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E-Transitive Groups in L 

M. DUGAS AND S. SHELAH 

Abstract. A torsion-free reduced abelian group G is E-transitive (resp. strongly 
homogeneous) if End( G) (resp. Aut( G)) operates transitively on the pure rank 1 
subgroups of G. Assuming Gooel's axiom of constructibility V = L of set theory, 
we construct E-transitive and not strongly homogeneous groups of infinite rank 
as well as strongly homogeneous groups where we prescribe the centers of their 
endomorphism rings. Any cotorsion-free strongly homogeneous PID occurs as 
the center of the endomorphism ring of such a group. We use this to answer some 
questions raised by J. Hausen. 

Introduction. All groups in this note are torsion-free abelian groups. Unde-
fined notations are standard as in [F]. Many papers have been written in recent 
years constructing abelian groups with prescribed rings of endomorphisms. A 
feature common to all these constructions is that the endomorphism ring has 
smaller cardinality than the group it acts on. Therefore all these groups are not 
E-transitive, i.e. the endomorphism ring does not act transitively on the pure 
rank 1 subgroups. Following [Hl] we call an abelian group G E-transitive 
(resp. strongly homQgeneous) if the endomorphism ring End( G) (resp. the 
automorphism group A.ut( G)) acts transitively on the pure rank 1 subgroups 
of G. We call an R-module M separable if each finite subset of M is con-
tained in a free finite rank summand of M. A torsion-free abelian group is 
called separable if A is a module over some subring R of Q and A is separable 
as an R-module. It is easy to see that the class of separable groups is con-
tained in the class of strongly homogeneous groups which again is contained 
in the class of E-transitive groups. We will show that all these inclusions are 
proper. To show the latter, we will utilize the diamond principle O, a conse-
quence of V = L, [J]. Let Zv be the ring of integers localized at the prime p. 
The cartesian product zNt is separable while z;t jz[Nt] is not separable- use 
the slenderness of Z and [FII, Thm. 94.4] - but strongly homogeneous where 
z~tl = {! E z;t II{ a< N1 I f(a) "I O}l < Nl}, cf. [DH]. 

A principal ideal domain (PID) S is strongly homogeneous if each element 
of S is an integer multiple of a unit. Each separable N1-free module over such 
a ring is strongly homogeneous as an abelian group. The converse is false as 
follows from our main 

Partially supported by NSF Grant No. OMS 8701074 
1980 Mathematics t!Ubiect classifications (1985 Revision). Primary 20K30, 20K20. 

191 

@1989 American Mathematical Society 
0271-4132/89 $1.00 + $.25 per page 

http://dx.doi.org/10.1090/conm/087/995276

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Sh:325



192 E-TRANSITIVE GROUPS IN L 

THEOREM (V = L). Let K be a regular, not weakly compact cardinal and S a 
cotorsion-free, strongly homogeneous PID with lSI < K. Then 

(a) There exists an E-transitive cotorsion-free abelian group G, N1-free and inde-
composable asS-module with Cent(End G)= Sand G is not strongly homo-
geneous. MoreoverAut(G) = U(X), thegroupofunitsofS andiGI = K >lSI. 

'b) There exists a strongly homogeneous cotorsion-free abelian group A of cardi-
nality K, N1-free and indecomposable asS-module, with Cent(End A)= S. 

Recall that a group G is cotorsion-free if 0 is its only cotorsion subgroup and 
a ring R is cotorsion-free if its additive group is cotorsion-free. 

We use (b) to answer Problem 1 in [H2]: LetS= Z. Then the group A in (b) 
is indecomposable and the construction shows that the only PID's embeddable 
in End(A) have cardinality < IAI. Thus A is strongly homogeneous but not a 
separable module over any PID. 

Let S' = Zp[x] be the polynomial ring with coefficients in Zp and I = pS'. 
Then I is a prime ideal of S' and the localization S = S} of S' at I is a strongly 
homogeneous PID. On the other hand, S is not an E-ring as the substitu-
tion x 1-+ x2 shows (this substitution induces an endomorphism of S not repre-
sentable as a multiplication). Since S is countable, torsion-free and reduced, S 
is cotorsion-free and (b) implies the existence of a strongly homogeneous group 
G with Cent(End A)= S not an E-ring. This answers Problem 2 in [H2] in the 
negative. Part (a) of the Theorem finally answers Problem 1 in [Hl]: There are 
E-transitive, not strongly homogeneous groups (at least in V = L). 

