ag, ., ;- Asthesequence (i, : n < w) is increasing, we have also j > i,
so, by the inductive hypothesis, A, ; C Ag, ; so, by transitivity, A, ; C Ag, ., ; as
desired.

Now suppose i < k, |Cq| < Aj, and 8 € C,. Then B < yand as A, < A, we have
in particular that A, <; A,, so we may assume 3 < 7. Then 3 € C, N~y = C, and
|C,| =|Ca Ny| < A; so it follows by induction that Ag <; A, < A, so Ag <; A,.

To conclude, we define a model M by

M = U Agi.
a<k™
1<p
By (4), the model M is p-saturated. Moreover M is not p*-saturated, as the partial
type
{p(r;aiq) 11 < K, even} U {—p(z;aiq) 1 i < Kk, odd}
is omitted by (1). O

Question 3.10. Suppose T is NTPs and has the independence property, and as-
sume s a singular cardinal such that cf(p) > |T|, 2 = p*, and O,. Does T
have an exactly p-saturated model?

4. EXAMPLES

4.1. Standard examples for the SOP,, hierarchy. Recall the definition of the
SOP,, heirarchy:

Definition 4.1. Suppose n > 3. The theory T has the nth strong order property
(SOP,,) if there is a formula ¢(z;y) and a sequence of tuples (a; : i < w) so that
(1) = ¢(ai;a;) if and only if ¢ < j.
(2) {p(zi,ziy1) i <n—1} U {p(zn_1,20)} is inconsistent.
If T does not have SOP,,, we say T is NSOP,,.

By a directed graph we mean a set with a binary relation that is assymetric and
irreflexive. Given a natural number n > 3, we let L, = {Ri(z,y)} U {Si(z,y) :
1 <1 < n} be a language with n binary relations. The theory T} is the L,-theory
of directed graphs with no cycle of length < n, where R;(x,y) is the (assymetric)
edge relation and S;(x,y) means that there is no directed path of length <! from
x to y. More precisely, T consists of the following axioms:

e Ri(x,y) is an irreflexive assymetric relation:

(VSL’7 y)[Rl (1'7 y) — Ry (y’ :L')]
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e There are no directed loops of length < n. That is, for all k£ with 1 < k < n,
we have

=(3z0, ..., 2k)

/\ Ri(zi, zip1) A Ra(2k, Zo)] :

i<k

e The relation S;(x,y) implies that there is no directed path of length < I
from z to y:

(V. y) | Si(z,y) = ~(3z0, .., 21) lzo =T Nz =yA ARl(zi72i+1) Vzi = Zi+1H :
i<l
e Paths satisfy the triangle inequality: if [ + 1’ < n, then
(qu Y, Z) ["Sl(fE, y) A "Sl’(yu Z) — ﬁSl+l’(x7 Z)] )
and, because there are no loops of size < n, forall1 <l <n' <n

(Va,y,2) [2S1(z,y) = Swi(w,y)] -
This is a universal theory and the model completion of T is denoted T;,—it elim-
inates quantifiers. We will write R;(x,y) for —S;(z,y), which indicates there is a
directed path of length <[ from z to y. We will write M, = T,, for the monster

model of T;,. The existence of the model completion is proved in [14, Claim 2.8(3)],
where it is also shown that T;, is SOP,, and NSOP,, ;.

Proposition 4.2. Ifn > 4, then kepred (1) = 0.

Proof. Let k be an arbitrary infinite regular cardinal. Define a directed graph G
with domain {b; o : i < K,a < w}U{a;; : i < K,j < 2} and interpret the edge
relation Ry in G by

RY = {(ai0,bia) 11 < kya <weven} U{(bia,ai1):i < ko <wodd},

and then interpret SlG and hence RlG for 1 <[ < n according to the axioms. This
clearly defines a model of T? so there is an L,-embedding of G into the monster
model M,, = T,,. Therefore, we may identify G with an L,-substructure of M.
Define A; = 6959, for all i < K.
Let ¢(z;y, 2) = Ri(z, y)AR1(z, ) and define a partial type p by p = {p(x; @i 0, ai1) :
i < k}. It is clear from the construction of G that any vertex satisfying this collec-
tion of formulas would not create a cycle, hence in particular, it will not create a
cycle of length < n and, therefore, p is a consistent set of formulas.
Fix i < k. By quantifier-elimination, we have b; ;1 = (bi+1,a)a<w i A;-indiscernible.
Let c realize ¢(z;a;41,0,ai+1,1). Then we have
(1) Ra(c,bit1,0) for a < w even.
(2) Ra(bit1,a,c) for @ < w odd.
(3) {Ra(x,bit1,a), R2(bit1,4,x)} is inconsistent for all «, because n > 4.
It follows that no end-segment of b;; can be c-indiscernible, and therefore cannot
be A;c-indiscernible. In fact, o(x; ait1,0,@it1,1) F R2(2;biv1,0) <> " Ra(T;big1,041)
for all even o < w, which shows that ¢(x;ait+1,0,a:41,1) explicitly shreds over A;.
It follows that Kshrea(T) > K and, as k was arbitrary, we have Kgpred (T) = 00. O

Now we analyze T3:

Lemma 4.3. In T3, if b= (b; : i < \) is indiscernible over ALthen for any tuple a,
if ¢ is a tuple disjoint from Aa, then there is ¢’ =4, ¢ so that b is Ac'-indiscernible.
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Proof. Note that T3 eliminates quantifiers in the language containing only Ry, since
Rs(x,y) is definable by the formula x # y A =Ry (y, x). For simplicity, we will write
R for R;. Because algebraic closure in Tj is trivial, by replacing ¢ by something
with the same type over Aa, we may assume c is disjoint from Aab. Define a model
M = TY as follows with underlying set Aabc by defining

RM = RMs | AabU R™ | Aac.

