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Spencer asked whether the Paris-Harrington version of the Folkman-Sanders theorem has
primitive recursive upper bounds. We give a positive answer to this question.

1. Introduction

Inspired by Paris-Harrington’s strengthening of the finite Ramsey theorem
[5], Spencer defined in a similar way the following numbers (which we denote
by Sp(m,c)), strengthening the Folkman-Sanders theorem [6]. Let Sp(m, c)
be the least integer k such that whenever [k] ={1,...,k} is c-colored then
there is H={ay,...,a;—1} C[k] such that Y  H (sums of elements of H with
no repetition) is monochromatic and m <min H <[. As in the case of Paris-
Harrington’s theorem which is deduced from the infinite Ramsey theorem,
the existence of the Spencer numbers Sp(m,c) is also easily deduced from
the infinite version of the Folkman-Sanders theorem, namely Hindman’s
theorem [4]. Spencer asked whether Sp(m,c) is primitive recursive?. In this
paper we give a positive answer to this question. In fact we define the more
general numbers Sp(m,p,c) and show that it is in & of the Grzegorczyk
hierarchy of primitive recursive functions. This means that the rate of the
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! According to Soifer, this should be called the Arnautov-Folkman-Sanders theorem. See
[6], pp- 305.
2 Spencer asked Shelah the question during the workshop: Combinatorics: Challenges
and Applications, celebrating Noga Alon’s 60th birthday, Tel Aviv University, January
17-21, 2016.
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growth of the Spencer function is much slower than the Paris-Harrington
function which grows faster than every primitive recursive function. We refer
the reader to Section 2.7. of [3] for getting information about the growth
rate of the functions in class £ which are called WOW functions there. It
contains sufficient information to be convinced why our proof implies that
the function Sp(m,p,c) is in class &. We also refer the reader to [2] for some
Ackermannian bounds in both directions for the Paris-Harrington numbers.

Definition 1.1. For positive integers m,p,c, let Sp(m,p,c) be the least
integer k such that whenever [k] = {1,...,k} is c-colored then there is
H={ay,...,aj—1} C[k] (with ap<---<aj_1) such that

(i) > H is monochromatic,
(ii) m<ag, p<l and ap—1 <I.

To prove our theorem we use the bounds given in [7] for the numbers
U(n,c) for the disjoint unions theorem. We also need to consider the finitary
Hindman numbers Hind(n,c) defined below. Let’s first fix some notations.
Let A, B be finite subsets of N, by A< B we mean maxA<minB. If T is a
collection of pairwise disjoint sets, then NU(T") will denote the set of non-
empty unions of elements 7T'. Also by T'={Ay,...,A;_1}< we mean that the
elements of T" are finite non-empty subsets of N and Ag<---< A;_1. We also
need the following notation. Let A={ay,...,a,} be a finite subset of N. Let
expy(A) denote 2704 . .4-2% . We will use the simple fact that if A, B are two
nonempty disjoint finite subsets of N, then exp,(AUB)=expy(A)+expsy(B).
Also we have A # B iff expy(A) # expy(B). We denote the collection of
nonempty subsets of S by P*(9).

Definition 1.2. For positive integers n,c, let U(n,c) be the least integer
k with the following property. For any pairwise disjoint sets Ag,...,Ap_1,
if NU{Aop,...,Ax_1} is c-colored, then there are pairwise disjoint sets
do,...,d,_1 such that

(i) d;eNU{Ay,...,Ap_1} for i=0,...,n—1,
(ii) NU{dp,...,dn—1} is monochromatic.

Theorem 1.3 (Taylor, [7]). U(n,c) is a tower function.

Definition 1.4. For positive integers n,c, let Hind(n,c) be the least in-
teger k such that whenever NU{Ay,...,Ax_1}< is c-colored, then there is
{do,...,dn—1}< such that

(i) diENU{AQ,...,Ak_1}< for t=0,...,n—1,
(ii) NU{dp,...,dn—1}< is monochromatic.
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It is also known that

Theorem 1.5 ([1], Proposition 2.19.). Hind(n,c) lies in &, of the Grze-
gorczyk hierarchy.

