Note

Note on a Min-Max Problem of Leo Moser

Saharon Shelah

The Hebrew University of Jerusalem, Jerusalem, Israel

Communicated by Michael Rabin
Received June 25, 1968

Abstract

Moser asks how a pair of ($n+1$)-sided dice should be loaded (identically) so that on throwing the dice the frequency of the most frequently occurring sum is as small as possible. G. F. Clements finds a relative minimum, conjecturing that it is always the solution. This conjecture is disproved for $n=3$.

For a fixed integer $n \geqslant 1$ let $A=\left(a_{0}, \ldots, a_{n}\right)$ denote a point in Euclidean ($n+1$)-space. Let

$$
\begin{aligned}
& p(A, x)=\sum_{j=0}^{n} a_{j} x^{j}, \\
& q(A, x)=p^{2}(A, x)=\sum_{j=0}^{2 n} c_{j}(A) x^{j},
\end{aligned}
$$

and let

$$
M(A)=\max _{0 \leqslant j \leqslant 2 n} c_{j}(A)
$$

Moser in [1] asks for the minimum of M, subject to the conditions

$$
a_{j} \geqslant 0, \quad j=0,1, \ldots, n, \quad \sum_{j=0}^{n} a_{j}=1
$$

Clements, in [2], conjectures that $\bar{A}=\left(\bar{a}_{0}, \ldots, \bar{a}_{n}\right)$
where

$$
\bar{a}_{i}=K(n)\binom{-1 / 2}{j}(-1)^{j}, \quad j=0, \ldots, n
$$

and

$$
K(n)=\left(\sum_{j=0}^{n}\binom{-1 / 2}{j}(-1)^{j}\right)^{-1}
$$

is the solution, as $c_{0}(\bar{A})=c_{1}(\bar{A})=\cdots=c_{n}(\bar{A})$. He proves it for $n=1,2$ and shows that \bar{A} is a relative minimum.

Now if A is a solution, then some of the $c_{j}(A)$ are equal to $M(A)$. If we assume that $c_{0}(A), \ldots, c_{n}(A)$ are equal to $M(A)$ we obtain Clements' solution. In my opinion it is more natural to look for a solution A such that $c_{j}(A)=M(A)$ for some other set of indices j, say for $[n / 2] \leqslant$ $j \leqslant[n / 2]+n$, but I did not succeed in finding such an A.

Let us examine in that way the most simple case not solved by Clements, that is, $n=3$. We try to find an A such that

$$
\begin{aligned}
c_{1}(A)=c_{2}(A) & =c_{3}(A)=c_{4}(A)=M(A) \\
2 a_{0} a_{1}=c_{1}(A) & =2 a_{0} a_{2}+a_{1}^{2}=c_{2}(A) \\
& =2 a_{0} a_{3}+2 a_{1} a_{2}=c_{3}(A) \\
& =2 a_{1} a_{3}+a_{2}^{2}=c_{4}(A)
\end{aligned}
$$

Let $x=a_{1} / a_{0}$. Then

$$
a_{2}=\left[c_{2}(A)-a_{1}^{2}\right] / 2 a_{0}=\left[2 a_{0} a_{1}-a_{1}^{2}\right] / 2 a_{0}=a_{0}\left(2 x-x^{2}\right) / 2
$$

and

$$
\begin{aligned}
a_{3} & =\left[c_{3}(A)-2 a_{1} a_{2}\right] / 2 a_{0} \\
& =\left[2 a_{0} a_{1}-2 a_{1} a_{2}\right] / 2 a_{0} \\
& =a_{0}\left[x-x\left(2 x-x^{2}\right) / 2\right] \\
& =a_{0}\left(x^{3}-2 x^{2}+2 x\right) / 2 \\
2 a_{0}^{2} x=2 a_{0} a_{1} & =c_{1}(A)=c_{4}(A)=2 a_{1} a_{3}+a_{2}^{2} \\
=a_{0}^{2}[2 x & \left.\cdot\left(x^{3}-2 x^{2}+2 x\right) / 2+\left(2 x-x^{2}\right)^{2} / 4\right] .
\end{aligned}
$$

Therefore

$$
5 x^{3}-12 x^{2}+12 x-8=0
$$

Here $x=3 / 2$ is a good approximation. Remembering that

$$
\sum_{i=0}^{3} a_{i}=1
$$

we have $A=(16 / 61,24 / 61,6 / 61,15 / 61)$ and $M(A)=3.16^{2} / 61^{2}$, which is less than the result of Clements' conjecture, $16^{2} / 35^{2}$.

Remark. Mr. Pinhas Shapira and I disproved the conjecture also for $n=4,5$ by numerical computations.

References

1. L. Moser, Report of the Institute in the Theory of Numbers, University of Colorado, June 21-July 17, 1959.
2. G. F. Clements, On a Min-Max Problem of Leo Moser, J. Combinatorial Theory 4 (1968), 36-39.