The endomorphism rings of the groups constructed in (a) and (b) are as fol-
lows: For S the PID in the Theorem, K a cardinal, let R;t be the polynomial 
ring over S in K-many non-commuting variables Xa, a < K. Thus R;t is the 
ring freely generated by S and { Xa I a < K} with the only relations being 
SXa = XaS ~all a < K, s E S. For the groups G constructed in (a) we have 
End(G) 9::: (R;t) as rings an~r each regular, not weakly compact cardinal we 
have 2~~: such groups. Here (R;t) is the completion of R;t in some topology. We 
refer to Chapter 2 for details. We would like to mention the result in [Hl] that 
two E-transitive groups of equal type are isomorphic if and only if their endo-
morphism rings are topologically isomorphic with respect to the finite topology. 

Let R;; be the subring of the quotient field of R;t generated by R;t and 
{x;;-1 I a < ~t}. The groups A c~tructed in part (b) of the Theorem have 
endomorphism ring isomorphic to ( R;) and the group generated by {X a I a < K} 
acts transitively on the pure rank 1 subgr~s of A.~ 

We don't know much about the rings (R;tl_..and (R;). In order to prove~e 
theorem, we show that the group of units U(R;t) coincides with U(S) and (R;) 
has only the trivial idempotents. We don't know, for instance, if (S;t) is the 
completion of R;t in the finite topology. 

In contrast to other diamond, weak diamond or "Black Box" constructions 
w~ have to use epimorphic images in our transfinite induction instead of just 
embeddings. This seems to make it hard to utilize a "Black Box". To keep the 
paper readable we restrict ourselves to diamonds rather than going for the most 
general result (we plan to do this in a forthcoming paper). 
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M. DUGAS and S. SHELAH 193 

1. Algebraic Preliminaries. In all that follows S is a cotorsion-free, strongly 
homogeneous PID as defined in the introduction. Let So be the pure subring of S 
generated by 1. Let Po= {p primel So is rr-divisible}. Let N be a subsemigroup 
of Z(+). We will be interested only in the cases N =ZorN= w = {z E Z I 
z ;=:: 0}. We introduce non commuting variables x11 , IJ <a, a an ordinal and set 

Ra = Ra,N = S(x11 I /J < a)N, 
the polynomial ring over S in x,. (JJ < a) with exponents in N. Thus each 
element I E Ra has a unique representation I = Em eM Bm m with Bm E S and 
monomials m, i.e. m = X~\ X~ 2 • • • X~';., 0 'I en E N, a, < a and a1 'I a2 'I 
aa 'I··· 'I an. Let Ma+l be the set of all monomials in Ra+l and aMa+l the 
set of all monomials in Ma+l with a1 'I a. 

Each monomial m = X~\ · · · x~r;, E Ra+ 1 has a unique representation with 
e, 'I 0 and a 1 'I a2 'I · · · 'I an. We define l(m) = n to be the length of m. 
We define a linear preorder -< on Ma+1 by m -< m' if either l(m) < l(m') or 

e' 
l(m) = l(m') and e1 < e~ form= X~ 11 ••• and m' = X 0 ~ •••• 

I 
Next we observe: 

( 1 . 1) . Ra+ 1 is free as a (right or left) Ra -module. 

PROOF: The set of monomials m with l(m) ;::: l(xam) is together with 1 a 
basis of Ra+l as left Ra-module. A similar argument works on the right. I 

Let G be a right Ra-module. 

( 1 . 2) . The tensor product H = G ® R., Ra+ 1 is isomorphic to a direct sum of 
copies of G as S -module and the canonical map g 1-+ g ® 1 embeds G into H. 
The S -module H is a right Ra+l -module in the natural way. 

REMARK: Each element ~ E H has a unique representation h = E hi,m ® 
x~m + ho ® 1 where h,,m, hoE G, i ;=:: 1 and mE Ma+l are monomials with 
l(m) + 1 = l(xam). We sometimes refer to hi,m ®x~m as the "x~m-eoordinate 
of h" or to hi,m as the entry in the x~m-eoordinate of h. 

