Contemporary Mathematics Volume 31, 1984

ON CARDINAL INVARIANTS OF THE CONTINUUM

Saharon Shelah

0. Introduction.

For a survey on this area, see van-Douwen [D] and Balcar and Simon [BS]. Nyikos has asked us whether there may be (in our terms) an undominated family $\underline{c}^{\omega}\omega$ of power \aleph_1 , while there is no splitting family $\underline{c} [\omega]^{\omega}$ of power \aleph_1 . He observed that it seems necessary to prove, assuming CH, the existence of a P-point without a Ramsey ultrafilter below it (in the Rudin-Keisler order). We give here a positive answer, using a countable support iteration of length \aleph_2 of a special forcing notion whose definition takes some space. This forcing notion makes the "old" $[\omega]^{\omega}$ an unsplitting family. The proof of this is quite easy, but we have more trouble proving that the "old" $\overset{\omega}{\omega}$ is not dominated, and then we have to prove that this is preserved by the iteration. We prove a more general preservation lemma. From the forcing notion (and, in fact, using a simpler version), we can construct a P-point as above.

Then E. Miller told us he is more interested in having in this model "no MAD has power $\leq \aleph_1$ (MAD stands for "a maximal almost disjoint family of infinite subsets of ω "). A variant of our forcing can "kill" a MAD and the forcing has the desired properties if we first add \aleph_1 Cohen reals.

In the first section we prove a preservation lemma for countable support iterations whose main instance is that no new $f \in {}^{\omega}\omega$ dominates all old

© 1984 American Mathematical Society 0271-4132/84 \$1.00 + \$.25 per page

¹The author would like to thank the National Science Foundation and the United States-Israel Binational Science Foundation for partially supporting this research.

Sh:207

184

SAHARON SHELAH

ones, and prove the consistency of $ZFC + 2^{\omega_0} = \kappa_2 + b = \hat{s} > b$ where b is the minimal power of a dominating subfamily of ω^{ω} (see 1.1), \hat{s} is the minimal power of a splitting subfamily of $\{\omega\}^{\omega}$ (see 1.3), and b is the minimal power of an undominated subfamily of ω^{ω} .

However, a main point was left out in Section 1: the definition of the forcing we iterate, and the proof of its relevant properties: that it adds a subset \underline{r} of ω such that $\{A \in V: A \subseteq \omega, \underline{r} \in {}^{\star}A\}$ is an ultratilter in the Boolean algebra $\mathcal{P}(\omega)^V$; but in a strong sense it does not add a function $\underline{f} \in {}^{\omega}\omega$ dominating all old members of ${}^{\omega}\omega$. Note that Mathias forcing adds a subset \underline{r} of ω as required above, but also adds an undesirable \underline{f} .

In those sections we also prove the consistency of $ZFC + 2^{0} = 2^{1} = \kappa_{2}$ + $\kappa_{2} = 3 = \alpha > b = \kappa_{1}$, where $\alpha = \min\{|A|:A| = \max \min\{|A|:A| =$

 $a_s = \min\{|A|: A \text{ is a maximal family of almost disjoint subsets}$ of $\omega x \omega$, which are graphs of partial function from ω to ω .

They have proved $3 \leq a_s$ and $a \leq a_s \leq 2^0$, so our result implies that $a < a_a$ is consistent.

In the fourth section we present a proof¹ of the consistency of $\aleph_1 = 3 < b = \aleph_2$ by finite support iteration of Hechler forcing.

In the fifth section we prove the consistency (with ZFC + $\binom{\aleph_0}{2} = 2 = \binom{\aleph_1}{2} = \binom{\aleph_1}{2}$ of $\aleph_1 = \frac{\aleph}{2} < 3 = \frac{\aleph}{2} = \binom{\aleph}{2}$ (where $\frac{\aleph}{2}$ is the minimal cardinal κ for which $\frac{\wp(\omega)}{\sin i}$ is a $(\kappa, 2^0)$ -distributive Boolean algebra).

So the order relationships between the cardinals mentioned above are

¹This was proved several years ago by Balcar and Simon (this result is mentioned in Remark 4.7 in p.18 [BPS]). However, as we have already written up the proof and as they used a different model (add \aleph_1 random reals to a model satisfying MA), we retain this section.

(where arrow means " \leq is provable is ZFC") (see [D] for results not mentioned above, and on two other cardinal invariants).

1. The Iteration.

In this section we define some properties, prove a preservation lemma and then prove our theorem except for one crucial point -- the existence of specific forcings which are the individual steps in our iteration.

1.1. <u>Notation</u>: a) ω is the set of functions from ω to ω .

b) $\langle {}^{*}$ is the partial order defined on ${}^{\omega}\omega$ as: $f \langle {}^{*}g$ iff for all but finitely many $n \langle \omega, f(n) \langle g(n) \rangle$. In this case we say that g dominates f. We say that g dominates a family $F \subseteq {}^{\omega}\omega$ if g dominates every $f \in F$. c) $[\omega]^{\omega}$ is the family of infinite subsets of ω . We say $A \subseteq {}^{*}B$ if

c) [ω] is the family of infinite subsets of ω . We say A \leq B if A - B is finite.

1.2. Definition:

1) A family $F \subseteq {}^{\omega}\omega$ is dominating if every $g \in {}^{\omega}\omega$ is dominated by some $f \in F$.

2) A family $\mathbb{F} \subseteq {}^{\omega}\omega$ is unbounded (or undominated) if no $g \in {}^{\omega}\omega$ dominates it.

1.3. Definition:

1) A family $\mathcal{P} \subseteq [\omega]^{\omega}$ is a splitting family if for every $A \in {\{\omega\}}^{\omega}$ for some $X \in P$ A $\cap X$ and A - X are infinite.

2) We call \mathcal{P} MAD if it is a subfamily of $[\omega]^{\omega}$, its members are pairwise almost disjoint (= has finite intersections) and is maximal with respect to those two properties.

1.4. Definition:

Sh:207

SAHARON SHELAH

1) A forcing notion P is almost ω_{ω} -bounding if for every P-name of a function from ω to ω and $p \in P$ <u>for some</u> g: $\omega \to \omega$ (from V!) <u>tor every</u> infinite $A \subseteq \omega$ (again A from V) there is p', $p \leq p' \in P$ such that

$$p' \Vdash_p$$
 "for infinitely many $n \in A$, $f(n) < g(n)$ "

2) A forcing notion P is weakly bounding (or F-weakly bounding, where $F_{\underline{c}} (\omega_{\omega})^{V}$) if $(\omega_{\omega})^{V}$ (or F) is an unbounded family in V^{P} .

1.5. Claim:

186

1) If a forcing notion P is weakly bounding, and $Q \in V^P$ is almost ${}^{\omega}$ -bounding then their composition P*Q is weakly bounding.

2) If Q is almost ω -bounding, F $\leq \omega$ an unbounded family (from V) then F is still an unbounded family in V^Q .

We shall want to prove that e.g. the limit of a countable support iteration of almost ${}^{(\omega)}_{\omega}$ -bounding forcing notions is weakly bounding. This will show us in the proof of the main theorem that the family of "old" functions in ${}^{\omega}_{\omega}$ is unbounded. To this end we prove a more general preservation theorem closely connected to [Sh1, VI] and [Sh2, 1.3].

1.6. Definition:

1) We say W is absolute if it is a <u>definition</u> (possibly with parameters) of a set so that if $\nabla^1 \subseteq \nabla^2$ are extensions of V (but still models of ZFC) and $x \in \nabla^1$ then $\nabla^1 \models "x \in W"$ iff $\nabla^2 \models "x \in W"$. Note that a relation is a particular case of a set. It is well known that $\prod_{i=2}^{1}$ relations on reals and generally κ -Souslin relations are absolute.

2) We say that a player absolutely wins a game if the definition of legal move, the outcomes and the strategy (which need not be a function with a unique outcome) are absolute and its being a winning strategy is preserved by extensions of V.

3) We can relativize absoluteness to a family of extensions.

<u>Remark</u>: E.g. if \overline{R} is $\underset{=}{\underline{\Sigma}_{2}^{1}}$, the strategy is $\underset{=}{\underline{\Sigma}_{1}^{1}}$ and the outcome of a play is $\underset{=}{\underline{U}_{2}^{1}}$.

1.7. <u>Notation</u>: R will usually denote an absolute two-place relation on ω_{ω} (so when we extend the universe, we reinterpret R, but we know that the interpretations are compatible). Sometimes R is an absolute three-place relation on ω_{ω} and then we write xR^2y instead of R(x,y,z).

Let \overline{R} denote $\langle R_n: n < \omega \rangle$ (each R_n as above) so $\overline{R}^m = \langle R_n^m: n < \omega \rangle$. We identify $\langle R: n < \omega \rangle$ with R.

