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Bext2 (G,T) CAN BE NONTRIVIAL, EVEN ASSUMING GCH 

MENACHEM MAGIDOR AND SAHARON SHELAH 

ABSTRACT. Using the consistency of some large cardinals we produce a model 
of Set Theory in which the generalized continuum hypothesis holds and for 
some torsion-free abelian group G of cardinality Nw+l and for some torsion 
group T 

Bext2 (G, T) "# 0. 
Hence G.C.H. is not sufficient for getting the results of [10). 

1. INTRODUCTION 

All groups in this paper are abelian groups. For basic terminology about abelian 
groups in general we refer the reader to [9]. For terminology concerning Butler 
groups see [2, 1, 3, 10, 8]. It is commonly agreed that the three major questions 
concerning the infinite rank Butler groups are: 

(1) Are B1-groups necessarily B2-groups? 
(2) Does Bext2 (G, T) = 0 hold for all torsion-free groups G and torsion groups 

T? 
(3) Which pure subgroups of B2-groups are again B2-groups? In particular: is 

a balanced subgroup of a B2-group a B2-group? 
In [2] it is shown that the answer to all these questions is "Yes" for countable 

groups G. In the series of papers [1, 4, 3] it was shown that under the continuum hy-
pothesis the answer is "Yes" to all three questions for groups G of cardinality:::::; Nw. 
In [5] it is shown that the answer to question 2 is "No" if the continuum hypothesis 
fails. In a more recent paper [10] it is shown that in the constructible universe, L 
the answer is "Yes" to all three questions for arbitrary groups G. Actually [10] used 
only the generalized continuum hypothesis and that the combinatorial principle 0~~: 
holds for every singular cardinal K- whose cofinality is No. Is the use made in [10] of 
the additional combinatorial principle really needed or does the affirmitive answer 
to our three questions follow simply from G.C.H.? Let us mention that a key tool 
used in [3, 10] was the representation of an arbitrary torsion-free group as the union 
of a chain of subgroups which are countable unions of balanced subgroups. In [7] 
it is shown that such a representation is equivalent to a weak version of 0~~:. 
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28~1 MENACHEM MAGIDOR AND SAHARON SHELAH 

In this paper we show that at least for getting an affirmitive answer to questions 
2 and 3, one needs some extra set theoretic assumptions in addition to G.C.H. 
We do it by producing a model of Set Theory, satisfying G.C.H., in which for some 
torsion-free G of cardinality Nw+l and some torsion T, Bext2 (G, T)-=/:- 0. Also in the 
same model there will be a balanced subgroup of a completely decomposable group 
which is not a B2-group. Hence the answer to question 3 in this model is "No". 
The construction of the model requires the consistency of some large cardinals, 
which can not be avoided since getting a model in which D~< fails for some singular 
K- requires assumptions stronger than the consistency of Set Theory. Let us stress 
that the status of question 1 is not known and it is possible (though unlikely) that 
the implication "every B1-group is a B2-group" is a theorem of Set Theory. 

Since this paper is aimed at a mixed audience of set theorists and abelian group 
theorists it is divided into two sections with very different prerequisites. In the 
next section we describe the construction of the model of Set Theory with cer-
tain properties to be listed below. In the following section we shall describe how 
to use the listed properties to get a group G which will be the counterexample 
to Bext2 (G, T) = 0. A reader who is not familiar with standard set theoretical 
techniques, like forcing, can skip the set theoretic section and simply assume the 
properties of the model listed below. We do assume some basic Set Theory at the 
level introduced by [6]. 

We now describe the properties of the model which will be used in the con-
struction of the counterexample to questions 2 and 3. The model will naturally 
satisfy G.C.H. Hence by standard cardinal arithmetic N~ 0 = Nw+l· Therefore we 
caJO. enumerate all the w-sequences from Nw in a sequence of order type Nw+l· Let 
(!,~Ia: < Nw+l) be this enumeration. Let Fa be the range of fa· The important 
property of the model is the following: 

For some stationary subset S of Nw+l such that every point of S has cofinality 
Nl,and for some choice of a cofinal set c/3 in {3 of order type WI, for every {3 E s 
and for some fixed countable ordinal 8 we have: 

(1) 

has order type 8 for every D ~ C13 which is cofinal subset of C13 and for 
every {3 E S. In particular forD= C13 

has order type 8. 
(2) If {3-=/:- 'Y both in S, then E13 n E'Y has order type less than 8. 
(3) 8 is an indecomposable ordinal, namely 8 can not be represented as a finite 

sum of smaller ordinals. Or equivalently, 8 is not the finite union of sets 
of ordinals of order type less than 8. 

Denote the conjunction of all the properties above by(*). The main theorem of 
Section 1 is 
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Theorem 1. Assume the consistency of a supercompact cardinal. Then there is a 
model of Set Theory in which {*) holds. The model also satisfies the Generalized 
Continuum Hypothesis. 

