ON CARDINAL INVARIANTS OF THE CONTINUUM

Salbaron Shelah ${ }^{1}$

0 . Introduction.

For a survey on this area, see van-Douwen [D] and Balcar and Simon [BS].
Nyikos has asked us whether there may be (in our terms) an undominated family $\leq{ }^{\omega}{ }_{\omega}$ of power K_{1}, while there is no spitting family $c[\omega]^{\omega}$ of power K_{1}. He observed that it seems necessary to prove, assuming $C H$, the existence of a P-point without a Ramsey ultrafilter beiow it (in the Rudin-Keisier order). We give here a positive answer, using a countable support iteration of length K_{2} of a special forcing notion whose definition takes some space. This forcing notion makes the "old" $[\omega]^{\omega}$ an unspiitting family. The proof of this is quite easy, but we nave more troubie proving that the "old" ${ }^{\omega} \omega$ is not dominated, and then we nave to prove that this is preserved by the iteration. We prove a more general preservation lemad. From the forcing notion (and, in fact, using a simpler version), we can construct a P-point as above.

Then E. Miller told us he is more interested in having in this model "no MAD has power $\leqslant X_{1}$ (MAD stands for "a maximal almost disjoint family of infinite subsets of ω "). A variant of our forcing can "kill" a MAD and the forcing has the desired properties if we first add K_{1} Cohen reals.

In the first section we prove a preservation lemma for countable support iterations whose main instance is that no new $f \in{ }^{\omega} \omega$ dominates all old

[^0]ones, and prove the consistency of $\mathrm{ZFC}+2^{K_{0}}=\kappa_{2}+b=s>b$ where i is the minimal power of a dominating subfamily of ω_{ω} (see 1.1), z is the minimal power of a splitting subtamily of $[\omega]^{\omega}$ (see 1.3), and b is the minimal power of an undominated subfamily of $\boldsymbol{\omega}_{\boldsymbol{\omega}}$.

However, a main point was left out in Section 1: the defimition of the forcing we iterate, and the proof of its relevant properties: that it adds a subset \underline{r} of ω such that $\left\{A \in V: A \subseteq \omega, \underline{\left.\underline{c} \subseteq^{*} A\right\} \text { is an ultratilter in the }}\right.$ Boolean algebra $\boldsymbol{V}(\omega)^{V}$; but in a strong sense it does not add a function $\underset{\sim}{f} \in{ }^{\omega}{ }_{\omega}$ dominating all old members of ${ }^{\omega}{ }_{\omega}$. Note that Mathias rorcing adds a subset \underline{r} of ω as required above, but also adds an undesirable $\underset{\sim}{f}$. In those sections we also prove the consistency of $\mathrm{ZFC}+2^{K_{0}}=2^{K_{1}}=\mathrm{K}_{2}$ $+K_{2}=\boldsymbol{z}=\boldsymbol{a}>\boldsymbol{b}=K_{1}$, where $a=\operatorname{mnn}| | A \mid: A$ a maximal family of almost disjoint subsets of $\omega\}$. In the third section we show that in the model we have constructed, there is a MAD (maximal family of parrwise almost disjoint infinite subsets of ω) of power K_{1} (hence $a=K_{1}$). This answers a question of Balcar and Simon: they defined

$$
\begin{aligned}
& a_{s}=\min | | A \mid: A \quad 15 \text { a maximal family of almost disjoint subsets } \\
& \text { of } \omega x \omega \text {, which are graphs of partial function } \\
& \text { from } \omega \text { to } \omega\} \text {. }
\end{aligned}
$$

They have proved $\leqslant a_{s}$ and $a \leqslant a_{s} \leqslant 2^{K_{0}}$, so our result implies that $a<a_{s}$ is consistent.

In the fourth section we present a proof ${ }^{1}$ of the consistency of $k_{1}=3<b=N_{2}$ by finite support iteration of Hechler forcing.

In the fifth section we prove the consistency (with 2FC +
$2^{K_{0}}=2^{K_{1}}=K_{2}$) of $K_{1}=h<b=b=K_{2}$ (where h is the minimat cardinal k for which $p(\omega)$ /finite is a $\left(\kappa, 2^{K_{0}}\right.$)-distributive Boolean algebra).

So the order relationships between the cardinals mentioned above are

[^1]
(where arrow means " \leqslant is provable is ZFC") (see [D] for resuits not mentioned above, and on two other cardinal invariants).

1. The Iteration.

In this section we define some properties, prove a preservation lemma and then prove our theorem except for one crucial point -- the existence of specific forcings which are the individual steps in our iteration.
1.1. Notation: a) ${ }^{\omega} \omega$ is the set of functions from ω to ω.
b) <* is the partial order defined on ${ }^{\omega}{ }_{\omega}$ as: $f<^{*} g$ iff for all but finitely many $n<\omega, f(n)<g(n)$. In this case we say that g dominates f. We say that g dominates a family $F \subseteq{ }^{\omega}{ }_{\omega}$ if g dominates every $f \in F$.
c) $[\omega]^{\omega}$ is the family of infinite subsets of ω. We say $A \underline{c}^{*} B$ if A - B is finite.

1.2. Definition:

1) A family $F \subseteq{ }^{\omega}{ }_{\omega}$ is dominating if every $g \in{ }^{\omega}{ }_{\omega}$ is dominated by some $\mathbf{f} \in \mathbf{F}$.
2) A family $F \underline{\omega}{ }^{\omega}$ is unbounded (or undominated) if no $g \in{ }_{\omega}^{\omega}$ dominates it.

1.3. Definition:

1) A family $\subseteq[\omega]^{\omega}$ is a splitting family if for every $A \in[\omega]^{\omega}$ for some $X \in P \quad A \cap X$ and $A-X$ are infinite.
2) We call MAD if it is a subfamily of $[\omega]^{\omega}$, its members are pairwise almost disjoint (= has finite intersections) and is maximal with respect to those two properties.

1.4. Definition:

1) A forcing notion P is almost ${ }^{\omega}{ }_{\omega}$-bounding if for every p-name of a function from ω to ω and $p \in P$ for some $g: \omega \rightarrow \omega$ (from $V!$) for every intinite $A \subseteq \omega$ (again A from V) there is $p^{\prime}, p \leqslant p^{\prime} \in p$ such that

$$
p^{\prime} F_{p} " t o r \text { infiniteiy many } n \in A, \underset{\sim}{f}(n)<g(n)^{\prime}
$$

2) A forcing notion P is weakly bounding (or Fi-weakiy bounding, where $F \subseteq\left({ }^{\omega} \omega\right)^{V}$) if $\left({ }^{\omega} \omega\right)^{V}$ (or F) is an unounded family in V^{P}.

1.5. Claim:

1) If a forcing notion P is weakly bounding, and $\underset{\sim}{Q}\left(\in V^{P}\right)$ is almost ${ }_{\omega}^{\omega}$-bounding then their composition $P^{*} Q$ is weakly bounding.
2) If Q is almost ${ }_{\omega}^{\omega}$-bounding, $F \subseteq{ }^{\omega} \omega$ an unbounded family (from V) then F is still an unbounded family in V^{Q}.

We shall want to prove that e.g. the limit of a countable support iteration of almost $\left(\omega_{\omega}\right)$-bounding forcing notions is weakly bounding. This will show us in the proof of the main theorem that the family of "old" functions in ${ }^{\omega} \omega$ is unbounded. To this end we prove a more general preservation theorem closely connected to [Sh1, VI] and [Sh2, 1.3].

1.6. Definition:

1) We say W is absolute if it is a definition (possibly with parameters) of a set so that if $V^{1} \subseteq V^{2}$ are extensions of V (but still models of $Z F C$) and $x \in V^{1}$ then $V^{l} F " x \in W^{\prime \prime}$ iff $V^{2} F " x \in W^{\prime \prime}$. Note that a relation is a particular case of a set. It is well known that $\frac{11}{2}$ relations on reals and generally k-Souslin relations are absolute.
2) We say that a player absolutely whs a game if the definition of legal move, the outcomes and the strategy (which need not be a furction with a unique outcome) are absolute and its being a winning strategy is preserved by extensions of V.
3) We can relativize absoluteness to a family of extensions.

Remark: E.g. if \bar{R} is ${\underset{\sim}{2}}_{\underline{1}}^{1}$, the strategy is ${\underset{\sim}{c}}_{\underline{1}}^{1}$ and the outcome of a play is $\underline{\square}_{2}^{1}$.
1.7. Notation: R will uscally denote an absolute two-place relation on ${ }_{\omega}^{\omega}$ (so when we extend the universe, we reinterpret R, but we know that the interpretations are compatible). Sometimes $R 15$ an absolute three-place relation on ${ }^{\omega} \omega$ and then we write $x R^{z} y$ instead of $R(x, y, z)$.

Let $\overline{\mathrm{R}}$ denote $\left\langle\mathrm{R}_{n}: n\langle\omega\rangle\right.$ (each R_{n} as above) so $\bar{R}^{\mathrm{m}}=\left\langle\mathrm{R}_{\mathrm{n}}^{\mathrm{m}}: n\langle\omega\rangle\right.$. We identify $\langle R: n\langle\omega\rangle$ with R.

Let $n<v$ mean n is an initial segment of $v ; P_{1}<P_{2}$ means P_{1} is a submodel of P_{2} (as partial orders) and every maximal antichain of P_{1} is a maximal antichain of P_{2}.

Let $s_{<k}(A)=\{B \subseteq A:|B|<K\}$ and if K is regular uncountable $D_{<k}(A)$ is the filter on $\delta_{<k}(A)$ generated by the sets $G(M)=\{|N|: N<M,\|N\|<k\}$ for M a model with universe A and $<K$ relations.