We fix elements g, hE G such that the S-submodules gS and hS are pure in 
G. Set K = (g ® Xa- h ® 1)Ra+l· 
( 1. 3) . K = (g ® Xa - h ® 1 )Ra+l is pure in H = G ® R., Ra+t· 

PROOF: Let z be a non-zero integer and k E K n zH, k = (g ® Xa- h ® 
1) EmeM smm with Bm E S \ {0} and M ~ Ra+t a finite set of monomials. 
Pick an element m E M, maximal with respect to -<. This implies that the 
entry in the x0 m-eoordinate of k is gsm, provided l(xam) ;=:: l(m). Therefore 
gsm E zG n gS = gzS and Bm E zS follows. If l(xam) < l(m), then m = 
x; 1 x~ 22 ···X~';.. This implies that the entry in the m-eoordinate of k is -hsm®m. 
Thus Bm E zS. Induction over IMI shows the rest. 1 

(1.4). KnG®1=0. 

PROOF: Let k = (g ® Xa- h ® 1) EmeM Bmm be as in the proof of 1.3. For 
mE M maximal with respect to -< we obtain gsm ® Xam = 0 in case l(xam) ;=:: 
l(m). Thus Bm = 0, a contradiction to the choice of m. If l(xam) < l(m), then 
m = x; 1 x~ 22 • • • x~r;,. This implies that the entry in the m-eoordinate of k is 
-hsm ® m = 0. Again, Bm = 0, a contradiction. I 
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194 £-TRANSITIVE GROUPS IN L 

( 1. 5) . G = G ® 1 is pure in HI K. 

PROOF: Let a® 1 E G, k E K and suppose a® 1 + k E zH, zan integer. 
Let k = (g ® Xa- h ® 1) EmEM smm. We may assume that Sm ¢ zS for all 
m E M. A similar line of argument as above leads to some m E M with Sm E zS. 
This implies k = 0 and a® 1 E zH. The submodule G ® 1 is (as S-module) a 
summand of Hand therefore pure. This implies a E zG and k E zH n K = zK. 
This shows G ® 1 pure in HI K. I 

( 1 . 6) . Let L be a pure S -submodule of G and U a finite set of monomials in 
Ra+l with the following properties: 

(a) g, hE L 
(/3) Ifx~m E U, then mE U ifl(m) < f(x 01 m) 
('y) Ifax~b E U, with i "I= 0, a¥= 1 a monomial in R01 , f(x 01 b) > f(b) then La~ L 

and x~b E U. 
Then F + K is pure in H where F = EmEU L ® m. 

PROOF: Let f = EuEufu®u E F and k = (g®x 01 -h®1) EmEM Smm E K. 
Assume that f + k E zH, k rt zK = zH n K and 1 ~ IMI minimal with that 
property. Let mE M be maximal with respect to -<:. 

Case 1: f(x 01 m) > f(m). 
Then gsm ® x01 m is the x01 m-coordinate of k and we conclude fx"m- gsm E zG. 
By the choice of k, Sm rt zK and fx"m "I= 0 and X 01 m E U. Therefore m E U 
and g ® X 01 m, h ®mEL. This contradicts the minimality of IMI (observe that 
F is pure in H because of (I) and L being pure in G). 

Case II: f(x 01 m) = f(m). 
This implies m = x~ 1 x~ 22 ••• with e1 "I= 0, -1. If e1 > 0, gsm ® X 01 m is the 
x01 m-coordinate of k. Thus sm E zS and we may argue as in Case I. If e1 < 0, 
then -hsm®m is the entry in them-coordinate of k. Thus lm®m-hsm®m E 
zH, lm- hsm E zG, hsm rt zG which implies mE U, lm "I= 0. If X 01 m E U, 
we may continue as in Case I. If x01 m rt U, we consider what contributes to the 
x01 m-coordinate of k. Form' EM with X01 m = X01 m 1 we have m = m' and if 
x 01 m = m', m' E M we have a contradiction to the maximality of m. Thus the 
x01 m-entry of k is gsm and since X01 m rt U we conclude sm E zS, a contradiction 
to the minimality of IMI. 