We claim that M = T9. To see this, suppose not and there are distinct do, d1,ds €
M so that RM(dy,dy), RM(dy,d2), and RM (dg,dy). Since M3 has no directed
cycles of length 3, it is impossible for dy,d;,ds to be all contained in Aab or all
contained in Aac. Therefore, without loss of generality, dy € Aab\ Aac. But then
since RM (dy, dy) and R (dy,d;), we have dy,ds € Aab, by the definition of RM, a
contradiction. This shows M has no directed cycle of length 3 so M = T9.
Embed M into M3 over Aab and let ¢/ be the image of ¢. By quantifier elim-
ination, we have ¢/ =4, ¢ and, because ¢ is disjoint from Aab, we have b is Ac/-
indiscernible. U

Proposition 4.4. Kgpred(T5) = No.

Proof. First, we will argue that kgnrea(T3) > No. For each i < w, find a; and
b, = (b;j : j < w) such that b; is a<;-indiscernible and = Ry (a;, b; ;) if and only if
Jj is even (note that it follows that the a;s are pairwise distinct). Let A,, be a<p,
viewed as a set. Then for each n, let p,(xo,...,2,) = {z; = a; : i < n}, which
implies a complete type in S,11(A,). Moreover, p,, | A;11 shreds over A; for all
i < n since p, - & = a,41 and hence implies Ry (z;b; ;) if and only if j is even. This
shows Kenred (T3) > n for all n < w, hence Kgpred (T3) > Ro.

Now we will show &gnred (T3) < Rg. By Theorem 3.6, it suffices to show nghred (Ts) <
N, and, in fact, we will show Kghreda(T3) < 2. Towards contradiction, suppose A is
a set of parameters, o (z;ao) shreds over A witnessed by by, ¢1(z;a1) shreds over
Aag witnessed by by, and {pg(x;ag), p1(x;a1)} is consistent. Because @o(z;ag) has
no realization ¢ such that by is indiscernible over Ac, it follows by Lemma 4.3 that
any realization of pg(x; ag) is contained in Aag. Then let ¢ = {¢o(x; ao), ¢1(x;a1)}.
Because ¢ is an element of Aayg, it follows that b; is Aagc-indiscernible, contradict-
ing the fact that by witnesses that ©1(x;a1) shreds over Aag. This completes the
proof. O

4.2. An NSOP; theory with Kgpred(T) = co. There is a theory of independence
for NSOP; theories that indicates this class of theories may be considered quite
close to the class of simple theories (see, e.g., [6]). In the next example, however, we
show that within the class of NSOP; theories, it is still possible that fghred(T) = 0.
Recall the definition of SOP;:

Definition 4.5. A formula ¢(x;y) is said to have SOP; if there is a tree of tuples
(ap)ne2<w satisfying the following:
(1) For all n € 2%, {¢(x;ayq) : @ < w} is consistent.
(2) For all n L v in 2<% if (pAv) ~ 0dnand (n Av) ~ 1 = v, then
{o(x;ay), ¢(z;a,)} is inconsistent.
A theory T is said to have SOP; if some ¢(z;y) has SOP; modulo T, otherwise T
is NSOP1
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The following theory is a variation on the generic theory of selector functions 77
considered in [6, Subsection 9.2]. The language L for our example consists of unary
predicates F,Og, O1, and O, binary relations F, Ry, and R1, and a binary function
eval. The theory T consists of the following axioms:

(1) F, Op, and O; partition the universe and O = Og U O;.
(2) E C 0% is an equivalence relation.
(3) eval : F' x O — Oy is a selector function:
(a) (V2 € F)(¥y € O) [E(y, eval(z, ))].
(b) (Vx € F)(Vy,z € O) [E(y, z) — eval(z,y) = eval(z, 2)].
(4) The relations Ry, R; satisfy:
(a) Ro - OQ X Ol.
(b) R1 - F x 01.
(¢c) (Vx € F)(Vz € O1) [Ro(eval(z, 2), z) <+ Ri(x, 2)].

Define K to be the class of finite models of T'.
Lemma 4.6. The class K is a Fraissé class. Moreover, it is uniformly locally finite.