1.8. Definition:

1) For $F \subseteq{ }_{\omega}^{\omega}$ and R (two place), we say that F is R-bounding if $\left(v f \in{ }_{\omega}^{\omega}\right)(\exists g \in F)[f R g]$.
2) For $F \subseteq{ }^{\omega}{ }_{\omega}, \bar{R}$ (each R_{n} two place) and $S \subseteq s_{*_{1}}(F)$ the pair (F, \bar{R}) is s-nice if
a) F is $\overline{\mathrm{R}}$-bounding which means it is R_{n}-bounding for each n .
B) For any $N \in S$, for some $g \in F$, for every n_{0}, m_{0} player II has a winning strategy for the following game which lasts ω moves and which is absolute for extensions preserving (α). On the kth move: player I chooses $f_{k} \in{ }^{\omega}{ }_{\omega}, g_{k} \in \operatorname{FrN}$, such that $f_{k}{ }^{f m_{\ell+1}}=f_{\ell}{ }^{f m_{\ell+1}}$ for $0<\ell<k$ and $f_{k} R_{n_{k}} g_{k}$ then player II chooses $m_{k+1}>m_{k}$ and $n_{k+1}>n_{k}$. In the end player II wins if $\mathrm{Uf}_{k} \upharpoonright \mathrm{~m}_{\mathrm{k}} \mathrm{R}_{\mathrm{n}_{0}} \mathrm{~g}$.
3) We say (F, \bar{R}) is $S / D_{N_{0}}(F)$-bice if the set of N for which (β) holds or $N \notin S$ belongs to $D_{\delta_{0}}(F)$.
4) We omit S when this holds for some $S \in D_{\Delta N_{0}}(F)$.
5) We say "almost S-nice" if in 2) (β) we just demand that player I has no winning strategy in any extension of V.

Remark: We can use ω_{λ} instead ${ }^{\omega} \omega_{\omega}$.

Sometimes we need a more general framework (but the reader may skip it, later replacing H_{z}, R_{n}^{2} by F, R_{n}).
1.9. Notation. If H is a set of pairs, let $\operatorname{Rang} H=\{y:(3 x)\langle x, y\rangle \in H\}$
$\operatorname{Dom} H=\{x:(\exists y)\langle x, y\rangle \in H\}, H_{x}=\{y:\langle x, y\rangle \in H\}$.
We shall treat a set F as $\{\langle x, x\rangle: x \in F\}$.

1.10. Definition.

1) For a set $H \subseteq{ }^{\omega} \omega_{x}{ }^{\omega} \omega_{\text {, }}$ and \bar{R} and $S \subseteq \delta_{\left\langle *_{1}\right.}(F)$ we say that (H, \bar{K}) iss S-nice if
$\alpha)$ For every $z \in \operatorname{DomH}, H_{z}$ is $\bar{R}^{\mathbf{z}}$-bounding, i.e. (Vn)(Vf $\left.\in \omega_{\omega}{ }^{\omega}\right)\left(\exists g \in H_{z}\right)\left[f R_{n}^{z} g\right]$ letting $\bar{R}^{z}=\left\langle R_{n}^{z}: n\langle\omega\rangle\right.$.
B) For any $N \in S$ tor some $g \in \operatorname{Rang} H$ for every $z_{0} \in \operatorname{Rang}(H n N$) and for every n_{0}, m_{0} player II absolutely modulo α) wins the following game which lasts ω moves. In the k move: player I chooses $f_{k} \in{ }^{\omega} \omega$, $g_{k} \in \operatorname{Rang}(H n N)$ such that $f_{k} r^{m_{\ell+1}}=f_{\ell} r_{\ell+1}$ for $0<\ell<k$ and $f_{k} R_{n_{k}}^{Z_{k}} g_{k}$ then player II chooses $m_{k+1}>m_{k}, n_{k+1}>n_{k}$ and $z_{k+1} \in \operatorname{Dom}(H n N)$. At the end of play, player II wins iff $\left(\cup f f_{k}{ }^{f m_{k+1}}\right) R_{n_{0}}^{z_{0}}$.
2) We write "almost S-nice" if in (β) player I has no wimning strategies and this is absolute. Let us give few examples.
1.11. Claim: Let $F \subseteq{ }^{\omega}{ }_{\omega}$ be an unbounded set, such that $\left(\forall f_{0}, \ldots, f_{n}, \ldots \in F\right)(\exists g \in F)\left[\wedge_{n<\omega} f_{n}<^{*} g\right]$ and $f R g$ iff $g k^{*} f$.

Then (F, R) is nice.

Proof: We have to describe g and an absolute winning strategy for N. Choose $g \in P,(\forall f \in N) f<^{*} g$. As for the strategy, ${ }_{\ell}{ }_{\ell}$ is irrelevant, we just
choose $m_{k+1}=\min \{m$: there are at least k numbers $i<n$ such that $\left.g(i)>f_{k}(i)\right\}$.
1.12. Claim: Suppose $P \subseteq[\omega]^{\omega}$ is a P-filter (i.e. it is a filter and for any $A_{n} \in P(n<\omega)$ for some $\left.A^{*} \in P,(\forall n)\left[A^{*} \varrho^{*} A_{n}\right]\right)$ with no intersection (i.e. there is no $X \in[\omega]^{\omega}, X \subseteq^{*} A$ for every $A \in P$).

Let R be: $x R y$ iff $x \notin[\omega]^{\omega}$ or $y \notin[\omega]^{\omega}$ or $y \xi^{*} x$. (We identify $x \subseteq$ ω with its characteristic furction).

Then (P, R) is nice.

Proof: Now (α) is obvious. In (β) choose $g=A^{*} \in F$ such that (VA EN) $A^{*} \underline{c}^{*} A$.

Again the only non-obvious point is the winning strategy; again n_{k} is irrelevant and player II chooses $m_{k}=\min \left\{m: f_{k} \cap m \cap g\right.$ has power $\left.>k\right\}$.
1.13. Lemma:

1) Suppose $\left\langle P_{j}, Q_{i}: i\langle\delta, j \varangle \delta\rangle\right.$ is a countable support iteration of proper forcing.

Suppose further that $S \subseteq \delta_{\alpha_{1}}(H)$ is stationary (i.e. $\left.P_{p} \neq \bmod S_{\Delta_{1}}(H)\right)$, in $V,(H, \bar{R})$ is $S / D_{\alpha_{1}}(H)$-nice and for every $i<\delta$, in $V^{P_{i}} H$ is $\overline{\mathbf{R}}$-bounding.

Then in $V^{P_{\delta}}, H$ is \bar{R}-bounding.
2) We can replace $S / D_{\delta_{1}}(H)$-nice by almost $S / D_{\alpha_{1}}(H)$-nice.

Remark:

1) For the case which we really need in 1.15 , you can read the proof with $n_{0}=0, F$ instead H, R instead $R_{z_{n}}^{n}$.
2) The proof gives somewhat more than the lemma, i.e. it applies to more cases. "H is \bar{R}-bounding" means that (α) of 1.10 holds.

Proof: 1) If cfo $>K_{0}$, then any real in $V^{P_{\delta}}$ belongs to $V^{P_{j}}$ for some $j<0$ (see [Shl, III, 4.4]); hence there is nothing to prove, so we shall assume cfo $=\omega$. By [Shl, III, 3.3], w.1.o.g. $\delta=\omega$.

Suppose $p \in P_{\omega}, z_{0} \in \operatorname{Dom} H, n_{0}<\omega$ and $H_{P_{\omega}}{ }_{\omega} f \in{ }_{\omega} \omega^{\omega \prime}$; we shall find r, $p \leqslant r \in P_{\omega}$ and $g \in H_{z_{0}}$ such that $r \forall_{P_{\omega}} " f R_{n_{0}}^{z_{0}} g$. Let N be a countable elementary submodel of $(H(\lambda), \epsilon)$ (λ regular large enough) to which $\left\langle P_{j}, Q_{i}: i\left\langle\omega, j\langle\omega\rangle, p, \underset{\sim}{f}, z_{0}, S, H\right.\right.$ belong as well as the parameters involving the definitions of the R_{n} 's. The set of such N belongs to $\nu_{\psi_{1}}(H(\lambda))$, hence for some such N, N nH $\in S$.

As in [Shl, III 3.2], w.l.o.g. $\underset{\sim}{f}(n)$ is a P_{n}-name; and we let $p=\left\langle p_{n}^{0}: n\langle\omega\rangle F_{P_{n}}\right.$ " $P_{n}^{0} \in{\underset{\sim}{Q}}_{n}^{0}$ ". Let $g \in H_{Z_{0}}$ be as in Def. 1.8 (for $N n H$).

We shall now define by induction on $k<\omega \quad q_{k}, p_{k}, p_{k}, g_{k}, z_{k}, m_{k}, n_{k}$ such that

1) $q_{k} \in P_{k}$ is (N, P_{k})-generic
2) $q_{k}{ }^{n} n=q_{n}$ for $n<k$
3) $p_{k} \in P_{\omega}$
4) $q_{k} \geqslant p_{k} i k$
5) $p_{k+1}\left|k=p_{k}\right| k, \quad p_{n+1} \geqslant p_{n}$
6) $q_{k}{ }^{F} p_{k} " p_{k} \in N "$
7) $\mathbf{z}_{\mathbf{k}} \in \operatorname{Dom}(\mathrm{HnN})$ is a $\mathbf{P}_{\mathbf{k}}$-name
8) $m_{k}<m_{k+1}$ are P_{k}-names of natural numbers

Note that 1) implies that $\mathrm{N} \cap \mathrm{H}$ belongs to the club of $s_{s_{H_{1}}}(H)$ invoiving " (H, \bar{R}) is $S / D_{* X_{1}}(H)$-nice".