Let n < v mean n is an initial segment of v; $P_1 < P_2$ means P_1 is a submodel of P_2 (as partial orders) and every maximal antichain of P_1 is a maximal antichain of P_2 .

Let $\mathcal{S}_{\langle \kappa}(A) = \{B \subseteq A: |B| < \kappa\}$ and if κ is regular uncountable $\mathcal{D}_{\langle \kappa}(A)$ is the filter on $\mathcal{S}_{\langle \kappa}(A)$ generated by the sets $G(M) = \{|N|: N < M, \|N\| < \kappa\}$ for M a model with universe A and $\langle \kappa$ relations.

1.8. Definition:

1) For $F \subseteq {}^{\omega}\omega$ and R (two place), we say that F is R-bounding if $(\forall f \in {}^{\omega}\omega)(\exists g \in F)[f R g].$

2) For $F \subseteq {}^{\omega}\omega$, \overline{R} (each R_n two place) and $S \subseteq A_{cR_1}(F)$ the pair (F,\overline{R}) is $S-\underline{nice}$ if

 $\alpha)$ F is $\overline{R}\text{-bounding}$ which means it is $R_n\text{-bounding}$ for each n.

8) For any $N \in S$, for some $g \in F$, for every n_0, m_0 player II has a winning strategy for the following game which lasts ω moves and which is absolute for extensions preserving (α). On the kth move: <u>player I</u> chooses $f_k \in {}^{\omega}\omega$, $g_k \in FnN$, such that $f_k fm_{Q+1} = f_Q fm_{Q+1}$ for 0 < Q < k and $f_k R_{n_k} g_k$ then <u>player</u> II chooses $m_{k+1} > m_k$ and $n_{k+1} > n_k$. In the end player II wins if $\bigcup_k fm_k R_{n_0} g$.

player II wins if $\bigcup_{k} \lim_{R \to 0} g$. 3) We say (F,\overline{R}) is $S/\mathcal{D}_{\mathcal{R}_{0}}(F)$ -nice if the set of N for which (\$) holds or N \notin S belongs to $\mathcal{D}_{\mathcal{R}_{n}}(F)$.

4) We omit S when this holds for some $S \in \mathcal{D}_{\mathcal{H}_{\Omega}}(F)$.

Licensed to AMS

SAHARON SHELAH

5) We say "almost S-nice" if in 2) (β) we just demand that player I has no winning strategy in any extension of V.

Remark: We can use $\stackrel{\omega}{\lambda}$ instead $\stackrel{\omega}{\omega}$.

Sometimes we need a more general framework (but the reader may skip it, later replacing H_z , R_n^z by F, R_n).

1.9. <u>Notation</u>. If H is a set of pairs, let Rang H = {y: $(\exists x) \langle x, y \rangle \in H$ } Dom H = {x: $(\exists y) \langle x, y \rangle \in H$ }, H_x = {y: $\langle x, y \rangle \in H$ }.

We shall treat a set F as $\{\langle x, x \rangle : x \in F\}$.

1.10. Definition.

1) For a set $H \subseteq {}^{\omega} \omega x^{\omega} \omega$, and \overline{R} and $S \subseteq \mathcal{S}_{K_1}(F)$ we say that (H, \overline{R}) is S-nice if

end of play, player II wins iff $(Uf_k m_{k+1}) R_{n_0}^{z_0} g$.

 We write "almost S-nice" if in (β) player I has no winning strategies and this is absolute. Let us give few examples.

1.11. <u>Claim</u>: Let $F \subseteq {}^{\omega}\omega$ be an unbounded set, such that $(\forall f_0, \ldots, f_n, \ldots \in F)(\exists g \in F)[\land f_n < {}^{\star}g]$ and f R g iff $g \notin f$. Then (F, R) is nice.

<u>Proof</u>: We have to describe g and an absolute winning strategy for N. Choose geF, (VfeN) f $< \frac{*}{g}$. As for the strategy, n_o is irrelevant, we just choose $m_{k+1} = \min\{m: \text{ there are at least } k \text{ numbers } i < n \text{ such that}$ $g(i) > f_k(i)\}.$

1.12. <u>Claim</u>: Suppose $P \subseteq [\omega]^{\omega}$ is a P-filter (i.e. it is a filter and for any $A_n \in P$ ($n < \omega$) for some $A^* \in P$, $(\forall n) [A^* \subseteq A_n]$ with no intersection (i.e. there is no $X \in [\omega]^{\omega}$, $X \subseteq A^*$ for every $A \in P$).

Let R be: xRy iff $x \notin [\omega]^{\omega}$ or $y \notin [\omega]^{\omega}$ or $y \notin x$. (We identify $x \leq \omega$ with its characteristic function).

Then (P,R) is nice.

<u>Proof</u>: Now (α) is obvious. In (β) choose $g = A^* \in F$ such that $(\forall A \in N) A^* \leq A$.

Again the only non-obvious point is the winning strategy; again n_k is irrelevant and player II chooses $m_k = \min\{m: f_k \cap m \cap g \}$ has power > k}.

1.13. Lemma:

l) Suppose $\langle P_j, Q_i : i < \delta, j \leq \delta \rangle$ is a countable support iteration of proper forcing.

Suppose further that $S \subseteq \mathcal{S}_{\mathfrak{R}_{1}}(H)$ is stationary (i.e. $\neq \emptyset \mod \mathfrak{D}_{\mathfrak{R}_{1}}(H)$), in V, (H,\overline{R}) is $S/\mathfrak{D}_{\mathfrak{R}_{1}}(H)$ -nice and for every $i < \delta$, in Vⁱ H is \overline{R} -bounding.

Then in $\nabla^{P_{\delta}}$, H is \overline{R} -bounding. 2) We can replace $S/\mathcal{D}_{\mathfrak{N}_{1}}$ (H)-nice by almost $S/\mathcal{D}_{\mathfrak{N}_{1}}$ (H)-nice.

Remark:

1) For the case which we really need in 1.15, you can read the proof with $n_0 = 0$, F instead H, R instead R_z^n .

2) The proof gives somewhat more than the lemma, i.e. it applies to more cases. "H is \overline{R} -bounding" means that (α) of 1.10 holds.

<u>Proof</u>: 1) If $cf\delta > \aleph_0$, then any real in $\bigvee^P \delta$ belongs to $\bigvee^P j$ for some $j < \delta$ (see [Shl, III, 4.4]); hence there is nothing to prove, so we shall assume $cf\delta = \omega$. By [Shl, III, 3.3], w.l.o.g. $\delta = \omega$.

Licensed to AMS. License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SAHARON SHELAH

Suppose $p \in P_{\omega}$, $z_0 \in Dom H$, $n_0 < \omega$ and $\mathbb{F}_{P_{\omega}} \stackrel{"f}{=} \in \stackrel{\omega}{\omega}$; we shall find r, $p \leq r \in P_{\omega}$ and $g \in H_{z_0}$ such that $r \mathbb{F}_{P_{\omega}} \stackrel{"f}{=} R_{n_0}^{z_0} g^{"}$. Let N be a countable elementary submodel of $(H(\lambda), \epsilon)$ (λ regular large enough) to which $\langle P_j, Q_i: i < \omega, j \le \omega >, \rho, f, z_0, S, H$ belong as well as the parameters involving the definitions of the R_n 's. The set of such N belongs to $\mathfrak{D}_{\mathfrak{R}_1}(H(\lambda))$, hence for some such N, NnH $\in S$.

As in [Sh1, III 3.2], w.l.o.g. f(n) is a P_n -name; and we let $p = \langle p_n^0: n \langle \omega \rangle \Vdash_{P_n} p_n^0 \in Q_n^{"}$. Let $g \in H_{z_0}$ be as in Def. 1.8 (for NnH).

