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0 . Introduction. 

1 Saharan Shelah 

For a survey on tbis area, see van-Douwen [D) and Balcar and Si110n (BS). 

Nyikos has asked us whether there may be (in our ter•) an undominated 

f.-ily E ww of power K1 , while there is no splitting flllllily E ( w ]w ot 

power K1 . He observed that it seems necessary to prove, assuai.ng CH, the 

existence of a P-point without a Ramsey ultrafilter below it (in the 

Rudin-I<eisier order). We give here a positive answer, using a cowltabie 

support iteratJ.on of length K2 of a specl.al forcing notion whose defl.nition 

takes some space. This forcing notion makes the "old" [w]w an WISpiittJ.ng 

family. The proof of tbis is quite easy, but we have more troub.i.e ~ovJ.ng 

that the "oid" ww is not dotainated, and then we nave to prove tbat tbJ.s J.S 

preserved by the iteration. We prove a 110re generaL preservation ielllllla. i'.r:om 

the forcing notion (and, in fact, using a sJ.mpler version), we can construct a 

P-point as above. 

Then £. Miller told us he is more interested in having in this model "no 

MAD bas power < K1 (MIU) stands for "a maximal alDIOSt disjoint fami..i.y of 

infinite subsets of w "). A variant of our forcing can "kill" a MAD and the 

forcing has the desired properties if we first add K1 Cohen rea.J.s . 

In the first sectl.on we prove a preservation le..a for countable support 

iterations whose llllin instance is that no new f E ww doiiU.nates all old 

1The author would like to tbank the National Science Foundation and the United 
States-Israel Binational Science Foundation for partially supporting this 
research. 
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184 SAHJIRON SHELAH 

ones, and prove the consistency of 
Ko 

ZFC + 2 = K2 + b = il > b where b is 

the w.nimal power of a dominating subfamily of ww (see 1.1), .I J.S the 

minimal power of a splitting subfamily of [ w t (see l. 3), and b is the 

minimal power of an Wldominated subfamily of 

However, a main point was left out in Section l: the defin.1. tion of the 

forcing we iterate, and the proof of its relevant properties : t.llat it ddds a 

* subset !: of w such that fAEV: A E w, !: E AJ is an ultrafilter: in the 

Boolean algebra P(w)V; but in a strong sense it does not add a fWlctl.on 

f e ww doadnating all old members ot Note that Math1.as forcing adds a 

subset !: of w as required above, but also adds an wldesirable f. 
K - K1 

In those sections we also prove the consistency of ZFC + 2 ° = 2 = K2 

+ K2 = I = a > ., = K1 , where a = uun{ IAI :A a maxl.D!al family of aliiiOSt 

disjoint subsets of w}. In the third sect1.on we show that in the IIIOdel we 

have constructed, there is a HIW (maximal family of pa.Lrwise almost disjo1.nt 

infinite subsets of w) of power K1 (hence a ::: K1 ). This answers a 

question of Balcar and Simon: they defined 

as -= m.in(IAI: A l.S a maximal family of almost disjoint subsets 

of wxw, which are graphs of partial twlCtion 

from w to w} • 
K 

They have proved .I ' as and a ' as ' 2 °, so our result implies that 

a <as is consistent. 

In the fourth section we present a proof1 of the consistency of 

K1 = • < b = K2 by finite support iteration of Hechler forcing. 

In the fifth section we prove the consistency (with ZFC + 
K 

=2l=K2) of K1 = ll < • = b = K ( wher.·e ll is the uun.i.mal cardinal 
K 2 

for which P(w)/finite is a (~. 2 °)-distributive Boolean algebra). 

So the order relationships between the cardinals mentioned above are 

1This was proved several years ago by Balcar and Simon (this result is 
mentioned in Remark 4. 7 in p.l8 (BPS)). However, as we have already written 
up the proof and as they used a different model (add K1 random reals to a 
model satisfying MA), we retain tbis section. 
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ON CARDINAL INVARIANTS OF THE CONTII!IUUfol 185 

---')>) b 

1 t 

(where arrow means "' is provable is ZFC") (see [D] for results not 

mentJ.oned above, and on two other cardinal invariants ) . 

1. The Iteration. 

In this section we define some properties , prove a preservation 1._ and 

then prove our theorem except for one crucial point -- the existence of 

specific forcings whl.ch are the individual steps in our iteratioQ. 

1.1. Notation: a) 111w is the set of functions from w to w. 

* b) < * is the partial order defined on 111w as: f < 9 iff for all but 

fimtely many n < w, f(n) < g(n). In this case w say that 9 dominates 

f. We say that g dominates a family F E 111w if g dominates every t E F. 

c) [w]111 is the family of infinite subsets of w. * We say A E B if 

A -B is finite. 

1. 2. Definition; 

1) A family Ill w F ~ w is dominating it every g E w is doi!Unated by 

some fEF. 

2) A family F Ill 
c; Ill is WJbounded (or wldoaainated) if no 9 E ~w 

dominates it. 

1.3. Definition; 
Ill ~ 1 ) A family P ~ [ w] is a splitting f-.ily if for ewtry A E [ w J for 

some X E P A n X and A -X are infinite. 

2) We call P MAD if it is a subf.U.ly of w [fro\] • 

pairwise almost disjoint {= has finite intersections) and is -.t.--.1 ~th 

respect to those two properties. 

1.4. Definition; 
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186 SAHARON SHELAH 

1) A forcing notion .P .is almost "'cu-bow1ding it tor every P-name of a 

tWJction from w to w and p e P for ~ g: w .. w (fl·om V! j !2!: every 

.1nhn.1te A~ w (again A from V) there is p', p < p' E: P such that 

p' tp "tor infinitely many n e A, !(n) ..: g(n)" 

2 ) A forcing notion 1-' .is weakLy oound.ing (or F·-wealuy boWJdJ.ng, wnet·e 

t'~ ("'w)V) if ("'w)V (or F) is an wlbounded tami.J.y in .J'. 

1.5. Claim: 

1 ) If a forcing notion P is weakLy bowlding, and 9 ( <: .J') is aJ.most 

"'cu-bounding then their composition P>IIQ is weakly bounding. --- -
2) If 0 is almost "'~P-bound.ing, F' ~ "'w an unbounded family (from V) 

then F is still an unbounded family in JJ. 
We shall want to prove that e.g. the limit of a countable support 

iteration of almost <"'w)-bound.ing forcing notions .is weakLy boWJd.ing. Th.1s 

will show us .1n the proof of the main theorem that the family ot "old" 

functions in "'w is unbounded. To this end we prove a more general 

preservation theorem closely connected to (Shl, VI] and (Sh2, l.J]. 