For $k=0, q_{0}=\rho, \quad p_{0}=p$.
For $k+1$, we work in $V\left[\underset{\sim}{G_{k}}\right], \underset{\sim}{G} \underset{k}{ }$ a generic subset of $P_{k}, g_{k} \in G_{k}$. So $p_{k} \in \mathbb{N}\left[G_{k}\right] \quad p_{k} \mid k \in G_{k}$. In $N\left[G_{k}\right]$ we can find an increasing sequence of conditions $p_{k, i} \in P_{\omega} / P_{n}$ for $i<\omega$, such that $p_{k, i} \in N\left[G_{k}\right], p_{k, i}$ forces values for $\underset{\sim}{f}(j), j \leqslant i$. So for some function $f_{k} \in \mathbb{N}\left[G_{k}\right], p_{k, i}{ }^{\dagger} P_{\omega} / P_{k}$ ${ }_{\sim}^{f} f i=f_{k}{ }^{\dagger i "}$. As $N\left[{\underset{\sim}{k}}^{\prime}\right]<\left(H(\lambda)\left[G_{k}\right], \epsilon\right)$ (see [Shl III 2.11, p. 89]) for some
$g_{k} \in \mathrm{NnH}_{\mathbf{z}_{k}}, N\left[G_{k}\right] \vDash{ }^{\prime} f_{k} R_{n_{k}}^{\mathbf{z}_{k}} g_{k}$ ". Now we use the absol ute strategy (from Def 1, for $N \mathbf{N H}$) to choose z_{k+1}, ${ }^{n_{k+1}}$, m_{k+1} (the strategy's parameters may not be in N, but the result is) and we want to have $p_{k+1}=p_{k, m}{ }_{k+1}$. However all this was done in $V\left[G_{k}\right]$, so we have only a suitable P_{k}-name. In the end, let $r \in P_{\omega}$ be defined by $r i k=q_{k} \mid k$ for each k; by requirement (2) this suffices. Suppose $r \in G_{\omega} \subseteq P_{\omega}, G_{\omega}$ generic. Then in $V\left[G_{\omega}\right]$ we have made a play of the game from Def. 1.10, player II using his winning strategy so $\left(\mathrm{Uf}_{k} f k\right)\left[G_{\omega}\right] R_{n_{0}}^{Z_{0}} g$ holds in $V\left[G_{\omega}\right]$, but clearly $p_{k, n_{k}} \leqslant p_{k+1} \leqslant r$ hence $p_{k, n_{k}} \in G_{\omega}$ hence $(\underset{\sim}{f} \underset{\sim}{f} \boldsymbol{f})\left[G_{\omega}\right]=(\underset{\sim}{f} f k)\left[G_{\omega}\right]$, so $\underset{\sim}{f}\left[G_{\omega}\right]=\underset{k}{U}\left(\dot{f}_{k} \upharpoonright k\right)\left[G_{\omega}\right]$. So $\underset{\sim}{f}\left[G_{\omega}\right] R_{n_{0}}^{Z_{0}} g$ holds in $V\left[G_{\omega}\right]$. So r torces the required information.

We shall prove later (in 2.13)
1.14 Main Lemma. There is a forcing notion Q such that
(a) Q is proper
(b) Q is almost ${ }_{\omega}^{\omega}$-bounding
(c) $|Q|=2^{K_{0}}$
(d) In V^{Q} there is an infinite set $A^{*} \leq \omega$ such that for every infinite $B \subseteq \omega$ from $V A^{*} n B$ or $A^{*}-B$ is finite.
1.14A Remark. For 1.15 it is enough to prove 1.14 assuming CH .

1.15 Main Theorem. Assume $V=C H$.

1) Then for some forcing notion $P^{*}\left(P^{*}\right.$ is proper, satisfies the K_{2}-c.c., is weakly bounding and)
(*) In $V^{P^{*}}, 2^{K_{0}}=K_{2}$, there is an unbounded family of power K_{1}, but no splitting family of power $\mathrm{K}_{\mathbf{1}}$.
2) We can also demand that in $V^{P^{*}}$ there is no MAD of power K_{1} (see Def. 1.3(2)).

Proof.

1) We define a countable support iteration of length $H_{2}:\left\langle P_{\alpha} Q_{\alpha}: \alpha<\omega_{2}\right\rangle$
with (direct) limit $P^{*}=P_{\omega_{2}}$. Now each Q_{α} is the Q from 1.14 for $V^{P_{\alpha}}$, so $V^{P_{\alpha}} F=\| Q_{\alpha} \mid=2^{K_{0}}$. As $\quad V^{\omega_{2}}$ F CH we can prove by induction on α that ${ }^{\prime} \mathrm{p}_{\alpha}$ "CH" (see [Shl, Th. 4.1, p. 96]). We also know that p^{*} satisfies the K_{2}-c.c. (see [Sh1, Th. 4.1, p. 96]). If P is a family of subsets of ω of power $\leqslant K_{1}$ in $V^{P *}$ then for some $\alpha, P \in V^{P}$, and forcing by Q_{α} gives a set A_{α}^{*} exemplifying P is not a splitting family. So from all the conclusions of 1.15 only the existence of an undominated family of power K_{1} remains. Now we shall prove that $F=\left({ }^{\omega} \omega\right)^{V}$ is as required. It has power X_{1} as $V F C H$. We prove that it is an undominated family in $V^{P_{\alpha}}$ by induction on $\alpha \leqslant \omega_{2}$. For $\alpha=0$ this is trivial; $\alpha=\beta+1$: as \mathcal{Z}_{β} is almost ${ }^{\omega} \omega$-bounding (see 1.14) and by Fact $1.5(1)$; if $\boldsymbol{c f} \alpha \geqslant K_{0}$ by Lemma 1.13.
2) Similar. We use a countable support iteration $\left\langle\mathbb{P}_{j}, Q_{i}: i \leqslant \omega_{2}, j \leqslant \omega_{2}\right\rangle$ such that:
(a) for every $i<\omega_{2}$, and MAD $\left\langle A_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle \in V^{P i}\right.$, for some $\left.j\right\rangle i$, either ${\underset{\sim}{Q}}_{2 j}=$ adding K_{1}-Cohen reals, and ${\underset{\sim}{Q}}_{2 j+1}=\left\{p \in{\underset{\sim}{Q}}^{V^{p} 2 j+1}: p \geqslant p_{2 j+1}\right\}$
 K_{1}-Cohen reals, $Q_{2 j+1}=Q\left[I_{2 j+1}\right]^{V_{2 j+1}}$ where $I_{2 j+1}$ is the ideal which $\left\langle A_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle\right.$ and the cofinite sets generate
(b) For j even ${\underset{\sim}{j}}_{j}$ is adding K_{1} Cohen reals
(c) For j odd, ${\underset{\sim}{\mathcal{Z}}}_{j}$ is $\underset{\sim}{\mathcal{Q}}$ or $Q[I]$, or $\left\{p \in \underset{\sim}{\mathbb{Q}}: p \geqslant p_{j}\right\}$, but always it is ω_{ω}-bounding.

Use 2.16, 2.17.

Remark. Really the conclusion of 1.5 is satisfied by each Q_{α} and is preserved by countable support iteration of proper forcing.

2. The Forcing.

2.1 Definition. 1) Let K_{n} be the family of pairs (s, h), s a finite set, h a partial function from $P(s)$ (the family of subsets of s) to $n+1$ such that
(a) $h(s)=n$
(b) if $h(t)=\ell+1 \quad(t \leq s), t=t_{1} \cup t_{2}$ then $h\left(t_{1}\right) \geqslant \ell$ or $h\left(t_{2}\right) \geqslant \ell$.
2) $K_{\geqslant n}, K_{<n}, K_{(n, m)}$ are defined similarly, and $K=U K_{n}$.

We call s the domain of (s, h) and write $a \in(s, h)$ instead of $a \in s$. We call (s, h) standard if s is a finite subset of the family of hereditarily finite sets. We use the letter d to demote such pairs. We call (s, h) simple if $h(t)=\left[\log _{2}(t)\right]$ for $t \leq s$.

