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ABSTRACT

A graph is called dominating if its vertices can be labelled with integers in such a way that for every
function / : co -• cu the graph contains a ray whose sequence of labels eventually exceeds / . We obtain a
characterization of these graphs by producing a small family of dominating graphs with the property that
every dominating graph must contain some member of the family.

1. Introduction

If/ and g are functions from co to co, we write f^*g and say that / dominates g
if the set {neco:f(n) < g(n)} is finite. A family J5" of functions from co to co is called
a dominating family if every function g: co -* co is dominated by some/e^\ The least
cardinality of a dominating family is denoted by b.

Similarly, a family fF of functions from co to a? is called bounded if there exists a
function g:co-*co which dominates every/ei5"; if no such function exists, J5" is
unbounded. The least cardinality of an unbounded family is denoted by b.

It is well known and easy to show that co < b ^ b ^ 2°. Depending on the axioms
of set theory assumed, b and b may or may not coincide, and it is consistent that both
are less than 203. Properties of these and related cardinals have been studied widely in
the literature; see the article by Vaughan in [3].

Taking a different approach to considering merely the cardinalities of bounded
families of functions, Halin (see [2]) introduced the notion of a bounded graph: a
graph is called bounded if for every labelling of its vertices with integers, the labellings
along its rays—its one-way infinite paths—form a bounded family. Thus, the family
of functions considered is constrained not by cardinality but by imposing an
intersection pattern on its members. A long-standing conjecture of Halin, known as
the 'bounded graph conjecture', said that the bounded graphs are characterized by
the exclusion of four simple types of unbounded graph; this conjecture was recently
proved in [1].

In this paper we prove an analogous result for dominating graphs; a graph is
called dominating if its vertices can be labelled with integers in such a way that the
labellings along its rays form a dominating family of functions. We show that a graph
is dominating if and only if it contains one of three specified prototypes of a
dominating graph.

As usual, a graph will be thought of as a symmetrical binary relation on some
underlying set, its set of vertices. Thus, a graph on a set A' is a subset of the set [Xf
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DOMINATING FUNCTIONS AND GRAPHS 17

of unordered pairs of X, called its edges. Two graphs will be called disjoint if and only
if their vertex sets are disjoint. If G is a graph on X, then G' is a subgraph of G if G'
is a subset of G n PH2 for some X' c jr.

The degree of a vertex is the number of edges containing it. If meco + 1, a /?«?/*
of length m in a graph G on X is a one-to-one function P:m-*X such that
{P(n— 1), P(n)}eG whenever 0 < « < m. Often, the image of a path will be confused
with the path itself; for example, a vertex x will be said to be 'on' P when what
is really meant is that P(n) = JC for some nsm. With some abuse of notation we shall
say that {P^.iel} is a family of disjoint paths from (or: starting at) x if Pt(0) = x for
every i and no vertex other than x is on both Pt and Pi if / # / Similarly we may speak
of a family of 'disjoint' paths ending at x, or of a family of 'disjoint' paths from JC
to y when x and y are two fixed vertices.

A path of infinite length will be called a ray. Thus, more formally, a graph on X
is dominating if and only if there exists a labelling L:X-*co such that for every
f:co-*co there is a ray R:co-+ X with f^*LoR.

A graph in which any two vertices can be connected by a unique path is a free.
The tree in which every vertex has countably infinite degree is denoted by Ta. A tree
T is called a subdivision of Tm if each vertex of T has either degree 2 or countably
infinite degree, and every ray in T contains a vertex that has infinite degree in T. The
vertices of infinite degree in T are its branch vertices, the vertices of degree 2 its
subdividing vertices.

If T is a subdivision of Tm, there is a natural bijection 0 from the vertices of Tw to
the branch vertices of T such that if x,y form an edge of Ta then the unique path in
T joining 0(x) to <f>{y) contains no other branch vertex of T; identifying the vertices
of 7̂  with their images under <f>, we may call such a path in T a subdivided edge (of
TJ at ftx).

A subdivision T of Ta will be called uniform if it has a branch vertex r, called its
root, such that whenever A: is a branch vertex, all the subdivided edges at x that are
not contained in the unique path from x to r have the same length.