Proof. HP is clear as the axioms of T are universal. The argument for JEP is
identical to that for SAP, so we show SAP. Suppose A, B,C € K where A C B,C
and BN C = A. It suffices to define a L-structure with domain D = B U C,
extending both B and C. First, note that if FZ is non-empty, then every EB-
class intersects OF, but if FP = (), it is possible that there are EP-equivalence
classes disjoint from OF. In this latter case, we can extend B to B’ so that each
equivalence class contains an element of Og: Let (K;);<; list the EZB-classes K of B
such that OPNK = (). Let B’ be the L-structure with underlying set BU{*; : i < [}
where the x; are new formal elements. Consider B’ as an L-structure via the the
following interpretations: for the unary predicates, interpret F'2 "= FB = 0, Of ‘=
OB U{x;:i<1}, 0B =0B and OB = OF UOP'. Let R®' = RE, RP' = RE,
and let EB" be the equivalence relation generated by EB U {(b,*;) :i < 1,b € K;}.
As FB = FB'" — (), we can only define eval? . FB' x 0B - OB’ to be the
empty function. It is clear that B’ is in K, extends B, and every equivalence class
not represented by an element of A contains an element of Oy. By a symmetric
argument, we may also extend C to C” so that every E€-class not represented by
an element of A contains an element of O§". Replacing B and C by B’ and "
respectively, we may assume that all classes of B and C' are either represented by
an element of A or by an element of OF or Of respectively.

Now we describe the construction of D. Interpret OF, OP and FP by OF =
OB UOf fori = 0,1, OP = OP UOP, and FP = FB U F®. Let EP be the
equivalence relation generated by EP U EC. It follows that if b € B, ¢ € C and
(b,c) € EP, then there is some a € A so that (a,b) € E® and (a,c¢) € E¢ and,
moreover, (OP EP) extends both (OF, EB) and (O, EY) as equivalence relations.
Put RY = RP URS.

Next we define the interpretation eval®. Let {a; : i < ko} enumerate a collection
of representatives for the E“-classes in A. Then let {b; : i < k;} and {c; : 5 < ko}
enumerate representatives for the EZ- and E-classes of elements not represented
by an element of A, respectively. By the remarks above, we may assume each b;
and ¢; are in OF. Then every element of OP is equivalent to a unique element of

X:{alz<ko}u{bzz<k1}u{czz<k2}
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Suppose d € X. If f € FA, define eval”(f,d) = eval®(f,d) if d € B and
eval? (f,d) = eval®(f,d) if d € C, which is well-defined as A is a substructure
of both B and C. If f € FB\ FA, define eval”(f,d) = eval®(f,d) if d € B and
evalD(f, d) = d otherwise. Likewise, if f € F€ \ F4, put eval? (f,d) = evalc(f, d)
ifde C and evalc( f,¢) = c otherwise. This defines eval on F'” x X. More gener-
ally, if f € FP and e € OP, define evalD(f, e) = evalD(f, d) for the unique d € X
equivalent to e.
To complete the construction, we must describe the interpretation of RY. Put

RP = REURC U{(f,d) € FP x OP : (eval®(f,d),d) € RP}.

We check that this defines an extension of B and C. If b € FE ¥ € OF, and
(eval? (b,¥'),0') € R, then (eval® (b, b'),V') € RE and eval® (b,0') = eval® (b, 1) so
(eval? (b,0),¥') € RF and therefore RE (b, ). This shows RP | B = RE. Likewise
RP | C = R§. Therefore D extends B and C.

Now to conclude we must show D € K. It is clear that D satisfies axioms (1)-(3),
so we are left with checking (4). Suppose (f,d) € FP x OP\ (FE x OP UF® x 0Y)
and d’ = eval®(f,d). Then, by definition, if (d,d’) € RY, then (f,d) € RP. On the
other hand, if (f,d) € RP then, because (f,d) ¢ R? U R}, we must have (d,d’) €
RY, again by the definition of RP. Tt is clear that if (f,d) € F¥ x OB U F¢ x Of
then (f,d) € RY if and only if (f,d) € RP because D extends B and C which are
in K. Therefore D satisfies axiom (4) which shows D € K. This shows K has the
amalgamation property.

Finally, note that a structure in K generated by k elements is obtained by ap-
plying < k functions of the form eval(f, —) to < k elements in O, so has cardinality
< k% 4+ k. This shows K is uniformly locally finite. O

Corollary 4.7. T has a model completion T* which is the theory of the Fraissé
limit of K. The theory T* eliminates quantifiers and is Ny-categorical.

We will write M = T* for a monster model of T*. We will now show that T* is
NSOP; by appealing to the following criterion:

Fact 4.8. [3, Proposition 5.8] Assume there is an Aut(M)-invariant ternary relation
| on small subsets of M satisfying the following properties, for an arbitrary M < M
and arbitrary tuples from M:
(1) Strong finite character: if a J b, then there is a formula ¢(z,b,m) €
tp(a/Mb) such that for any a’ | ¢(z,b,m), a’ £, b.
(2) Existence over models: a |, M.
(3) Monotonicity: if aa’ | bV, thena |, b.
(4) Symr.netry: ifa |, b thenbd .J/M a. / /
(5) The independence theorem: if aJ/Mb, a J/Mc, bLMc and a =) d,
then there exists a”’ with a” = a, @’ = @', and a” J/M be.
Then T is NSOP;.

Definition 4.9. Define a ternary relation | * on small subsets of M by: a \LZ b
if and only if

(1) del(aC)/ENdcl(bC)/E C del(C)/E.

(2) dcl(aC) N del(bC) C del(CO).
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where X/E = {[z]g : € X} denotes the collection of E-classes represented by an
element of X.