2.2 Definition.

1) Suppose $\left(s_{\ell}, h_{\ell}\right) \in K_{s(\ell)}$ for $\ell=0,1$. We say $\left(s_{0}, h_{0}\right) \leqslant\left(s_{1}, h_{1}\right)$ (or $\left(s_{1}, h_{1}\right)$ refines $\left.\left(s_{0}, h_{0}\right)\right)$ if:
$s_{0}=s_{1}$ and for $t_{1} \leq t_{2} \leq s_{0},\left[h_{1}\left(t_{1}\right)<h_{1}\left(t_{2}\right) \Rightarrow h_{0}\left(t_{1}\right)<h_{0}\left(t_{2}\right)\right]$
(so $n(0) \leqslant n(1))$ and $\operatorname{Dom}\left(h_{1}\right) \subseteq \operatorname{Dom}\left(h_{0}\right)$.
2) We say $\left(s_{0}, h_{0}\right) \leqslant\left(s_{1}, h_{1}\right)$ if for some $s_{0}^{\prime} \in \operatorname{Dom} h_{0}$, $\left(s_{0}^{\prime}, h_{0} P D\left(s_{0}^{\prime}\right)\right)=\left(s_{1}, h_{1}\right)$.
3) We say $\left(s_{0}, h_{0}\right) \leqslant\left(s_{1}, h_{1}\right)$ if for some $\left(s^{\prime}, h^{\prime}\right)$, $\left(s_{0}, h_{0}\right) \leqslant^{e}\left(s^{\prime}, h^{\prime}\right) \leqslant\left(s_{1}, h_{1}\right)$.
2.3 Fact: The relations $\leqslant^{d}, \leqslant^{e}, \leqslant$ are partial orders of K.
2.4 Definition.
4) Let L_{n} be the family of pairs (S, H) such that:
a) S is a finite tree with a root.
b) H is a function whose domain is $i n(S)=$ the set of non-maximal points of S and value H_{x} for $x \in \operatorname{in}(S)$.
c) For $x \in \operatorname{in}(S), \quad\left(\operatorname{Suc}_{S}(x), H_{x}\right) \in K_{\geqslant n}$ where $\operatorname{Suc}_{S}(x)$ is the set of immediate successors of x in S with $H_{x}\left(\operatorname{Suc}_{S}(x)\right) \geqslant n$.
5) We say $\left(S^{0}, H^{0}\right) \leqslant\left(S^{1}, H^{1}\right)$ if $S^{0} \geq S^{1}$, they have the same root, $\operatorname{in}\left(S^{1}\right)=S^{1} n^{\operatorname{in}\left(S^{0}\right)}$ and for every $x \in \operatorname{in}\left(S^{1}\right),\left(\operatorname{Suc}_{S_{0}}(x), H_{x}^{0}\right) \leqslant\left(S_{S u c} S^{1}(x), H_{x}^{1}\right)$.
6) Let $\operatorname{int}(S)=S-\operatorname{in}(S), \operatorname{lev}(S, H)=\max \left\{n:(S, H) \in L_{n}\right\} . \quad x \in(S, H)$ means $x \in S$. A member of L_{n} is standard if $\operatorname{int}(S) \subseteq \omega$ and $\operatorname{in}(S)$ consists of hereditarily finite sets not in ω. Let for $x \in S$, $(S, H)^{[x]}=\left(S^{[x]}, H \mid S^{[x]}\right)$ where $S^{[x]}$ is $\operatorname{Si}\{y \in S: S \vDash x \leqslant y\}$.
7) If $t \in L_{n}, t=\left(S^{t}, H^{t}\right)$.
2.5 Pact. The relation \leqslant is a partial order of $L=U_{n} L_{n}$.
2.6 Fact. If $(S, H) \in L_{n}$ then $\left(S^{\prime}, H^{\prime}\right)=\operatorname{half}(S, H)$ belongs to $L_{[(n+1) / 2]}$ where $S^{\prime}=S, H_{s}^{\prime}(A)=\left[H_{s}(A)-\operatorname{lev}(S, H) / 2\right]$ and $\operatorname{Dom}\left(H_{s}^{\prime}\right)=$ $\left\{A: H_{s}(A) \geqslant \operatorname{lev}(S, H) / 2\right\}$.
2.7 Fact. If $(S, H) \in L_{n+1}$, int $(S)=A_{0} U A_{1}$ then there is $\left(S^{1}, H^{1}\right) \geqslant(S, H)$, $\left(S^{l}, H^{l}\right) \in L_{n}$ and $\left[\operatorname{int}\left(S^{l}\right) \subseteq A_{0}\right.$ or $\left.\operatorname{int}\left(S^{1}\right) \subseteq A_{1}\right]$.

Proof. Easy by induction on the height of the tree.

2.8 Definition. We define the forcing-notion Q :

1) $p \in Q$ if $p=(W, T)$ where W is a finite subset of ω, T is a countable (infinite) set of pairwise disjoint standard members of L and $T-L_{n}$ is finite for each n; let $\operatorname{cnt}(T)=\underset{(H, S) \in T}{U} \operatorname{int}(S, H)=\operatorname{cnt}(p)$.
2) Given $t_{1}=\left(S_{1}, H_{1}\right), \ldots, t_{k}=\left(S_{k}, H_{k}\right)$ all from L such that $S_{i} n S_{j}=(i \neq j)$, and given $t=(S, H)$ from L, t is built from t_{1}, \ldots, t_{k} if: There are incomparable nodes a_{1}, \ldots, a_{k} of S such that every node of S is comparable with some a_{i}, and such that, letting $S\left(a_{i}\right)=\left\{b \in S: b \geqslant{ }_{S} a_{i}\right\}$, $\left(S_{i}, H_{i}\right)=\left(S\left(a_{i}\right), H P S\left(a_{i}\right)\right)$.
3) $\left(W^{0}, T^{0}\right) \leqslant\left(W^{1}, T^{1}\right)$ iff: $W^{0} \subseteq W^{1} \subseteq W^{0} u \operatorname{cnt}\left(T^{0}\right)$, and:
letting $T^{0}=\left\{t_{0}^{0}, t_{1}^{0}, \ldots\right\}, T^{1}=\left\{t_{0}^{1}, \frac{1}{1}, \ldots\right\}$, there are finite, non-empty, pairwise disjoint subsets of $\omega, B_{0}, B_{1}, \ldots$, and there are $\hat{\underline{t}}_{i} \geqslant \underline{t}_{i}^{0}$ for all
$i \in \mathcal{H B}_{j}$, such that for each n only finitely many of the $\hat{\underline{t}}_{i}$ are inside L_{n}, and such that for each j, letting $B_{j}=\left\{i_{1}, \ldots, i_{k}\right\}, t_{j}^{l}$ is built from $\hat{\underline{t}}_{\mathbf{i}_{1}}, \ldots, \hat{\underline{t}}_{\mathbf{i}_{k}}$.
4) We call (W, T) standard if $T=\left\{t_{n}: n\langle\omega\}\right.$, $\max (W)<\min \left[i n t\left(t_{n}\right)\right]$, $\max \left[\operatorname{int}\left(\underline{t}_{n}\right)\right]<\min \left[\operatorname{int}\left(\underline{t}_{n+1}\right)\right]$ and $\operatorname{lev}\left(\underline{t}_{n}\right)$ is strictly increasing.
2.9 Definition: For $p=(W, T)$ we write $W=W^{p}, T=T^{p}$. We say q is a pure extension of p (\leqslant pure) if $q \geqslant p, w^{q}=W^{p}$. We say p is pure if w^{p} $=\varphi$, and $p<{ }^{*} q$ if omitting finitely many members of T^{q} makes $q \geqslant p$.
2.10 Definition: For an ideal I of $P(\omega)$ (which includes all finite sets) let $Q[I]$ be the set of $p \in Q$ such that for every $A \in I$, for infinitely many $t \in T^{p}, \operatorname{int}(t) \cap A=0$.
2.11 Fact: 1) If $p \in Q, \tau_{n}(n\langle\omega)$ are Q-names of ordinals, then there is a pure standard extension q of p such that: letting $T^{q}=\left\{\underline{t}_{n}: n<\omega\right\}$ for every $n<\omega, W \subseteq \max \left[\operatorname{int}\left(\underline{t}_{n}\right)\right]+1$, let $q_{W}^{n}=\left(W,\left\{\underline{t}_{\ell}: \ell>n\right\}\right)$. Then for $k \leqslant n: q_{W}^{n}$ forces a value on r_{k} iff some pure extension of q_{W}^{n} forces a value on T_{k}.
5) Q is proper (in fact α-proper for every $\alpha<\omega_{1}$).
6) $T_{Q} "\left\{n:\left(\exists p \in G_{Q}\right)\left[n \in W^{P}\right]\right\}$ is an infinite subset of ω which $P(\omega)^{V}$ does not split."

Proof: Easy (for 3) use 2.7).
2.12 Lemma: Let q, T_{n} be as in 2.11. Then for some pure standard extension r of q, letting $T^{r}=\left\{\underline{t}_{n}^{\prime}: n\langle\omega\}\right.$, ($\operatorname{lev}\left(\underline{t}_{n}^{\prime}\right)$ strictly increasing, of course) the following holds.
(*) For every $n<\omega, W \subseteq\left[\max \left(\operatorname{int}\left(\underline{t}_{n}^{\prime}\right)\right)+1\right]$, and $t_{n+1}^{\prime \prime} \geqslant t_{n+1}^{\prime}$ (so we ask only $\left.\operatorname{lev}\left(\underline{\underline{t}}_{n+1}^{\prime \prime}\right) \geqslant 0\right)$ there is $W^{\prime} \leq \operatorname{int}\left(t_{n+1}^{\prime \prime}\right)$, s.t. (WUW', $\underline{t}_{\ell}: \ell>n+$ 1\}) forces a value on $\tau_{m}(m \leqslant n)$ (we can allow $n=-1$ letting $\max \operatorname{int}\left(\underline{t}_{-1}^{\prime}\right)+1$ be $\left.\max \left\{W^{q} \cup\{-1\}\right\}\right)$.

This lemma follows easily from claim 2.14 (see below) (choose by it the t_{n}^{\prime} by induction on n) and is enough for proving Lemma 1.14.
2.13 Proof of Lemma 1.14: By 2.11, (a) and (d) (of 1.14) holds, and (c) is trivial. For proving (b) (i.e., Q is almost $\omega_{\omega \text {-bounding }}$) let $\underset{\sim}{f} \in \omega_{\omega, p \in Q}^{\omega}$ be given. Let $\tau_{n}=\underset{\sim}{f}(n)$ and apply $2.11(1), 2.12$ getting $r \geqslant p$. We now have to define $g \in{ }^{\omega} \omega$ (as required in Def 1.1). $g(n)=\max (k$: for some $W \leq$ $\left[\left(\max \left(\underline{t}_{n+1}^{\prime}\right)+1\right],\left(W,\left\{\underline{E}_{\ell}^{\prime}: \ell>n+1\right\}\right)-\underset{\sim}{f}(n)=k^{\prime \prime}\right\}$. Let $A \leq \omega$ be intinite, and we define $p^{\prime}=\left(W^{p},\left\{t_{n+1}^{\prime}: n \in A\right\}\right)$, so $p^{\prime} \geqslant r \geqslant p$. Now check.
2.14 Claim: Let (φ, T) be a pure condition, and let W be a tamily of finite subsets of $\operatorname{cnt}(\mathrm{I})$ so that
(*) for every $\left(\varphi, T^{\prime}\right) \geqslant(\emptyset, T)$, there is a $w \subseteq \operatorname{cnt}\left(T^{\prime}\right), w \in W$.
Let $k<\omega$. Then there is $t \in L_{k}$ appearing in some $(\varphi, T ') \geqslant(\varphi, T)$ such that: $\underline{t}^{\prime} \geqslant \underline{\underline{t}} \Rightarrow(\exists w \in W)\left[w \subseteq \operatorname{int}\left(\underline{t}^{\prime}\right)\right]$.

Proof: Let $T=\left\{t_{n}: n<\omega\right\}$. For notational simplicity, w.l.o.g. let W be closed upward.

