Combinatorica **39** (5) (2019) 1185–1189 DOI: 10.1007/s00493-019-4002-7

NOTE

ON FINITARY HINDMAN NUMBERS

SHAHRAM MOHSENIPOUR, SAHARON SHELAH

Received June 4, 2018 Revised December 11, 2018 Online First July 9, 2019

Spencer asked whether the Paris-Harrington version of the Folkman-Sanders theorem has primitive recursive upper bounds. We give a positive answer to this question.

1. Introduction

Inspired by Paris-Harrington's strengthening of the finite Ramsey theorem [5], Spencer defined in a similar way the following numbers (which we denote by $\operatorname{Sp}(m,c)$), strengthening the Folkman-Sanders theorem [6]¹. Let $\operatorname{Sp}(m,c)$ be the least integer k such that whenever $[k] = \{1,\ldots,k\}$ is c-colored then there is $H = \{a_0,\ldots,a_{l-1}\} \subset [k]$ such that $\sum H$ (sums of elements of H with no repetition) is monochromatic and $m \leq \min H \leq l$. As in the case of Paris-Harrington's theorem which is deduced from the infinite Ramsey theorem, the existence of the Spencer numbers $\operatorname{Sp}(m,c)$ is also easily deduced from the infinite version of the Folkman-Sanders theorem, namely Hindman's theorem [4]. Spencer asked whether $\operatorname{Sp}(m,c)$ is primitive recursive². In this paper we give a positive answer to this question. In fact we define the more general numbers $\operatorname{Sp}(m,p,c)$ and show that it is in \mathcal{E}_5 of the Grzegorczyk hierarchy of primitive recursive functions. This means that the rate of the

Mathematics Subject Classification (2010):05D10

¹ According to Soifer, this should be called the Arnautov-Folkman-Sanders theorem. See [6], pp. 305.

² Spencer asked Shelah the question during the workshop: *Combinatorics: Challenges and Applications*, celebrating Noga Alon's 60th birthday, Tel Aviv University, January 17–21, 2016.

Sh:1146

growth of the Spencer function is much slower than the Paris-Harrington function which grows faster than every primitive recursive function. We refer the reader to Section 2.7. of [3] for getting information about the growth rate of the functions in class \mathcal{E}_5 which are called WOW functions there. It contains sufficient information to be convinced why our proof implies that the function $\operatorname{Sp}(m,p,c)$ is in class \mathcal{E}_5 . We also refer the reader to [2] for some Ackermannian bounds in both directions for the Paris-Harrington numbers.

Definition 1.1. For positive integers m, p, c, let Sp(m, p, c) be the least integer k such that whenever $[k] = \{1, ..., k\}$ is c-colored then there is $H = \{a_0, \dots, a_{l-1}\} \subset [k] \text{ (with } a_0 < \dots < a_{l-1}) \text{ such that }$

- (i) $\sum H$ is monochromatic,
- (ii) $m \le a_0, p \le l \text{ and } a_{p-1} \le l$.

To prove our theorem we use the bounds given in [7] for the numbers $\mathrm{U}(n,c)$ for the disjoint unions theorem. We also need to consider the finitary Hindman numbers $\operatorname{Hind}(n,c)$ defined below. Let's first fix some notations. Let A, B be finite subsets of \mathbb{N} , by A < B we mean $\max A < \min B$. If T is a collection of pairwise disjoint sets, then NU(T) will denote the set of nonempty unions of elements T. Also by $T = \{A_0, \dots, A_{l-1}\}_{<}$ we mean that the elements of T are finite non-empty subsets of \mathbb{N} and $A_0 < \cdots < A_{l-1}$. We also need the following notation. Let $A = \{a_0, \dots, a_n\}$ be a finite subset of \mathbb{N} . Let $\exp_2(A)$ denote $2^{a_0}+\cdots+2^{a_n}$. We will use the simple fact that if A, B are two nonempty disjoint finite subsets of \mathbb{N} , then $\exp_2(A \cup B) = \exp_2(A) + \exp_2(B)$. Also we have $A \neq B$ iff $\exp_2(A) \neq \exp_2(B)$. We denote the collection of nonempty subsets of S by $\mathcal{P}^+(S)$.