1.6. Definition: 

l) We say W is absolute it it is a definition (possibly with 

parameters) of a set so that if yl ~ y2 are extensions of V (but still 

models of ZFC) and x e vl then yl F "x e W'' iff 1/- F "x e W". J.llote that 

a relation is a particular case of a set. It is well known that ~ 

relations on reals and generally ~~:-Souslin .t·elations are absolute. 

2) We say that a player absolutely w.1ns a game if the definition of 

legal move, the outcomes and the strategy (which need not be a fWK:tion with a 

WJique outcome) are absolute and its being a winning strategy is preserved by 

extensions of V. 

J) We can relativize absoluteness to a family of extensions. 
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ON CARDINAL INVARIANTS OF THE <nrl'INUUM 187 

~; E.g. if R is ~· the strategy is 5 and the outcome of a piay 

is ~· 

1.7. w Notation: R will usually denote an absolute two-place relation on w 

(so when we extend the universe, we reinterpret R, but we .know that tbe 

interpretatJ.ons are compatible). Sometimes R l.S an absolute tbree-place 

relation on 111w and then we write xRzy instead of R(x,y,z). 

Let R denote <R ; n < w) n 

We identify <R: n < w) with R. 

(each R as above) so ifA = <Rm: n < w). n n 

Let n < v mean 1'1 is an initial segment of v· • is 

a submodel of P2 (as partial orders) and every maxillal antichain of P1 is 

a maximal anti chain of P 2 . 

Let -'<.::(A) = {Bgo: 181 < .::} and if .:: is regular WJCountable 2><-=:(A) 

is the filter on -'<-={A) generated by the sets G{M) = (JNJ: N < M, UNH < a:.J 

for M a model with universe A and <.: relations. 

1.8. Definition: 

1 ) For F c 111w and R (two place), we say that F is R-bowMiing if 
w (Yf E w)(3g E F)(f R g). 

2) For F ~ 111w, R (each Rn two place) and S ~ -'<X (F) the pcu.r 
1 

(F ,i) is S-nice it 

01) F is R-boWlding which means it is Rn-boW1ding tor each n. 

IS) For any N e S, to:r· some g e F, for every n0 ,m0 pLayer II has a 

winning strategy for the following game wbich lasts w 110ves and Whicb is 

absolute for extensions preserving ( 01). On the Jcth 110ve: player I chooses 
w 

fk E w, gk E FnN, sucb that fktm2 +1 = f 2 tm2 +1 for 0 < 2 < k and 

tk Rnk gk then ~ II chooses mk+l > mk and nk+l > nk. ln the end 

player II wins if Ufkt~ R g. 
k no 

3) We say (F,i) is S/'bqc (F)-nice if the set of N for which (IS) 
0 

holds or N f; S belongs to 'b <)C (F). 
0 

4 ) We omit S when this holds for some S E 'b (JC { F ) • 
0 
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188 SAHARON SHELAH 

5) We say "almost S-nice" if in 2) (") M! just demand that player I has 

no winning strategy in any extension of V. 

Remark: We can use "'>. instead "' "'· 
Sometimes M! need a more general framework (but the reader may skip it, later 

replacing Hz, R: by F, Rn ) • 

1.9. Notation. If H is a set of pairs, let Rang H = {y: (Jx)<X,y> f: HJ 

Dom H = {x: (3y) <X,y> E HJ, Hx = {y: <X,y> E HJ. 

We shall treat a set F as I <X ,x>: x e F}. 

1.10. Definition. 

1) For a set 

S-nice if 

"' "' H ~ wx w, and R and s ~ ..&<K (F) M! say that (H,R) 
l 

oc) For every z e Doafi, Hz is if-bowlding, i.e. 

(Vn )(Vf e "'w)(3g e H )[f Rz g) letting Rz = <R.z: n < w). z n n 

is 

") For any N E S tor some 9 f: Rang H for every z0 E Rang(HnN) and 

for evet·y n0 ,m0 player II absolutely modulo oc) wins the following game 

which lasts w moves. In the kth move : ~I chooses 

then ~ II chooses mk+l > mk, nk+l > nk and zk+l e Dom(HnN). At the 

zo 
eJKi of play, player II wins iff (Ufkfmk 1 ) R g. 

k + no 
2) We write "almost S-nice" if in (J} player I has no winning 

strategies and this is absolute. Let us give few examples. 

1.11. Claim: Let F ~ "'w be an unbounded set, such that 

* * {Vf0 , ... ,f , .•• E F)(39 f: F){ A f < 9] and f R g iff g ~ f. 
n n<w n 

Then (F ,R) is nice. 

Proof: We have to describe g and an absolute winning strategy for N. 

* Choose gEF, {VfEN} f < g. As for the strategy, n1 is irrelevant, M! just 
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ON CARDINAL INVARIANTS OF '11m CONTIIUUM 

choose ~+l "' llin{m: there are at least k nl.lllbers i < n such that 

g(i) ) fk(i)}. 

189 

1.12. Claim: Suppose P ~ ("']"' is a P-filter (i.e. it is a filter and for 
11: 11: 11: 

any An E P ( n < "') for some A EP, ( Vn )(A ~ An j) with no intersection 

"' 11: (i.e. there is no X E ("'] , X~ A for every A E P). 

"' "' 11: Let R be: xRy iff #("'] or yf!("') or y l x. (We identify x ~ 

"' with its characteristic fwx:tion). 

'lhen ( P ,R) is nice. 

* Proof : l!low (a ) is obvious • In (IS ) choose 9 = A E F such that 

* * (VA E 1!1) A ~ A. 

Again the only non-obvious point is the wiMing strategy; again nk is 

irrelevant and player II chooses mk = llintm: fk n m n 9 has power > k}. 

1.13. Leama: 

1) Suppose <P. ,0.: i<6, j<6> is a coWltable support iteration of 
J -l. 

proper forcing. 

Suppose further that S ~ .c\4C (H) is stationary (i.e. 
1 

* IJ mod 'b4C (H)), 
P. l 

in V, (H ,ii) is S/'b 4C (H)-nice and for every i < o, 
1 

in V l. H is 

R-boundin9. 

Then in i-bounding. 

2) We can replace S/'b 4C (H)-nice by almost S/'b 4C (H)-nice. 
1 l 

Re~~ark: 

1} For the case which we really need in 1.15, you can read the proof 

with n0 = 0 , F instead H, R instead R: 
n 

2 ) The proof gives somewhat more than the l...a, i . e. it applies to more 

cases . "H is R-bounding" means that (a) of 1.10 holds . 