It is not difficult to see [1, §4] that the edges of a Tm may be enumerated in such
a way that, for every edge other than the first edge, one of its two vertices also belongs
to an edge preceding it in the enumeration. Such an enumeration will be called a
standard construction of T^. As a typical (if trivial) application of this tool, consider
the task of constructing a Ta subgraph in some given graph every vertex of which has
infinite degree: at each step, we will have specified only a finite portion of our Tu, so
we will always be able to add the next edge as required.

2. Examples of dominating graphs

In this section we look at some typical dominating graphs, including those needed
to state our characterization theorem.

Since supergraphs of dominating graphs are again dominating, our aim will be to
find dominating graphs which are minimal, in the sense that any subgraph that does
not itself contain a copy of the original graph is no longer dominating. A trivial
example of such a minimal dominating graph is given by any graph that is the union
of b disjoint rays:

PROPOSITION 2.1. If a graph is the union o/b disjoint rays then it is dominating.
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18 REINHARD DIESTEL, SAHARON SHELAH AND JURIS STEPRANS

Proof. Label each ray by a different member of some dominating family of
functions.

So how about countable graphs? Clearly, a complete graph (one in which every
pair of vertices is an edge) on a countably infinite set is dominating: just label its
vertices injectively. In the same way we see that a Tm (which is 'smaller' than a
complete infinite graph) is dominating.

An arbitrary subdivision of Tw is not necessarily dominating. Indeed, consider any
enumeration e:co-> Tw of the edges of Tm. For each neco subdivide e(n) exactly n
times, so that the resulting subdivided edge is a path of length n + 2. Call this tree T.
To see that T is not dominating, let L be any labelling of its vertices. Let H:co->co
be any increasing function satisfying H(n) > max{L(x):xee(n)} for all new. We
show that, for any ray R in T and any ieco, there exists a k > i such that H(k) >
L(R(k)) (so H is not dominated by LoR). Given such R and /, choose j , k e co with
i<j<k so that {R(J),R(k)} = e(n) for some n, and so that U = {R(l):j^l^k}
contains no other branch vertex of T. Then R traces out the subdivided edge e{n), and
in particular we have k ^ \U\ = n + 2. Since H is increasing and H(n) > L(R(k)) by
definition of H, this gives H(k) ^ H(n) > L(R(k)) as desired.

Uniform subdivisions of Tw, on the other hand, are easily seen to be dominating:

PROPOSITION 2.2. Uniform subdivisions of Tw are dominating.

Proof. Let T be a uniform subdivision of Tm, with vertex set X and root r. Let
L:X-* co be any injective labelling; we show that for every function/:co -> co there is
a ray R:co-+ Xsuch that /^*Lo/? .

We define R inductively, choosing its subdivided edges one at a time. (Recall that
any ray in a subdivision of Tm contains infinitely many branch vertices, and is thus a
concatenation of paths that are subdivided edges of the 7 .̂) Let R(0) = r. Suppose
now that R(n) has been defined for every n^m, and that R(m) is a branch vertex.
Then all the (infinitely many) subdivided edges at R(m) that are not contained in the
portion of R defined so far have the same length /, and so we can find one of them,
P say, such that L{P{i)) ^f(m + i) whenever 0 < / < /. Setting R(m + i) = P(i) for
these i, we see that L(R(m + i)) ̂ f(m + i); moreover, R(m + l— 1) is again a branch
vertex of T. This completes the induction step, and hence the construction of R. Since
L(R(n)) ^f(n) for every n > 0, we have f^*LoR as required.

How many disjoint copies of arbitrary subdivisions of 7̂  are needed to make a
dominating graph? By Proposition 2.1, b copies will certainly do, since each of them
contains a ray. Our next proposition says that, in fact, b copies suffice.

PROPOSITION 2.3. If a graph is the union ofb disjoint subdivisions of Tw, then it is
dominating.

Proof. Let {f^.^eb} be an unbounded family of increasing functions from co to
co. Let {G^.^eb} be a family of b disjoint subdivisions of Ta, and let G^ have vertex
Xf and root r{. We show that G = (J {G^.^eb} is dominating.