Definition 1.2. For positive integers n, c, let U(n, c) be the least integer k with the following property. For any pairwise disjoint sets A_0, \ldots, A_{k-1} , if $NU\{A_0,\ldots,A_{k-1}\}$ is c-colored, then there are pairwise disjoint sets d_0, \ldots, d_{n-1} such that

- (i) $d_i \in \text{NU}\{A_0, \dots, A_{k-1}\}\ \text{for } i = 0, \dots, n-1,$
- (ii) $NU\{d_0,\ldots,d_{n-1}\}$ is monochromatic.

Theorem 1.3 (Taylor, [7]). U(n,c) is a tower function.

Definition 1.4. For positive integers n, c, let Hind(n, c) be the least integer k such that whenever $NU\{A_0,\ldots,A_{k-1}\}\$ is c-colored, then there is $\{d_0,\ldots,d_{n-1}\}$ such that

- (i) $d_i \in \text{NU}\{A_0, \dots, A_{k-1}\} < \text{ for } i = 0, \dots, n-1,$
- (ii) $NU\{d_0,\ldots,d_{n-1}\}\$ is monochromatic.

It is also known that

Sh:1146

Theorem 1.5 ([1], Proposition 2.19.). Hind(n,c) lies in \mathcal{E}_4 of the Grzegorczyk hierarchy.

2. Spencer Numbers

Let m, p, c be positive integers and let $k_* = \text{Hind}(p+1, c)$. We inductively define a sequence of positive integers $\langle n_i; i < k_* + 1 \rangle$ as follows.

- (i) n_0 is the least integer with $m \le 2^{n_0}$,
- (ii) $m_i = 2^{\sum_{j=0}^i n_j}$,
- (iii) $\alpha_i = 2^{k_* i 1 + \sum_{j=1}^i n_j}$,
- (iv) $n_{i+1} = U(m_i, c^{\alpha_i}).$

Theorem 2.1. For all positive integers m, p, c we have $\operatorname{Sp}(m, p, c) \leq 2^{n_{k_*}}$.

Proof. Let **c** be a *c*-coloring of $\{1,\ldots,2^{n_{k_*}}\}$. We will find $H = \{a_0,\ldots,a_{l-1}\}\subseteq [2^{n_{k_*}}]$ satisfying the requirements of Definition 1.1. For $0\leq i\leq k_*-1$ we first define the following intervals of positive integers

$$S_i = [n_0 + \dots + n_i, n_0 + \dots + n_{i+1} - 1].$$

So $|S_i| = n_{i+1}$ and $S_i < S_{i+1}$. Set $S^* = \bigcup_{i=0}^{k_*-1} S_i$. Let \mathbf{c}^* be a c-coloring of $\mathcal{P}^+(S^*)$ defined by $\mathbf{c}^*(A) = \mathbf{c}(\exp_2(A))$. For the next step, we shall find specific pairwise disjoint subsets $w_{i,s} \subseteq S_i$ for $0 \le i \le k_* - 1$, $0 \le s < m_i$ by reverse induction on $0 \le i \le k_* - 1$. Let \mathbf{c}_i be a coloring of $\mathcal{P}^+(S_i)$ defined as follows. For every $u, v \in \mathcal{P}^+(S_i)$, we put $\mathbf{c}_i(u) = \mathbf{c}_i(v)$ if for all $A \in \mathcal{P}(\bigcup_{j < i} S_j)$ and all $B \subseteq \{i+1, \ldots, k_*-1\}$, we have