Proof : 1 ) If cf6 > K0 , 
P6 P. 

then any real in V belongs to V J for 

some j (6 (see [ Shl , III, 4. 4) ) ; hence there is nothing to prove, so we shall 

assume cf6 = "'· By (Shl, III, 3.3), w.l.o.g. 6 = "'· 
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190 SAHARaN SHELAH 

Suppose p E P w' z0 E Dom H, n0 < w and 1-P "! E ww" we shall find ~:·, 
w 

p ( r E PW and g E H zo 
z 

such that r 1-p "f R 0 g". Let N be a coWJtable 
w no 

elementary submodel of (H(A),E) (A regular large enough ) to which 

<P. ,Q.: i<w,j(W>, p, f, z0 , S, H belong as well as the parameters involving 
J l. -

the definitions of the R 's. The set of such N belongs to :t>A> (H(A)), 
n '~'1 

hence for some such N, NnH E S. 

As in (Shl, Ill 3.2], w.l.o.g. is a P -name; and we let n 

p = <p~: n<w> 1-P "p~ E 2n"· Let g E Hz0 be as in Def. 1.8 (for NnH). 
)) 

We shall now define by induction on k<w qk:' pk, fk' gk' zk' mk' nk: 

such that 

6) q .. "p E N" 
k pk k: 

8) ~ < mk+l are Pk -names of natural numbers 

Note that 1) implies that NnH belongs to the club of ..a~ (H) involving 
1 

"(H ,R) is S/X> ~ {H)-nice". 
l 

For k = 0, ~ = ~. p0 = p. 

For le+l, we work in VL~k]' ~k a generic subset of Pk, qk E Gk. So 

pic E N{ Glc] pic r k E Gk. In N[ Gk:] we can find an increasing sequence of 

conditions Pk,i E P w/P n for i < w, such that Pk,i EN(Gic], Pk,i forces 

values for !(j ), j ( i. So for some fWJCtion fk E N(Gk:]' Pk,ii-PJPk 

"ffi = fkti•'. As N[~Jc] < (H().)[Gk],E) (see [Shl III 2.11, p. 89]) for some 
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0111 CARDINAL IIMUUANTS OF THE OONTINUUM 191 

z 
9k E NnHzk, N(G.k) "' "fk Rn: gk". Now we use tbe absolute strategy (from Def 

1, for NnH) to choose zk+l, n.k+l, mk+l (the strategy 's paraaeters may 

not be in lll, but the result is) and we want to have D. 1 = Pk · 
·x+ ••k+l 

However all this was done in V(~k]' so we have only a suitable Pk-n.e. In 

the end 1 let r E P (I) be defined by r f k = qk f k for each k; by requirement 

(2) this suffices. Suppose r E G(o) £ P(o), G(o) generic. Then in V[G(o)] we 

have made a play of the game from Def. 1.10, player II using his winning 
z 

strategy so (Ufkfk)[G ]R 0 9 holds in V[G ], but clearly 
k (I) no (I) 

D. .; D. 1 .; r hence p.k EG hence (fkfk)(G 1 = (ffk)(G,_.), so 
• .K ,nk • .K+ ,nk (I) ~ (I) ~ -

f[G J = U(fkfk)[G ]. So f[G 1 RZO 9 holds in V(G ]. So r forces the 
~ (I) k (I) ~ (I) ~ (I) 

required inforaation. 

We shall p-ove later (in 2.13) 

1.14 Main Leaaa. There is a forcing notion Q such that 

{a) Q is proper 

(b) Q 

(c) IQI 

(d) In JJ there is an infinite set A* c: (I) such that for every 

* * infinite 8 £ (I) from V A n 8 or A -8 is finite. 

l.l4A Remark. For 1.15 it is enough to pcove 1.14 ass.-ing at. 

l.lS Main Theorem. Ass1.111e V I= at. 

* * 1 ) Then for SOM forcing notion P (P is proper, satisfies the 

K2-c.c., is weakly bo\Dlding and) 
* K 

( *) In .J' , 2 ° = K2 , there is an unbounded family of power K1 , but 

no splitting family of power K1 • 

2) We can also dellland that in there is no MAD of power K1 (see 

Def. 1.3{2)). 

Proof. 

1) We define a countable support iteration of length K2 : <P Q :cx<(o)2> a,-cx 
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* with {direct) limit P = P 

SAHARON SHELAH 

p 
Now each 9a is the Q from 1.14 for V a, 

p K ~ 
so Vat= "10 I= 2 O, As Vt= 

-a 01 we can prove by induction on a that 

t- "CH" p (see [Shl, Th. 4.1, p. 96]). We also know that p * satisfies the 
a 

K2-c.c. (see (Shl, Th. 4.1' p. 96 J). If p is a family ot subsets of (o) 

* p 
of 

' Kl 
in v then for some p a and forcing by Oa gives a power a, E V , 

* set A a exemplifying P is not a splitting family. So from all the 

conclusions of l.lS only the existence of an Wldominated family of po1111er K1 

remains. Now we shall prove that F = (ww)V is as required. It has powe.r: 
p 

K1 as V t= CH. We prove that it is an undom.inated family in V a by 

induction on a' w2 . For a= 0 this is trivial; a= ~+l: as g~ is 

almost ww-bounding (see 1.14) and by Fact 1.5{1); if cf a~ K0 by Leoma 

1.13. 

2) Similar. We use a cow1table support iteration <P.,O. :i < w2 , j ( w2 > 
J -.1 

such that: 
P. 

(a) for every i < w2 , and MAD <A a :u<<o>1 > e V .1. for some j > i, 

either 0_2). = adding K1-Cohen reals, and 0 = -2j+l 
. "2j+1 {p E Q : p ~ p2. 1} 

- )+ 

where in p t- "<A ·or((ol. > 2j +1 g a· .1 
is not a MAD" or 02 . = adding 

- - J 

~ C he 1 Q Q[I . ]vf2j+l • I ... 1- o n rea s, _2 j +1 = 2) +1 Walere 2j +l 

<Aa: «<"\ > and the cofinite sets generate 

(b) For j even Q . is adding K1 Col~en reals 
-J 

is the ideal which 

Q. is Q or Q(I], or {pEg: p ~ p. }, but always 
~ J 

(c) For j odd, 

it is ww-bounding. 

Use 2.16, 2.17. 

Remark. Really the conclusion of 1.5 is satisfied by each Qor and is 

preserved by coWltable support iteration of proper forcing. 
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2 • The Forcing. 