We shall now define by induction on $k<\omega$ q_k , p_k , p_k , g_k , z_k , m_k , n_k such that

- 1) $q_k \in P_k$ is (N, P_k) -generic
- 2) $q_k in = q_n$ for n < k
- 3) p_k ∈ P_ω
- 4) $q_k \ge p_k tk$
- 5) $p_{k+1}tk = p_ktk, p_{n+1} \ge p_n$
- 6) $q_k \Vdash_{P_k} "p_k \in \mathbb{N}"$
- 7) $z_k \in Dom(H \cap N)$ is a P_k -name
- 8) $m_k < m_{k+1}$ are P_k -names of natural numbers

Note that 1) implies that NnH belongs to the club of $\mathcal{A}_{\mathcal{S}_{1}}(H)$ involving "(H, \overline{R}) is $S/\mathcal{D}_{\mathcal{S}_{1}}(H)$ -nice". For k = 0, $q_{0} = \emptyset$, $p_{0} = p$. For k+1, we work in $V[\mathcal{G}_{k}]$, \mathcal{G}_{k} a generic subset of P_{k} , $q_{k} \in \mathcal{G}_{k}$. So $p_{k} \in \mathbb{N}[\mathcal{G}_{k}] = p_{k}!k \in \mathcal{G}_{k}$. In $\mathbb{N}[\mathcal{G}_{k}]$ we can find an increasing sequence of conditions $p_{k,i} \in P_{\omega}/P_{n}$ for $i < \omega$, such that $p_{k,i} \in \mathbb{N}[\mathcal{G}_{k}]$, $p_{k,i}$ forces values for f(j), $j \leq i$. So for some function $f_{k} \in \mathbb{N}[\mathcal{G}_{k}]$, $p_{k,i} \vdash_{P_{\omega}}/P_{k}$ "f(i = f_{k} ti". As $\mathbb{N}[\mathcal{G}_{k}] < (H(\lambda)[\mathcal{G}_{k}], \epsilon)$ (see [Shl III 2.11, p. 89]) for some Licensed to AMS. $g_k \in NnH_{z_k}$, $N[G_k] \models "f_k R_{n_k}^{z_k} g_k$ ". Now we use the absolute strategy (from Def 1, for NnH) to choose z_{k+1} , n_{k+1} , m_{k+1} (the strategy's parameters may not be in N, but the result is) and we want to have $P_{k+1} = P_{k,m_{k+1}}$. However all this was done in $V[G_k]$, so we have only a suitable P_k -name. In the end, let $r \in P_{\omega}$ be defined by $r!k = q_k!k$ for each k; by requirement (2) this suffices. Suppose $r \in G_{\omega} \subseteq P_{\omega}$, G_{ω} generic. Then in $V[G_{\omega}]$ we have made a play of the game from Def. 1.10, player II using his winning strategy so $(Uf_k!k)[G_{\omega}]R_{n_0}^{z_0}$ g holds in $V[G_{\omega}]$, but clearly $P_{k,n_k} \leq P_{k+1} \leq r$ hence $P_{k,n_k} \in G_{\omega}$ hence $(f_k!k)[G_{\omega}] = (f!k)[G_{\omega}]$, so $f[G_{\omega}] = U(f_k!k)[G_{\omega}]$. So $f[G_{\omega}]R_{n_0}^{z_0}$ g holds in $V[G_{\omega}]$. So r forces the required information.

We shall prove later (in 2.13)

1.14 Main Lemma. There is a forcing notion Q such that

- (a) Q is proper
- (b) Q is almost ω -bounding
- (c) $|0| = 2^{0}$
- (d) In \sqrt{Q} there is an infinite set $A^* \subseteq \omega$ such that for every infinite $B \subseteq \omega$ from $V A^* \cap B$ or $A^* B$ is finite.

1.14A Remark. For 1.15 it is enough to prove 1.14 assuming CH.

1.15 Main Theorem. Assume V ⊨ CH.

1) Then for some forcing notion P^* (P^* is proper, satisfies the $R_2^{-c.c.}$, is weakly bounding and)

(*) In $v^{p^{*}}$, $2^{p^{*}} = \aleph_{2}$, there is an unbounded family of power \aleph_{1} , but no splitting family of power \aleph_{1} .

2) We can also demand that in V^{p^*} there is no MAD of power \aleph_1 (see Def. 1.3(2)).

Proof.

1) We define a countable support iteration of length \aleph_2 : $\langle \mathcal{P}_{\alpha}, \mathcal{Q}_{\alpha}; \alpha \langle \omega_2 \rangle$

Licensed to AMS.

SAHARON SHELAH

with (direct) limit $P^* = P_{\omega_2}$. Now each Q_{α} is the Q from 1.14 for $\sqrt[P^{\alpha}]_{\alpha}$, so $\sqrt[P^{\alpha}]_{\alpha} = 2^{0}$. As $\forall \models CH$ we can prove by induction on α that $F_{P_{\alpha}}$ (see [Sh1, Th. 4.1, p. 96]). We also know that P^* satisfies the \aleph_2 -c.c. (see [Sh1, Th. 4.1, p. 96]). If P is a family of subsets of ω of power $\leqslant \aleph_1$ in $\sqrt[P^*]_{\alpha}$ then for some α , $P \in \sqrt[P^{\alpha}]_{\alpha}$, and forcing by Q_{α} gives a set λ_{α}^* exemplifying P is not a splitting family. So from all the conclusions of 1.15 only the existence of an undominated family of power \aleph_1 remains. Now we shall prove that $F = ({}^{\omega}\omega)^V$ is as required. It has power \aleph_1 as $\forall \models CH$. We prove that it is an undominated family in $\sqrt[P^{\alpha}]_{\alpha}$ by induction on $\alpha \leqslant \omega_2$. For $\alpha = 0$ this is trivial; $\alpha = \beta + 1$: as Q_{β} is almost ${}^{\omega}$ -bounding (see 1.14) and by Fact 1.5(1); if $cf \alpha \geqslant \aleph_0$ by Lemma 1.13.

2) Similar. We use a countable support iteration $\langle P_j, Q_j : i < \omega_2, j \le \omega_2 \rangle$ such that:

(a) for every $i < \omega_2$, and MAD $\langle A_{\alpha} : \alpha < \omega_1 \rangle \in V^{p_1}$, for some j > i, <u>either</u> Q_{2j} = adding \aleph_1 -Cohen reals, and $Q_{2j+1} = \{p \in Q^{V^{p_2}j+1} : p \ge p_{2j+1}\}$ where in V^{p_2j+1} , $p_{2j+1} \models_Q^{w_1} < A_{\alpha} : \alpha < \omega_1 \rangle$ is not a MAD" or Q_{2j} = adding \aleph_1 -Cohen reals, $Q_{2j+1} = Q[I_{2j+1}]^{V^{p_2}j+1}$ where I_{2j+1} is the ideal which $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ and the cofinite sets generate

(b) For j even Q_i is adding \aleph_1 Cohen reals

(c) For j odd, Q_j is Q_j or Q[I], or $\{p \in Q: p \ge p_j\}$, but always it is ${}^{\omega}\omega$ -bounding.

Use 2.16, 2.17.

<u>Remark</u>. Really the conclusion of 1.5 is satisfied by each Q_{α} and is preserved by countable support iteration of proper forcing.

2. The Forcing.

2.1 <u>Definition</u>. 1) Let K_n be the family of pairs (s,h), s a finite set, h a partial function from $\mathcal{P}(s)$ (the family of subsets of s) to n + 1 such that (a) h(s) = n(b) if $h(t) = \Omega + l$ $(t \leq s)$, $t = t_1 u t_2$ then $h(t_1) \ge \Omega$ or $h(t_2) \geqslant 2$. 2) $K_{\geq n}$, $K_{\leq n}$, $K_{(n,m)}$ are defined similarly, and $K = UK_n$. We call s the domain of (s,h) and write $a \in (s,h)$ instead of $a \in s$. We call (s,h) standard if s is a finite subset of the family of hereditarily finite sets. We use the letter d to denote such pairs. We call (s,h) simple if $h(t) = [log_{2}(t)]$ for $t \leq s$. 2.2 Definition. 1) Suppose $(s_{\varrho},h_{\varrho}) \in K_{s(\varrho)}$ for $\varrho = 0,1$. We say $(s_{\varrho},h_{\varrho}) \leq^{d} (s_{1},h_{1})$ (or (s_1,h_1) refines (s_0,h_0)) if: $\mathbf{s}_0 = \mathbf{s}_1$ and for $\mathbf{t}_1 \subseteq \mathbf{t}_2 \subseteq \mathbf{s}_0$, $[\mathbf{h}_1(\mathbf{t}_1) < \mathbf{h}_1(\mathbf{t}_2) \Rightarrow \mathbf{h}_0(\mathbf{t}_1) < \mathbf{h}_0(\mathbf{t}_2)]$ (so $n(0) \leq n(1)$) and $Dom(h_1) \subseteq Dom(h_0)$. 2) We say $(s_0,h_0) \leq^{e} (s_1,h_1)$ if for some $s'_0 \in \text{Dom } h_0$, $(s'_0, h_0 h (s'_0)) = (s_1, h_1).$ 3) We say $(s_0,h_0) \leq (s_1,h_1)$ if for some (s',h'), $(\mathbf{s}_0,\mathbf{h}_0) \leq^{\mathbf{e}} (\mathbf{s}',\mathbf{h}') \leq^{\mathbf{d}} (\mathbf{s}_1,\mathbf{h}_1).$ 2.3 <u>Fact</u>: The relations \leq^d , \leq^e , \leq are partial orders of K. 2.4 Definition. 1) Let L_n be the family of pairs (S,H) such that: a) S is a finite tree with a root. b) H is a function whose domain is in(S) = the set of non-maximal points of S and value H_x for $x \in in(S)$.