(1)
$$\mathbf{c}^* \left(A \cup u \cup \bigcup_{j \in B} w_{j,0} \right) = \mathbf{c}^* \left(A \cup v \cup \bigcup_{j \in B} w_{j,0} \right).$$

As $|\mathcal{P}(\bigcup_{j < i} S_j)| = 2^{\sum_{j=1}^i n_j}$ and $|\mathcal{P}(\{i+1, \ldots, k_*-1\})| = 2^{k_*-i-1}$, we observe that the number of colors of \mathbf{c}_i is at most c^{α_i} where $\alpha_i = 2^{k_*-i-1+\sum_{j=1}^i n_j}$. So from $n_{i+1} = \mathrm{U}(m_i, c^{\alpha_i})$ it follows that there are pairwise disjoint subsets $w_{i,s} \subseteq S_i$ for $0 \le s < m_i$ such that $NU\{w_{i,0}, \ldots, w_{i,m_i-1}\}$ is \mathbf{c}_i -monochromatic. It is clear by construction that for $i_1 < i_2$ we have $w_{i_1,j_1} < w_{i_2,j_2}$. Now consider

$$NU\{w_{0,0}, w_{1,0}, \dots, w_{k_*-1,0}\}$$
<

with the coloring \mathbf{c}^* . Recall that $k_* = \text{Hind}(p+1,c)$, then there is $\{v_0, \dots, v_p\}_{<}$ such that

1188

(i)
$$v_i \in NU\{w_{0,0}, w_{1,0}, \dots, w_{k_*-1,0}\}_{<}$$
 for $0 \le i \le p$,

(ii) $NU\{v_0,\ldots,v_p\}_{<}$ is \mathbf{c}^* -monochromatic.

Assume that $v_p = w_{e_1,0} \cup \cdots \cup w_{e_r,0}$ and $l^* = m_{e_1}$. Now set

$$v_{p+1} = w_{e_1,1} \cup \cdots \cup w_{e_r,1},$$

 $v_{p+2} = w_{e_1,2} \cup \cdots \cup w_{e_r,2},$
 \cdots

$$v_{p+l^*-1} = w_{e_1,l^*-1} \cup \cdots \cup w_{e_r,l^*-1}.$$

Note that v_0, \ldots, v_{p+l^*-1} are pairwise disjoint. We claim the desired H = $\{a_0,\ldots,a_{l-1}\}\$ is obtained by putting $l=p+l^*$ and $a_i=\exp_2(v_i)$. First observe that

$$a_0 = \exp_2(v_0) \ge 2^{n_0} \ge m.$$

Let $v_{p-1} = w_{d_1,0} \cup \cdots \cup w_{d_q,0}$. Also $v_{p-1} < v_p$ implies $d_q < e_1$, so we have

$$a_{p-1} = \exp_2(v_{p-1}) = \exp_2(w_{d_1,0}) + \dots + \exp_2(w_{d_q,0})$$

$$\leq \exp_2(S_{d_1}) + \dots + \exp_2(S_{d_q})$$

$$\leq 2^{n_0} + 2^{n_0+1} + \dots + 2^{n_0+n_1+\dots+n_{d_q+1}-1}$$

$$\leq 2^{n_0+n_1+\dots+n_{d_q+1}} = m_{d_q+1} \leq m_{e_1} = l^* \leq l.$$

Note that $a_0 < a_1 < \cdots < a_{p-1}$, and also $a_{p-1} < a_i$ for $i \ge p$. This is enough for our purpose and there is no need to know the order of $\{a_p, a_{p+1}, \dots, a_{l-1}\}$. It remains to show that $\sum H$ is **c**-monochromatic. This is equivalent to saying that $NU\{v_0,\ldots,v_{l-1}\}$ is \mathbf{c}^* -monochromatic. Recall that $NU\{v_0,\ldots,v_p\}$ is \mathbf{c}^* -monochromatic. Let

$$A_1 \in NU\{v_0, \dots, v_{p-1}\}, \quad B_1 \in \{A_1, \emptyset\}, \quad A_2 \in NU\{v_p, \dots, v_{l-1}\}.$$