For each branch vertex x of G^, let N(x) be the set of all branch vertices y that are
not contained in the unique path from r< to x and which are joined to x by a
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DOMINATING FUNCTIONS AND GRAPHS 19

subdivided edge (that is, by a path not containing any other branch vertices). Let S(x)
denote the union of these x-y paths; thus, S(x) consists of all the paths from x to
a vertex in N(x). For yeN(x) we denote the length of the path from r{ to y by K(y).

Let us define a labelling L on G to witness that G is dominating. For each f, we
fix L(r{) arbitrarily, and then define L separately on each set ,S(x)\{x} for all the other
branch vertices x of G(. There are two cases to consider. If infinitely many yeN(x)
have the same value of K(y), we let L [ (S(x)\{x}) be an arbitrary one-to-one mapping.
Otherwise, we choose for each yeN(x) some y+eN(x) such that K(y) < K(y+); then,
for each z ^ x on the path from x to y, we set L(z) =fi(K(y+)).

To show that G is dominating, let / : co -* co be given, without loss of generality
increasing. As in the proof of Proposition 2.2 we inductively define a ray R:co-+ X(

starting at r(, so tha t /^*Lo/? ; here £ is chosen so that/{ ^*f. Since/is increasing,
it suffices to show that for every branch vertex x of G( there is some y e N(x) such that
L(z) ^f(K(y)) for each z # x on the path from x to y; we may then choose the path
from x to y as the next segment for R.

If infinitely many y e N(x) have the same value of K(y), say k, then L is injective
on 5(x)\{x}; since/takes only finitely many values on the first k+1 integers, we can
easily find y as desired. If not, then each yeN(x) has been assigned some y+eN(x).
Pick y'eN(x), find an i^K{y') such that f£i) >f(i), and choose yeN(x) with
maximal K{y) < i. Then K(y) ^ / < K(y+). For each z^jcon the path from x to y we
have

L(z)
as desired.

3. A characterization of dominating graphs

We now come to prove our main result, the following classification of dominating
graphs.

THEOREM 3.1. A graph G is dominating if and only if it satisfies one of the following
three conditions:

1. G contains a uniform subdivision ofT^;
2. G contains b disjoint subdivisions of Ta\
3. G contains b disjoint rays.

Note that if b = b then (2) above is redundant, since b disjoint subdivisions of Tm

contain b disjoint rays.

The bulk of the proof of Theorem 3.1 is divided up into several lemmas. We shall
consider these lemmas in turn, and then complete the formal proof of the theorem.

Our first lemma is an easy consequence of the fact that there is no infinite
decreasing sequence of ordinals; its proof is left to the reader.

LEMMA 3.1. Ifp is an ordinal-valued function on co, then there exists some n0eco
such that for every n^ n0 there is an m> n with p(m) ̂  p{n).

The next three lemmas make up most of the proof of Theorem 3.1.

LEMMA 3.2. If \X\ < b, then any dominating graph on X contains a uniform
subdivision of Ta.

Sh:443



20 REINHARD DIESTEL, SAHARON SHELAH AND JURIS STEPRANS

Proof. Let G be a graph on X, where 1̂ 1 < b. The basic idea of the proof is
recursively to define a rank function p on some or all of the vertices of G, with the
following property. If any vertex remains unranked, that is, if the recursion ends
before p is defined on all of X, then G contains a uniform subdivision of Tm\ if p gets
defined for every vertex, then G is not dominating.

For the definition of/?, we first define subsets Z{ of X, as follows. Let Zo be the set
of vertices xeX that have finite degree in G. For £ > 0, let Z{ be the set of vertices
x e X such that, for every meco, any family of disjoint paths of length m starting at x
and ending at vertices not in Uf6<rlc, is finite. Note that if £ < £, then Zf £ 2^. Finally,
for each xeX, define p(x) to be the least £ such that xeZ^; if no such £ exists, let /?(*)
remain undefined.

It is not difficult to see that if there is some xeX such that p(x) is not defined then
G contains a uniform subdivision of Tm. Indeed, if p(x) has remained undefined then,
by definition of/?, there exists an infinite set of disjoint paths from x in G, all of the
same length, and ending in vertices for which p is also undefined. Following the
standard construction of Tw, it is easy to build a uniform subdivision of Tm from all
these paths: at each point of the construction, only finitely many vertices have been
used, but there is an infinite set of disjoint paths from which the next subdivided edge
can be chosen.