Sh:207

194

SAHARON SHELAH

2.6 <u>Fact</u>. If $(S,H) \in L_n$ then (S',H') = half(S,H) belongs to $L_{\lfloor (n+1)/2 \rfloor}$ where S' = S, $H'_S(A) = [H_S(A) - lev(S,H)/2]$ and $Dom(H'_S) = \{A: H_s(A) \ge lev(S,H)/2\}$.

2.7 <u>Fact</u>. If $(S,H) \in L_{n+1}$, $int(S) = A_0 u A_1$ then there is $(S^1, H^1) \ge (S, H)$, $(S^1, H^1) \in L_n$ and $[int(S^1) \le A_0$ or $int(S^1) \le A_1]$.

Proof. Easy by induction on the height of the tree.

2.8 Definition. We define the forcing-notion Q:

p∈Q <u>if</u> p = (W,T) where W is a finite subset of ω, T is a countable (infinite) set of pairwise disjoint standard members of L and T - L_n is finite for each n; let cnt(T) = U int(S,H) = cnt(p). (H,S)∈T
2) Given t₁ = (S₁,H₁),...,t_k = (S_k,H_k) all from L such that

2) Given $t_1 = (S_1, H_1), \dots, t_k = (S_k, H_k)$ all from L such that $S_i n S_j = \emptyset$ (i $\neq j$), and given t = (S, H) from L, t is <u>built</u> from t_1, \dots, t_k if: There are incomparable nodes a_1, \dots, a_k of S such that every node of S is comparable with some a_i , and such that, letting $S(a_i) = \{b \in S: b \geq_S a_i\}$, $(S_i, H_i) = (S(a_i), H \mid S(a_i))$.

3) $(W^0, T^0) \leq (W^1, T^1)$ iff: $W^0 \leq W^1 \leq W^0 \cup \operatorname{cnt}(T^0)$, and: letting $T^0 = \{\underline{t}_0^0, \underline{t}_1^0, \ldots\}, T^1 = \{\underline{t}_0^1, \underline{t}_2^1, \ldots\}$, there are finite, non-empty, pairwise disjoint subsets of ω , B_0, B_1, \ldots , and there are $\underline{\hat{t}}_i \geq \underline{t}_i^0$ for all Sh:207

 $i \in UB_j$, such that for each n only finitely many of the $\hat{\underline{t}}_i$ are inside L_n , and such that for each j, letting $B_j = \{i_1, \ldots, i_k\}, \quad \underline{t}_j^1$ is built from $\hat{\underline{t}}_{i_1}, \ldots, \hat{\underline{t}}_{i_k}$.

4) We call (W,T) standard if $T = \{\underline{t}_n : n < \omega\}$, max(W) < min[int(\underline{t}_n)], max[int(\underline{t}_n)] < min[int(\underline{t}_{n+1})] and lev(\underline{t}_n) is strictly increasing.

2.9 <u>Definition</u>: For p = (W,T) we write $W = W^{p}$, $T = T^{p}$. We say q is a pure extension of p (\leq pure) if $q \geq p$, $W^{q} = W^{p}$. We say p is pure if $W^{p} = \emptyset$, and $p \leq q$ if omitting finitely many members of T^{q} makes $q \geq p$.

2.10 <u>Definition</u>: For an ideal I of $\mathcal{P}(\omega)$ (which includes all finite sets) let Q[I] be the set of $p \in Q$ such that for every $A \in I$, for infinitely many $t \in T^{p}$, $int(\underline{t}) \cap A = \emptyset$.

2.11 <u>Fact</u>: 1) If $p \in Q$, $\tau_n(n < \omega)$ are Q-names of ordinals, then there is a pure standard extension q of p such that: letting $T^{\mathbf{q}} = \{\underline{\mathbf{t}}_n : n < \omega\}$ for every $n < \omega$, $\mathbb{W} \subseteq \max[\operatorname{int}(\underline{\mathbf{t}}_n)] + 1$, let $q_W^n = (\mathbb{W}, \{\underline{\mathbf{t}}_Q : Q > n\})$. Then for $k \leq n$: q_W^n forces a value on τ_k iff some pure extension of q_W^n forces a value on τ_k .

- 2) Q is proper (in fact α -proper for every $\alpha < \omega_1$).
- 3) \mathbb{P}_{Q} "{n: $(\exists p \in \mathcal{G}_{Q})[n \in W^{P}]$ } is an infinite subset of ω which $\mathcal{P}(\omega)^{V}$ does not split."

Proof: Easy (for 3) use 2.7).

2.12 Lemma: Let q, τ_n be as in 2.11. Then for some pure standard extension r of q, letting $\mathbf{T}^r = \{\underline{t}_n : n < \omega\}$, $(lev(\underline{t}_n)$ strictly increasing, of course) the following holds.

(*) For every $n < \omega$, $W \subseteq [\max(int(\underline{t}_n')) + 1]$, and $\underline{t}_{n+1}^{"} \ge t_{n+1}'$ (so we ask only $lev(\underline{t}_{n+1}^{"}) \ge 0$) there is $W' \subseteq int(\underline{t}_{n+1}^{"})$, s.t. ($W \cup W'$, { $\underline{t}_{\underline{Q}}: \underline{2} \ge n + 1$ }) forces a value on $\tau_{\underline{m}}$ ($\underline{m} \le n$) (we can allow $\underline{n} = -1$ letting max $int(\underline{t}_{-1}') + 1$ be $max\{W^{\underline{q}} \cup \{-1\}\}$).

SAHARON SHELAH

This lemma follows easily from claim 2.14 (see below) (choose by it the \underline{t}_n^{\prime} by induction on n) and is enough for proving Lemma 1.14.

2.13 <u>Proof of Lemma 1.14</u>: By 2.11, (a) and (d) (of 1.14) holds, and (c) is trivial. For proving (b) (i.e., Q is almost ${}^{\omega}\omega$ -bounding) let $\underline{f} \in {}^{\omega}\omega$, $p \in Q$ be given. Let $\tau_n = \underline{f}(n)$ and apply 2.11(1), 2.12 getting $r \ge p$. We now have to define $g \in {}^{\omega}\omega$ (as required in Def 1.1). $g(n) = \max\{k: \text{ for some } W \subseteq [(\max(\underline{t}_{n+1}) + 1], (W, \{\underline{t}_{\underline{u}}: Q > n + 1\}) \Vdash {}^{w}\underline{f}(n) = k^{w}\}$. Let $A \subseteq \omega$ be infinite, and we define $p' = (W^{\underline{p}}, \{\underline{t}_{n+1}': n \in A\})$, so $p' \ge r \ge p$. Now check.

2.14 <u>Claim</u>: Let (\emptyset, T) be a pure condition, and let W be a family of finite subsets of cnt(T) so that

(*) for every $(\emptyset, T') \ge (\emptyset, T)$, there is a $w \subseteq cnt(T'), w \in W$.

Let $k < \omega$. Then there is $\underline{t} \in L_k$ appearing in some $(\emptyset, T') \ge (\emptyset, T)$ such that: $\underline{t}' \ge \underline{t} \Longrightarrow (\exists w \in W)[w \subseteq int(\underline{t}')].$

<u>Proof:</u> Let $T = \{\underline{t}_n : n < \omega\}$. For notational simplicity, w.l.o.g. let W be closed upward.

Stage A: There is n such that for every $\underline{t}_{\underline{0}} \ge half(\underline{t}_{\underline{0}})$ ($\underline{0} \le n$), $\bigcup int(\underline{t}_{\underline{0}}) \in \mathbb{W}$. This is because the family of $<\underline{t}_{\underline{0}}: \underline{0} \le n$, $n < \omega, \underline{t}_{\underline{n}} \ge half(\underline{t}_{\underline{0}})$ form an ω -tree with finite branching and for every infinite branch $<\underline{t}_{\underline{0}}: \underline{0} < \omega$, by (*) there is a member $<\underline{t}_{\underline{0}}: \underline{0} \le n$ with $\bigcup int(\underline{t}_{\underline{0}}) \in \mathbb{W}$. $\underline{0} \le n$ [Why? Define $(S^{\underline{0}}, H^{\underline{0}}) \in L$ such that $\underline{5}^{\underline{0}} = S^{\underline{t}_{\underline{0}}}$ and $H^{\underline{0}}_{\underline{X}}(A) = H^{\underline{t}_{\underline{0}}}_{\underline{X}}(A)$ when $x \in in(S^{\underline{0}}), A \subseteq Suc_{(S}^{\underline{0}}, (x), so <(S^{\underline{0}}, H^{\underline{0}}): \underline{0} < \omega > \in Q$, $(\underline{0}, T^{\underline{1}}) \le$ $(\underline{0}, \{(S^{\underline{0}}, H^{\underline{0}}): \underline{0} < \omega\})$. Now apply (*).] By Konig's Lemma we finish.