Lemma 4.10. The relation | * satisfies the independence theorem over models: if
M E=T*, a=y o, and, additionally, a J/}kw B, d J/*MC and B J/TVIC then there
18 a” with o' =y a, a' =pc a’, and a”’ J/jw BC.

Proof. Without loss of generality, we may assume that M C B, C, and that B and C
are definably closed. Write a = (do,...,dk—1,€0,---,€1—1, f0,- -+, fm—1) With d; €
F, e; € Op, fr € Oy, and likewise o' = (dy,...,dj_q1,€0,-- €115 ooy Frno1)-
Fix an automorphism o € Aut(M/M) with o(a) = a’. Let U = {ugy : g € dcl(aB) \
B} and V = {vg : g € dcl(a’C) \ C'} denote collection of new formal elements with
Uy = Vg (g) for all g € (aM) \ B. Let, then, a, be defined as follows:

e = (Udgs -+ Udy_ysUegs---sUey_ysUfgse-esUfp 1)

’ A ’ [N ’ .
k717veo7 7’Uelil>vf07 avfm_l)

We will construct by hand an L-structure D extending (BC') with domain UV (BC)
in which a, =p a, a, =¢ d’ and a, J/jw BC.

There is a bijection ¢y : dcl(aB) — BU given by ¢o(b) = b for all b € B and
to(g) = ug for all g € del(aB)\ B. Likewise, we have a bijection ¢; : dcl(a’'C) — CV
given by ¢1(c) = cfor all ¢ € C and t1(g) = v, for all g € del(a’C)\ C. The union of
the images of these functions is the domain of the structure D to be constructed and
their intersection is to((aM)) = 11 ({a’M)). Consider BU and C'V as L-structures by
pushing forward the structure on dcl(aB) and dcl(a’C) along g and ¢, respectively.
Note that to|(anry = (t1 0 )| (ans)-

We are left to show that we can define an L-structure on UV (BC) extending
that of BU, CV, and (BC)) in such a way as to obtain a model of T. To begin,
interpret the predicates by OF = OBV U0V UOfBC) fori=0,1,0P = 0P UOP,
FP = FBUUFCVUF(BO) and RP = REVURSY URSPY). Let EP be defined to be
the equivalence relation generated by FBV, ECV and E(B). The interpretation
of the predicates defines extensions of the given structures since if g is an element
of 1o({(aM)) = 11({a’M)) then 15" (g) is in the predicate O if and only if +;*(g) is
as well, and, moreover, it is easy to check that our assumptions on a,a’, B, C entail
that no pair of inequivalent elements in BU, CV, or (BC) become equivalent in D.

Next we define the function eval” extending eval?Y Ueval®Y Ueval‘P< . We first
claim that eval®?Y Ueval®Y Ueval‘P® is a function. The intersection of the domains
of the first two functions is ¢o({(aM)) = v1({aM)). If b,b" are in this intersection,
we must show

= (’Ud(/],...,vd

eval PV (b, b)) = ¢ <= eval®V (b, V') = c.
Choose by, by, co € (aM) and by, by, c1 € (/M) with ¢;(b;,b;,¢;) = (b,b,¢) for
1 =0,1. Then since tp = ¢1 oo on {aM), we have
M [= eval(bg,by) = co < M [ eval(a(by),o(by)) = a(co)
< M Eeval(by, b)) = c1.

Since eval®V and eval®V
and (a’C) along v and ¢1, respectively, this shows that eval?U U eval®V defines a
function. Now the intersection of (BC') with BUUCYV is BC and, by construction,
all 3 functions agree on this set. So the union defines a function.

are defined by pushing forward the structure on (aB)
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Note that because BU, CV, and (BC) all contain a model M and therefore have
non-empty F-sort, every EP class is represented by an element of OF. Choose a
complete set of EP-class representatives {d; : i < a} so that if d; represents an
EP-_class that meets M then d; € M and d; € Oqy. If e € OP is EP-equivalent to
some ¢’ and (f,¢') is in the domain of eval®Y Ueval®V Ueval‘PY? | define eval? (f, ¢)
to be the value that this function takes on (f,e’). On the other hand, if f €
FP\ (FBY U FCV U F{BO) or e is not EP-equivalent to any element on which
eval? (f,—) has already been defined, put eval” (f,e) = d; for the unique d; which is
EP_equivalent to e. This now defines eval? on all of F2 x OP and, by construction,
eval? (f,—) is a selector function for EP for all f € FP.

To conclude, we must interpret R; on D. In order to build a structure that
satisfies axiom (4), we are forced to interpret

RP = {(f,b) € F x Oy : (eval”(f,b),b) € RP}.

In order to ensure that D is an extension of BU, C'V, and (BC), we have show
that for all X € {BU,CV, (BC)}, RP | X = R{. Suppose we have f,a,b € X with
eval® (f,b) = a. Then because X is a model of T', we have R (a,b) <= RX(f,b)
and, by construction, R (a,b) <= R (a,b). By definition, RP(f,b) <=
RE(a,b). This shows RP(f,b) <= R(f,b), hence RP | X = R¥.

We have already argued that BU and C'V are substructures of D - it follows that
every EP-class represented by an element of a, can only be equivalent to an element
of B or C if it is equivalent to an element of M. Moreover, our construction has
guaranteed that (a,M)P N (BC) C BU N (BC)P C B and, by similar reasoning,
(a.M) N (BC) C C. This implies (a.M)” N (BC)BNC C M, so a. |;, BC.
Embedding D into M over (BC'), we conclude.