The construction of the model is very close to the construction in [11]. The 
main tool that will be used to get in Section 3 an example of a group G satisfying 
Bext2(G, T) =f 0 is the notion of No-prebalancedness (see [8]). We are rephrasing 
the original definition in a form which is clearly equivalent to the original definition. 

Definition 1. Let G be a pure subgroup of the group H. G is said to be No-
prebalanced in H if for every element h E H- G there are countably many elements 
go, 91, . . . of G such that for every element g of G the type {in H) of h-g is bounded 
by the the union of finitely many types of the form lh- 9i for some natural number 
l. More explicitly for some n, lEw 

t(h- g) :::; t(lh- go) U ... U t(lh- 9n)· 

Also the group G is said to admit an N0-prebalanced chain if G can be represented 
as a continuous increasing union of pure N0-prebalanced subgroups where at the 
successor stages the factors are of rank 1. 

We shall use the following fundamental result of Fuchs ([8]): 

Theorem 2. A torsion-free group G admits an No-prebalanced chain if and only if 
in its balanced projective resolution 

{where C is completely decomposable) B is a B2-group. Moreover, if CH holds, 
then this condition is equivalent to Bext2(G, T) = 0 for all torsion groups T. 

The main result of Section 3 will be 

Theorem 3. If{*) holds, then there is a torsion-free group G of cardinality Nw+l 
which does not admit an N0 -pre balanced chain. 

Using theorem 2 we get 

Corollary 4. If{*) holds, then there is a group G of cardinality Nw+l such that 
Bext2(G, T) =f 0 for some torsion group T. 

By using the balanced projective resolution of G we also get 

Corollary 5. If (*) holds, then there is a balanced subgroup of a completely de-
composable group of cardinality Nw+l which is not a B 2-group. 
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2. THE CONSISTENCY OF (*) 

In this section we shall prove Theorem 1. We assume familiarity with some 
basic large cardinals notions like supercompact cardinals and some basic forcing 
techniques. We start from a ground model V having a supercompact cardinal K. 

We can assume without loss of generality that V satisfies G.C.H. We let JL = K+w 
and >. = JL+ = K+w+l. In our final model JL will be Nw and>. will be Nw+l· It follows 
from the results of Menas in [12] that there is a normal ultrafilter U on P,.(>.) such 
that for some set A E U the map P - sup(P) on A is one-to-one. (Recall that 
P,.(>.) is the set of all subsets of>. of cardinality less than K). Fix such U and A. 
Also fix an enumeration (g0 I a < >.) of all the w-sequences in JL· Standard facts 
about normal ultrafilters on P,.(>.) imply that the set of all P E P,.(>.) satisfying 
the following properties is in U: 

(1) The order type of P n JL is a singular cardinal of cofinality w such that the 
order type of P is its successor. 

(2) For a E >.the range of g0 is a subset of P n JL if and only if a E P. 
Hence we can assume without loss of generality that every P E A satisfies all the 
above properties. Again standard arguments show that the set T = {sup(P) I P E 
A} is a stationary subset of>.. For a E T, let Pa. be the unique P E A such that 
sup(P) =a. Note that for PEA and Q ~. P we have that if Q is cofinal in sup(P), 
then the order type of Q* = U{range(ga.) I a E Q} is the same as the order type 
of P n JL· This holds since otherwise Q* has cardinality smaller than ti =the order 
type of P n JL· Hence, by our G.C.H. assumption, we have less than ti a's such that 
the range of ga. is in Q*, hence less than the order type of P, which is a regular 
cardinal. Therefore Q must be bounded in P. 

For a E T the map a - the order type of Pa. n JL maps T into K. Hence it is 
fixed on some subset S which is still stationary in >.. Let ti be the fixed value of 
this map on S. Note that for a E S the order type of Pa. is o+. 

Claim 6. Let a and (3 be two different members of S. Then Pa. n P13 n JL has order 
type less than ti. 

Proof. Let X = Pa. n P13 n JL· Note that if g is an w-sequence from X, then g = gp 
for some p E P a n P 13. If X has order type ti, then (using the fact that ti is a singular 
cardinal of cofinality w) we have o+ w-sequences from X, so that Pa. nP13 must have 
order type which is at least o+. Since the order type of both Pa. and P13 is o+, Pa. 
and P13 must have the same sup. This is a contradiction. D 