<u>Stage B</u>: There are $n(0) < n(1) < n(2) < \cdots$ such that for every m and $\underline{t}'_{\underline{Q}} \ge half(\underline{t}_{\underline{Q}})$ for $n(m) \le Q < n(m+1)$, the set $\bigcup \{int(\underline{t}'_{\underline{Q}}): n(m) \le Q < n(m+1)\}$ $\in W$. The proof is by repeating stage A.

Stage C: There are $m(0) < m(1) < \cdots$ such that: if $i < \omega$, for a function with domain $[m(i), m(i+1)), h(j) \in [n(j), n(j+1)), \frac{t}{2} \ge half(\frac{t}{2})$ for all relevant 2 then $U\{\frac{t}{2}h(j): j \in [m(i), m(i+1))\}$ belongs to W.

The proof is parallel to that of A.

Stage D: We define a partial function H from finite subsets of ω to ω : H(u) $\geqslant 0$ if for every $\underline{t}_{g}' \geqslant half(\underline{t}_{g})$ ($g\in u$), (U int(\underline{t}_{g}')) $\in W$. $g\in u$ H(u) $\geqslant m + 1$ if $[u = u_1 \cup u_2 \rightarrow H(u_1) \geqslant m \vee H(u_2) \geqslant m]$. Now we have shown that $H([n(i), n(i+1))) \geqslant 0$, and

 $H([n(m(i)), n(m(i+1)))) \ge 1.$

It clearly suffices to find u, $H(u) \ge k$. [We then define $\underline{t} = (S,H)$ as follows: $S = \bigcup_{Q \in U} S^{\underline{t}_Q} \cup \{u\}$, u is the root and the order restricted to $S^{\underline{t}_Q}$ is as in \underline{t}_Q ; for $x \in S^{\underline{t}_Q}$, $H_x = H_x^{\underline{t}_Q}$ and $H_u(A) = H(A)$.] We prove the existence of such u by induction on k, (e.g., simultaneously for all T', $(\emptyset, T') \ge (\emptyset, T)$.

The rest of this section deals with Q[I].

2.15 <u>Notation</u>: Let Q^0 be the forcing of adding \aleph_1 Cohen reals $\langle r_i : i < \omega_1 \rangle$, $r_i \in {}^{\omega}\omega$. Let $I \in V$ be an ideal of $\mathcal{P}(\omega)$, including all finite subsets of ω but $\omega \notin I$ and generated by a MAD $\langle A_i : i < \omega_1 \rangle$ (the ω_1 is not necessary - just what we use).

2.16 <u>Claim</u>: In $\sqrt{Q^0}$: 1) If $p \in Q[I]$ and $\tau_n(n < \omega)$ are Q[I]-names of ordinals <u>then</u> there is a pure standard extension q of p such that: $q \in Q[I]$, and letting $T^q = \{\underline{t}_n : n < \omega\}$, for every $n < \omega$ and $\forall \subseteq \{\max \inf(\underline{t}_n) + 1\}$ let $q_W^n = (\forall, \{t_Q: n < Q < \omega\})$, then $(q_W^n \in Q[I], of course, and)$ for every $k \leq n q_W^n$ forces a value on τ_k iff some pure extension of q_W^n in Q[I] forces a value on τ_k .

2) Q[I] is proper, moreover α -proper for every $\alpha < \omega_{1}$.

3) $\mathbb{P}_{Q[I]}$ "{n: $(\exists p \in G_{Q[I]})$ n $\in W^{D}$ } is an infinite subset of ω which is almost disjoint from every $A \in I$."

4) Q[I] is almost ω_{ω} -bounding <u>or</u> in $\sqrt{Q^0}$ for some $p \in Q[I]$, p \Vdash "<A_i: i < ω_1 > is not a MAD."

<u>Proof</u>: 1) Let λ be regular large enough, N a countable elementary submodel of $(H(\lambda), \in, VnH(\lambda))$ to which I, $\langle r_i : i < \omega_1 \rangle$, Q[I], p, and $\langle \tau_n : n < \omega \rangle$ belong. Let $\delta = Nn\omega_1$ (so $\delta \in N$).

Licensed to AMS

SAHARON SHELAH

We define by induction on $n < \omega$, $q^n \in Q[I] \cap N$, \underline{t}_n and $k < \omega$ such that:

a) each q^n is a pure extension of p.

b) $q^n \ge q^2$ for 2 < n and if $w \le k_n$, m < n + 1 and some pure extension of (w, T^{q^n}) forces a value on $\tau(m)$, then (w, T^{q^n}) does it.

- c) $k_n > k_2$ and $k_n > \max \inf \underline{t}_2$ for 2 < n.
- d) every $Q \in cnt(q^n)$ is $> k_n$.
- e) $\underline{\underline{t}}_{n} \in \underline{T}^{q}$ and $\operatorname{lev}(\underline{\underline{t}}_{n}) > n$ and $\min \operatorname{int}(\underline{\underline{t}}_{n})$ is $> k_{n}$.

There is no problem in doing this: we first choose k_n , then q^n and at last \underline{t}_n . We want in the end to let $T^q = \{\underline{t}_n : n < \omega\}$. One point is missing. Why does $q = (w^p, T^q)$ belong to Q[I] (not just to Q)? But we can use some function in $V[\langle r_i : i < \delta \rangle]$ to choose k_n , q^n , and then let \underline{t}_n be the $r_{\delta}(n)$ -th member of T^q^n which satisfies the requirement (in some fixed well ordering from V of the hereditarily finite sets). As $I \in V$ and $r_{\delta} \in {}^{\omega}\omega$ is Cohen generic over $V[\langle r_i : i < \delta \rangle]$, this should be clear.

2), 3) easy.

4) Assume that in $V_Q^{Q'}$, \mathbb{F}_Q "<A; $i < \omega_1$ > is a MAD". Like in 2.13 it suffices to prove the parallel of 2.12, 2.14.

As for the proof of 2.14 for Q[I] for stage A note that if $\underline{t}_n^{'} \ge$ half(\underline{t}_n) for $n < \omega$, then (\emptyset , {(S², H²): $\mathfrak{L} < \omega$ }) \in Q[I] (check Definition 2.10). Stage B is similar. For stage C we have to use the specific character of I - generated by a MAD. By 2.16A without loss of generality there are distinct $i_n < \omega_1$ such that $B_n = \{\mathfrak{L} < \omega: \operatorname{int}(\underline{t}_{\mathfrak{L}}) \subseteq A_{\underline{i}_n}\}$ is infinite for each n, and without loss of generality $[\mathfrak{m}(\mathfrak{L}), \mathfrak{m}(\mathfrak{L}+1)) \cap B_k \neq 0$ for $k < \mathfrak{L}$. Now we restrict ourselves to functions h such that $h(j) \in B_{j-[\sqrt{j}]}$.

As for the proof of 2.12 from 2.14 (for Q[I]) we again have to choose the sequence $\langle \underline{t}_n \rangle$: $n < \omega$ using some Cohen generic $r_{\bar{O}}$.

2.16A <u>Fact</u>: Suppose (in V_1) $\langle A_i : i < \omega_1 \rangle \in V_1$ is a MAD, \Vdash_Q " $\langle A_i : i < \omega_1 \rangle$ is a MAD". Let I be the ideal generated by $\{A_i : i < \omega\}$ and the finite

Licensed to AMS.

198

subsets of ω . Then $(W, \{\underline{t}_n : n < \omega\})$ is a standard condition in Q[I] <u>iff</u> it is a standard condition in Q and there are finite pairwise disjoint $u_{\underline{Q}} \subseteq \omega_1(Q < \omega)$ such that for each Q, for infinitely many $n < \omega$, $int(\underline{t}_n) \subseteq \bigcup_{\substack{i \in u_{\underline{Q}}}} A_i$ <u>iff</u> there are singletons $u_{\underline{O}}$ as above.

<u>Proof</u>. The third condition implies trivially the second. We shall prove [second \Rightarrow first] and then [first \Rightarrow third]. Suppose there are u_{ϱ} ($\varrho < \omega$) as above. Then every $B \in I$ is included in $\bigcup A_i \cup \{0, \dots, n\}$ for some finite $u \subseteq \omega_1$ and $n < \omega$. But for some ϱ , u_{ϱ} is disjoint from u, hence Bn($\bigcup A_i$) is finite. We know for infinitely many $n < \omega$, $int(\underline{t}_n) \subseteq \bigcup A_i$, $i \in u_{\varrho}$ and the $int(\underline{t}_n)$ ($n < \omega$) are pairwise disjoint, hence for infinitely many $n < \omega$, $int(\underline{t}_n) \cap B = \emptyset$, as required.

