
RECONSTRUCTING STRUCTURES WITH THE STRONG

SMALL INDEX PROPERTY UP TO BI-DEFINABILITY

GIANLUCA PAOLINI AND SAHARON SHELAH

Dedicated to the memory of Matti Rubin

Abstract. Let K be the class of countable structures M with the strong small
index property and locally finite algebraicity, and K∗ the class of M ∈ K such

that aclM ({a}) = {a} for every a ∈ M . For homogeneous M ∈ K, we in-

troduce what we call the expanded group of automorphisms of M , and show
that it is second-order definable in Aut(M). We use this to prove that for

M,N ∈ K∗, Aut(M) and Aut(N) are isomorphic as abstract groups if and

only if (Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups.
In particular, we deduce that for ℵ0-categorical structures the combination of

strong small index property and no algebraicity implies reconstruction up to

bi-definability, in analogy with Rubin’s well-known ∀∃-interpretation technique
of [7]. Finally, we show that every finite group can be realized as the outer au-

tomorphism group of Aut(M) for some countable ℵ0-categorical homogeneous

structure M with the strong small index property and no algebraicity.

1. Introduction

Reconstruction theory deals with the problem of reconstruction of countable
structures from their automorphism groups. The first degree of reconstruction that
it is usually dealt with is the so-called reconstruction up to bi-interpretability. The
second and stronger degree of reconstruction is known as reconstruction up to bi-
definability. In group theoretic terms, the first degree of reconstruction corresponds
to reconstruction of topological group isomorphisms from isomorphisms of abstract
group, while the second degree of reconstruction corresponds to reconstruction of
permutation group isomorphisms from isomorphisms of abstract group. Two inde-
pendent techniques lead the scene in this field: the (strong) small index property
(see e.g. [4]) and Rubin’s ∀∃-interpretation [7].

On the reconstruction up to up to bi-interpretability side the cornerstones of the
theory are the following two results:

Theorem (Rubin [7]). Let M and N be countable ℵ0-categorical structures and
suppose that M has a ∀∃-interpretation. Then Aut(M) ∼= Aut(N) if and only if M
and N are bi-interpretable.

Theorem (Lascar [5]). Let M and N be countable ℵ0-categorical structures and
suppose that M has the small index property. Then Aut(M) ∼= Aut(N) if and only
if M and N are bi-interpretable.
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On the reconstruction up to up to bi-definability side, all the known results are
based on the following theorem of Rubin:

Theorem (Rubin [7]). Let M and N be countable ℵ0-categorical structures with no
algebraicity and suppose that M has a ∀∃-interpretation. Then Aut(M) ∼= Aut(N)
if and only if M and N are bi-definable.

In particular, on the small index property side there is no result that pairs with
the last cited result of Rubin. In this paper we fill this gap proving the following:

Theorem 1. Let K∗ be the class of countable structures M satisfying:

(1) M has the strong small index property;
(2) for every finite A ⊆M , aclM (A) is finite;
(3) for every a ∈M , aclM ({a}) = {a};
Then for M,N ∈ K∗, Aut(M) and Aut(N) are isomorphic as abstract groups if
and only if (Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups.

Thus deducing an analog of Rubin’s result on reconstruction up to bi-definability:

Corollary 2. Let M and N be countable ℵ0-categorical structures with the strong
small index property and no algebraicity. Then π : Aut(M) ∼= Aut(N) if and only if
M and N are bi-definable. Furthermore, letting f : M → N witness bi-definability,
the isomorphism π : Aut(M) ∼= Aut(N) is induced by f .

For a structure M satisfying the conclusion of Theorem 1 it is easy to determine
the outer automorphism group of Aut(M), in fact any f ∈ Aut(Aut(M)) is induced
by a permutation of M . For example, as already noted by Rubin in [7], using this
fact it is easy to see that for Rn the n-coloured random graph (n > 2) we have that
Out(Aut(Rn)) ∼= Sym(n). Similarly, but in a different direction, one easily sees
that for Mn the Kn-free random graph (n > 3) we have that Aut(Mn) is complete.
We show here that in this setting any finite group can occur:

Theorem 3. Let K be a finite group. Then there exists a countable ℵ0-categorical
homogeneous structure M with the strong small index property and no algebraicity
such that K ∼= Out(Aut(M)).

