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Spencer asked whether the Paris-Harrington version of the Folkman-Sanders theorem has
primitive recursive upper bounds. We give a positive answer to this question.

1. Introduction

Inspired by Paris-Harrington’s strengthening of the finite Ramsey theorem
[5], Spencer defined in a similar way the following numbers (which we denote
by Sp(m,c)), strengthening the Folkman-Sanders theorem [6]1. Let Sp(m,c)
be the least integer k such that whenever [k] = {1, . . . ,k} is c-colored then
there is H={a0, . . . ,al−1}⊂ [k] such that

∑
H (sums of elements of H with

no repetition) is monochromatic and m≤minH≤ l. As in the case of Paris-
Harrington’s theorem which is deduced from the infinite Ramsey theorem,
the existence of the Spencer numbers Sp(m,c) is also easily deduced from
the infinite version of the Folkman-Sanders theorem, namely Hindman’s
theorem [4]. Spencer asked whether Sp(m,c) is primitive recursive2. In this
paper we give a positive answer to this question. In fact we define the more
general numbers Sp(m,p,c) and show that it is in E5 of the Grzegorczyk
hierarchy of primitive recursive functions. This means that the rate of the

Mathematics Subject Classification (2010):05D10
1 According to Soifer, this should be called the Arnautov-Folkman-Sanders theorem. See

[6], pp. 305.
2 Spencer asked Shelah the question during the workshop: Combinatorics: Challenges

and Applications, celebrating Noga Alon’s 60th birthday, Tel Aviv University, January
17–21, 2016.
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growth of the Spencer function is much slower than the Paris-Harrington
function which grows faster than every primitive recursive function. We refer
the reader to Section 2.7. of [3] for getting information about the growth
rate of the functions in class E5 which are called WOW functions there. It
contains sufficient information to be convinced why our proof implies that
the function Sp(m,p,c) is in class E5. We also refer the reader to [2] for some
Ackermannian bounds in both directions for the Paris-Harrington numbers.

Definition 1.1. For positive integers m,p,c, let Sp(m,p,c) be the least
integer k such that whenever [k] = {1, . . . ,k} is c-colored then there is
H={a0, . . . ,al−1}⊂ [k] (with a0< · · ·<al−1) such that

(i)
∑
H is monochromatic,

(ii) m≤a0, p≤ l and ap−1≤ l.

To prove our theorem we use the bounds given in [7] for the numbers
U(n,c) for the disjoint unions theorem. We also need to consider the finitary
Hindman numbers Hind(n,c) defined below. Let’s first fix some notations.
Let A,B be finite subsets of N, by A<B we mean maxA<minB. If T is a
collection of pairwise disjoint sets, then NU(T ) will denote the set of non-
empty unions of elements T . Also by T ={A0, . . . ,Al−1}< we mean that the
elements of T are finite non-empty subsets of N and A0< · · ·<Al−1. We also
need the following notation. Let A={a0, . . . ,an} be a finite subset of N. Let
exp2(A) denote 2a0+· · ·+2an . We will use the simple fact that if A,B are two
nonempty disjoint finite subsets of N, then exp2(A∪B)=exp2(A)+exp2(B).
Also we have A 6= B iff exp2(A) 6= exp2(B). We denote the collection of
nonempty subsets of S by P+(S).

Definition 1.2. For positive integers n,c, let U(n,c) be the least integer
k with the following property. For any pairwise disjoint sets A0, . . . ,Ak−1,
if NU{A0, . . . ,Ak−1} is c-colored, then there are pairwise disjoint sets
d0, . . . ,dn−1 such that

(i) di∈NU{A0, . . . ,Ak−1} for i=0, . . . ,n−1,
(ii) NU{d0, . . . ,dn−1} is monochromatic.

Theorem 1.3 (Taylor, [7]). U(n,c) is a tower function.

Definition 1.4. For positive integers n,c, let Hind(n,c) be the least in-
teger k such that whenever NU{A0, . . . ,Ak−1}< is c-colored, then there is
{d0, . . . ,dn−1}< such that

(i) di∈NU{A0, . . . ,Ak−1}< for i=0, . . . ,n−1,
(ii) NU{d0, . . . ,dn−1}< is monochromatic.
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It is also known that

Theorem 1.5 ([1], Proposition 2.19.). Hind(n,c) lies in E4 of the Grze-
gorczyk hierarchy.

2. Spencer Numbers

Let m,p,c be positive integers and let k∗ = Hind(p+ 1, c). We inductively
define a sequence of positive integers 〈ni; i<k∗+1〉 as follows.

(i) n0 is the least integer with m≤2n0 ,

(ii) mi=2
∑i

j=0nj ,

(iii) αi=2k∗−i−1+
∑i

j=1nj ,
(iv) ni+1=U(mi, c

αi).

Theorem 2.1. For all positive integers m,p,c we have Sp(m,p,c)≤2nk∗ .

Proof. Let c be a c-coloring of {1, . . . ,2nk∗}. We will find H =
{a0, . . . ,al−1} ⊆ [2nk∗ ] satisfying the requirements of Definition 1.1. For
0≤ i≤k∗−1 we first define the following intervals of positive integers

Si = [n0 + · · ·+ ni, n0 + · · ·+ ni+1 − 1].