For the other direction suppose $p = (\forall, \{\underline{t}_n : n < \omega\}) \in Q[I]$. We define by induction on m a finite $u_m \subseteq \omega_1$, disjoint from $\bigcup u_2$, such that $I_m = \underset{Q < m}{\underset{Q < m}{}} \{n < \omega: int(\underline{t}_n) \subseteq \bigcup A_i\}$ are infinite. For m = 0, we know $p \in Q$, $(A_i:i < \omega_1) \leq \bigcup A_i\}$ are infinite. For m = 0, we know $p \in Q$, $(A_i:i < \omega_1)$ is a MAD even after forcing by Q, so by 2.11(3) there are $p' = (\forall', \{\underline{t}_n: n < \omega\}) \in Q$, $p \leq p'$ and $i_0 < \omega_1$ such that $p' \models " \{n: (\exists q \in G_Q) \{n \in \forall^q\}\} \cap A_i$ is infinite". By 2.7, w.l.o.g. $\bigcup cnt(\underline{t}_n) \subseteq A_i$. Let $u_0 = \{i_0\}$. For m > 0 start with $n < \omega$ $(\forall, \{\underline{t}_n: cnt(\underline{t}_n) \cap (\bigcup \cup A_i) = \emptyset\})$. $Q < m i \in u_2$

A trivial remark is

2.17 <u>Fact</u>: Cohen forcing and even the forcing for adding λ Cohen reals (by finite information) is almost (^{ω_{ω}})-bounding.

3. <u>On</u> \$>b = a.

3.1 <u>Theorem</u>: Assume $V \models CH$. Then for some forcing notion P^* (P is proper, satisfies the \aleph_2 -c.c., is weakly bounding and):

(*) In $V^{p} = R_2$, there is an unbounded family of power R_1 and also a MAD of power R_1 , but there is no splitting family of power R_1 .

SAHARON SHELAH

<u>Proof</u>: The forcing $\langle P_{\alpha}, Q_{\alpha} : a < \omega_2 \rangle$, P^* are as in the proof of 1.15(1). So the only new point is the construction of a MAD of power \aleph_1 . This will be done in V; unfortunately the proof of its being MAD in \sqrt{P}^* does not seem to follow from 1.13 (though the proof is similar).

Let $\{\langle B_n^i: n < \omega \rangle: i < \aleph_1\}$ enumerate (in V) all sequences $\langle B_n: n < \omega \rangle$ of finite pairwise disjoint nonempty subsets of ω (remember CH holds in V). Next choose a MAD $\langle A_{\alpha}: \alpha < \aleph_1 \rangle$ such that

(*) <u>if</u> δ is a limit ordinal, $i < \delta$, and for every $k < \omega$, $\alpha_1, \dots, \alpha_k < \delta$ for infinitely many $n < \omega$, $B_n^i \cap (A_{\alpha_1} \cup \dots \cup A_{\alpha_k}) = \emptyset$ <u>then</u> for infinitely many $n < \omega$, $B_n^i \subseteq A_{\delta}$.

Let λ be regular large enough. For a generic $G_{\alpha} \subseteq P_{\alpha} (\alpha \leqslant \omega_2), N \prec (H(\lambda)[G_{\alpha}], \epsilon)$ is called <u>good</u> if it is countable, $G_{\alpha}, \langle P_j, Q_i: i < \alpha, j \leqslant \alpha \rangle$, $\langle A_i: i < \omega_1 \rangle, \langle \langle B_n^i: n < \omega \rangle: i < \omega_1 \rangle \in N$ and for every sequence $\langle B_n: n < \omega \rangle \in N$ of finite non-empty pairwise disjoint subsets of ω , letting $\delta = N \cap \omega_1$, if $(\forall k < \omega)(\forall \alpha_1 \cdots \alpha_k < \delta)(\exists^{\tilde{m}} < \omega)[B_n \cap (A_{\alpha_1} \cup \cdots \cup A_{\alpha_1}) = \emptyset]$ then $(\exists^{\tilde{m}} n)[B_n \subseteq A_{\delta}]$.

We shall prove by induction on $\alpha \leq \omega_{0}$,

 $(\text{st})_{\alpha}$ for every $\beta < \alpha, N \prec (H(\lambda), \epsilon)$ to which $\langle P_j, Q_i : i \langle \alpha, j \leq \alpha \rangle$, and α, β belongs and generic $G_{\beta} \subseteq P_{\beta}$ if $N[G_{\beta}] \cap \omega_1 = N \cap \omega_1, N[G_{\beta}]$ is good, and $p \in N[G_{\beta}] \cap P_{\alpha}/G_{\beta}$ then there is $q \in P_{\alpha}/G_{\beta}, q \ge p, q$ $(N[G_{\beta}], P_{\alpha}/G_{\beta})$ -generic and whenever $G_{\alpha} \subseteq P_{\alpha}$ is generic, $G_{\beta} \subseteq G_{\alpha}, q \in G_{\alpha}, N[G_{\alpha}]$ is good.

This is proved by induction. The case $\alpha = \omega_2$, $\beta = 0$ gives the desired conclusion (as we find a good $N \prec (H(\lambda), \epsilon)$ to which a P_{ω} -name of an infinite subset of ω disjoint to every A_i belongs). The case $\alpha = 0$ is trivial (saying nothing) and the case α limit is similar to the proof of 1.13 (and, say, 1.11). In the case α successor, by using the induction hypothesis we can assume $\alpha = \beta + 1$.

By renaming $V[G_{\beta}]$, $N[G_{\beta}]$ as V, N, we see that it is enough to prove for any good N and $p \in Q \cap N$ (remember $Q_{\beta} = Q^{V[G_{\beta}]}$) there is $q \ge p$ which is (N,Q)-generic and $q \models_{Q} N[G]$ is good".

200

Let $\delta = N \cap \omega_1$, and let $\delta = \{\tau(\varrho): \varrho\langle\omega\}$. Let $\{\tau_\varrho: \varrho\langle\omega\}$ be a list of all Q-names of ordinals which belong to N, and $\{\langle g_n^\varrho: n\langle\omega\rangle: \varrho\langle\omega\}$ be a list of all Q-names of ω -sequences of pairwise disjoint non-empty finite subsets of ω which belong to N. For notational simplicity only, assume p is pure. We shall define by induction on $\varrho < \omega$ pure $p_\varrho = (\emptyset, \{\underline{t}_n^\varrho: n\langle\omega\})$ and $k_\varrho < \omega$ such that: a) $p_\varrho \in N$, p_ϱ standard (so max int $\underline{t}_n^\varrho < \min$ int $\underline{t}_{n+1}^\varrho$) b) $p_0 = p$, $p_{\varrho+1} \ge p_\varrho$, $k_{\varrho+1} > k_\varrho$ c) $\underline{t}_n^\varrho = \underline{t}_n^{\varrho+1}$ for $n \leqslant \varrho$ d) $p_{\varrho+1} \models_Q \neg \tau_\varrho \in \mathbb{C}^n$ for some countable set of ordinals which belongs to N.

e) for every $w_0 \subseteq (\max[\inf \underline{t}_{\mathfrak{Q}}^{\mathfrak{Q}}] + 1), m < \mathfrak{Q}, \text{ and } \underline{t} \geqslant \underline{t}_{\mathfrak{Q}+1}^{\mathfrak{Q}+1}$ there is $w_1 \subseteq \operatorname{int}(\underline{t})$ such that $(w_0 \cup w_1, \{\underline{t}_{\underline{t}}^{\mathfrak{Q}+1} : \mathfrak{Q} + 1 < i < \omega\}) \mathbb{F}_Q^{-n}(\exists j < \omega)[\mathbb{B}_j^m \subseteq [k_{\mathfrak{Q}}, k_{\mathfrak{Q}+1}], \mathbb{B}_j^m]$ is disjoint from $A_{\tau(0)} \cup \cdots \cup A_{\tau(\mathfrak{Q})}$ and $\mathbb{B}_j^m \subseteq A_{\delta}^{-n}$. Let $p_{\mathfrak{Q}}^m = (\emptyset, \{\underline{t}_{\mathfrak{Q}}^{\mathfrak{Q}, \mathfrak{m}} : n < \omega\}).$ Suppose $p_{\mathfrak{Q}}$ is defined. By 2.12 there is a pure $p_{\mathfrak{Q}}^0 \geqslant p_{\mathfrak{Q}}$ in N such

that $\underline{t}_{i}^{2,0} = \underline{t}_{i}^{2}$ for $i \leq 2$, $\underline{p}_{2}^{0} \vdash "\tau_{2} \in \mathbb{C}$ " for some countable set of ordinals from N.

Next by 2.12 we can find a pure $p_{Q}^{1} \ge p_{Q}^{0}$, $\underline{t}_{1}^{2,1} = \underline{t}_{1}^{2}$ for $i \le 2$ and $k_{Q,i}(i<\omega)$ such that:

(i) $k_{\varrho,0} = k_{\varrho}, \quad k_{\varrho,i+1} > k_{\varrho,i}$

(ii) for every m < i and $W_0 \subseteq (\max[int \underline{t}_{2+i}^{2,1}]+1)$ and $\underline{t} \ge \underline{t}_{2+i+1}^{2,0}$ for some $W_1 \subseteq cnt(\underline{t})$, $(W_0 \cup W_1, \{\underline{t}_n^{2,1}: 2+i+1 < n < \omega\}) \Vdash_Q "(\exists j < \omega)[B_j^m \subseteq [k_{2,i}, k_{2,i+1}), B_j^m$ is disjoint from $A_{\gamma(0)} \cup \cdots \sqcup A_{\gamma(2+i)}]$ ".