2. Spencer Numbers

Let m,p,c be positive integers and let k., = Hind(p+ 1,¢). We inductively
define a sequence of positive integers (n;;i <k, +1) as follows.
(i) mo is the least integer with m <2m0,
(ii) m; =22i=0"
(ii) ai:2k*—i—1+2§:1nj’
(iv) nit1=U(m;,c*).

Theorem 2.1. For all positive integers m,p,c we have Sp(m,p,c) <2,

Proof. Let ¢ be a c-coloring of {1,...,2"=«}. We will find H =
{ag,...,aq;_1} C [2™=] satisfying the requirements of Definition 1.1. For
0<i<k,—1 we first define the following intervals of positive integers

Si=[no+--+ning+--+nip1 — 1.

So [S;| = niy1 and S; < Sijy1. Set S* = Uf;al Si. Let ¢* be a c-coloring
of P*(S*) defined by c*(A) =c(expy(A)). For the next step, we shall find
specific pairwise disjoint subsets w; s € .5; for 0 <i <k, —1, 0 <s<m; by
reverse induction on 0<i<k,—1. Let ¢; be a coloring of P*(S;) defined as
follows. For every u,v€PT(S;), we put ¢;(u) =c;(v) if for all Ae P(U,,; 5;)
and all BC{i+1,...,k.—1}, we have

(1) c* AUUUU’LUJ"O =c* AUUUU’LUjp
jEB jEB
As |[P(U;<; 551 = 225=1" and |P({i+1,...,k, —1})| =2F"1"1 we observe
that the number of colors of ¢; is at most ¢® where o; = ks —i—143251 15
So from n;41 =U(m;,c*) it follows that there are pairwise disjoint subsets
w;, s €.9; for 0<s <m; such that NU{w;,...,w;m,—1} is c;-monochromatic.
It is clear by construction that for i1 <is we have w;, j, <wj, j,. Now consider
NU{wo,0,w1,0,- - Wk, ~1,0} <

with the coloring c*. Recall that k., =Hind(p+1,¢), then there is {vo,...,vp}<
such that
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(i) vie NU{woo,w10,..., Wk, —1,0}< for 0<i<p,
(ii) NU{wo,...,vp}< is c*-monochromatic.

Assume that v, =we, gU---Uwe, o and [* =m,,. Now set
Up+1 = Wey,1 U---u We,.,1,
Up+2 = Wey 2 U---u We,.,2,

Up4ix—1 = Weq,Ix—1 U---u We,. [*—1-
Note that vo,...,vp4+—1 are pairwise disjoint. We claim the desired H =
{ao,...,a;—1} is obtained by putting | =p+{* and a; =expy(v;). First observe
that
ap = expy(vo) > 2" > m.
Let vp_1=wq, pU---Uwg, 0. Also v,_1 <v, implies d, <e1, so we have

ap—1 = expy(Vp—1) = expy(wa, o) + - + expg(wdqﬁ)
S eXPQ(Sdl) +---+ eXpQ(qu)
< 90 4 gnotl . o gnotnitetng, -1
< grotmt g g <y, = 1 <L

Note that ag<ai <---<ap—1, and also ap—1 <a; for ¢ >p. This is enough for
our purpose and there is no need to know the order of {a,,ap+1,...,a;-1}. It
remains to show that > H is c-monochromatic. This is equivalent to saying
that NU{v,...,vi_1} is c*-monochromatic. Recall that NU{vy,...,vp} is
c*-monochromatic. Let

Aq ENU{UO,...,’Upfl}, B, € {Al,@}, Ay ENU{Up,...,Ul_l}.

Obviously ¢*(A1)=c*(vp). So we will finish if we show ¢*(B1UAz)=c*(vp).
This will be done by iterated application of the relation (1) when w,v €

NU{w;,...,Wim,;—1}. First note that we can write A as
UweriJweu--0Juwe,
icl el el

for some 1 C{0,1,...,0* —1}. Finally
c*(vp) =c*(B1Uwp) = ¢ (B1 UWe, 0 UWe, U -+ U, o)

=c* <Bl U U Weq s UWeypU---U wer,())

iel

:C* <B1UUwehiUU'LUEQJJU‘.'UU)ET,O) = ...

iel el
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=c* 31UUwel’iUUweQ,iU"‘UUwer,i

el i€l el
= ¢*(B1 U Ay). 1
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