Stage A: There is n such that for every $\underline{t}_{\ell}^{\prime} \geqslant \operatorname{half}\left(\underline{t}_{\ell}\right)(\ell<n)$, $\underset{\ell<n}{U} \operatorname{int}\left(\underline{t}_{\ell}^{\prime}\right) \in W$. This is because the family of $\left\langle t_{l}^{\prime}: \ell\langle\omega\rangle, n\left\langle\omega, t_{n}^{\prime} \geqslant h a l f\left(t_{l}\right)\right.\right.$ $\ell<n$ form an w-tree with finite branching and for every infinite branch
 [Why? Define $\left(S^{\ell}, H^{\ell}\right) \in L$ such that $\underline{S}^{\ell}=S^{\mathbf{t}_{\ell}^{\prime}}$ and $H_{x}^{\ell}(A)=H_{x}^{\mathbf{t}_{\ell}^{l}}(A)$ when $x \in \operatorname{in}\left(S^{\ell}\right), A \leq \operatorname{Suc}\left(S^{\ell}\right)^{(x)}$, so $\left\langle\left(S^{\ell}, H^{\ell}\right): \ell\langle\omega\rangle \in Q,(\emptyset, T) \leqslant\right.$ $\left(\emptyset,\left\{\left(S^{\ell}, H^{\ell}\right): \ell<\omega\right\}\right)$. Now apply $(*)$.] By Konig's lemma we finish.

Stage B: There are $n(0)<n(1)<n(2)<\cdots$ such that for every m and $\underline{\underline{t}}_{\ell}^{\prime} \geqslant \operatorname{balf}\left(\underline{\underline{t}}_{\ell}\right)$ for $n(m) \leqslant \ell<n(m+1)$, the set $U\left(\operatorname{int}\left(\underline{t}_{\ell}^{\prime}\right): n(m) \leqslant \ell<n(m+1)\right\}$ ϵW. The proof is by repeating stage A.

Stage C: There are $m(0)<m(1)<\cdots$ such that: if $i<\omega$, for a function with domain $[m(i), m(i+1)), h(j) \in[n(j), n(j+1)), t_{l}^{\prime} \geqslant$ half $\left(t_{l}\right)$ for all relevant $\&$ then $U\left\{\underline{t}_{h}(j): j \in[m(i), m(i+1))\right\}$ belongs to W.

The proof is parallel to that of A.

Stage D: We define a partial function H from finite subsets of ω to $\omega: H(u) \geqslant 0$ if for every $\underline{t}_{\ell}^{\prime} \geqslant \operatorname{half}\left(\underline{\underline{t}}_{\ell}\right)(\Omega \in u), \underset{\ell \in u}{\left(U \operatorname{int}\left(\underline{t}_{\ell}^{\prime}\right)\right) \in W \text {. }}$
$H(u) \geqslant m+1 \quad$ if $\quad\left[u=u_{1} u u_{2} \rightarrow H\left(u_{1}\right) \geqslant m \vee H\left(u_{2}\right) \geqslant m\right]$.
Now we have shown that $H([n(i), n(i+1))) \geqslant 0$, and
$H([n(m(i)), n(m(i+1))) \geqslant 1$.
It clearly suffices to find $u, H(u) \geqslant k$. [We then define $t=(S, H)$ as follows: $S=\bigcup_{Q \in u} S^{\frac{t}{t}} \ell \quad u\{u\}, u$ is the root and the order restricted to $S^{\frac{t_{\ell}}{}}$ is as in $\underline{\underline{t}}_{\ell}$; for $x \in S^{\frac{t^{\prime}}{=}, H_{x}=H_{x}^{\frac{t}{-}} \ell}$ and $H_{u}(A)=H(A)$.] We prove the existence of such u by induction on k, (e.g., simultaneousiy for all T ', $\left(\varphi, T^{\prime}\right) \geqslant(\emptyset, T)$.

The rest of this section deals with $Q[I]$.
2.15 Notation: Let Q^{0} be the forcing of adding K_{1} Cohen reals $\left\langle r_{i}\right.$: $i\left\langle\omega_{1}\right\rangle, r_{i} \in \omega_{\omega}$. Let $I \in V$ be an ideal of $p(\omega)$, including all finite subsets of ω but $\omega \in I$ and generated by a $M A D\left\langle A_{i}: i<\omega_{1}\right\rangle$ (the ω_{1} is not necessary - just what we use).
2.16 Claim: In $\left.V^{0}: 1\right)$ If $p \in Q[I]$ and $\tau_{n}(n<\omega)$ are $Q[I]$-names of ordinals then there is a pure standard extension q of p such that: $q \in$ $Q[I]$, and letting $T^{q}=\left\{\underline{t}_{n}: n<\omega\right\}$, for every $n<\omega$ and $W \subseteq\left[\max i n t\left(t_{n}\right)+\right.$ 1] let $q_{W}^{n}=\left(W,\left\{t_{\ell}: n<\ell<\omega\right\}\right)$, then $\left(q_{W}^{n} \in Q[I]\right.$, of course, and) for every $k \leqslant n q_{W}^{n}$ forces a value on τ_{k} iff some pure extension of q_{W}^{n} in $Q[I]$ forces a value on $\boldsymbol{\tau}_{k}$.
2) $Q[I]$ is proper, moreover α-proper for every $\alpha<\omega_{1}$.
3) $F_{Q[I]}\left[n:\left(\exists p \in G_{Q[I]}\right) n \in W^{D}\right\}$ is an infinite subset of ω which is almost disjoint from every $A \in I$."
4) $Q[I]$ is almost ${ }^{\omega} \omega$-bounding or in V^{0} for some $p \in Q[I]$, $p \| "\left\langle A_{i}: i\left\langle\omega_{1}\right\rangle\right.$ is not a MAD."

Proof: 1) Let λ be regular large enough, N a countable elementary submodel of $(H(\lambda), \epsilon, \operatorname{VnH}(\lambda))$ to which $I,\left\langle r_{i}: i<\omega_{1}\right\rangle, Q[I], p$, and $\left\langle\tau_{n}\right.$: $n\langle\omega\rangle$ belong. Let $\delta=N_{n} \omega_{1}(s o \quad \sigma(N)$.

We define by induction on $n<\omega, q^{n} \in Q[I] \cap N, t_{n}$ and $k_{n}<\omega$ such that:
a) each q^{n} is a pure extension of p.
b) $q^{n} \geqslant q^{\ell}$ for $\ell<n$ and if $w \subseteq k_{n}, m<n+1$ and some pure extension of $\left(w, T^{q^{n}}\right.$) forces a value on $\tau(m)$, then $\left(w, T^{q^{n}}\right)$ does it.
c) $k_{n}>k_{\ell}$ and $k_{n}>\max$ int \underline{t}_{ℓ} for $\ell<n$.
d) every $\ell \in \operatorname{cnt}\left(q^{n}\right)$ is $>k_{n}$.
e) $\underline{t}_{n} \in \mathrm{~T}^{q^{n}}$ and $\operatorname{lev}\left(\underline{t}_{n}\right)>n$ and $\min \operatorname{int}\left(\underline{E}_{n}\right)$ is $>k_{n}$.

There is no problem in doing this: we first choose k_{n}, then q^{n} and at last $\underline{\underline{t}}_{n}$. We want in the end to let $T^{q}=\left\{\underline{t}_{n}: n<\omega\right\}$. One point is missing. Why does $q=\left(W^{p}, T\right)$ belong to $Q[I]$ (not just to $\left.Q\right)$? But we can use some function in $V\left[\left\langle r_{i}: i\langle\delta\rangle\right]\right.$ to choose $k_{n}, q^{\prime \prime}$, and then let t_{n} be the $r_{\delta}(n)$-th member of $T^{q^{n}}$ which satisfies the requirement (in some fixed well ordering from V of the hereditarily finite sets). As $I \in V$ and $r_{\delta} \in \omega_{\omega}$ is Cohen generic over $V\left[\left\langle r_{i}: i\langle\delta\rangle\right]\right.$, this should be clear.
2), 3) easy.
4) Assume that in $V^{Q^{0}}, F_{Q} "\left\langle A_{i}: i\left\langle\omega_{1}\right\rangle\right.$ is a MAD". Like in 2.13 it suffices to prove the parallel of $2.12,2.14$.

As for the proof of 2.14 for $Q[I]$ for stage A note that if $t_{n}^{\prime} \geqslant$ half $\left(t_{n}\right)$ for $n<\omega$, then $\left(\varphi,\left\{\left(S^{\ell}, H^{\ell}\right): \ell<\omega\right\}\right) \in Q[I]$ (check Definition 2.10). Stage B is similar. For stage C we have to use the specific character of I - generated by a MAD. By $2.16 A$ without loss of generality there are distinct $i_{n}<\omega_{1}$ such that $B_{n}=\left\{\ell<\omega: i n t\left(\underline{t}_{\ell}\right) \subseteq A_{i_{n}}\right\}$ is infinite for each n, and without loss of generality $[m(\ell), m(\ell+1)) \cap B_{k} \neq 0$ for $k<\ell$. Now we restrict oursel ves to functions h such that $h(j) \in B_{j-[\sqrt{j}]}$.

As for the proof of 2.12 from 2.14 (for $Q[I]$) we again have to choose the sequence $\left\langle t_{n}^{\prime}: n\langle\omega\rangle\right.$ using same Cohen generic r_{8}.
2.16A Fact: Suppose (in V_{1}) $\left\langle A_{i}: i\left\langle\omega_{1}\right\rangle \in V_{1}\right.$ is a MAD, \forall_{Q} " $\left\langle A_{i}\right.$: $\left.i<\omega_{1}\right\rangle$ is a MAD". Let I be the ideal generated by $\left\{\AA_{i}: i<\omega\right\}$ and the finite
subsets of ω. Then $\left(W,\left\{t_{n}: n<\omega\right\}\right)$ is a standard condition in $Q[I]$ iff it is a standard condition in Q and there are finite pairwise disjoint $u_{\ell} \subseteq$ $\omega_{1}(\ell<\omega)$ such that for each ℓ, for infinitely many $n<\omega$, int $\left(\underline{t}_{n}\right) \leq \underset{i \in u_{\ell}}{U} A_{i}$ iff there are singletons u_{ℓ} as above.