Now apply the goodness of N to the sequence

 $\langle [k_{\varrho,i}, k_{\varrho,i+1} \rangle - A_{\tau(0)} \cup \cdots \cup A_{\tau(\varrho)} : i \langle \omega \rangle, \text{ so for some } i, \\ [k_{\varrho,i}, k_{\varrho,i+1} \rangle - A_{\tau(0)} \cup \cdots \cup A_{\tau(\varrho)} \subseteq A_{\delta}. \text{ Let } \underline{t}_{n}^{\varrho+1} = \underline{t}_{n}^{\varrho} \text{ for } n \leq \varrho, \underline{t}_{n}^{\varrho+1} = \underline{t}_{n+i}^{\varrho} \text{ for } n \geq \varrho.$

So we have defined $p_{\ell+1}$ satisfying (a) - (e). So we can define p_{ℓ} for $\ell < \omega$ and now $q = (0, \{\underline{t}_n^n : n < \omega\})$ is as required.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS

SAHARON SHELAH

4. Splitting number smaller than unbounding number is consistent.

4.1 <u>Definition</u>: Q^d will be the following (well known as Hechler's forcing) forcing notion: the conditions are the pairs p = (f,g), f a finite function from some n to ω , $g \in {}^{\omega}\omega$, and $(t^0,g^0) \leq (f^1,g^1) \quad \underline{iff} \quad f^0 \leq f^1$ and $[m \in Dom f^1 - Dom f^0 \Rightarrow f^1(m) \leq g^0(m)]$ and $(\forall m)(g^0(m) \leq g^1(m))$. Let $f = f^p$, $g = g^p$. Let $f = f^p$, $g = g^p$.

4.2 <u>Lemma</u>: Let $\overline{Q} = \langle P_i, Q_i : i < \delta \rangle$ be a finite support iteration, each Q_i being Q^d in V^i , and $P = \lim \overline{Q}$, $cf\delta > \aleph_0$ and

(*) there are, in V, no projective sets $D_m \subseteq [\omega]^{\omega}$, each is a filter and (VA $\leq \omega$) (3n) [A $\in D_n \lor \omega - A \in D_n$].

Then

(1) P satisfies the countable chain condition, $\begin{pmatrix} X \\ 2 \end{pmatrix}^{V}$ is the minimal cardinal in $V \ge 2^{+} + |\delta|$ and of cofinality $> \aleph_{a}$.

(2) $\mathbf{F}_{\mathbf{p}}^{\mathbf{u}}\mathbf{b} = \mathbf{b} = \mathbf{cf}\delta^{\mathbf{u}}$, in fact the generic $\mathbf{r}_{\mathbf{i}} \in {}^{\omega}\omega$ of $Q_{\mathbf{i}}$ dominates ${}^{(\omega)}\mathbf{V}^{\mathbf{i}}$.

(3)
$$\mathbf{F}_{\mathbf{p}_{\mathbf{0}}} = (2^{\mathbf{0}})^{\mathbf{V}_{\mathbf{0}}}$$
, in fact $\mathcal{P}(\omega)^{\mathbf{V}}$ is a splitting family in $\mathbf{V}^{\mathbf{P}}$

<u>Proof</u>: We leave (1), (2) to the reader, and concentrate on (3). Suppose $p \in P$, A a P-name, and $p \models_P \stackrel{"A}{\sim}$ is an infinite subset of ω not split by $\mathcal{P}(\omega)^V$ ".

We can define by induction on $n<\omega$ a countable family R_n of conditions from P s.t.

(1) $p \in R_0$

(2) For each $m < \omega$, for some maximal antichain I_m of P, $(\forall q \in I_m) (q \models_p "m \in A" \text{ or } q \models_p "m \notin A")$ and $I_m \subseteq R_0$.

(3) For each $n < \omega$, $q \in R_n$, $m < \omega$ and $\alpha \in Dom q$, for some maximal antichain $I_{q,\alpha} \subseteq R_{n+1}$ of P_{α} , for every $r \in I_{q,\alpha}$, for some $f \in V$ and k, $r \models_{p_{\alpha}} f^{q(\alpha)} = f$ and $g^{q(\alpha)}(m) = k^{"}$.

202

We call $R \subseteq P$ closed if for every $q \in R$, $m < \omega$ and $\alpha \in Dom q$ there is $I_{q,\alpha} \subseteq R$ as in (3). So clearly $\bigcup R_n$ is closed. $n < \omega^n$

The countability of the I's follows from the c.c.c. and we can carry this proof as each $q \in P$ has a finite domain $\leq \delta$, $q(\alpha) = P_{\alpha}$ - name of a member of Q^{d} .

Now let $W = U\{\text{Dom } q; q \in R_n, n < \omega\}$, and let $P^* = \langle r \in P; r \text{ belongs to} some closed <math>R_r \subseteq P$ s.t. U Dom $q \subseteq W\}$. By [Sh3, 6.5], $P^* < P$; hence $V^P q \in R_r$ $= (V^{P^*})^{P/P^*}$, so let $G \subseteq P$ be generic, $p \in G$; then $G \cap P^*$ is a generic subset of P^* and $A[G] \in V^{P^*}$. By a trivial absoluteness argument in V^{P^*} , A[G] is not split by $P(\omega)^V$. Observe also that P^* is isomorphic to P_{α} where α is the order type of W. As W is countable, α is countable. So we can find directed subsets Γ_n of P^* such that $U\Gamma_n$ is a dense subset of $P^* [U \Gamma_n \text{ is the set of } q \in P^* \text{ such that each } f^{q(\alpha)} \text{ is an actual function } and put <math>q_1, q_2$ in the same Γ_n iff Dom $q_1 = \text{Dom } q_2$ and $f^* = f^{2}$

Define $D_n = \{B \in \mathcal{P}(\omega): \text{ for some } q \in \Gamma_n, q \ge p, q \vdash_{p*} A \subseteq B^* \}$. As Γ_n is directed, D_n is a filter, and by the choice of p and A each member of D_n is infinite. Also for every infinite $B \subseteq \omega$ ($B \in V$), $p \vdash_{p*} A \subseteq B$ or $A \cap B$ is finite"; hence there is $q \ge p$ s.t. $q \vdash_{p*} A = B$ is finite" or $q \vdash_{p*} A \cap B$ is finite" without loss of generality, for some $n, q \in \Gamma_n$. Hence $B \in D_n$ or $\omega = B \in D_n$. As easily each D_n is projective we get a contradiction to (*).

4.3 <u>Claim</u>: If $\langle r_i : i < \omega_1 \rangle$ is a sequence of \aleph_1 Cohen reals (i.e., this is a generic set for the appropriate forcing P^0) then $V[r_i : i < \omega_1]$ satisfies (*).

<u>Proof</u>: Let D_n form a counterexample, G in V[G], $G \subseteq P^0$ generic. Clearly for some i, the parameters appearing in the definition of the D_n belong to V[r_j; j < i]. So w.l.o.g. i = 0, and we can consider r_i as a function from ω to {0,1}. So for some $\ell \in \{0,1\}$ and $n < \omega$,

SAHARON SHELAH

 $\{m: r_0(m) = 2\} \in D_n \quad (in \ V[r_i: i < \omega_1]), hence this is forced by some \ p \in P^0. Choose \ n(*) \ large enough so that \ p \ gives no information on \ r_0(m) for \ m \ge n(*). Define \ r'_i: \ r'_i(n) = r_i(n) \ except when i = 0 \land n \ge n(*) \ in which case \ r'_i(n) = 1 - r_i(n). \ It is easy to check that also \ \langle r'_1: i < \omega_1 \rangle \ comes from some generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes from some generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes from some generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from some \ generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from \ some \ generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from \ some \ generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from \ some \ generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from \ some \ generic \ G' \subseteq P^0, \ and \ p \in G'. \ Clearly \ V[G] = V[G'] = V[r_i: i < \omega_1 \rangle \ comes \ from \ r_i(m) = 2\} \in D_n^{(m)} \ also \ (looking \ at \ V[G']), \ \{m: \ r_i'(m) = 2\} \in D_n^{(m)}.$

4.4 <u>Conclusion</u>: It is consistent with ZFC that $2^{k_0} = 2^{k_1} = k_2 + b = b > 3$ if ZFC is consistent.

<u>Remarks</u>: 1) We can get other values for b > 3.

 I think we can prove the case of (*) we need without having to force it.