Our main technical tool is what we call the expanded group of automorphism of
an homogeneous structure M with the strong small index property and locally finite
algebraicity. This powerful object encodes the combinatorics of Aut(M)-stabilizers
of such a structure M , and it is a crucial ingredient of our proof of Theorem 1.
In Theorem 12 we show that the expanded group of automorphism is second-order
definable in Aut(M).

2. The Expanded Group of Automorphisms

In this section we introduce the expanded group of automorphisms of M (for
certain M), and show that it is second-order definable in Aut(M).

Given a structure M and A ⊆ M , and considering Aut(M) = G in its natural
action on M , we denote the pointwise (resp. setwise) stabilizer of A under this
action by G(A) (resp. G{A}). Also, we denote the subgroup relation by 6.

Definition 4. Let M be a structure and G = Aut(M).

(1) We say that a is algebraic (resp. definable) over A ⊆M in M if the orbit of a
under G(A) is finite (resp. trivial).
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(2) The algebraic closure of A ⊆ M in M , denoted as aclM (A), is the set of
elements of M which are algebraic over A.

(3) The definable closure of A ⊆ M in M , denoted as dclM (A), is the set of
elements of M which are definable over A.

Definition 5. Let M be a countable structure and G = Aut(M).

(1) We say that M (or G) has the small index property (SIP) if every subgroup
of Aut(M) of index less than 2ω contains the pointwise stabilizer of a finite set
A ⊆M .

(2) We say that M (or G) has the strong small index property (SSIP) if every
subgroup of Aut(M) of index less than 2ω lies between the pointwise and the
setwise stabilizer of a finite set A ⊆M .

Hypothesis 6. Throughout this section, let M be a countable homogeneous struc-
ture with the strong small index property and locally finite algebraicity, i.e. for
every finite A ⊆M we have |aclM (A)| < ω.

We denote by A(M) = {aclM (B) : B ⊆fin M}, and by EA(M) = {(K,L) :
K ∈ A(M) and L 6 Aut(K)}.

Let (K,L) ∈ EA(M), we define:

G(K,L) = {f ∈ Aut(M) : f � K ∈ L}.
Notice that if L = {idK}, then G(K,L) = G(K), i.e. it equals the pointwise stabilizer
of K, and that if L = Aut(K), then G(K,L) = G{K}, i.e. it equals the setwise
stabilizer of K. We then let:

PS(M) = {G(K) : K ∈ A(M)} and SS(M) = {G(K,L) : (K,L) ∈ EA(M)}.
The crucial point is the following:

Lemma 7. Let G = {H 6 G : [G : H] < 2ω}. Then G = SS(M).

Proof. The containment from right to left is trivial. Let then H 6 G with [G : H] <
2ω. By the strong small index property, there is finite K ⊆ M such that G(K) 6
H 6 G{K}. It follows that G(aclM (K)) 6 H 6 G{aclM (K)}, and so without loss of
generality we can assume that K ∈ A(M). First of all we claim that G(K) P G{K}.

In fact, for g ∈ G{K}, h ∈ G(K) and a ∈ K, we have ghg−1(a) = gg−1(a) = a, since

g−1(a) ∈ K and h ∈ G(K). Furthermore, for g, h ∈ G{K}, we have g−1h ∈ G(K) iff
g � K = h � K. Hence, the map f : gG(K) 7→ g � K, for g ∈ G{K}, is such that:

f : G{K}/G(K)
∼= Aut(K),

since every f ∈ Aut(K) extends to an automorphism of M . Thus, by the fourth
isomorphism theorem we have H = G(K,L) for L = {f � K : f ∈ H}.

Proposition 8. Let H1, H2 ∈ SS(M). The following conditions are equivalent:

(1) H1 P H2 and [H2, H1] < ω;
(2) there is K ∈ A(M) and L1 P L2 6 Aut(K) such that Hi = G(K,Li) for i = 1, 2.