Case III: f(x 01 m) < f(m). 
Here et1 = et, e1 = -1 and hsm ®m is them-coordinate of k and fm- hsm E zG. 
Thus lm ¥= 0, m E U and hsm ® m E F. Since in this case m E U implies 
x 01 m E U we have gsm ® s01m- hsm ®mE F, a contradiction to the minimality 
IMI.I 

Note that each finite set of monomials U is contained in a finite set of mono-
mials U' satisfying the conditions in (/3) and ( 1). 

Now 1.6 implies: 

( 1. 7). IEG is N1-free asS-module and g, hE Gas above with gS and hS pure 
in G, then G is a pure subgroup of the N1 -freeS -module fl = ( G ® R" Ra+l) I K. 

Note that H is a right Ra+1-module. Observe that since S is a PID we have 
that finitely generated S-modules are direct sums of cyclics. K is pure in H 
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M. DUGAS and S. SHELAH 195 

and S is strongly homogeneous which implies that fi = H / K is a torsion-free 
S-module. Moreover Pontryagin's Theorem [FI, Theorem 19.1] holds since Sis 
a PID. 

(1.8). Let G be N1-free asS-module. Then G(+) is cotorsion-.free. 

PROOF: Since Sis cotorsion-free, G( +) is torsion-free and reduced. Suppose 
there is 0 f. f : Jp - G, Jp the additive group of p-adic integers. If /(1) = g 
is p-divisible, then g is divisible which contradicts G reduced. W.l.o.g. we may 
assume /(1) f. 0 and g = /(1) E G- pG. Let 1r E Jp, 7r = limn-+oo 1fn, 1fn E Z. 
Let F be a pure, free S-submodule of G with j(1r), g E F. Then F = (g).S Ef) C 
with (g). the purification of (g), j(1r) = a+ c, a E (g}.S, c E C. We have 
pn j1r- 1fn and therefore pn / j(1r)- g1rn and pn /(a- g7rn) + c in F. 

Since there are no p-divisible elements f. 0 in G (if there were any in the N1-
free S-module G, S would be p-divisible and reduced, thus Hom(Jp, G)= 0) we 
conclude c = 0 and f(Jp) ~ (g}.S := S. Since S is cotorsion-free, we conclude 
! =0. I 

We assume from now on that G is N1-free as S-module. 

( 1 . 9) . G is closed in fi with respect to the p-adic topology, p any prime ~ Po. 

This is an immediate consequence of 

( 1.10). fi /G is an N1 -free S-module. 

PROOF: Let ht, ... , hn E H. Then there exists a finite set of monomials 
U and a pure finite rank submodule L of G such that the hypothesis of (1.6) 
is satisfied and hi E F = L:mEM L ® m, 1 ~ i ~ n. Therefore (1.6) implies 
(F + K)/ K is pure in fi and finitely generated as an S-module. Since S is a 
PID and fi torsion-free, (F + K)/ K is free. Now Pontryagin's Theorem implies 
that fi /G is N1-free. I 

( 1.11). Let Go c Gt c G2 be S-modules with GtfGo and G2/G1 N1-free 
S-modules. Then G2/Go is an Nt-free S-module. 

PROOF: Let F be a pure, finite rank submodule of G2/Go. The module 
F/(F n (Gt/Go)) := (F + (Gt/Go))/(Gt/Go) is a finite rank submodule of 
G2/G1. Thus F n (Gt/Go) is a direct summand ofF with free complement. 
Moreover, F n (GtfGo) is free since GtfGo is N1-free and F is free. 1 
( 1.12). Let Ra = Ra,w· Then fi = H/(K +G®1) is a torsion-free Ra-module, 
i.e. i£0 f. hE Hand 0 f. r ERa, then hr f. 0. 

PROOF: Let r = l::mEM.,. Bmm ERa\ {0} and u E h+ (K +G® 1) f. 0, u = 
L:ui,m ® x~m where i;?: 1, mE aMa+l· We pick u such that the following is 
satisfied: 

(I) For Mu = {x~m I mE aMa+l, Ui,m f. 0} let M~ be the subset of Mu 
of all maximal elements with respect to -<. The equivalence class of M~ with 
respect to -< is minimal and IM~ I is minimal for all choices u E h + (K + G ® 1). 

Let x~ u E M~ such that if u = x~~ ... x~:, then / 8 is maximal. Let n E Ma 
be maximal with Bn f. 0 in the unique representation of r = L:mEM"' Bmm. 