<u>Proof</u>: Start with V = L, add \aleph_1 Cohen reals [so by 4.3, (*) of 4.2 holds] and then force by P from 4.2 for $\delta = \omega_2$. By 4.2 we get a model as required.

5. <u>On</u> **b** < 3 = b.

5.1 <u>Definition</u>: Let **b** be the minimal cardinal λ such that there is a tree T with λ levels and $A_t \in [\omega]^{\omega}$ for $t \in T$, $[t < s \Rightarrow A_s \leq A_t]$ and $(\forall B \in [\omega]^{\omega})(\exists t \in T)[A_t \leq B]$.

See [BPS] on it (and why it exists).

5.2 Theorem: Assume V ⊨ CH.

For some proper forcing P of power \aleph_2 satisfying the \aleph_2 -c.c., in \bigvee^P **b** = \aleph_1 , **b** = \aleph = \aleph_2 (and $2^0 = 2^1 = \aleph_2$).

<u>Proof</u>: We shall use the direct limit P of the iteration $\langle P_i, Q_i : i < \omega_2 \rangle$ where: 1) letting $i = (\omega_1)^2 + j$, $j < (\omega_1)^2$, if $j \neq 0, \omega_1, \omega_1 + 1$ then Q_1 is Cohen forcing; if $j = \omega_1$ then Q_1 is Q from Def. 2.8 (in V^1), and if $j = \omega_1 + 1$ then Q_1 is Q^d (see Def. 4.1). For j = 0 see the end of the proof.

2) We use the variant of countable support iteration defined in [Sh], III p. 96,7], i.e., using only hereditarily countable names (we could have used Mathias forcing instead of the Q from 2.8). Clearly (PI = \aleph_2 , P satisfies the \aleph_2 -c.c. and is proper (see [Shl, III p. 96,7]), hence forcing by P preserves cardinals. Clearly in \bigvee^P ; $\mathfrak{h} \ge \aleph_2$, and $2\overset{\aleph_0}{=} = \aleph_2$; hence in \bigvee^P , $\mathfrak{k} = \mathfrak{h} = \aleph_2$, and always $\mathfrak{h} \ge \aleph_1$. So the only point left is $\bigvee^P \models "\mathfrak{h} \le \aleph_1"$. We define by induction on $i < \omega_2$, a $P_{\alpha(i)}$ -name \mathfrak{n}_i , \mathfrak{A}_i , \mathfrak{v}_i such that (a) $\alpha(i) = (\omega_1)^3(i+1)$

(b) $n_i \in \bigcup_{\substack{\beta < \omega_1 \\ \beta < \omega_1}}^{\beta} (\omega_2)$ and for every successor $\beta < \mathfrak{Q}(n_i) [n_i \mid \beta \in \{n_j: j < i\})$ (i.e., those things are forced).

(c) $n_{j} < n_{i} \Rightarrow A_{i} \subseteq^{*} A_{j}$ (j<i) and A_is an infinite subset of ω . (d) if $A \subseteq \omega$ is infinite and $A \in V^{j}$ then for some $i < j + \omega_{1}$,

(e) A includes no infinite set from $\bigvee_{\alpha(j)}^{P_{\alpha(j)}}$ when j < i, and is a subset of the generic real of $Q_{\lambda_1^j i+3}$

There is no problem to do this if you know the well known way to build trees exemplifying the definition of **b** (see Balcar et al. [BPS]), provided that no ω_1 -branch has an intersection. I.e., for no $n \in {}^{\omega_1}(\omega_2)$ and $B \in [\omega]^{\omega}$ (in $V^{\omega_2}) B \subseteq A_i$ where $nf(\alpha+1) = n_i$ for $\alpha < \omega_1$. Let $i(*) = \bigcup_{\substack{\tau < \omega_1 \\ \tau < \omega_1}} \alpha(i_{\tau})$, in $V^{i}(*)$ there is no intersection by (e) (though maybe $n \notin V^{i}(*)$). So it is enough to prove this for a fixed i(*).

We can look at the iteration $\langle P_{\beta}^{\prime}, Q_{\gamma}^{\prime}; i(*) < \tau < \omega_{2}^{\prime}, i(*) \leq \beta \leq \omega_{1}^{\prime} \rangle$, $P_{\beta}^{\prime} = P_{\beta}^{\prime}/P_{i}(*)$. Let $G_{1} \subseteq P_{i}(*)$ be generic, $V_{1}^{\prime} = V[G]$. Note that every element of $P_{\omega_{2}}^{\prime}$ can be represented by a countable function from ordinals (< ω_{2}^{\prime}) to hereditarily countable sets. The set of elements of $P_{\omega_{2}}^{\prime}$ as well as its

SAHARON SHELAH

partial order are definable from ordinal parameters only (all this in V[G]). Suppose $p \in P'_{\omega_2}$ forces B_{ω_2} ($\tau < \omega_1$) to be as above. So for some j(*) < i(*) $p \in V[GnP_{j(*)}]$.

There is $p_1, p \in p_1 \in P'_{\omega_2}, p_1 \models "i_{\sim \tau} = i"$ for some τ, i , $j(*) < \omega_1^{2i} < i(*)$ so $p_1 \models "B \subseteq r_i$ " where r_i is the generic real the set $GnQ_{\omega_1^{2i+3}}$ gives. Now using automorphisms of the forcing $P_{i(*)}/P_{j(*)}$ we see

that there is p_2 , $p \leq p_2 \in P'_{\omega_2}$ such that $p_2 \Vdash "B_{\widetilde{\omega}}$ is almost disjoint from r_1 ". From this we can conclude that $p \Vdash "U = n_1 \notin V[G]$ " (otherwise some $\tau < \omega_1 \stackrel{\sim}{\to} \tau$

 $p_0 \ge p$ forces a particular value and repeat the argument above for p_0).

Looking at $Q_{i(*)}$ (see below) we see that it does not add any ω_1 -branch to $T = \{n_i: \alpha(i) < i(*)\}$. Let $G_2 \subseteq P_{i(*)+1}$ be generic and we shall work in $V_2 = V[G_2]$, and assume $p \in P_{\omega_2}/P_{i(*)+1}$ (i.e., P_{ω_2}/G_2) force B, i_{TT} ($T < \omega_1$) to be as above. Let N be a countable elementary submodel of $H((2^{0})^+)^{V_2}$ to which p, $P_{\omega_2}/P_{i(*)+1}$, B, and $\langle i_{TT}: T < \omega_1 \rangle$ belong. Now each Q_i is strongly proper and so is $P_{\omega_2}/P_{i(*)+1}$ (see [Sh1]). It is enough to find $q \ge p$ (in $P_{\omega_2}/P_{i(*)+1}$) which forces that for every $n \in T$, $g(n) = \delta^{\frac{def}{dt}}$ $Nn\omega_1$,

 $q \Vdash$ "for some $\tau < \delta$, $n_i \not < \eta$ "

By the definition of strongly proper and of $Q_{i(\star)}$ this is possible.

How is $Q_{i(\star)}$ defined? Let it be $\{(\langle I_{\varrho}: \varrho \langle n \rangle, w): n \langle \omega, I_{\varrho} a \text{ finite}\}$ antichain in ${}^{\omega \rangle}\omega$, w a finite subset of ${}^{\omega}\omega\}$. The order is $(\langle I_{\varrho}^{0}: \varrho \langle n^{0} \rangle, w^{0}) \leq (I_{\varrho}^{1}: \varrho \langle n^{1} \rangle, w^{1} \rangle)$ iff $n^{0} \leq n^{1}$, $I_{\varrho}^{0} \leq I_{\varrho}^{1}$ for $\varrho \langle n^{0}, w^{0} \leq w^{1}$ and for every $n \in w^{1} - w^{0}$, $n^{0} \leq \varrho \langle n^{1}$, no member of I_{ϱ}^{1} is an initial segment of n.

References

[BPS] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, <u>Fund. Math.</u> CX (1980), 11-24.

206

[BS] B. Balcar and P. Simon, Cardinal invariants in Boolean spaces, <u>General</u> <u>Topology and its Relations to Modern Analysis and Algebra V</u>, Proc. Fifth Prague Topol. Symp. 1981, ed. J. Novak, Heldermann Verlag, Berlin 1982, 39-47.

[D] E. K. van Doussen, The integers and topology, <u>Handbook of Set-Theoretic</u> <u>Topology</u>, to appear.

[N] P. Nyikos,

[Shl] S. Shelah, Proper Forcing, Lecture notes in mathematics 940 (1982), Springer-Verlag.

[Sh2] S. Shelah, More on proper forcing, J. Symbolic Logic, in press.

[Sh3] S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math.

[Sh4] S. Shelah, Cardinal invariants of the continuum: consistency results, Abstracts of A.M.S. (1983).

Institute of Mathematics The Hebrew University Jerusalem, Israel