Proof. The proof of (2) implies (1) is immediate, since by the normality of L1 in
L2 we have that, for g ∈ G(K,L2) and h ∈ G(K,L1), ghg

−1 � K ∈ L1, while the fact
that [H2, H1] < ω follows from the proof of Lemma 7. We show that (1) implies
(2). By assumption, Hi = G(Ki,Li) for (Ki, Li) ∈ EA(M) (i = 1, 2).

(∗)1 K2 ⊆ K1.
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Suppose not, and let a ∈ K2 −K1 witness this. Then we can find f ∈ G such that
f � K1 = idK1 and f(a) 6∈ K2. It follows that f ∈ H1 −H2, a contradiction.

(∗)2 K1 ⊆ K2.

Suppose not, and let fn ∈ G, for n < ω, such that fn � K2 = idK2
, and in addition

{fn(K1−K2) : n < ω} are pairwise disjoint. Then clearly, for every n < ω, fn ∈ H2

and {fnH1 : n < ω} are distinct, contradicting the assumption [H2, H1] < ω.

(∗)3 L1 6 L2.

Suppose not, and let h ∈ L1 − L2. Then h extends to an automorphism f of M .
Clearly f ∈ H1 −H2, a contradiction.

(∗)4 L1 P L2.

Suppose not, and let gi ∈ Li (i = 1, 2) be such that g2g1g
−1
2 6∈ L1. Then gi

extends to an automorphism fi of M (i = 1, 2). Clearly fi ∈ Hi (i = 1, 2), and
f2f1f

−1
2 6∈ H1, a contradiction.

Proposition 9. Let G = {H ∈ SS(M) : there is no H ′ ∈ SS(M),with H ′ (
H,H ′ P H and [H,H ′] < ω}. Then PS(M) = G.

Proof. First we show the containment from left to right. Let H2 ∈ PS(M) and
assume that there exists H1 ∈ SS(M) such that H1 ( H2, H1 P H2 and [H2, H1] <
ω. By Proposition 8, Hi = G(Ki,Li) for (Ki, Li) ∈ EA(M) (i = 1, 2) and K1 =
K = K2. Now, as H2 ∈ PS(M), L2 = {idK}. Hence, L1 = L2, and so H1 = H2, a
contradiction. We now show the containment from right to left. Let H ∈ G, then
H = G(K,L) for (K,L) ∈ EA(M). If L 6= {idK} then letting H ′ = G(K,{idK}) we
have H ′ ( H, H ′ P H and [H,H ′] < ω, a contradiction.

Let L(M) be a set of finite groups such that for every K ∈ A(M) there is a
unique L ∈ L(M) such that L ∼= Aut(K).

Proposition 10. Let L ∈ L(M) and H ∈ SS(M). The following conditions are
equivalent:

(1) H = G(K) ∈ PS(M) and Aut(K) ∼= L;
(2) there is H ′ ∈ SS(M) such that H P H ′, [H ′, H] < ω, H ′ is maximal under

these conditions and H ′/H ∼= L.

Proof. This follows from the proof of Lemma 7 and Proposition 8.

Definition 11. We define the structure ExAut(M), the expanded group of auto-
morphisms of M , as follows:

(1) ExAut(M) is a two-sorted structure;
(2) the first sort has set of elements Aut(M) = G;
(3) the second sort has set of elements EA(M);
(4) we identify {(K, idK) : K ∈ A(M)} with A(M);
(5) the relations are:

(a) PA(M) = {K ∈ A(M)} (recalling the above identification);
(b) for L ∈ L(M), PL(M) = {K ∈ A(M) : Aut(K) ∼= L};
(c) PL(M) =

⋃
L∈L(M) PL(M);

(d) 6EA(M) = {((K1, L1), (K2, L2)) : (Ki, Li) ∈ EA(M) (i = 1, 2), K1 6
K2 and L2 � K1 6 L1};

(e) 6A(M) = {(K1,K2) : Ki ∈ A(M) (i = 1, 2) and K1 6 K2};
(f) Pmin

A(M) = {K ∈ A(M) : acl(∅) 6= K ∈ A(M) is minimal in (A(M),⊆)};
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(6) the operations are:
(f) composition on Aut(M);
(g) for f ∈ Aut(M) and K ∈ A(M), Op(f,K) = f(K);
(h) for f ∈ Aut(M) and (K1, L1) ∈ EA(M), Op(f, (K1, L1)) = (K2, L2) iff

f(K1) = K2 and L2 = {f � K1πf
−1 � K2 : π ∈ L1}.