Corollary 4.11. The theory T* is NSOP;.

Proof. The relation | * is easily seen to satisfy properties (1) through (4) from
Fact 4.8 and the independence theorem is established in Lemma 4.10. This implies
T* is NSOP;. O

Remark 4.12. One may additionally show that | * = | ™ over models. As we
won’t need Kim-independence in what follows, we omit the proof.

Proposition 4.13. kgpred(T*) = 0.

Proof. Let k be an arbitrary regular cardinal. Inductively, we may choose a se-
quence of elements (a; : i < x) and a sequence of sequences (b; : i < k) so that

(1) For all i < &, a; € Oy.

(2) For all i < K, by = (b;j : j < w) is an a<;b<;-indiscernible sequence of
elements of O in the same E-class as a;, with Rq(a; A b; ;,b; ;) if and only
if j is even.

Let p(x) = {eval(x;a;) = a; : ¢ < &} and fix some ¢ < k. Because each b; ;
is E-equivalent to a; and eval(z, —) is a selector function, eval(z,a;) = a; implies
eval(z;b; ;) = a,. It follows from axiom 4(c) of T that eval(z,a;) = a; implies
Ro(a;, b ;) < Ri(z,b; ;) for all j. Therefore, eval(z,a;) = a; = Ro(x;b;5) if j is
even and eval(z,a;) = a; F —Ro(x;b; ;) if j is odd. This shows eval(z;a;) = a; €
p | ac;iy1 explicitly shreds over a<;. Since k is arbitrary, we conclude Kghreqa(T™) =
0. (]
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4.3. An NTP; example. In this subsection, we describe an NTP, example with
Kshred(T') = 0o. Recall the definition of NTP, theories:

Definition 4.14. A formula ¢(x;y) has the tree property of the second kind (TPs)
if there is an array of tuples (a; ;)i j<w and k < w satisfying the following:

(1) For all f:w — w, {w(z;a; ;) : i <w} is consistent.

(2) For all i <w, {p(x;a;;):j < w} is k-inconsistent.
A theory is said to have TP5 if some formula has TPy modulo T and is otherwise
called NTP5.

The class of NTP5 contains both the NIP and simple theories, so it is natural to
ask if NTPy implies #gnred (T) < 00 but we show this is not the case.

The following fact will be useful in checking that the theory we construct is
NTPQI

Fact 4.15. (1) If T has TP, there is a formula ¢(z;y) witnessing this with
I(x) =1 [2, Corollary 2.9].
(2) If o(z;y) has TPy, then this will be witnessed with respect to an array
of parameters (a; ;)i j<w that is mutually indiscernible—that is, @; is a-
indiscernible for all i < w [2, Lemma 2.2].

Let L a language consisting of two binary relations R, <, and a binary function
A and the sublanguage consisting of just < and A is L,. The class K will consist
of finite L-structures (A4, <4 A4, R4) so that (A4, <4, A?) is a meet-tree where A4
is the meet function, and R* is a graph on A. Denote the class of finite A-trees
(A, <4 A4) by K. This is a Fraissé class with the strong amalgamation property
(SAP) and the theory T}, of its Fraissé limit is dp-minimal [15, Exercise 2.50,
Example 4.28], which means given a mutually indiscernible array (a; ;)i<2,j<w and
element c, there is some ¢ < 2 such that @; is c-indiscernible.

Lemma 4.16. The class K is a Fraissé class. Moreover, the reduct of the Fraissé
limit of K to Ly, is the Fraissé limit of Kg.

Proof. HP is clear and JEP will follow from a similar argument to SAP, so we will
prove SAP. Fix /~17 Eo, B; € K such that A is an L-substructure of both By and B
and ByN By = A. Let A= A | Ly, and B; = B; | Ly, for i = 0,1. By SAP in K,
there is D € F extending both By and By. We may expand D to an L-structure D
by setting RP = RPo U RP1. This establishes SAP for K.

Next, suppose A, B € Ky and 7 : A — B is an Ly-embedding. If A € K is
an expansion of A, then we can expand B to the L-structure B in which RP =
{(n(a),7(a")) : (a,a’) € RA}. Clearly we have B € K and = is also an L-embedding
so by [10, Lemma 2.8], the reduct of the Fraissé limit of K is the Fraissé limit of
K. O

By Lemma 4.16, we know that K has a Fraissé limit which is an w-categorical
expansion of T}, by a (random) graph. Let T' denote its theory and let M and M,
denote the monster models of T and T, respectively.

Lemma 4.17. Suppose we are given an L-indiscernible sequence I = (a; : i € Z)
and an element b so that I is Li.-indiscernible over b. Then there is b’ EaLU b so
that I is L-indiscernible over b'.



Paper Sh:1192, version 2020-02-27. See https://shelah.logic.at/papers/1192/ for possible updates.

22 ITAY KAPLAN, NICHOLAS RAMSEY, AND SAHARON SHELAH

Proof. Let o € Auty, (M/b) be an automorphism so that o(a;) = a;11. Let B
denote the L-structure generated by (a; : ¢ € Z) and let Ay be the L-structure
generated by agb. Now expand the Li,-structure (b(a;)iez)r,, to an L-structure M

by setting
RM =RP U] o' (R™).
i€z
Claim 1: If i € Z and ¢,d € BN a*(4), then (c,d) € R® if and only if (c,d) €
o' (R%0).