The model which will witness (*) will be obtained from V by collapsing ti to be 
countable, followed by the collpasing all the cardinals between o++ and K to have 
cardinality o++. Denote the resulting model by V1• Note since V satisfies G.C.H. 
then the resulting model satisfies G.C.H. Also ti is of course countable, o+ is N1 , JL 
is Nw and>. is Nw+l· Since the cardinality of the forcing notion is K <>.,Sis still a 
stationary subset of>.. Note that now we have for every a E S that the cofinality 
of a is N1. In order to verify (*) in the resulting model we fix an enumeration 
(f'Y I 'Y < >.) of all the w-sequences from Nw = JL· And as in the previous section 
let F'Y be the range of f"~' (Note that in V1 there are new w-sequences so that the 
enumeration (g'Y I 'Y < >.) we had in V enumerates only a subset of the set of all 
w-sequences). For 'Y < >. let 77('Y) be the unique 17 such that g"f = J.,. Without 
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loss of generality {by reducing 8 to a subset which is still stationary in >.) we can 
assume that for a: E 8 if "Y < a:, then TJ("Y) <a:. We can also assume without loss of 
generality that for a: E 8, Qa = {TJ("Y) I "Y EPa} is cofinal in a:. This follows since 
the set {a: E 8 I Q a is bounded in a:} is not stationary. So for each a: E 8 pick 
Ca which is cofinal in Qa and has order type ~1 = 6+. We claim that 8, 6 and 
(Ca I a: E 8) are witnesses to the truth of{*) in Vi_. As in the introduction we put 

Ea = U FT 
"(EGa 

Since we clearly have G.C.H. in Vi, since 8 is stationary and since 6 is an inde-
composable ordinal (it is a cardinal in V!), we are left with verifying the following 
claim: 

Claim 7. In Vi 
A: For a: =f. /3 E 8 Ea n EfJ has order type less than 6. 
B: If D ~ Ca is cofinal in a:, then U{F"Y I")' ED} has order type 6. 

Proof Clause A follows immediately from the fact that for a: E 8, Ea ~ Pan J.L, 
hence Ea n EfJ ~Pan PfJ n J.L and the last set has order type less than 6 if a: =f. (3. 

For proving B note that if D ~ Ca is cofinai in a:, then the set F = {"Y I TJ("Y) E D} 
is a subset of Pa of cardinality ~ 1 = 6+. Our forcing is an iteration of two forcing 
notions where the first is of cardinality {in V) 6 and the second is 6++ closed, 
hence it introduces no new sets of ordinals of order type 6+. So F contains a subset 
Q E V of cardinality 6+. Q must be cofinal in Pa since Pa has order type 6+, so 
by a previous remark U{range(g"Y) I "Y E Q} has order type 6. But this last set is 
clearly a subset of U{Fp I p E D}, so this set clearly has order type at least 6. It 
can not have order type greater than 6 since it is a subset of Pa n J.L· D 

3. A GROUP WHICH DOES NOT ADMIT AN ~o-PREBALANCED CHAIN 

In this section we prove Theorem 3. So we assume (*). Fix the enumeration 
(/a I a: < Nw+l) of thew-sequences from ~w- Let Fa be the range of fa· Also fix 
the stationary subset 8 of ~w+I. the countable ordinal 6 and for /3 E 8 a set CfJ 
cofinal in /3, which witness the truth of(*). As in the statement of(*) (for /3 E 8) 
let 

Ef3 = U Fa. 
o:EC13 

We know that the order type of EfJ is 6. Since 6 x w is countable we can assign to 
every pair J.L < 6, n < w a unique prime number p~. 

We are ready to define the group G that will not admit a chain of ~ 0 -prebalanced 
subgroups. For each a: < ~w+l and /3 E 8 fix distinct symbols Xa and Yf3· The 
group G is a subgroup of 

L EflQxa Efl LEflQY{J· 
a<~w+l f3ES 

G is generated by Xa for a: < ~w+I. by Yf3 for /3 E 8 and by :::k(Y{J- Xa) provided 
PJ.L 

a: is in Cf3 and the !a(n) is the J.L-th member of Ef3· For 6 < ~w+l let G6 be the 
subgroup of G generated by Xa,Y"Y and :::k(y"Y- Xa) where a: and "Yare less than 6. 

. PJ.L 
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The sequence (G6 I 8 < Nw+l) is a filtration of G into a continuous chain of smaller 
cardinality. If G allows an No-prebalanced chain, then by standard arguments, the 
set of 8 < Nw+l such that G6 appears in the No-prebalanced chain contains a closed 
unbounded subset of Nw+l· This will imply, since Sis stationary in Nw+b that for 
some /3 E S, G13 is N0 prebalanced in G. The fact that we get a contradiction and 
that G does not allow an No-prebalanced chain follows from: 

Claim 8. For /3 E S, G13 is not an N0 -prebalanced subgroup of G. 