Proof. The third condition implies trivially the second. We shall prove [second \Rightarrow first] and then [first \Rightarrow third]. Suppose there are $u_{\ell}(\ell<\omega)$ as above. Then every $B \in I$ is included in $\bigcup_{i \in u} A_{i} \cup\{0, \cdots, n\}$ for some finite $u \subseteq \omega_{1}$ and $n<\omega$. But for some ℓ, u_{ℓ} is disjoint from u, hence $\underset{i \in u_{\ell}}{\operatorname{Bn}\left(\mathcal{U}_{i}\right)}$ is finite. We know for infinitely many $n<\omega, \operatorname{int}\left(\underline{t}_{n}\right) \subseteq \underset{i \in u_{l}}{U} A_{i}$, and the $\operatorname{int}\left(\underline{E}_{n}\right)(n<\omega)$ are pairwise disjoint, hence for infinitely many $n<\omega$, $\operatorname{int}\left(t_{n}\right) \cap B=\rho$, as required.

For the other direction suppose $p=\left(W,\left\{t_{n}: n<\omega\right\}\right) \in Q[I]$. We define by induction on m a finite $u_{m} \subseteq \omega_{1}$, disjoint from $\underset{\ell<m}{U} u_{\ell}$, such that $I_{m}=$ $\left\{n\left\langle\omega: \operatorname{int}\left(t_{n}\right) \subseteq \underset{i \in u_{m}}{U} A_{i}\right\}\right.$ are infinite. For $m=0$, we know $p \in Q$,
$\left\langle A_{i}: i\left\langle\omega_{1}\right\rangle\right.$ is a MAD even after forcing by Q, so by $2.11(3)$ there are $p^{\prime}=$ $\left(W^{\prime},\left\{t_{n}^{\prime}: n<\omega\right\}\right) \in Q, p \leqslant p^{\prime}$ and $i_{0}<\omega_{1}$ such that

$$
p^{\prime}+"\left\{n:\left(\exists q \in G_{Q}\right)\left\{n \in \mathbb{W}^{q}\right]\right\} \cap A_{i_{0}} \text { is infinite". }
$$

 $\left(W,\left\{\underline{t}_{n}: \operatorname{cnt}\left(\underline{t}_{n}\right) n\left(\underset{\ell<m}{U} \underset{i \in u_{\ell}}{U} A_{i}\right)=\varnothing\right\}\right)$.

A trivial remark is
2.17 fact: Cohen forcing and even the forcing for adding λ Cohen reals (by finite information) is almost (${ }^{\omega} \omega$)-bounding.
3. $\mathrm{On}^{2}>b=a$.
3.1 Theorem: Assume $V \neq C H$. Then for some forcing notion P^{*} (P is proper, satisfies the $\mathrm{K}_{2}-c . c .$, is weakly bounding and):
(*) In $V^{p^{*}} 2^{k_{0}}=N_{2}$, there is an unbounded family of power k_{1} and also a MAD of power K_{1}, but there is no splitting family of power K_{1}.

Proof: The forcing $\left\langle P_{\alpha}, Q_{\alpha}: a\left\langle\omega_{2}\right\rangle, P^{*}\right.$ are as in the proof of 1.15(1). So the only new point is the construction of a MAD of power K_{1}. This will be done in V; unfortunately the proof of its being MAD in $V^{P^{*}}$ does not seem to follow from 1.13 (though the proof is similar).

Let $\left\{\left\langle B_{n}^{i}: n\langle\omega\rangle: i\left\langle K_{1}\right\}\right.\right.$ enumerate $(i n V)$ all sequences $\left\langle B_{n}: n\langle\omega\rangle\right.$ of finite pairwise disjoint nonempty subsets of ω (remember CH holds in V). Next choose a MAD $\left\langle A_{\alpha}: \alpha\left\langle K_{1}\right\rangle\right.$ such that
(*) if δ is a limit ordinal, $i<\sigma$, and for every $k<\omega, \alpha_{1}, \cdots, \alpha_{k}<\delta$ for infinitely many $n<\omega, B_{n}^{i} n\left(A_{\alpha_{1}} u \cdots A_{\alpha_{k}}\right)=\rho$ then for infinitely many $n<\omega, B_{n}^{i} \subseteq A_{\delta}$.

Let λ be regular large enough. For a generic $G_{\alpha} \leq P_{\alpha}\left(\alpha \leqslant \omega_{2}\right)$, $N<$ $\left(H(\lambda)\left[G_{\alpha}\right], \epsilon\right)$ is called good if it is countable, $G_{\alpha},\left\langle P_{j}, Q_{i}: i\langle\alpha, j \leqslant \alpha\rangle\right.$, $\left\langle A_{i}: i\left\langle\omega_{1}\right\rangle,\left\langle\left\langle B_{n}^{i}: n\langle\omega\rangle: i\left\langle\omega_{1}\right\rangle \in N\right.\right.\right.$ and for every sequence $\left\langle B_{n}: n\langle\omega\rangle \in\right.$ N of finite non-empty pairwise disjoint subsets of ω, letting $\delta=N \cap \omega_{1}$, if $(\forall k<\omega)\left(v \alpha_{1} \cdots \alpha_{k}<\delta\right)\left(3^{\infty} n<\omega\right)\left[B_{n} n\left(A_{\alpha_{1}} U \cdots u A_{\alpha_{1}}\right)=\eta\right]$ then $\left(\exists^{\infty} n\right)\left[B_{n} \subseteq A_{\delta}\right]$.

We shall prove by induction on $\alpha \leqslant \omega_{2}$,
$(s t)_{\alpha}$ for every $\beta<\alpha, N<(H(\lambda), \epsilon)$ to which $\left\langle P_{j}, \mathcal{Q}_{i}: i\langle\alpha, j \leqslant \alpha\rangle\right.$, and α, β belongs and generic $G_{\beta} \subseteq P_{\beta}$ if $N\left[G_{\beta}\right] \cap \omega_{1}=N \cap \omega_{1}, N\left[G_{\beta}\right]$ is good, and $p \in \mathbb{N}\left[G_{\beta}\right] \cap P_{\alpha} / G_{\beta}$ then there is $q \in P_{\alpha} / G_{\beta}, q \geqslant p, q \quad\left(N\left[G_{\beta}\right], P_{\alpha} / G_{\beta}\right.$)-generic and whenever $G_{\alpha} \subseteq P_{\alpha}$ is generic, $G_{\beta} \subseteq G_{\alpha}, q \in G_{\alpha}, N\left[G_{\alpha}\right]$ is good.

This is proved by induction. The case $\alpha=\omega_{2}, \beta=0$ gives the desired conclusion (as we find a good $N \prec(H(\lambda), \epsilon)$ to which a $P_{\omega_{2}}$-name of an infinite subset of ω disjoint to every A_{i} belongs). The case $\alpha=0$ is trivial (saying mothing) and the case α limit is similar to the proof of 1.13 (and, say, 1.11). In the case α successor, by using the induction hypothesis we can assume $\alpha=\beta+1$.

By renaming $V\left[G_{\beta}\right], N\left[G_{\beta}\right]$ as V, N, we see that it is enough to prove for any good N and $p \in O \cap N$ (remember $Q_{\beta}=Q^{V\left[G_{\beta}\right]}$) there is $q \geqslant p$ which is (N, Q)-generic and $\left.q ⿴_{Q} " N[G]\right]$ is good".

Let $\delta=N \cap \omega_{1}$, and let $\delta=\left\{\tau(\ell): \ell\langle\omega\}\right.$. Let $\left\{\tau_{\ell}: \ell\langle\omega\}\right.$ be a list of all Q-names of ordinals which belong to N, and $\{\underset{\sim}{8} \underset{n}{\ell}: n\langle\omega\rangle: \ell\langle\omega\}$ be a list of all Q-names of ω-sequences of pairwise disjoint non-empty finite subsets of ω which belong to N. For notational simplicity only, assume p is pure. We shall define by induction on $\ell<\omega$ pure $p_{\ell}=\left(\varphi,\left\{\underline{t}_{n}^{\ell}: n<\omega\right\}\right)$ and $k_{\ell}<\omega$ such that:
a) $p_{\ell} \in N, p_{l} s t a n d a r d\left(s o \max\right.$ int $t_{t_{n}^{l}}^{\ell}<\min$ int t_{n+1}^{ℓ})
b) $p_{0}=p, p_{\ell+1} \geqslant p_{\ell}, k_{\ell+1}>k_{\ell}$
c) ${\underset{\underline{t}}{n}}_{\ell}^{n}=t_{n}^{\ell+1}$ for $n \leqslant \ell$
d) $P_{\ell+1} Q_{Q} \tau_{\ell} \in C$ for some countable set of ordinals which belongs to N.
e) for every $\omega_{0} \subseteq\left(\max \left[\right.\right.$ int $\left.\left.\underline{\underline{t}}_{\ell}^{\ell}\right]+1\right), m<\ell$, and $\underline{\underline{t}} \geqslant \underline{E}_{\ell+1}^{\ell+1}$ there is $w_{1} \subseteq \operatorname{int}(\underline{t})$ such that $\left(w_{0} \cup w_{1},\left\{\underline{t}_{i}^{\ell+1}: \ell+1<i<\omega\right\}\right) \|_{Q} "(\exists j<\omega)[\underset{\sim}{B} \underset{j}{m} \underset{\sim}{c}$

Let $P_{l}^{m}=\left(\varphi,\left\{t_{n}^{l, m}: n\langle\omega\}\right)\right.$.
Suppose p_{ℓ} is defined. By 2.12 there is a pure $p_{\ell}^{0} \geqslant p_{\Omega}$ in N such that $\underline{\underline{t}}_{i}^{\ell, 0}=\underline{\underline{t}}_{i}^{\ell}$ for $i \leqslant \ell, p_{\ell}^{0} \| " \tau_{\ell} \in C$ " for some countable set of ordinals from N.
 $k_{\ell, i}(i\langle\omega\rangle$ such that:
(i) $k_{\ell, 0}=k_{\ell}, \quad k_{\ell, i+1}>k_{\ell, i}$
(ii) for every $m<i$ and $W_{0} \subseteq\left(\max \left[\right.\right.$ int $\left.\left.\underline{t}_{\ell+i}^{\ell, 1}\right]+1\right)$ and $t \geqslant t_{\ell+i+1}^{\ell, 0}$ for
 $\left[k_{\ell, i}, k_{\ell, i+1}\right),{\underset{\sim}{B}}_{m}^{m}$ is disjoint from $\left.A_{r(0)} u \cdots u A_{r(\ell+i)}\right]^{\prime \prime}$.