Proof of claim: This is clear if i = 0, since R¥ = RM | B and R* = R™ | Ay.
In general, if ¢,d € BN o*(Ayp), there are Ly,-terms t,t', s, s’ so that
c = tlaci,ai,as;) =t (b, a;)
d = s(aci,ai,as;) =s'(b,a;).
By indiscernibility, it follows that if o?(c/,d’) = (c,d), then we have

d = tlaco,ap,aso) =t'(b,ap)

d/ = s(a<07a07a>0) = 8/(b> a0)7

and we know that (¢/,d’) € RP if and only if (¢/,d’) € R4°, by the i = 0 case. By
indiscernibility, (¢, d’) € R® if and only if (c,d) € RP and hence (c,d) € RP if and

only if (c,d) € o?(R™). O
Claim 2: If i > 0 and ¢,d € Ay No?(Ap) then (c,d) € R4 if and only if (c,d) €
o' (R%0).

Proof of claim: As in the proof of the previous claim, there are Li,-terms t,t’, s,
and s’ so that we have the following equalities:

¢ = t(ag,b) =t (ai,b)
d s(ag,b) = s'(a;,b).

Then by Ly,-indiscernibility over b, we have also t(ag,b) = t'(a;11,b) and t(a1,b) =
t'(a;+1,b), hence t(ag, b) = t(a1,b). Likewise, we have s(ag,b) = s(ay,b). In partic-
ular, this shows o(c,d) = (¢, d) so the claim follows. O

Now, by Claim 1, it follows that for all ¢,d € B, we have (c,d) € RM if and
only if (¢,d) € RP, so M extends B. Likewise, by Claim 2, M extends Ay and
o* induces an L-isomorphism of Ay and the structure generated by ba; in M, for
all i € Z. Embed M into M over B and let ¥ be the image of b under this
embedding. Then by quantifier-elimination, agb = a;b’ for all ¢ € Z. After applying
Ramsey, compactness, and an automorphism, we can find b” =,, b’ so that I is
L-indiscernible over b”, completing the proof. O

Corollary 4.18. The theory T is NTPy (and is, in fact, inp-minimal).

Proof. If T has TPy, then, by Fact 4.15 and compactness, there is an L-formula
o(z;y) with I(z) = 1 that witnesses TPy with repect to the mutually indiscernible
array (a; j)i<w,jez- Let b = {o(x;a:0) : i < w}. As Ty, is dp-minimal, there is a row
i =0ori=1sothat (a;;: j € Z) is b-indiscernible in the language Li,. By Lemma
4.17, there is V/ Eﬁm b such that (a; ; : j € Z) is b'-indiscernible in the language L.

Then V' = {p(x;a,,) : j € Z}, contradicting the row-wise inconsistency required
for TP,. O

Proposition 4.19. kgpred(T) = 0.
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Proof. Let k be an arbitrary regular cardinal. Inductively, we may choose a se-
quence of elements (a; : i < k) and a sequence of sequences (b; : i < k) so that
(1) For all i < K, b = (b;j : j < w) is an a<;b-;-indiscernible sequence of
pairwise incomparable elements, incomparable with a;, with b; ; A b; v =
a; A b; j for all j # j" and R(a; Ab; j,b; ;) if and only if j is even.
(2) If i < i < k, then a; <a; Aby ; for all j.
There is no problem continuing the induction, since T is the generic A-tree with
a random graph.

Figure 1. Illustration of the choice of a; and b,

Let p(z) = {z > a; : i < k}. Notice that if > a;, then z A b; ; = a; A b; j and
hence x > a; F R(xz A b; j,b; ;) if and only if j is even. It follows that the formula
x B> a; explicitly shreds over a<;. As k is arbitrary, kshreqa(T) = 00. O

5. A CRITERION FOR SINGULAR COMPACTNESS

In this section, we give a sufficient condition for having singular compactness,
which is the negation of exact saturation (Definition 5.1 below). If A (z,y) is a
set of formulas then a (partial) A-type is a consistent set of instances of formulas
from A. We may refer to a {¢}-type as a ¢-type. It is important to note that by
a p-type we mean a consistent set of positive instances of ¢, and do not include
instances of —p.

Definition 5.1. Suppose that T is a complete first order theory and A is a set
of formulas. Say that T has singular compactness for A if whenever M | T is
p-saturated for a singular cardinal p > |T| then M is u*, A-saturated: for every
A-type p over a set A C M with |A| < u, p is realized in M.

Condition 5.2. For every formula ¢ (z,y) (perhaps in a fixed set of formulas A)
there is some formula 6, (x, z) such that for any finite ¢-type r (z) over M = T
and every finite set A C M?® of realizations of r there is some b € M? such that
6, (A,b) holds (i.e., M =6, (a,b) for all a € A) and 6, (x,b) -7 (z).

Lemma 5.3. Suppose that T is a complete first order theory and that Condition
5.2 holds for A (x,y). Then T has singular compactness for A.