From those n = X~\ ... x~tt we pick one in which the e1 is largest. This implies 
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196 E-TRANSITIVE GROUPS IN L 

that the x~um-coordinate of uris Ui,n8m· Now suppose that ur = k + y ® 1 E 
K + G ® 1, k = (g ® Xa- h ® 1) EmEAo.+t tmm, tm E S. Since ur = k + y ® 1, 
the coordinate x~um is maximal in the representation of k, i.e. x~um E M~. 
Thereforethex~um-entryofkisgtwitht = tx~-tum E S\{0}. Thusui,n8m = gt 
and therefore Ui,n = gto for some to E S \ {0}. Since gS is a pure free S-
submodule of G, u' = u - (g ® Xa - h ® 1)t 0 x~- 1 um E h + K + G ® 1 and 
Mu' ~ Mu - {x~um}. (Observe that x~- 1 um ~ x~um). This contradicts 
the choice x~ u in (I). This implies u E G ® 1 and we have the contradiction 
h + (K + G ® 1) = 0. I 
(1.13). LetH=G®R~Ra+l andrERa. IfHr=O, thenr=O. 

PROOF: Let r = EmeM"' Bmm. Form, m' E Ma, Xam = Xam' iff m = m'. 
This implies (h®xa)r = EmeM"' hsm ®xam. If (h®xa)r = 0, then hsm = 0 for 
all mE Ma, sm E S. Since 0 ¥- hE G, a torsion-free 8-module, we conclude 
Bm = 0 for all mE Ma. I 

2. The Construction. Let"' be a regular cardinal and E ~{a<"' I cf(a) = 
w} a stationary subset of "'· Let A = Ua<~tAa be a K-filtration of a set of 
cardinality "'• ( cf. [E]) and S a strongly homogeneous, cotorsion-free PID of 
cardinality < K. We may assume lSI = IAol and IAal = ISIIal = IAa+l- Aal 
for all a<"'· We assume that O~t(E) holds and {¢a : Aa-.. Aa I a E E} is a 
set of Jensen-functions, (cf. [J] or [E]). 

Let Ra = S (xv I v E a\ E) be the ring of polynomials in non commuting vari-
ables Xv overS and exponents inN E {w, Z} as mentioned in the introduction. 
Observe that R~t has no idempotents other than 0 and 1. 

Let {(ga+t. ha+d I a E E} be list of all pairs of elements of A. W.l.o.g. 
we may assume ga+l, ha+l E Aa+l for all a E E. We define an R~t-module 
structure on A such that: 

(i) A is an N1-free 8-module. 
(ii) For each¢ E Endz(A) there is a stationary subset E</> ~ E with ¢(Aa) ~ Aa 

for all a E E</> and ¢1Aa = ra for some ra E Ra. This means that each 
¢ E Endz(A) can be represented by a sequence (ra)aeE<t> with Aa(ra-rp) = 0 
for a :::; {3. On the other hand, each such sequence induces an element in 
Endz(A). 

(iii) ga+lXa+l = ha+l for all a E E whenever the S-submodule of A generated 
by ga+l and ha+l is a pure S-submodule of A. 
An immediate consequence of (iii) is that A is E-transitive if N = w and A is 

strongly homogeneous if N = Z. The chain of Aa 's will satisfy: 
(1) If>. :::; K is a limit, A>. = Ua<>.Aa as modules. 
(2) Aa is a right Ra-module and N1-free as 8-module. 
(3) If f3 rt E, then Aa/Ap is an N1-free S-module for all f3:::; a<"'· 

(This implies that for f3 rt E, Ap is p-adically closed in Aa for each prime p 
for which S is p-reduced). 

(4) If f3 :::; a, then Ap is an Rp-submodule of the Rp-module Aa where the 
Rp-module structure of Aa is induced by the Ra-module structure of Aa. 

(5) If a E E and ga+t. ha+l both generate pure S-submodules of Aa+l• we 
define Aa+2 = (Aa+l ®R"' Ra+2)f(ga+1 ®Xa+l -ha+l ®1)Ra+2 and Aa+2 = 

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Sh:325



M. DUGAS and S. SHELAH 197 

Aa+1 ®R .. Ra+2 otherwise. 
The results in §1 guarantee that (2), (3) and (4) are preserved for A 0 +2, a E E. 