Obviously $\mathbf{c}^*(A_1) = \mathbf{c}^*(v_p)$. So we will finish if we show $\mathbf{c}^*(B_1 \cup A_2) = \mathbf{c}^*(v_p)$. This will be done by iterated application of the relation (1) when $u,v \in$ $NU\{w_{i,0},\ldots,w_{i,m_i-1}\}$. First note that we can write A_2 as

$$\bigcup_{i \in I} w_{e_1,i} \cup \bigcup_{i \in I} w_{e_2,i} \cup \cdots \cup \bigcup_{i \in I} w_{e_r,i}$$

for some $I \subseteq \{0, 1, \dots, l^* - 1\}$. Finally

$$\mathbf{c}^*(v_p) = \mathbf{c}^*(B_1 \cup v_p) = \mathbf{c}^* \left(B_1 \cup w_{e_1,0} \cup w_{e_2,0} \cup \dots \cup w_{e_r,0} \right)$$

$$= \mathbf{c}^* \left(B_1 \cup \bigcup_{i \in I} w_{e_1,i} \cup w_{e_2,0} \cup \dots \cup w_{e_r,0} \right)$$

$$= \mathbf{c}^* \left(B_1 \cup \bigcup_{i \in I} w_{e_1,i} \cup \bigcup_{i \in I} w_{e_2,i} \cup \dots \cup w_{e_r,0} \right) = \dots$$

ON FINITARY HINDMAN NUMBERS

$$= \mathbf{c}^* \left(B_1 \cup \bigcup_{i \in I} w_{e_1,i} \cup \bigcup_{i \in I} w_{e_2,i} \cup \dots \cup \bigcup_{i \in I} w_{e_r,i} \right)$$
$$= \mathbf{c}^* (B_1 \cup A_2).$$

Acknowledgment. We would like to thank the referees for carefully reading the paper and useful comments. The research of the first author was in part supported by a grant from IPM (No. 97030403). The research of the second author was partially supported by European Research Council grant 338821. This is paper 1146 in Shelah's list of publications.

References

- [1] P. Dodos and V. Kanellopoulos: Ramsey theory for product spaces, Mathematical Surveys and Monographs, vol. 212, American Mathematical Society, Providence, RI, 2016.
- [2] P. Erdős and G. Mills: Some bounds for the Ramsey-Paris-Harrington numbers, J. Combin. Theory Ser. A. 30 (1981), 53-70.
- [3] R. L. Graham, B. L. Rothschild and J. H. Spencer: *Ramsey theory*, 2 ed., John Wiley and Sons, 1990.
- [4] N. HINDMAN: Finite sums from sequences within cells of a partition of N, J. Combin. Theory Ser. A. 17 (1974), 1–11.
- [5] J. Paris and L. Harrington: A mathematical incompleteness in Peano arithmetic, Handbook of mathematical logic, Stud. Logic Found. Math., vol. 90, North-Holland, Amsterdam, 1977, 1133-1142.
- [6] A. Soifer: The mathematical coloring book, Springer, New York, 2009.
- [7] A. D. TAYLOR: Bounds for the disjoint unions theorem, J. Combin. Theory Ser. A 30 (1981), 339–344.

Shahram Mohsenipour

School of Mathematics
Institute for Research
in Fundamental Sciences (IPM)
P. O. Box 19395-5746, Tehran, Iran
sh.mohsenipour@gmail.com

Saharon Shelah

The Hebrew University of Jerusalem Einstein Institute of Mathematics Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel and

Department of Mathematics
Hill Center - Busch Campus, Rutgers
The State University of New Jersey
110 Frelinghuysen Road
Piscataway
NJ 08854-8019, USA
shelah@math.huji.ac.il