Proof. Assume that for some fixed /3 E S, G13 is No-prebalanced in G. We apply 
the definition of No-prebalancedness for Y/3 and get a sequence of elements Zn E G13 
such that for every element z of G 13 there are e and l such that 

t(y13 - z) $ t(ly13- zo) U ... U t(ly13- ze)· 

C 13 has order type N 1 and hence for some fixed e and l we get that the set 

(1) D = { 0: E c/3 I t(y/3- Xa) $ t(ly/3- zo) u ... u t(ly/3- Ze)} 

is unbounded in C13. It means that foro: E D there is a natural number da such 
that if pis a prime number greater than d0 and p divides Y/3- X0 , then p divides 
ly13 - Zi for some 0 $ i $ e. Without loss of generality we can assume that for 
o: E D, da is some fixed natural number d. Let D* = U.yEDF-y. We know that 
D* ~ E13 and that the order type of D* is 8. We need the following lemma. 

Lemma 9. Let z be a member of G 13 with 

k g 

Z = L riXa; + L SjY/33 , 

i=l j=l 

where ri, Sj E Q and o:i, /3j < /3 for 1 $ i $ k, 1 $ j $ g. Assume also that ly13 - z 
is divisible (in G) by p~ where p~ > l. Then either for some 1 $ j $ g, the J..L-th 
member of E13 is the same as the J,.L-th member of E133 or for some 1 $ i $ k, the 
J,.L-th member of E13 is in Fa;. 

Proof. By assumption ly13 - z is divisible by p = p~ in G. Hence 

f u v 

ly/3- z = P(L rmX-rm + LStYI'/t + L Wq (Yvq- x~q)). 
m=l t=l q=l Pq 

(2) 

where the r m 's , the St 's and the Wq 's are integers. 
Let us define a (bipartite) graph P, whose nodes are all the symbols (x's and 

y's) appearing in equation 2, where Yp is connected by an edge to x< iff for some 
1 $ q $ v, p = Vq, ( = eq and Pq = p. Let w be the connected component 
of Y/3 in P and let a E Q be the sum of all the coefficients in the right side of 
equation 2 of symbols in W. a is easily seen to be a member of pQP, where QP is 
the ring of rationals whose denominators are prime to p. This is true because the 
only summands on the right side of 2, that can possibly add to a a rational number 
which is not in pQP, is of the form ~ (Yv - Xc ) where Pq = p. But in this case Pq q .,q 
Yvq and x~q are connected by an edge of P, so they are both in W or both outside 
of W. In both cases the contribution of this summand to a is 0. 
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We use the fact that the sum of the coefficients of symbols in W must be the 
same for the left side and the right side of 2. Of course Y/3 E W and its coefficient 
in equation 2 is l which is not in pQ P, so there must be a symbol in W appearing 
in the representation of z, so that either Xo:; E W for some 1 ~ i ~ k, or Y/3i E W 
for some 1 ~ j ~ g. Our lemma will be verified if we prove 

Claim 10. (1) Ify., E W, then the JL-th member of E., is the same as the JL-th 
member of E13. 

(2) If x"f E W, then f"f(n) is the JL-th member of E13. 

Proof. The proof is by induction on the length of the path in P leading from Y/3 
to the symbol y., and x"f respectively. If this length is 0, we are in the case where 
the symbol is y., = Yf3, and the claim is obvious. For the induction step, in the first 
case we are given y.,. Let x"f be the element preceding y., in the path leading from 
Y/3 toy.,. By the induction assumption f"f(n) is the J.L-th member of E13. x"f and Y/3 
are connected by an edge of P, so that 'k(y.,- x"f) is one of the generators of G. 

Hence 'Y E c., and f"f(n) is the J.L-th member of E.,, and the claim is verified in this 
case. The other case (the x"f case) is argued similary where y., is now the element 
in the path preceding x"f. D 

D 

For z E G13 let S(z) be the set of all elements 'Y of E13 such that for some JL < 8 
and n E w, 'Y is the J.L-th member of E13 and ly13 - z is divisible in G by p~ where 
p~ > l. It follows from lemma 9 that for z E G13, S(z) is included in a finite union 
of singletons and of sets of the form E., n E13 for 'T1 < (3. So S(z) is a finite union 
of sets of order type less than 8. 8 is an indecomposable ordinal, so for z E G13 the 
order type of S(z) is less than 8. By definition of D, every element of D*, except 
possibly finitely many, is in Uo<i<eS(zi)· This is because there are only finitely 
many members of E13 such that if "1- is the J.L-th member of E13, then p~ ~ max(d, l) 
for some n. So if 'Y E D* is not one of these finitely many elements, say 'Y is the 
J.L-th member of E13, then p~ > max(d, l). Now 'Y = fo:(n) for some o E D and a 
natural number n, and hence p~ divides Y/3- Xo:, which implies by equation 1 and 
the definition of d that p~ divides ly13 - Zi for some 1 ~ i ~ e. We got that D* is a 
finite union of sets of order type less that 8, and hence D* has order type less than 
8. We got a contradiction. D 
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