(6) If a"# {3 + 1, {3 + 2 for each {3 E E, set Aa+l = Aa ®R .. Ra+l· 
(7) Let p be a prime such that 8 is .rr-reduced and let a E E. If 
(7a) ¢0 : Aa -+ A 0 is a Z-homomorphism with ¢0 ¢ R0 , we will define Ao+1 

to be an R0 -module with Ao+l/Aa .rr-divisible as 8-module and <Po does 
not lift to Aa+l. 

(7b) If the hypothesis in (7a) is not satisfied, set Aa+1 = Aa Ei:)R0 • 

If a E E and {3 < a, {3 ¢ E then Ao+1/A{3 is an N1-free 8-module, since 
Ao+2/Aa+1 is N1-free and Aa+21Af3 is N1-free (1.11). 

We have to show how to define Aa+l• a E E, to satisfy (7a), (3) and (4). 
If a E E, a is a limit ordinal with countable cofinality. Pick a sequence of 

successor ordinals ao < · · · < an < an+1 < ... with sup{ an I n < w} = a and 
for each n, an "# {3 + 1, {3 + 2 for each {3 E E. Let p be a prime such that 8 
is .rr-reduced. Choose an E Aon-1 \ pAan-1 and set kn =an® Xon-1 E Aon· 
Note that Aon-1 is a direct summand of the 8-module Aan and kn is in a 
complementary summand. 

Let y = L::=o knpen, 0 ~ eo < e1 < · · · < en < en+l < . . . a sequence of 
integers with ln = en+1 - en > 0 a strictly increasing sequence. 

Consider M = (A0 , y}'R .. , the .rr-pure R0 -submodule of the .rr-adic completion 
Aa of Aa generated by Ao andy. The following is crucial in the sequel: 

(8) If r E R0 with yr E A0 , then r = 0: 
Suppose yr E A0 • Since kn E Aon andrE Rono for some no < w there is ad< w 
such that r E Rat~-1 and md = L::d kiPe;r E Ao<~-1· Thus md ® 1- kdpe<~r E 
pe<~+t A0 nAod = pe<~+tAad and pe<~+t /md®1-kdpertr = md®1-ad®Xat~-1Pe<~r. 
Since A0 d = Aat~-1 ®R .. rt Rod we conclude pe<~+t fpe<~r or pe<~+t-ed = pi<~ fr. 
Since ld -+ oo we conclude r = 0. 

We have to show that M is an N1-free 8-module. Let Ym = L::m kiPe;-em 
and consider Lm = YmRam-1 ffiAom-1· Note that M = Um<wLm. We shall 
show that Lm is a pure 8-submodule of M. Let r E Rom and a E Aom-1 and 
consider the equation px = Ymr+a. W.l.o.g. x = Yts+b, bE A0 , s E R0 , l:::: m. 
Thus YtPS - YmT = a - pb, i.e. pet+em (a - pb) = pem (Y1Pet )ps - pet (YmPem )r = 
pem+1s(y _ L:~,:~ kipei) _ pet(y _ L:~~1 kiPe;)r. 

By the above, this implies pem+1s = petr or ps = pet-emr. Now we obtain 
a-pb = YtPet-emr-ymr = (Ym- L:~,:~ kiPe;-em )r-ymr = - L:~,:~ kiPe;-emr E 
Aam-1 +pAa. If l = m we conclude a= pb and x ELm. If l > m, we have l'cmr = 
am®Xam-1r E (Aom-1 +pAo)nAom = Aom-1 +(pAanAam) = Aam-1 +pAam 
and kmr lies in a complement of Aam-1 in Aam. Thus kmr E pAam and therefore 
r E pRam-1 and a E Aam-1 n pM = pAam-1· Thus YmT +a E pLm and Lm is 
.rr-pure in M. To show that Lm is q-pure in M for p "# q is easier and left to the 
reader. The 8-module Lm is obviously N1-free and therefore M = Um<wLm is 
N1-free since 8 is a PID and Pontryagin's Theorem holds. 

Let {3 < a, {3 ¢E. We want to show that M/A(3 is N1-free as 8-module: 
for some n < w we have Ar3 ~ A"'m-t' Thus M/A/3 = (Um<wLm)/A{3 = 
Um>n(YmRam-1 E9Aam-1/A{3) is N1-free. 