So |Si| = ni+1 and Si < Si+1. Set S∗ =
⋃k∗−1
i=0 Si. Let c∗ be a c-coloring

of P+(S∗) defined by c∗(A) = c(exp2(A)). For the next step, we shall find
specific pairwise disjoint subsets wi,s ⊆ Si for 0≤ i≤ k∗− 1, 0≤ s <mi by
reverse induction on 0≤ i≤k∗−1. Let ci be a coloring of P+(Si) defined as
follows. For every u,v∈P+(Si), we put ci(u)=ci(v) if for all A∈P(

⋃
j<iSj)

and all B⊆{i+1, . . . ,k∗−1}, we have

(1) c∗

A ∪ u ∪ ⋃
j∈B

wj,0

 = c∗

A ∪ v ∪ ⋃
j∈B

wj,0

 .

As |P(
⋃
j<iSj)|= 2

∑i
j=1nj and |P({i+1, . . . ,k∗−1})|= 2k∗−i−1, we observe

that the number of colors of ci is at most cαi where αi = 2k∗−i−1+
∑i

j=1nj .
So from ni+1 = U(mi, c

αi) it follows that there are pairwise disjoint subsets
wi,s⊆Si for 0≤s<mi such that NU{wi,0, . . . ,wi,mi−1} is ci-monochromatic.
It is clear by construction that for i1<i2 we have wi1,j1<wi2,j2 . Now consider

NU{w0,0, w1,0, . . . , wk∗−1,0}<
with the coloring c∗. Recall that k∗=Hind(p+1, c), then there is {v0, . . . ,vp}<
such that
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(i) vi∈NU{w0,0,w1,0, . . . ,wk∗−1,0}< for 0≤ i≤p,
(ii) NU{v0, . . . ,vp}< is c∗-monochromatic.

Assume that vp=we1,0∪·· ·∪wer,0 and l∗=me1 . Now set

vp+1 = we1,1 ∪ · · · ∪ wer,1,
vp+2 = we1,2 ∪ · · · ∪ wer,2,

. . .

vp+l∗−1 = we1,l∗−1 ∪ · · · ∪ wer,l∗−1.
Note that v0, . . . ,vp+l∗−1 are pairwise disjoint. We claim the desired H =
{a0, . . . ,al−1} is obtained by putting l=p+l∗ and ai=exp2(vi). First observe
that

a0 = exp2(v0) ≥ 2n0 ≥ m.
Let vp−1=wd1,0∪·· ·∪wdq ,0. Also vp−1<vp implies dq<e1, so we have

ap−1 = exp2(vp−1) = exp2(wd1,0) + · · ·+ exp2(wdq ,0)

≤ exp2(Sd1) + · · ·+ exp2(Sdq)

≤ 2n0 + 2n0+1 + · · ·+ 2n0+n1+···+ndq+1−1

≤ 2n0+n1+···+ndq+1 = mdq+1 ≤ me1 = l∗ ≤ l.
Note that a0<a1< · · ·<ap−1, and also ap−1<ai for i≥p. This is enough for
our purpose and there is no need to know the order of {ap,ap+1, . . . ,al−1}. It
remains to show that

∑
H is c-monochromatic. This is equivalent to saying

that NU{v0, . . . ,vl−1} is c∗-monochromatic. Recall that NU{v0, . . . ,vp} is
c∗-monochromatic. Let

A1 ∈ NU{v0, . . . , vp−1}, B1 ∈ {A1, ∅}, A2 ∈ NU{vp, . . . , vl−1}.
Obviously c∗(A1)=c∗(vp). So we will finish if we show c∗(B1∪A2)=c∗(vp).
This will be done by iterated application of the relation (1) when u,v ∈
NU{wi,0, . . . ,wi,mi−1}. First note that we can write A2 as⋃

i∈I
we1,i ∪

⋃
i∈I

we2,i ∪ · · · ∪
⋃
i∈I

wer,i

for some I⊆{0,1, . . . , l∗−1}. Finally

c∗(vp) = c∗(B1 ∪ vp) = c∗ (B1 ∪ we1,0 ∪ we2,0 ∪ · · · ∪ wer,0)

= c∗

(
B1 ∪

⋃
i∈I

we1,i ∪ we2,0 ∪ · · · ∪ wer,0

)

= c∗

(
B1 ∪

⋃
i∈I

we1,i ∪
⋃
i∈I

we2,i ∪ · · · ∪ wer,0

)
= . . .
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= c∗

(
B1 ∪

⋃
i∈I

we1,i ∪
⋃
i∈I

we2,i ∪ · · · ∪
⋃
i∈I

wer,i

)
= c∗(B1 ∪A2).

Acknowledgment. We would like to thank the referees for carefully read-
ing the paper and useful comments. The research of the first author was in
part supported by a grant from IPM (No. 97030403). The research of the
second author was partially supported by European Research Council grant
338821. This is paper 1146 in Shelah’s list of publications.

References

[1] P. Dodos and V. Kanellopoulos: Ramsey theory for product spaces, Mathematical
Surveys and Monographs, vol. 212, American Mathematical Society, Providence, RI,
2016.
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