Proof. Let p be a A-type over a set A with [A] = p. Write A = J,.,. A; with
|A;| < p, & < p. For each i < k find b; € M such that b; = p|a, (exists by
p-saturation).

By compactness and Condition 5.2, for each ¢ € A find ef € M* such that

0, (bj,el) holds for all j > i and O, (z,ef) = tp} (bi/A;), the (positive) @-type
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of b; over A;. By p-saturation, find df € M such that df =4,uqp,:i<x} €f - Then
{0, (x,d?) :i < Kk, € A} is a type and hence realized in M. O

When does Condition 5.2 hold? If T is complicated enough, e.g., T = PA or
T = ZFC, then it holds since given ¢ (x,y), we can choose 0, (v,2) = = € z.
Indeed, this condition implies that the theory cannot be too tame.

Proposition 5.4. Assume T has infinite models. If Condition 5.2 holds for every
formula with one variable x then T has TPs, and has SOP,, for all n.

Proof. We start by showing that 7' has TP,. Let ¢ (z,2) be Oy, (x,2). Let
Y (z,w) = 0.y (z,w). We will show that ¢ (z, zw) = ¢ (x,2) A ¢ (z,w) witnesses
TPy. Let {a; : i < w} be some infinite set in M. Suppose that F is a family
of pairwise disjoint subsets of w. It is enough to find some by € M™ for every
s € F such that & (a;,bs) holds whenever i € s and {{ (x,bs), & (x,b)} is inconsis-
tent (see [5, Lemma 2.19]). By compactness we may assume that F is finite and
consists of finite sets and replace w by some n < w.

By choice of ¢ (x, z) there are ¢ for s € F such that ¢ (a;,¢s) holds iff 7 € s:
take the finite type rs = {& # a; : i ¢ s} and Ay = {a; : i € s} and apply Condition
5.2. This already shows that 7" has the independence property so is not NIP.

Choose d similarly by applying Condition 5.2 for ¢ and taking rs = {—-p (2, ¢;) :
t#s,t € F}and Ag = {a; : i € s}. Then obviously & (a;, csds) holds if ¢ € s. Also,
as ¢ (z,ds) b —p (x,¢) for t # s, we are done.

Next we show that 7" has SOP,, for all n < w. As SOP,, 11 implies SOP,, for all
n, it suffices to show T has SOP,, for n > 3.

Let oo (2,y0) = 0+ (z,90), 1 (x,51) = b, (z,y1) and in general o1 (2, Ynt1) =
O, (@, Ynt1). Fix some n < w. Let X (Yo, - - Yn—1,T05 205 - - -5 Zn—1; () With |z;| =
ly;| say that

(Vz)[piv1 (2, yir1) = @i (T, 2:)]
foralli <n—1and @,—1 (o, Yn—1) A =0 (x5, Yo). We will show that x witnesses
SOP,, for all n > 3.

Let (a; : t < w) be some infinite sequence in M. For ¢,i < n, let b € MY be
such that ; (as,bi) holds iff s < t (i.e., witnessing that ¢; has the order prop-
erty) and (Vz)[pi+1 (z,b7") — @i (2,b%)] for all ¢ > t. We may find such b’s
by induction on ¢ < n using Condition 5.2 and compactness as above. For k < w,
let b, = bg...bgflak. We have that for k,l < w, M E x (Bk,l_n) if and only if
k < 1. However, it is impossible that {x (Tp,Tk+1) : k < n — 1} U{x (Tpn-1,%0)}

is consistent, since if it were realized by ¢ = cg...czfldk for k < n, then
On—1 (do,cgfl) = - = @ (do,cg_l) but as x (¢n-1,¢) holds, we have that
=0 (do, 0271) holds as well which is a contradiction. O

We give an example where this criterion holds.

Example 5.5. Let L = {P, : i < 3} U{Ry,1, Ro2, R1,2} where the P;s are unary
predicates and the R; ;s are binary relation symbols. Let TV say that (P; : i < 3)
are disjoint and their union covers the universe, that R; ; C P; x P; and that:

@ If Ry 2 (b,c) then (Vz)[Ro1 (x,b) — Ro2 (z,¢)].

Claim 5.6. TV is universal, it has the amalgamation property (AP) and the joint
embedding property (JEP).
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Proof. The fact that TV is universal is clear.
JEP: suppose that My, My |= TV are disjoint. Let M be the following structure.
As a set it is My U My. For every relation symbol Q € L, let Q™ = QM U @Mz,
AP: suppose that My, My, My E T and My C M;, My and My = My N Ms.
Let M be the following structure. Its universe is just the union of the universes of
My, M,. Fori <3, PM = pM upM RYM = R} UR)? and similarly define
RY, = R} URYS. Let
Ry, = Ry UR('
U{(a,b) : a € P\ My,b € P>\ My}
U{(a,b) : a € P\ My, b € PM\M,}.

Let us check that @ holds. Suppose that M |= Ry 2 (b,c). Then we may assume
that b,c € My (for My it is the same argument). Suppose that M = Ry 1 (a,b).
Then if a € My then My |= Rp 2 (a,c). Otherwise a € My and b € My. If c € My
as well, then My = Ri2(b,c) A Ro1(a,b) so My = Rz (a,c) and we are done.
Otherwise ¢ € M1\ Mo, in which case R}, (a, ¢) holds by choice of R}%,. O

Corollary 5.7. T has a model completion T which has quantifier elimination.
Proposition 5.8. T is NSOP, and has SOPs.