Now suppose that <l>a lifts to M. This implies pn<J>a(Y) = yr +a for some 
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n < w, r E R0 • If pn¢0 = r E Ra we have r = pnr' for some r' E Ra 
and pn ( ¢0 - r') = 0 implies ¢0 = r'. Therefore there is some a E Aa with 
pn¢a(a) # ar. Since A0 is cotorsion-free (1.8) we may choose a p-adic number 
7r with (pn¢0 (a)- ar)1r fl. A0 • 

Set y' = y + a1r and let M' be the p-pure submodule of Aa generated by 
Ao and y'. Mutatis mutandis M' has the same properties as the module M. 
Suppose ¢o lifts toM' as well. Then there is s E R0 , bE A0 and m < w with 
Pm¢o(Y') = y's +b. 

Since pn¢0 (y) = yr +a, we subtract and obtain 

Hence y(spn- rpm) is in the p-adic closure of some Aak' k < w. The subgroup 
Aok is closed in A0 and M since M/Aak is ~ 1 -free asS-module as shown above. 
Thus y(spn- rpm) E Aa and therefore spn =rpm. This implies pn+m¢0 (a)-
a rpm )1r E A0 and (pn¢0 (a) - ar )1r E Aa', a contradiction to the choice of a and 
1r. This shows that if ¢o. fl. Ra then ¢0 does not lift to M or M'. We define 
Aa+1 to be M or M' ensuring that ¢o. does not lift to Aa+1 if ¢0 fl. R0 • 

Now let ¢ : A ---. A be a Z-homomorphism. Because of O"'(E), the set 
E</> = { o: E E : ¢lAo = ¢0 } is stationary and Ao.+1 is the p-adic closure of 
Aa in A and ¢lAo = ¢0 lifts to Aa+1 for all o: E E</>. By the definition of 
Aa+l, ¢lAo =To. for some r ERa if o: E E</>. Foro:, /3 E E</>, o: < /3, we obtain 
A0 (r0 - r13) = 0 and¢ can be represented as in (ii). 

(9) If N = w, A is not strongly homogeneous and Cent(Endz(A)) = S. 

PROOF: Let¢= (ra)o.EEq, be an element of Autz(A). Foro: E E</> we have 
¢(Ao) ~ A0 • Since ¢ is an automorphism, D = {o: < K I ¢(Ao) = Aa} is 
a cub and we may assume E</> ~ D. Since r0 E R;t and o: is a limit ordinal, 
there is some O:o < o: and T0 E Ro.o+l \ Ra0 in case r0 fl. S. Let /3 = o:o + 3. 
Then A13ra ~ A13 and (1.12) and (8) imply that for any a E A13 with bra =a 
we have b E A13. Thus A13r0 = A13 = A/3-1 ®R R13. This implies r0 E S /3-1 
and r 0 is a unit in S. Since A is a torsion-free S-module we conclude ¢ = s 
for some unit s E S. Obviously, Cent(Endz(A)) 2 S. To prove equality, let 
¢ = (ra)o.EE</> E Endz(A). If¢ is in the center, ¢r = r¢ for all r E R"'. This 
implies r0 r = rr0 for all o: E E¢, o: > /3 with r E R/3+1 \ R13. This implies 
r0 E S for all o: E E¢. Thus¢ E S. The same argument shows the last part of 

( 1 0) If N = Z, A is strongly homogeneous and A is indecomposable as abelian 
group. Moreover S = Cent(Endz(A)). 

PROOF: We only have to show that A is indecomposable. So assume ¢ = 
(ro)o.EEq, is idempotent. This implies A/3+3ro.(1- r0 ) = 0 for some /3 < o:, r0 E 
Rjj+2 • By (1.13) this implies r0 (1- r0 ) = 0 and r0 is idempotent in R~. The 
ring R;t is a domain and R~ is a subring of its field of quotients. Thus R~ is 
a domain and therefore r0 = 0 or 1- r0 = 0. This implies¢ E {0, 1} and A is 
indecomposable. This ends the proof of our Theorem. 

In order to obtain 2"' many such modules A, we may use almost disjoint 
stationary sets E as in [E]. 
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