Let us assume from now on that p(x) is defined for all xeX, and show that G is
not dominating. Let L: X -> co be any labelling. Assuming the Claim below (which will
be proved later), we shall find a function H.OO-KO which is not dominated by LoR
for any ray R in G.

Let a path P from x to y in G be called upward if p{y) = max{/?(z):ze/)}.

CLAIM. If each xeX and meco, there are only finitely many vertices yeX such that
G contains an upward path of length m+\ from x to y.

From the claim it follows that we may define, for each xeX, a function
Qx.co -*• co such that Qx(m) > L(y) for any meco and any vertex y to which x can
be linked by an upward path of length m+ 1. By our hypothesis that \X\ < b, there
exists a function H:co-^co which dominates each of the functions Qx. Redefining
H(n) as max {//(£):/c ^ «} if necessary, we may assume that H is increasing.

Now let R be any ray in G; it suffices to show that H ^* LoR. By Lemma 3.1,
we may find an infinite increasing sequence {k^.ieco} such that piRikJ) ^ p(R(ki+l))
for each /, and p(R(f)) < /?(/?(£*)) whenever kt<j< ki+v Note in particular that, for
each /, the part of R that connects R(k0) with R(kt) is an upward path of length
kt-k0+\.

Since H dominates QR(lc}, there is some Keco such that QR{lc }(k) ^ H(k) for all
k ^ K. But then

L{R{kx)) < QR{kj(kt-kJ ^ H{kt-kQ) < H(kt)

for all / with ki — kQ'^ K, by definition of QR(k y Thus LoR fails to dominate H, as
required.

Hence all that remains to be proved is the Claim. Suppose the contrary, and
consider a vertex x, an integer m, and an infinite set {yn:neco} such that for each n
there is an upward path Pn of length m + \ from x to yn. Choose k ^m maximal so
that there exist a vertex z and an infinite set 0* ^ {Pn:neco} such that P(k) = z for
every Pe 0*. (Note that k exists, because every Pn starts in x.) We now select an infinite
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DOMINATING FUNCTIONS AND GRAPHS 21

sequence {Pn :ieco} of paths in 0* so that any two of these are disjoint after z; since
each Pn is an upward path, and hence p(z) ^ p(yn) for every n, this will contradict the
definition of p.

Let Pn be any path from 0*. Now suppose that Pn,...,Pn have been chosen, and
let U be the union of their vertex sets. By the maximality of A:, there are at most finitely
many paths in & that contain a vertex from U after z; let Pn be any other path from
0. It is then clear that the full sequence {Pn :ieco} has the required disjointness
property.

LEMMA 3.3. If \X\ < b, then any dominating graph on X contains a subdivision
ofTm.

Proof. Let G be a graph on X, where \X\ < b. As in the proof of Lemma 3.2, the
key lies in defining an appropriate rank function p on X. Let £0 be the set of vertices
xeX that have finite degree in G. For £ > 0, let 'Li be the set of vertices xeX such that
any family of disjoint paths starting at x and ending at vertices not in (Jte^c *s finite.
Again, we have Ef £ Ŝ  for ( < £. Finally, for each xeX, define p{x) to be the least
£> such that xe^i; if no such £ exists, let p(x) remain undefined.

As in the proof of Lemma 3.2, we may imitate the standard construction of Tm to
show that if there exists an xeX such that p(x) has remained undefined, then G
contains a subdivision of T^.

We shall therefore assume that p{x) is defined for all xeX, and show that G is not
dominating. Let L:X-*• co be any labelling. We shall find a function H:CQ-KJO which
is not dominated by L o R for any ray R in G.

Consider a vertex XEX, and let Y = {y:p(y) ^ p(x),y # x}. Let & be a maximal
set of disjoint paths starting at x and ending in Y. Then, by the definition of p, the
set Yx = (J 0*\{x} is a finite subset of ^{x} separating x from Y (that is, every x-Y
path meets 1Q.