2 .l Definition. l ) Let I<n be the family of pairs ( s ,h), s a finite 

set, b a partial fwx:tion from J'(s) (the family of subsets of s) to 

n + 1 such that 

(a) b(s) = n 

(b) if h(t) = 2+1 (t £ s), t = t 1ut2 then h(t1 ) > 2 

or h(t2 ) > 2. 

2) K-..~· I<,~, I<( ) aredefinedsimilarly,and IC=UK. 
~ ~ n~ n 

We call s the domain of (s,b) and write a e (s,h) instead of 

a e s. We call (s,h) standard if s is a finite subset of the f.-ily of 

hereditarily finite sets. We use the letter d to denote such pairs. We 

call (s,h) si~e if h(t) = [log2(t)) for t £ s. 

2.2 Definition. 
d 1) Suppose (s2 ,b2 )EICs(2) for 2 = 0,1. We say (s0 ,b0 )' (s1 ,h1 ) 

(or (s1 ,h1 ) refines (s0 ,b0 )) if: 

(so n(O) 'n(l)) and Doll(h1 ) £ Doa(h0 ). 

2 > We say (s0 ,h0 > t: (s1 ,h1 > if for sa. s0 e no. b0 , 

(s0,h0 tJ'(s0)) = (s1 ,b1 ). 

3) We say (s0 ,b0 )' (s1 ,h1 ) if for some (s',h'), 

(so ,ho) ,e (s, ,h') <d (s1,h1). 

2 .3 Fact: The relations 'd, ,e, ' are partial orders of IC. 

2.4 Definition. 

1) Let Ln be the faaily of pairs (S ,H) such that: 

a) S is a finite tree with a root. 

b) H is a fwx:tion whose domain is in( S) = the set of non-IMXillill 

points of S and value H for x E in(S). 
X 
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194 SAHARON SHELAH 

c) For x E in(S), is the 

set of illlllediate successors of x in S with Hx(Suc5 (x)) > n. 

2 ) We say ( s0 ,H0 ) < ( s1 .~ ) if s0 ~ s1 , they have the same root, 

l l 0 1 0 1 in(S ) = s n in(S ) and for every x E in(S ), (Sue 0 cx),H ) <(Sue 1 (x),H ). 
S X S X 

3) Let .int(S) = S- in(S), lev(S,H) = max{n: (S,H) e Ln}. x E (S,H) 

means x E s. A member of L is standard if int(S) ~ (II and in(S) n 

consists of hereditarily finite sets not in (II. Let for xeS, 

(S,H)(x] = (S(xJ,HfS(x]) where s(x] is St{yes: s I= X' y}. 

4) If tEL , t = (S~,Hf). 
-n -

2 .5 Fact. The relation < is a partial order of L = Uf. • 
J) 

n 

2.6 Fact. If (S,H) e Ln then (S',H') ~ half(S,H) belongs to L{(n+l)/2 ] 

where S' = S, H~(A) = (H8 (A) - lev(S,H)/2] and Dom(H~) = 
(A: Hs(A) ~ lev(S,H)/2}. 

2.7 Fact. If (S,H) E Ln+l' int(S) = A0uA1 ~there is 

(S1 ,H1 ) E Ln and (int(S1 ) ~ A0 or int(S1 ) ~ A1 ). 

l 1 (S ,H ) > (S,H), 

Proof . Easy by induction on the height of the tree. 

2 .8 Definition. We define the forcing-notion Q: 

1) p E 0 if p = (W,T) where W is a finite subset of (11 1 T is a 

countable (infinite) set of pairwise disjoint standard members of L and 

T - Ln is finite for each n; let cnt(T) = U int( S ,H) = cnt( p). 
(H,S)ET 

2) Given t 1 = cs1 ,H1 ), ... , t.k = (S.k ,H.k) all from L such that 

SinSj =' (i1j), and given t = (S,H) from L, t is built from t 1 , ... ,tx 

if: There are incomparable nodes ~, .•. ·~ of S such that every node of S 

is comparable with SOllie ai, and such that, letting S( ai ) = (bt:S: b >s ai}, 

(Si,Hi) = (S(ai),HtS(ai)). 

3) c.JJ ,T0 ) < cwl .~) iff: JJ ~ wl ~ JJu cnt(T0 ), and: 
0 0 0 _l 1 1 letting T = f!o•!1 , ... }, ~ = lfo•!2 , ... }, there are finite, non-empty, 

pairwise disjoint subsets of (II, B0 ,B1 , ... , and there are 
,.. 0 
t. ~ t. -.1 -.1 

for all 
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,., 
iEuB. 1 such that for each n only finitely many of the ~. are inside L01 j J -~ 

and such that for each j, letting Bj = {i1 , ... ,ik}' f~ is built from 
,., ,., 
:t. ' ... 1:1;. • 
-~1 -~k 

4) We call (W,T) standard if T = lfn: n<(o»J, max(W) < min[int(fn)], 

max(int(t )] < min(int(t 1 )] and lev(t ) is strictly increasing. -n -n+ -n 

2.9 Definition: For p = (W,T) we write W = wP, T = TP. We say q is a 

pure extension of p (~pure) if q ~ p, ~ = wP. We say p is pure if wP 
= tJ, and p ~* q if omitting finitely many members of ~ lllakes q ~ p. 

2 .10 Definition: For an ideal I of P( (,ol) (which includes all finite sets ) 

let O[I] be the set of p E 0 such that for every A E I, for infinitely 

many t E Tp 1 int(~) n A = tJ. 

2 .11 Fact: 1 ) If p E 0 1 T n ( n<(,ol) are Q-names of ordinals 1 then there is a 

pure standard extension q of p such that: letting Tq = {:1; : n < (,ol} for -n 
every n < (ol, W £ max[int(fn)] + 1, let ~ = (W,{£2 :.2 > n}). Then for 

k < n: ~ forces a value on Tk iff some pure extension of ~ forces a 

value on Tk. 

2 ) 0 is proper (in fact a- proper for every a < "\ ) . 

3) 1-0 "{n: (3p E ~)[n E 'rfu is an infinite subset of (,ol 

whic.h P((,ol)V does not split.n 

Proof: Easy (for 3) use 2. 7). 

2.12 Lealia: Let ql T n be as in 2 .11. Then for some pure standard extension 

r of q, letting Tr = {£~: n<(ol} 1 (lev(£1;> strictly increasing, of course) 

the following holds . 