Now apply the goodness of N to the sequence
$\left\langle\left[k_{\ell, i}, k_{\ell, i+1}\right)-A_{r(0)} u \cdots u A_{r(\ell)}: i\langle\omega\rangle\right.$, so for some i, $\left.\left[k_{\ell, i}, k_{\ell, i+1}\right)-A_{r(0)}\right]_{r(\ell)} \leq A_{\delta}$. Let $\underline{\underline{t}}_{n}^{\ell+1}=\underline{\underline{t}}_{n}^{\ell}$ for $n \leqslant \ell, \underline{\underline{t}}_{n}^{\ell+1}=\underline{\underline{t}}_{n+1}^{\ell, 1}$ for $n>\ell$.

So we have defined p_{l+1} satisfying (a)-(e). So we can define p_{l} for $\ell<\omega$ and now $q=\left(0,\left\{t_{n}^{n}: n<\omega\right\}\right)$ is as required.
4. Splitting number smaller than unbounding number is consistent.
4.1 Definition: Q^{d} will be the following (well known as Hechler 's forcing) forcing notion: the conditions are the pairs $p=(f, g), f$ finite furction from some n to $\omega, g \in \omega^{\omega}$, and $\left(f^{0}, y^{0}\right) \leqslant\left(f^{1}, g^{1}\right)$ iff $f^{0} \subseteq f^{1}$ and $\left[m \in \operatorname{Dom} f^{1}-\operatorname{Dom} f^{0} \Rightarrow f^{1}(m) \leqslant g^{0}(m)\right]$ and $(V m)\left(g^{0}(m) \leqslant g^{1}(m)\right)$.

Let $f=f^{p}, g=g^{p}$.
Let $\underset{\sim}{r}$ be the function $\underset{\sim}{r}(n)=m$ iff $\left(\exists p \in G_{Q}\right) f^{p}(n)=m$.
4.2 Lemma: Let $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\delta\right\rangle$ be a finite support iteration, each Q_{i} being Q^{d} in $V^{P_{i}}$, and $P=\lim \bar{Q}, \quad$ cfos $>K_{0}$ and
(*) there are, in V, no projective sets $D_{m} \subseteq[\omega]^{\omega}$, each is a filter and $(V A \subseteq \omega)(\exists n)\left[A \in D_{n} \vee \omega-A \in D_{n}\right]$.

Then
(1) P satisfies the countable chain condition, $\left(2^{K} \alpha\right)^{P}$ is the minimal cardinal in $V \geqslant 2^{K_{0}}+101$) and of cofinality $>K_{\alpha}$.
(2) $H_{p} " b=0=c f \delta "$, in fact the generic $r_{i} \in{ }^{\omega} \omega$ of Q_{i} dominates $\left({ }^{\omega} \omega\right)^{V_{i}}$.
(3) ${ }^{P_{0}} "_{0}=\left(2^{K_{0}}\right)^{V_{11}}$, in fact $P(\omega)^{V}$ is a splitting family in V^{P}.

Proof: We leave (1), (2) to the reader, and concentrate on (3). Suppose $p \in P, \underset{\sim}{A}$ a P-name, and $p H_{P}{ }_{\sim}^{\prime A}$ is an infinite subset of ω not split by $v(\omega)^{V}$ ".

We can define by induction on $n<\omega$ a countable family R_{n} of conditions from P s.t.
(1) $p \in R_{0}$
(2) Por each $m<\omega$, for some maximal antichain I_{m} of P,

(3) For each $n<\omega, q \in R_{n}, m<\omega$ and $\alpha \in \operatorname{Dom} q$, for some maximal antichain $I_{q, \alpha} \subseteq R_{n+1}$ of P_{α}, for every $r \in I_{q, \alpha}$, for some $f \in V$ and k, $r \forall_{P_{\alpha}} " f^{q(\alpha)}=f$ and $g^{q(\alpha)}(m)=k "$.

We call $R \subseteq P$ closed if for every $q \in R, m<\omega$ and $\alpha \in \operatorname{Dom} q$ there is $I_{q, \alpha} \subseteq R$ as in (3). So clearly $\underset{p<\omega_{n}}{U R_{n}}$ is closed.

The countability of the I's follows from the c.c.c. and we can carry this proof as each $q \in P$ has a finite domain $\subseteq \delta, q(\alpha)$ a $P_{\alpha}-$ name of a member of Q^{d}.

Now let $W=U\left\{\operatorname{Dom} q: q \in R_{n}, n<\omega\right\}$, and let $p *=\langle r \in P: r$ belongs to some closed $R_{r} \subseteq P$ s.t. $\left.\underset{q \in R_{r}}{U} \operatorname{Dom} q \subseteq W\right\}$. By $[\operatorname{Sh} 3,6.5], P^{*}<P$; hence V^{P} $=\left(V^{*}\right)^{P / P^{*}}$, so let $G \subseteq P$ be generic, $p \in G$; then $G n P^{*}$ is a generic subset of P^{*} and $\underset{\sim}{A}[G] \in \mathbb{V}^{P^{*}}$. By a trivial absoluteness argument in $V^{p *}$, $\underset{\sim}{A}[G]$ is not split by $P(\omega)^{V}$. Observe also that $P *$ is isomorphic to P_{α} where α is the order type of W. As W is countable, α is countable. So we can find directed subsets Γ_{n} of $P *$ such that $U \Gamma_{n}$ is a dense subset of P* $\underset{n<\omega}{U} \Gamma_{n}$ is the set of $q \in p^{*}$ such that each $f^{q(\alpha)}$ is an actual function put q_{1}, q_{2} in the same r_{n} iff Dom $q_{1}=\operatorname{Dom} q_{2}$ and $f^{q_{1}(\alpha)}=f^{q_{2}(\alpha)}$ for every α in their domain].

Define $D_{n}=\left\{B \in P(\omega)\right.$: for some $\left.q \in \Gamma_{n}, q \geqslant p, q \vdash_{p *}{ }^{\prime \prime}{ }_{\sim}^{A} \underline{c}^{*} B^{\prime \prime}\right\}$. As r_{n} is directed, D_{n} is a filter, and by the choice of p and A each member of D_{n} is infinite. Also for every infinite $B \subseteq \omega(B \in V), p f_{p *}{ }_{\sim}^{A} c^{*} B$ or $\underset{\sim}{A} \cap B$ is finite"; hence there is $q \geqslant p$ s.t. $q^{\prime \prime} p_{*}{ }^{\prime \prime} \underset{\sim}{A}-B$ is finite" or
 Hence $B \in D_{n}$ or $\omega-B \in D_{n}$. As easily each D_{n} is projective we get a contradiction to (*).
4.3 Claim: If $\left\langle r_{i}: i\left\langle\omega_{1}\right\rangle\right.$ is a sequence of H_{1} Cohen reals (i.e., this is a generic set for the appropriate forcing P^{0}, then $V\left[r_{i}: i<\omega_{1}\right]$ satisfies (*).

Proof: Let D_{n} form a counterexample, G in $V[G], G \subset p^{0}$ generic. Clearly for some i, the parameters appearing in the definition of the D_{n} belong to $V\left[r_{j}: j<i\right]$. So w.l.o.g. $i=0$, and we can consider r_{i} as a function from ω to $\{0,1\}$. So for some $\ell \in\{0,1\}$ and $n<\omega$,
$\left\{m: r_{0}(m)=\ell\right\} \in D_{n} \quad\left(\right.$ in $\left.V\left[r_{i}: i<\omega_{1}\right]\right)$, hence this is forced by some $p \in$ p^{0}. Choose $n(*)$ large enough so that p gives no information on $r_{0}(m)$ for $m \geqslant n\left({ }^{*}\right)$. Define $r_{i}^{\prime}: r_{i}^{\prime}(n)=r_{i}(n)$ except when $i=0 \wedge n \geqslant n(*)$ in which case $r_{i}^{\prime}(n)=1-r_{i}(n)$. It is easy to check that also $\left\langle r_{1}^{\prime}\right.$: $i\left\langle\omega_{1}\right\rangle$ comes from some generic $G^{\prime} \leq p^{0}$, and $p \in G^{\prime}$. Clearly $V[G]=V\left[G^{\prime}\right]=V\left[r_{i}\right.$: i $\left\langle\omega_{1}\right]$. As $p f_{p} 0^{n}\left\{m: r_{i}(m)=\ell\right\} \in D_{n}^{\prime \prime}$ also (looking at $\left.V\left[G^{\prime}\right]\right)$, $\left\{m: r_{i}^{\prime}(m)=\right.$ $l\} \in D_{n}$. But $\left\{m: r_{i}(m)=l\right\} n\left\{m: r_{i}^{\prime}(m)=l\right\} \subseteq\{0, \cdots, n(*)-1\}$, hence is finite, contradicting $" D_{n} \subseteq[\omega]^{\omega}$ is a filter".
4.4 Conclusion: It is consistent with ZFC that $2^{K_{0}}=2^{K_{1}}=K_{2}+b=0>0$ if ZFC is consistent.