Proof. We start by showing that T is NSOP,4. Suppose that (a; : i < w) is an
indiscernible sequence in some model M = T which witnesses SOP,4. Let A; be a;
as a set. Let MO = AQ, Mé = Ag, M1 = AlAQ, M2 = A2A3 and M3 = A3A4 with
the induced structure from M. So all are models of TV. Let M’ be the amalgam
of M1, My over My as defined in the proof of Claim 5.6, and similarly let M” be
the amalgam of My, M3 over M{. Note that both M’ and M" contain M as a
substructure and that the universe of M’ is A1 A2A3z and of M" is AyA3A4, but
neither are necessarily substructures of M.
Now we can amalgamate M’ and M" over M,. Moreover,

e Any structure N whose universe is A;As A3A4 which contains both M,
M" as substructures and satisfies TV except perhaps @, and such that
N | AjAy = TY will be a model of TV (i.e., @ just follows).

To see this, suppose that N |= Ry 2 (b,¢) A Ro 1 (a,b). We have to show that N =
Ry 2 (a,c). Note that for every x € N, if z € A; N A; for distinct ¢, j € {1,...,4},
T € ﬂ;l:l A; by indiscernibility.

If a,b,c all belong to either A1 AsAsz, AsA3A, or A1 A4 then this is clear, so
assume this is not the case.

Suppose that b,c € A1 4243, a € Ay (so a ¢ A1AsAs) and b ¢ A;. Then if
b € A\ A3 then M" = Ry (a,b) — contradiction, so b € As. Then it must be
that ¢ € A1\ Az and b € A3\ Ay so M’ = —R; 5 (b, ¢) — contradiction.

If b,C S A1A2A3, a € A4 and b € A1 then ¢ ¢ Al. If c € A2\A3 then M"” ':
Ry 2 (a,c) so we are done. Else, ¢ € A3\ Ay, so since b ¢ Ag, M’ = —R;1 2 (b,c) —
contradiction.

Suppose that b € A; and ¢ € Ay. Then a € AyA;. If a € As\A; then
M" |= Ry (a,c) so we are done. Otherwise, a € A3z\Az, so M’ = =Ry 1 (a,b)
— contradiction.

The case where b € A4 and ¢ € A is done similarly.
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By symmetry, this covers all the cases so the bullet is proved.

Let 0 : AjAy — A; A4 be a bijection such that o(a;) = a4 and o(as) = a1
as tuples (hence 0? = id). Let Ny be an amalgam of M’ and M"” over My with
domain A;A3A3A4. Now define N to be a structure with the same underlying set
and the same interpretation of the unary predicates, but with each R; ; interpreted
as follows:

RN = (Rgg \ (A1A4)2) U{(a,b) € A1As: M |= R; j(o(a),0 (b))}

By indiscernibility, if a,b are either both in A; or both in A4, then (a,b) € Rf\’j
if and only if (a,b) € waj Then it is clear that N has underlying set A; Ay Az A,
and extends both M’ and M", hence it satisfies the conditions in the bullet point
above. This shows N |= 77, and hence there is some N’ |= T containing N.

But then, if ¢ (z,y) is any quantifier-free formula with M = ¢ (a1, a2), then
N' = ¢ (a1,a2) Ap(az,a3) A p(as,aq) A (aq,ar). By quantifier elimination, T is
NSOP,.

Next we show that T" has SOPj3. For this we will use the following criterion.

Fact 5.9. [14, Claim 2.19] For a theory T, having SOPj3 is equivalent to finding
two formulas ¢ (z,y), ¥ (z,y) and a sequence {(a;,b; : i < w) in some M = T such
that

e Foralli < j, M = -3z (p(x,a;) N (x,a,)).

o If i < jthen M = ¢ (bj,a;) and if j < i then M = (b, a;).

(The definition in [14] additionally requires that {¢(z; y), ¥ (z;y)} is inconsistent,
but this added condition is unnecessary: given ¢ and v as above, one can replace
o by ¢ = o(x;y) Ap(x;y) and then ¢ and ¢ will witness the above conditions).

Let ¢ (z,y") = Roq (x,y') and ¢ (z,y”) = =Ry 2 (z,y”). Let {(a,a,b; : i < w)
be a sequence such that Ry (af,a}) iff i > j, Roj (bj,a}) whenever i < j and
—Ro2 (bj,a)) whenever i > j. This sequence exists in some model M = T as
we can define a model of TV which contains exactly those elements. Now letting
a; = (a},a}), the first bullet follows from @ and the second bullet by the choice of

a! and b;. O

1?7

Corollary 5.10. There is a theory T with NSOP, having SOPs such that Condition
5.2 holds with A = {Rop2 (z,y)} and 8, from there being Ro1. Thus T has A-
singular compactness by Lemma 5.3.

Proof. We only need to show that Condition 5.2 holds. Suppose that M = T
and r is some finite A-type. Let A C M be a finite set of realizations. Now the
definition of T', we may find some b € M with R; 5 (b, c) whenever Ry s (z,c) € 7
and Ry 1 (a,b) for all a € A. This suffices. O
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