(*) For every n < (ol, W.!:. [max(int(£~)) + 1], and !~+ 1 ~ t~+l (so we 

ask only lev(£~+!)~ 0) there is W' £ int(£~+ 1 ) 1 s.t. (W u W', {£2 : .2 > n + 

1}) forces a value on T (m ~ n) (we can allow n =- 1 letting m 
max int<l:1 > + 1 be max(~ u (-l}J). 
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This lemma follows easily from claim 2.14 (see below) (choose by it the 

1;' by induction on n) and is enough for proving Lellllla 1.14. -n 

2.13 Proof of Leoma 1.14: By .2.11, (a) and (d) (of 1.14) holds, and (c) is 

trivial. For proving (b) (i.e., 0 is almost "'~boundiug) let.!_ e "'w, p e Q 

be given. Let Tn = f(n) and apply 2.11(1), 2.12 getting r ~ p. We now 

have to define g E "'w (as required in Def 1.1). g(n) = max{.k: for some W ~ 

[(max(£~+ 1 ) + 1], (W,l~i: 2 > n + 1}) 1- "f(n) = k."}. Let A _s w be J.ntinite, 

and we define p' = (wP, {~ 1 ~+ 1 : n E AJ), so p' ~ r' p. Now check. 

2.14 Claim: Let (!f,T) be a pure condition, and let W be a tamily o1 

finite subsets of cnt('l') so that 

(*) for every (!f,T') ~ (!f,T), there is a w ~ cnt(T'), wE W. 

Let k < w. Then there is ~eLk appearing in some (!f,'l'')' (!f,T) 

such that: £' ~ £ ;:;;:> (3w e W)(w ~ int(~')]. 

Proof: Let T = {~n: n < w}. For notational simplicity, w.l.o.g. let W be 

closed upward. 

Stage A: There is n such that for every £2, ~ half(~ 2 ) (.ll.<n), 

U int(~~) e W. This is because the family of <~~: 2<n>, n < w, ~~ ~ ba.lf(~ 2 ) 
2<n 

form an ~tree with finite branching and for every infinite branch 

<fJi: .II. < w), by (*) there is a member <£'2 : .ll.<n> with U int(!Ji> e w. 
2<n 

1;' t. 
[Why? Define (S2 ,H2 ) e L such that S_2 = S-2 and H2 (A)::: H-2 (A) when 

X X 

X E in(S2 ), A~ Suc(S2)(x), so <(S2 ,H2 ):2 < w) E Q, (!f,T,) ( 

(If, { (S2 ,H2 ) :.II. < w}). Now apply ( *).] By Konig's lemma we finish. 

Stage B: There are n(O) < n(1) < n(2) < ... such that for every m and 

~~) bal£(~ 2 ) for n(m) ( .11. < n(m+1), the set U(int(~~): n(m) ( 2 < n(m+l)J 

e W. The proof is by repeating stage A. 

Stage C: There are m(O) < m(l) < • • • such that: if i < w, for a 

function with domain [m(i),m(i+l)), h(j) e [n(j),n(j+l)), £2) half(f2 ) for 

all relevant .II. then U (~h( j ) : j E [ m( i ) ,m( i +1 ) ) } belongs to W. 

The proof is parallel to that of A. 
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Stage D: We define a partial function H from finite subsets of w to 

w· H(u) > 0 if for every £f.> Jlalf(~ 1 ) (leu), (U int(~j)) E W. 
lEu 

H(u) ~ m + 1 if (u = u1 u u2 .. H(u1 ) > m v H(u2 )) m]. 

Now we have shown tbat H([n(i),n(i+l))) ~ 0, and 

H((n(m(i)),n(m(i+1)))) ~ 1. 

It clearly suffices to find u, H(u) > k. (We tben define t = (S,H) as 
~ - ~ 

follows: s = ,.I_J S- u {u}, u is tbe root and tbe order restricted to S 
.. u t t 

is as in £1 ; for x ES-t., Hx = H~t. and Hu(A) = H(A).J We prove tbe 

existence of such ·U by induction on k, (e.g., simultaneously for all T ', 

(jJ,T ') ) (fJ,T). 

The rest of this section deals with Q[ I ). 

2.15 Notation: Let o0 be the forcing of adding K1 Cohen reals <ri: 

i < "1 >, ri E ww. Let I e V be an ideal of P(w), including all finite 

subsets of w but w E I and generated by a MAD <Ai: i < w1 > {the w1 is 

not necessary - just what we use). 

0 
2.16 Claim: In J2 : 1) If p E Q(I] and T"n(n<w) are Q(I]-na.s of 

ordinals then there is a pure standard extension q of p such that: q E 

Q[I], and letting Tq = {t : n < w}, for every n < w and W c (max int(t ) + -n - -n 
n n 1] let 'lw = (W,tt1 : n < 1 < w}), then <«~w-EO(I], of course, and) for every 

k ' n c( forces a value on Tk iff soa. pure extension of c( in O(I] 

forces a value on T"k. 

2 ) Q[ I ] is proper, moreover c.-proper for every oc < "1 • 

3) t-Q[I) "{n: (3p E GQ[I]) n E wP} is an infinite subset of w wbicb is 

alJDO.St disjoint fro~~ every A e I." 
0 

o&) oriJ is alJDOSt w-boWJding 2£ in J2 for some p e Q[I], 

pt "<Ai: i <"1> is not a MAD." 

~: 1) Let A be regular large enough, N a cow1table elementary 

sublllodel of (H(l..), e, Vnff(l..)) to which I, <ri: i < "1>• Q(I], p, and 

n < w) belong. Let 6 = Nnw1 (so 6 e N). 

('T : 
n 
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We define by induction on n < w, qn E U[I] n N, t. and k < w such -n n 

a) each qn is a pure extension of p. 

b ) qn ~ q1 for i < n and if w c k , m < n + .l and some pure -n n n 
extension of (w,Tq ) forces a value on T(m), then (w,Tq ) does it. 

c) kn > k1 and kn > max int !i for i < n. 

d) every 2 E cnt(qn) is > kn. 
n 

e) !n E •rq and lev(!11 ) > n and min int(~n) is >len. 

'l'here is no problem in doing this: we first choose kn, then qn and at 

last !n. We want in the end to let Tq = (~n: n < w}. One point is lllissing. 

Why does q = (wP,Tq) belong to O[I] (not just to 0)1 But we can use some 

function in V[<ri: i < O>J to choose n kn, q , and then let ~n be the 
n 

r 0 (n)-th member of Tq which satisfies the requirement (in some fixed wel.l. 

ordering from V of the hereditarily finite sets). 

is Cohen generic over V(<ri: i < 0)], this should be clear. 

2), 3) easy. 
0 

4) Ass1.111e that in ..P , t-0 "<Ai: i < "l > is a MAD". Like in 2.13 it 

suffices to prove the parallel of 2.12, 2.14. 