Remarks: 1) We can get other values for $b>3$.
2) I think we can prove the case of (*) we need without having to force it.

Proof: Start with $V=L$, add K_{1} Cohen reals [so by 4.3, (*) of 4.2 holds] and then force by P from 4.2 for $\delta=\omega_{2}$. By 4.2 we get a model as required.
5. On $6=3=6$.
5.1 Definition: Let be the minimal cardinal λ such that there is a tree T with λ levels and $A_{t} \in[\omega]^{\omega}$ for $t \in T,\left[t<s \Rightarrow A_{s} c^{*} A_{t}\right]$ and $\left(V B \in[\omega]^{\omega}\right)(\exists t \in T)\left[A_{t} \subseteq^{\star} B\right]$.

See [BPS] on it (and why it exists).
5.2 Theorem: Assume $V \mathcal{C H}$.

For some proper forcing P of power K_{2} satisfying the K_{2}-c.c., in V^{P} $y=k_{1}, b=a=k_{2} \quad\left(\right.$ and $\left.\quad 2^{K_{0}}=2^{K_{1}}=k_{2}\right)$.

Proof: We shall use the direct limit P of the iteration $\left\langle P_{i}, Q_{i}: i<\omega_{2}\right\rangle$ where:

1) letting $i=\left(\omega_{1}\right)^{2}+j, j<\left(\omega_{1}\right)^{2}$, if $j \neq 0, \omega_{1}, \omega_{1}+1$ then ${\underset{\sim}{Q}}_{i}$ is Cohen forcing; if $j=\omega_{1}$ then ${\underset{\sim}{Q}}_{i}$ is Q from Det. 2.8 (in $V^{P_{i}}$), and if j $=\omega_{1}+1$ then ${\underset{\sim}{Q}}_{i}$ is Q^{d} (see Def. 4.1). For $j=0$ see the end of the proof.
2) We use the variant of countable support iteration defined in [Sh], III p. 96,7], i.e., using only hereditarily countable names (we could have used Mathias forcing instead of the Q from 2.8). Cleardy $|P|=\kappa_{2}, P$ satisfies the K_{2}-c.c. and is proper (see [Shl, III p. 96,7]), hence forcing by P preserves cardinals. Clearly in $V^{P}, b \geqslant K_{2}$, and $2^{K_{0}}=K_{2}$; hence in $V^{P}, a=b=K_{2}$, and always $h \geqslant K_{1}$. So the only point left is $V^{P} F " G \leqslant K_{1}$ ".

We define by induction on $i<\omega_{2}$, a $P_{\alpha(i)}$-name $\underset{\sim}{n}{ }_{i},{\underset{\sim}{A}}_{A}, v_{i}$ such that
(a) $\alpha(i)=\left(\omega_{1}\right)^{3}(i+1)$
 j<i\}) (i.e., those ${ }^{1}$ things are forced).

(d) if $\underset{\sim}{A} \subseteq \omega$ is infinite and $A \in V^{j}$ then for some $i<j+\omega_{1}$, $\underset{\sim}{A} \subseteq \sim_{\sim}^{A}$
(e) $\underset{\sim}{A}$ includes no infinite set from $V^{P} \alpha(j)$ when $j<i$, and is a subset of the generic real of $Q_{\omega_{1}^{3}} i+3$

There is no problem to do this if you know the well known way to build trees exemplifying the definition of b (see Balcar et al. [BPS]), provided that no ω_{1}-branch has an intersection. I.e., for no $n \in{ }^{\omega_{1}}\left(\omega_{2}\right)$ and $B \in[\omega]^{\omega}$ (in
$\left.v^{p} \omega_{2}\right) B \underline{c}^{*} A_{i_{\alpha}}$ where $n f(\alpha+1)=n_{i_{\alpha}}$ for $\alpha<\omega_{1}$. Let $i(*)=\int_{r<\omega_{1}}^{u} \alpha\left(i_{\gamma}\right)$, in $v^{P} i(*)$ there is no intersection by (e) (though maybe $n \notin v^{P_{i}(*)}$). So it is enough to prove this for a fixed $i(*)$.

We can look at the iteration $\left\langle P_{B}^{\prime}, Q_{\sim}: i(*)<r<\omega_{2}, i(*) \leqslant \beta \leqslant \omega_{1}\right\rangle, P_{\beta}^{\prime}=$ $P_{B} / P_{i(*)}$. Let $G_{1} \subseteq P_{i(*)}$ be generic, $V_{i}=V[G]$. Note that every element of $P_{\omega_{2}}^{\prime}$ can be represented by a countable function from ordinals ($\leqslant \omega_{2}$) to hereditarily countable sets. The set of elements of $P_{\omega_{2}}$ as well as its
partial order are definable from ordinal parameters only (all this in V[G]).
 to be as above. So for some $\left.j(*)<i(*) p \in \operatorname{lGnP} \mathrm{j}_{\mathrm{j}(*)}\right]$.

There is $p_{1}, p \leqslant p_{1} \in{\underset{\omega}{\omega_{2}}}_{\prime}^{\prime}, p_{1} \not "_{\sim r}=i "$ for some r, i, $j(*)<\omega_{1}^{2} i<i(*)$ so $p_{1}+" \underset{\sim}{B} \underset{\sim}{c} r_{i} "$ where r_{i} is the generic real the set GnO ω_{i+3} gives. Now using automorphisms of the forcing $P_{i(*)} / P_{j(*)}$ we see that there is $p_{2}, p \leqslant p_{2} \in P_{\omega_{2}}^{\prime}$ such that $p_{2} *{ }_{\sim}^{B}$ is almost disjoint from r_{i} ". From this we can conciude that $p \| \underset{r<\omega_{i}}{u} \underset{r}{n} \underset{i_{i}}{ } \notin[G]$ " (otherwise some
$p_{0} \geqslant p$ forces a particular value and repeat the argument above for p_{0}).
Looking at $Q_{i(*)}$ (see below) we see that it does not add any ω_{i}-branch to $T=\{{\underset{\sim}{n}}: \alpha(i)<i(*)\}$. Let $G_{2} \subseteq P_{i(*)+1}$ be generic and we shall work in $V_{2}=V\left[G_{2}\right]$, and assume $p \in P_{\omega_{2}} / P_{i(*)+1}$ (i.e., $\left.P_{\omega_{2}} / G_{2}\right)$ force $\underset{\sim}{B}, \underset{\sim}{i}\left(r<\omega_{1}\right)$ to be as above. Let N be a countable elementary submodel of $\left.H\left(i^{\boldsymbol{K}_{0}}\right)^{+}\right)^{V_{2}}$ to which $p, P_{\omega_{2}} / P_{i(*)+1}, \underset{\sim}{B}$, and $\left\langle\underset{\sim}{i}: r\left\langle\omega_{1}\right\rangle\right.$ belong. Now each Q_{i} is strongly proper and so is $\mathrm{P}_{\omega_{2}} / \mathrm{P}_{\mathrm{i}}\left({ }^{*}\right)+1$ (see [Shl]). It is enough to find $q \geqslant p$ (in $p_{\omega_{2}} / P_{i(*)+1}$) which forces that for every $n \in r, \ell(n)=\delta$ def $\mathrm{Nn}_{\mathrm{N}}^{1}$,

$$
q \& " \text { for some } r<\delta,{\underset{\sim}{i}}_{r} \times n^{\prime \prime}
$$

By the definition of strongly proper and of $Q_{i(*)}$ this is possible.
How is $Q_{i(\star)}$ defined? Let it be $\|\left\langle I_{\ell}: \ell\langle n\rangle, w\right): n<\omega, I_{\ell}$ a finite antichain in ${ }^{\omega\rangle} \omega, \omega$ a finite subset of $\left.{ }^{\omega} \omega\right\}$. The order is $\left(\left\langle I_{l}^{0}: \ell\left\langle n^{0}\right\rangle, \omega^{0}\right) \leqslant\right.$ $\left.\left(I_{\ell}^{1}: \ell\left\langle n^{1}\right\rangle, w^{1}\right\rangle\right)$ iff $n^{0} \leqslant n^{1}, I_{l}^{0} \subseteq I_{l}^{1}$ for $\ell<n^{0}, w^{0} \subseteq w^{1}$ and for every $n \in w^{1}-w^{0}, n^{0} \leqslant \ell<n^{1}$, no member of I_{ℓ}^{1} is an initial segment of n.

References

[BPS] B. Balcar, J. Pelant and P. Simon, The space of ultraifilters on N covered by nowhere dense sets, Fund. Math. CX (1980), 11-24.
[BS] B. Balcar and P. Simon, Cardinal invariants in Boolean spaces, General Topology and its Relations to Modern Analysis and Alqebra V, Proc. Fifth Prague Topol. Symp. 1981, ed. J. Novak, Heldermann Verlag, Berlin 1982, 39-47.
[D] E. K. van Douwen, The integers and topology, Haudbook of Set-Theoretic Topology, to appear.
[N] P. Nyikos,
[Shl] S. Shelah, Proper Forcing, Lecture notes in mathematics 940 (1982), Springer-Verlag.
[Sh2] S. Shelah, More on proper forcing, J. Symbolic Loqic, in press.
[Sh3] S. Shelah, Can you take Solovay 's inaccessible away?, Israel J. Math.
[Sh4] S. Shelah, Cardinal invariants of the continuum: consistency results, Abstracts of A.M.S. (1983).

Institute of Mathematics
The Hebrew Uni versity Jerusalem, Israel

[^0]: ${ }^{1}$ The author would like to thank the National Science Foundation and the United States-Israel Binational Science Poundation for partially supporting this research.

[^1]: ${ }^{1}$ This was proved several years ago by Balcar and Simon (this result is mentioned in Remark 4.7 in p. 18 [BPS]). However, as we have already written up the proof and as they used a different model (add N_{1} random reals to a model satisfying MA), we retain this section.