For each xeX, let { ^ r j c ^ c ^ c , , . be an infinite sequence of finite
subsets ofX, chosen so that for every / and ze T*x we have Yz £ Tx

+1. It is then possible
to define a function QX\CQ->CD such that QJjri) ̂  L(y) for every meco and every
yeT™. From our hypothesis that \X\ < b it follows that there exists a function
H:CO->CQ which is not dominated by any of the functions Qx; clearly, we may
choose H to be increasing.

Now let R be any ray in G; we prove that H is not dominated by L o R. By Lemma
3.1, there is some Ke co such that for each / ^ K there is a /: > / with p(R(i)) ̂  p(R(k)).
Let

M = {meco:H(m) > QR(K){m)};
M is infinite, since # ^ * £fi(K). We show that for each meM with m^-K there is
some y ̂  m such that QR{K)(m) ̂  L(R(f)). Since 7/ is increasing, this will imply that

H(j) > H(m) > QR{K)(m) > L(R(j))

for all these infinitely manyy, giving H^*LoR as desired.
It suffices to prove that for each m ^ K there is somey ^ m such that R(j)e TR^

(— /̂T(K))> because then QR(K){m) ^ L(R{j)) by definition. This fact can be proved by
induction on m. If m — K, let j = K; then

{*(./)} = {R(K)} = 71(K) = T%g

as desired. If m > K, use the induction hypothesis to find an / ^ m— 1 such that
T^-K, and choose A; > i so that p(R(i)) ̂  p(R(k)). (Such A: exists since
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22 REINHARD DIESTEL, SAHARON SHELAH AND JURIS STEPRANS

m — 1 ̂  K and by the choice of K.) Then Ym) separates R(i) from R(k), so there is a
y with i<j^k such that i?O)e Ym). Then U(/)e rfl(f) c T^ (since R{I)ET^-K

and by the definition of 7 ^ * ) and j ^ /+ 1 ̂  m, so j is as desired.

Let us say that a function / : co -*• co tends to infinity if/"*(«) is finite for every
neco.

LEMMA 3.4. If G is a graph on X, and if Y <= X and L.X^co, then there is a set
Z with Y <= Z £ X and \Y\ = \Z\ which has the following property: for any ray R in G
with infinitely many vertices in Z andLoR tending to infinity, there is a ray R' with all
its vertices in Z such that LoR' = LoR.

Proof. The lemma is trivial when Y is finite, so we assume that Y is infinite.
Beginning with Zo = Y, let us define an infinite increasing sequence

of subsets of X, as follows. Suppose that Zn has already been defined. To obtain
Zn + 1 from Zn, consider first every vertex yeZn. Let & be a maximal set of (finite)
paths in G ending in y and having no other vertices in Zn such that L o P ^ L o F for
distinct P,F E&. (This implies that & is countable.) For each Pet?, check whether
G H [Zn]2 contains an infinite set of disjoint paths ending in y such that every path F
in this set satisfies LoP' = LoP; if there is no such set then add the vertices of P to
Zn. Similarly, consider every pair {x,y}e[Zn]

2. Let & now be a maximal set of x-y
paths in G that have no other vertices in Zn, and such that L o P ^ L o F for distinct
P,P'E^. For each Pe^, check whether G D [Znf contains an infinite set of disjoint
paths from x to y such that every path F in this set satisfies LoF = LoP;if there
is no such set then add the vertices of P to Zn.

Note that, since Y — Zo was assumed to be infinite, we have |ZJ = |Zn+1| for each
n. Therefore Z =\Jne(0Zn satisfies |F | = |Z| as required. Moreover, Z has the
following two properties. Whenever y e Z and P is a path of length greater than 1 in
G that ends in y but has no other vertices in Z, there is an infinite set of disjoint paths
ending in y such that every path F in this set has all its vertices in Z and satisfies
LoP' = LoP. Similarly, whenever x,yeZ are joined in G by a path P of length
greater than 2 whose only vertices in Z are x and y, there are infinitely many disjoint
paths F from x to y whose vertices are all in Z and which satisfy LoP' = LoP.