As for the proof of 2.14 for O[I] for stage A note that if !~ ~ 

half(£n) for n < w, then (,,((S2 ,H2 ): 2 < wj) E O(I] (check Definition 

2 .10). Stage B is similar. For stage C we have to use the specific character 

of I - generated by a MAD. By 2 .16A without loss of generality there are 

distinct in < w1 such that Bn = {2<w: int(!1 ) ~ Ai } is infinite for each 
n 

n, and without loss of generality (m(.ll),m(i+l)) n Bk 1 0 for k < .ll. Now we 

restrict ourselves to functions h such that h(j) E Bj-[.f)]" 

As for the proof of 2 .12 from 2 .14 (for 0[ I]) we again have to choose 

the sequence <£~: n < w> using some Cohen generic r 0 . 

2.16A Fact: Suppose (in v1 ) <Ai: i < w1 > e v1 is a MAD, t-0 "<Ai: i < w1 > 

is a MAD" . Let I be the ideal generated by {Ai : i < w} and the finite 
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subsets of w. Then {W, {~ : n < wJ) is a standard condition in 0(1] iff -n 
it is a standard condition in 0 and there are finite pairwise disjoint u.i ~ 

w1 (Jt<w) such that for each 2, for infinitely IIIIDY n < w, int{t ) c U A. 
-n - 'E l. 

l. u.fl 
iff tbere are singletons u.i as above. 

Proof. The third condition implies trivially the second. We shall prove 

[second ~ first] and then [first ~ third] . Suppose there are u.ll { .i < w) as 

above. Then every B E I is included in U A. u (0, • • • ,n} for some finit:e 
iEu J. 

and n < w. But for some .ll, u.i is disjoint from "'• hence 

Bn(U A. ) is finite. We know for infinitely .any n < w, int{t ) c U A., 
"E l. -n - "E • J. u.i l. u.i 

and the int(~n) (n < w) are pairwise disjoint, hence for infinitely IWIDY 

n < w, int{£n) n B = '· as required. 

For the other direction suppose p = {W,{~ 0 :n < w}) E Q[I]. We define by 

induction on m a finite u ~ w1 , disjoint from U u,., such that 
• .ll<ID .. 

{n<w: int{~n) ~ _u Ai} are J.nfinite. For 11:: 0, we know p f: 0, 
J.EU 

II 

I = .. 

<Ai : i < c..1 > is a MAD even after forcing_ by 0, so by 2 .11 ( 3 ) there are p ' = 

< w}) E Q, p' p' and i 0 < "'1 such that 

p' 1-" {n: (3q~) (n E ~]} n Ai is infinite". 
0 

By 2.7, w.l.o.g. U cnt{£~) ~ Ai . Let 
n<w 0 

(W,{~n: cnt(t ) n ( U U A.)= ,}), -n .,...... . E l. 
_.. l. UJl 

A trivial remark is 

~ = ti0 }. For • > o start with 

2.17 Fact: Cohen forcing and even the forcing for adding "Cohen reals (by 

finite information) is aliiOSt (ww )-bounding. 

3. Qn • > .. = Q, 

* 3.1 Theor-: Ass~~~e V t= at. Then for some forcing notion P (P is 

proper, satisfies the K2-c .c. , is weakly bounding and): 

* K 
( *) In .f 2 ° = K2 , there is an unbounded family of power K1 and 

also a MAD of power K1 , but there is no splitting family of power K1 • 
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'It 
Proof: The forcing <P01 ,&.: a< w2 >, P are as in the proof of 1.15(1). 

So the only new point is the construction of a MAD of power K1 . This will be 
'It 

done in V; unfortW~ately the proof of its being MAD in .J' does not seem to 

follow from 1.13 (though the proof is similar). 

Let {<B~: n < w): i < K 1 J enunerate (in V) all sequences <Bn: n < w) 

of finite pairwise dis joint nonempty subsets of w ( rt!llleD>er Cf holds in V). 

Next choose a MAD <A01 : ex < K1 > such that 

('It) if 0 is a limit ordinal, i < o, and for every Jt < w, '\• • • • •'\ < 0 

for infinitely many n < w, B~ n (A'\ u• • •uA'\) = {I then for infinitely many 
i 

n < w, Bn: A0 . 

Let >.. be regular large enough. For a generic G 01 E P 01 (a ~ w2 ) , N -< 

(H(>..)(G01},E) is called 922!:1 if it is coWitable, G , <P. ,0.: i <a, j ~a), 
01 J -~ 

<Ai: l < w1 >, <<B~:n < w): i < w1 > eN and for every sequence <Bn: n <Co)) E 

N of finite non-empty pairwise disjoint subsets of Co), letting o = N n {1)1 , 

• then (3 n)[Bn E A0 ]. 

We shall prove by induction on a ' w2 , 

(st)01 for every ~ <a, N-< (H(>..),e) to which <P. ,Q.: i<a,j~>. and J -1. 

oc,~ belongs and generic G~ E P ~ if N(G~] n ~ = N n ~, N(G~] is good, and 

p E N(G~] n P cfG~ then there is q E P cfG~, q > p, q (N[G~], P cfG~ )-generic 

and whenever G01 E P 01 is generic, G~ E G01 , q E G01 , N(G01 ] is good. 

This is proved by induction. The case a = {1)2 , ~ =- 0 gives the desired 

conclusion (as we find a good N -< (H(>..) ,E) 

infinite subset of w disjoint to every Ai 

to which a P -name of an 
{1)2 

belongs ) . The case a = 0 is 

trivial (saying nothing) and the case a limit is silllilar to the proof of 

1.13 (and, say, 1 .11 ) . In the case a successor, by using the induction 

hypothesis we can assuae a = ~ + 1. 

By renaming V[G~], N(G~] as V, N, we see that it is enough to prove 

for any good N and p E 0 n N (rellellbtr 0 = OV[G~]) there is q > p 
IJ 

which is (N,Q)-generic and q t-0"N(G]] is good". 
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Let o = N n ~·and let o = {T(.Il): .ll<c.~}. Let {T1 : .ll<c.~} be a list of 

all Q-names of ordinals which belong to N, and {<82 : n<c.~>: .ll<c.~} be a list of -n 
all Q-names of ~sequences of pairwise disjoint non-empty finite subsets of 

c.~ which belong to N. For notational simplic:i ty only, assume p is pure. 

We shall define by induction on 

k1 < c.~ such that: 

N. 

a) p2 E N, p2 standard (so max int ~: < min int ~:+ 1 ) 

b) Po = p, P.ll+l ~ P.ll' k.ll+l > k.ll 

c:) t 2 = t.ll+l for n < t. -n -n 

d) pt.+l t Q "T 1 E C" for some coWl table set of ordinals which belongs to 

e) for every w0 £ (max[int £!] + 1), m < t., 

w1 £ int(£) such that (w0 u w1 , {£~+ 1 : .ll + 1 < i 

and t ~ ~t.+l there is 
- -.ll+l 

<c.~}) t-0 "(3j<c.~)[!~ E 

(k2 ,kt.+l), !; is disjoint from AT(O) u• .. uAT(t.) and !j E A6". 

Let pm = (fjl, {.t.ll'm: n<c.~}) . .ll -n 

Suppose p.ll is defined. By 2.12 there is a pure p~ ~ p2 in N such 

that £~· 0 = £~ for i < .ll, p: .t "T.Il E C" for some countable set of ordinals 

from N. 

Next by 2.12 to~e can find a pure p~ ~ p:, £f•1 = £~ tor i < t. and 

k~ .(i<c.~) such that: 
.. ,1 

(i) k.ll,O = k2 , k.ll,i+1 > k.ll,i 

(ii) for every m < i and w0 £ (max[int t!·~ ]+1) and 1; ~ t!•~ 1 for - ... +1 -- .... +1+ 
some w1 £ cnt(£), (W0uw1 ,t£!'1 : .ll+i+l < n <c.~}) t 0 "(3j<c.~)[!; £ 

[k~ . kn . 1 ), B~ is disjoint from A (O) u•••uA (n . )]". ,.,1, .._,1+ -J T T ,.+1 

Now a~y the goodness of N to the sequence 

<[k.ll,i'k.ll,i+l)- AT(O)u•••uAT(.Il): i<c.~>, so for some i, 

[k.ll,i ,k.ll,i+l) - AT(O )U" •uAT(.Il) E A6. Let £!+1 = £! for n < .ll, £!+1 = ~:~! 
for n > .ll. 

So tole have defined pt.+1 satisfying {a) - (e). So to~e can de£ine p2 

for .ll <c.~ and now q = (0, {J;n: n < c.~}) is as required. -n 
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4. Splitting nl.lllber smaller than lmbounding nl.lllber is consistent. 

4 .1 Definition: Od will be the following (well known as Hechler 's forcing) 

forcing notion: the conditions are the pairs p = ( f, 9), f a finite fw~etion 

~ 0 0 1 1 . 0 1 from some n tO ~. 9 E ~. and (t ,y ) < (f ,9 ) df f ~ f and 

[me Dom £1 - Dom t 0 => f 1(m) < g0(m)] and (Vm)(g0(m) < g1(m)). 

Let f = fP, 9 = gP. 
Let r be the function ~(n) = m iff (Jp E G0 ) fP(n) = m. 

Let 0 = <Pi,gi: i < 0) be a finite support iteration, each oi 
P. 

in v 1 , and P =lim Q, cfo > K0 and 

(*) there are, in V, no projective sets Dm .!:_ [~]~. each is a filter 

and (VA.!:.~) (Jn) (AED11 v ...,_AEDn]. 

Then 

( 1 ) P satisfies the countable chain condition, 
K 

cardinal in V > 2 ° + 101 ) and of cofinality > K01 • 

(2) 1-p"r. ::: b = cf6", in fact the generic 

(~~)"i· 
K 

(3) 1- "• = (2 ° )v", in fact P(~)v is a splitting family in .,f. 
Po 

Proof: We leave (1 ). ( 2 ) to the reader, and concentrate on ( 3 ) • Suppose 

pEP, ~ a P-1:aane, and p 1-p"~ is an infinite subset of ~ not split by 

P<~>v ". 
We can define by induction on n < ~ a countable family Rn ot 

conditions from P s.t. 

(1) p E RO 

( 2) For each m < ~. for some maximal anti chain Im of P, 

(VqEl ) (q t- "m E A" or q 1- "~A") 
m P - P -
( 3 ) For each n < ~, q E Rn, m < ~ and oc E Dom q, for some maximal 

anticbain I c R 1 of P , for every q,oc - n+ oc 
r 1- "fq(oc) = f and gq(oc)(m) = k". 

poe 

for some f ~ V and k, 
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We call R £ P closed if for every q E R, m < "' and a E Doll q there 

is I c R as in (3). So clearly U R is closed. 
q,cx - n<"' n 
The countability of the I 's follows f~ the c.c.c. and we can carry 

this proof as each q E P bas a finite doaain £ 6, q( ex) a P 01- naae of a 

Jllelli)er of Qd. 

Now let 'W = U{Dom q: q E Rn' n < "'}, and let P* = <r E P: r belongs to 

some closed R c P s.t. r- U Doll q £ W}. By (Sh3, 6.51, p" < P; bence .J' 
qERr 

= (../* t'P*, so let G £ P be generic, p E G; then G n P* is a generic 

-~ -~. subset of P" and ~G1 E Y • By a trivial absoluteness argt~~ent in Y 

!£G1 is not split by P{"')V. Observe also that P* is is01110rpbic to P 01 

where ex is the order type of W. As W is countable, ex is countable. So 

we can find directed subsets r n of P* such that urn is a dense subset of 

P* ( U r is the set of q E P* such that each fq(cx) is an actual function 
n<"' n q1 (ex) q2(cx) 

and put q1 , q 2 in the same rn iff Dom q1 =Doll q2 and f = f 

for every ex in their domain 1. 

As r n 
is directed, Dn is a filter, and by the choice of p and A each -.ber of 

Dn is infinite. Also for every infinite B £"' {B E V), p 1-P* "~ £* B or 

~ n B is fini ten ; hence there is q ~ p s • t. q 1-P*" ~ -B is finite" or 

q 1-p•"! n B is finite0 without loss of generality, for some n, q E rn. 

Hence B E D n or """B E D n. As easily each D n is projective 1118 get a 

contradiction to {"). 

". 3 Claim: If <r i : i < "'1 > is a sequence of K1 Cohen reals (i . e . , this 

is a generic set for the appropriate forcing P0 ) then V[ r i : i < "'l 1 

satisfies { *) . 

Proof: Let D n form a counterexMiple, G in V[ G] , G £ P0 generic. 

Clearly for some i, the par .. ters appearing in the definition of the Dn 

belong to V[rj: j < i1. So w.l.o.g. i = 0, and 1118 can consider ri as a 

function fro11 "' to {0 ,1 j. So for some .t. E (0 ,1} and n < "'• 
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{m: r 0 (m) = .11} E Dn (in V(ri: i < w1 ]), hence this is forced by some p E 

PO. Choose n( *) large enough so that p gives no infol'lllation on r 0 (m) 

for m ;. n( *). Define r'· i. except when i = 0 " n j) n( *) in 

which case r i ( n) = 1 - r i ( n). It is easy to check that also <r i : i < ~ > 
comes from some generic G' .!: P0 , and p e G •. Clearly V(G] = V[G •] "' V[ri: i 

< w1 ]. Asp • o" {11: r.(JD) = i.} E on•• also (looking at V(G']), {11: r_i(ll) = 
p l. 