Now let R be any ray in G with infinitely many vertices in Z and LoR tending to
infinity. If all the vertices of R are in Z, we set R' = R. Otherwise there is a (finite or
infinite) sequence

m0 ^ «! < m1 ^ n2 < m2 ^ ...

of integers such that the vertices of R outside Z are precisely the vertices of the form
R(k) with k < m0 or nt < k < mt for some /. We shall obtain R' from R by replacing
its initial segment Po = R[m0 and, for / > 0, its subpaths Pt from xt = R(nt) to
yt = /?(m<) with paths on Z that carry the same labelling.

For each / = 0 ,1 , . . . in turn, let us find a path Qt in G n [Z]2 from x{ to yt (or, in
the case of / = 0, just ending in y0 = R(m0)) so that L o Qt = L o Pv If Pt has no vertices
outside Z, we let Qt = Pt. Otherwise, by the construction of Z, there is an infinite set
2.{ of disjoint paths that qualify for selection as Q{. Now 2,{ has an infinite subset St\
of paths all avoiding the paths Q} chosen earlier (except that we might have x{ = y}
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if / =j+ 1). Since the paths in &[ all carry the same labelling, they use only finitely
many labels. Since, by assumption, LoR tends to infinity, R has only finitely many
vertices carrying any of these labels. Since % is an infinite set of disjoint paths from
x{ to yt (or ending at y0, respectively), we may therefore choose Qt from 2,\ so that Q(

has no other vertices on R.
Let R' be obtained from R by replacing each Pt with the corresponding Qt as

defined above. Then R' is a ray in G D [Z]2, and LoR' — LoR as required.

Proof of Theorem 3.1. The sufficiency of the three conditions has been established
in Propositions 2.2, 2.3 and 2.1, respectively. To prove the necessity, let G be a
dominating graph on a set X and suppose that this is witnessed by the function
L:X->co. Let M be a maximal collection of disjoint rays in G. If |^?| $s b then
there is nothing to do. If not, it follows from Lemma 3.4 that there is some Y £ X
such that

\ \ \ \ ;
• if Rs® theni?^ Y;
• for any ray R in G with infinitely many vertices in Yand LoR tending to infinity,

there is a ray R' in G f] [Yf such that LoR' = LoR.

Then G n [Yf is a dominating graph on Y, and this is witnessed by the labelling
LI Y. Indeed, let / : co -> co be given, without loss of generality increasing. Since G is
dominating, it contains a ray R such that/ ^ * LoR. Since/is increasing, LoR tends
to infinity. Moreover, R has infinitely many vertices in Y, by the maximality of M.
Therefore, G 0 [Y]2 has a ray R' such that LoR' = LoR and hence/^* Left'.

Let .f be a maximal collection of disjoint subdivisions of Ta contained in
G D [Y]2. If 1̂ 1 ^ b then there is nothing to do. If not, it follows from Lemma 3.4
that there is some Z ^ Y such that

• if Te^ then the vertices of T are all in Z;
• for any ray R on Y with infinitely many vertices in Z and LoR tending to

infinity, there is a ray R' in G (1 [Z]2 such that LoR' = LoR.

If G 0 [Z]2 contains a uniform subdivision of 7 ,̂ we are done; we therefore assume
that it does not. Then, by Lemma 3.2, G n [Z]2 is not dominating. We show that now
G n [ AZ] 2 must be a dominating graph on Y\Z. Since | 7 \ Z | < b and G 0 [Y\Zf
contains no subdivision of Tw (by the maximality of 3T), this will contradict Lemma
3.3.

Let H.CO-KO be a function witnessing (with respect to L) that G 0 [Z]2 is not
dominating. In order to show that G n [^\Z]2 is dominating, let I:co -* co be given;
we shall find a ray on Y\Z whose sequence of labels dominates /. Let J:CQ-KX> be
increasing and such that J(n) ̂  max {H{n), /(«)} for every n. Recall that G 0 [Y]2 with
L was found to be dominating; choose a ray R on Y so that J^*LoR. As / is
increasing, LoR tends to infinity. Since H, and hence also / , witnesses that G 0 [Z]2

is not dominating, the definition of Z implies that R meets Z in only finitely many
vertices. Let R' be a subray of R whose vertices are all in Y\Z; since / ^ * L o R and
J is increasing, we have I^*J^*LoR' as desired.
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