.11} E Dn. But {m: ri(m)=.ll} n {m: r_i(m)=.ll} E tO,•••,n(*)-1}, hence is finite, 

contradicting "Dn E (w]w is a filter". 

4.4 Conclusion: 
K 

It is consistent with ZFC that 2 ° = 

if ZFC is consistent. 

Remarks: 1) We can get other values for b > I. 

2 ) I think - can prove the case ot ( *) we need without having to 

force it. 

Proof: Start with V = L, add K1 Cohen reals (so by 4.3, ( *) of 4.2 holds} 

and then force by P from 4.2 for o = w2 . By 4.2 we get a model as 

required. 

5. On t <I = b. 

5.1 Definition: Let t be the minimal cardinal A such that there is a 

tree T with " levels and At E ( w r for t E 'f, ( t < s .:> As E* At) and 

(V8E[w]w)(3tET )[At,!;*B). 

See (BPS] on it (and why it exists). 

5.2 Theorem: Assune V F Of. 

For some proper forcing P of power K2 satisfying the K2-c.c., in ../ 
KO Kl t = K1 , b =I= K2 (and 2 = 2 = K2 ). 

Proof: We shall use the direct limit P of the iteration <Pi ,gi: i < w2 > 
where: 
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ON CARDINAL INVARIANTS OF THE CON'l'INUUM 205 

j ~ 0 ,w1 ,w1 + 1 then 9.1 is 
P. 

Cohen forcing; if then ~h is Q from Def. 2.8 (in V .1), and if j 

(see De£. 4 .1 ) . For j = 0 see the end of the 

2) We use the variant of coWJtable support iterat.1on defined in LShl, 

III p. 96,7], i.e., using only heredl tarily coWJt.dble names (we could have 

used Mathias forcing instead of the 0 from 2.8). Clearly 11>1 = tt2 , P 

satisfies the tt2-c.c. and is proper (see [Shl, Ill p. 96,7]), hence forcing 
., teo 

by P preserves cardinals. Clearly in ~, b ) K2 , and 2 = K2 ; hence in 

r/, .I = b = K2 , and always IJ jiJ K1 . So the only point left is .,f t= "IJ ' K1". 

We define by induction on i < w2 , a P oc( i)-name !:'.i, ~i, vi such that 
J (a ) oc( i } = ( w1 ) ( .i +l ) 

(b) n. e U ~(w} and for every successor~< i(n.} [n.r~ e {n.: -.1 2 -.1 -.1 -J 
j<i}) 

~<wl 
( i . e. , those things are forced) . 

(c) n. < n. =>A. c* A. (j<i) and A. is an infinite subset of w. -J -.1 -.1 - -J p~ 

(d) if ~ ~ w is infinite and A E V J then for some i < j + w1 , 

A c A. 
-- -J 

(e) ~i includes no infinite set from 

subset of the generic real of Q 3 
w1i+J 

when j < i, and .is a 

There is no problem to do this if you know the well known -y to build trees 

exemplifying the definition ot IJ (see Balcar et al. [BPS]), provided that no 
(All 

w1-branch bas an intersection. I.e., for no n E (w2 } and BE (w]w (in 

p 
V w2} B c* A. 

- .1 a 
wher·e nt(oc+l) = Let i(*) = U a(.i".), in 

T(Wl 

there is no intersection by ( e ) (though maybe n ~ 
p. ( *) 

V .1 ) . So it is 

enough to prove this for a fixed i ( * ) . 

We can look at the iteration <P~,gT: i(*} < T < w2 , i(*) '~ 'w1 >, P~ = 

P~/Pi(*)' Let G1 ~Pi(*) be generic, v1 = V[GJ. Note that every element of 

P ~ can be represented by a coWJtable fwJCtion from ordlnals ( < w2 ) to 
2 

hereditarily coWJtable sets. The set of elements ot P • as well as .1ts 
(<12 
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206 SAHARaN SHELAH 

part1.al order are definable from ordinal parameters only (all this in V[ G] ) . 

Suppose pEP' iorces B 
"'2 

(a P' -name of a sUbset of w) and !'l· (r < w1 ) 
w2 

to be as above. So for some )'(*) < i{*) V(GnP ] p E j(*) • 

There is p1 , p' p E P', p. 1- "i = i" for some .,.,i, 1 w2 1 -r 

j(*) < w~i < i(*) so p1 1- "~!: ri" where ri is the generic real the set 

G~ 2 g1. ves. Now using automorphisms of the forcing Pi ( * ,tP j { *) we see 
") .i +3 

that there is p2 , p ' p2 E P ~ 2 such that p2 1- "B is almost disjoint from 

From this we can conclude that p 1- " U !)i 'I V[G]" (otherwise some 
T(Wl T 

r.". 
l. 

p0 ;. p forces a particular value and repeat the argument above for p0 ). 

Looking at Qi ( *) {see below) we see that it does not add any w1-brancb 

to T = {!)i: or(i) < i(*)}. Let G2 £ Pi(*)+1 be generic and we shall work in 

v2 = V{G2 ], and assume p E Pw/pi(*)+l (i.e., Pw/G2 ) force ~· !T· {T < w1 ) 

Ko + vl 
to be as above. Let N be a countable elementary submodel of H{ ( 2 ) ) 

to which p, P /P. {*) 1 , B, and <i :r < w1 > belong. "'2 l. + - _..,. 
strongly proper and so is P /P. { *) 1 (see [Shl]). 

"'2 l. + 
q ) p {in P /P. { *) 1 ) which forces that for every 

"'2 l. + 

q 1- "for some r < o, !)i 1. n" 
T 

Now each Q. is 
l. 

It is enough to find 
A...f 

n e T, 2(n) = o ~ 

By the definition of stronqly proper and of Qi( *) this is possible. 

How is Qi{*) defined? Let it be I{<I2 :i<n>,w):n < w, Ii a finite 

antichain in w>w, w a finite subset of "'w}. 'the order is {<l~:i<n°>,w 0 )' 
( I l 1 1 ) . ff 0 ,. 1 10 11 

.2:i<n >,w > 1. n ""' n , i!: .2 f 0 0 1 and f or i < n , w £ w _· _ or every 

1 0 0 1 n E w - w , n ' i < n , no member of r 1 is an initial segment of 
i 
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