We say that a set of subsets of a structure N is second-order definable if it is
preserved by automorphisms of N . We say that a structure M is second-order
definable in a structure N if there is a injective map j mapping ∅-definable subsets
of M to second-order definable set of subsets N .

Theorem 12. (1) The map jM = j : (f, (K,L)) 7→ (f,G(K,L)) witnesses second-
order definability of ExAut(M) in Aut(M).

(2) Every F ∈ Aut(G) has an extension F̂ ∈ Aut(ExAut(M)).

Proof. We prove (1).

(∗)1 The map (f, (K,L)) 7→ (f,G(K,L)) is one-to-one.

Suppose that (K1, L1) 6= (K2, L2) ∈ EA(M), we want to show that G(K1,L1) 6=
G(K2,L2). Suppose that K1 6= K2. By symmetry, we can assume that K1 6⊆ K2.
Then there is f ∈ G such that f � K2 = idK2 and f(K1) ∩K1 = K1 ∩K2. Thus,
f ∈ G(K2,L2) − G(K1,L1). Suppose now that K1 = K = K2 and L1 6= L2. By
symmetry, we can assume that L1 6⊆ L2. Let g ∈ L1 − L2, then g extends to an
automorphism f of M . Thus, f ∈ G(K,L1) −G(K,L2).

(∗)2 The range j(EA(M)) = SS(M) is mapped onto itself by any F ∈ Aut(G).

By Lemma 7.

(∗)3 The range j(PA(M))) = PS(M) is mapped onto itself by any F ∈ Aut(G).

By Proposition 9.

(∗)4 For L ∈ L(M), the range j(PL(M)) = {G(K) : Aut(K) ∼= L} is mapped onto
itself by any F ∈ Aut(G).

By Proposition 10.

(∗)5 The range j(PL(M)) =
⋃

L∈L(M){G(K) : Aut(K) ∼= L} is mapped onto itself

by any F ∈ Aut(G).

Follows from (∗)4.

(∗)6 The range j(6EA(M)) = {G(K1,L1) ⊇ G(K2,L2) : (Ki, Li) ∈ EA(M) (i =
1, 2), K1 6 K2 and L2 � K1 6 L1} is preserved by any F ∈ Aut(G).

For (Ki, Li) ∈ EA(M) (i = 1, 2) and F ∈ Aut(G), obviously we have j(K1, L1) ⊇
j(K2, L2) if and only if F (j(K1, L1)) ⊇ F (j(K2, L2)), since F induces an automor-
phism of (P(Aut(G)),⊆).

(∗)7 The range j(6A(M)) = {G(K1) ⊇ G(K2) : K1,K2 ∈ A(M),K1 6 K2} is
preserved by any F ∈ Aut(G).

As in (∗)6, i.e. any F ∈ Aut(G) induces an automorphism of (P(Aut(G)),⊆).

(∗)8 The range j(Pmin
A(M)) = {H ∈ PS(M) : G 6= H is maximal in (PS(M),⊆)} is

preserved by any F ∈ Aut(G).

As in (∗)6, i.e. any F ∈ Aut(G) induces an automorphism of (P(Aut(G)),⊆).

(∗)9 For any F ∈ Aut(G), F (gh) = F (g)F (h).

Obvious.
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(∗)10 j(Op(f,K)) = fG(K)f
−1 and F (j((Op(f,K)))) = Op(F (f), F (j(K))), for

any F ∈ Aut(G).

Observe that:

F (j((Op(f,K)))) = F (fG(K)f
−1)

= F (f)F (G(K))(F (f))−1

= F (f)(F (j(K))
= Op(F (f), F (j(K))),

since by (∗)3 PS(M) is mapped onto itself by any F ∈ Aut(G).

(∗)11 j(Op(f, (K1, L1))) = (fG(K1)f
−1, fG(K1,L1)f

−1) and F (j((Op(f, (K1, L1))))) =
Op(F (f), F (j((K1, L1)))), for any F ∈ Aut(G).

Similar to (∗)10.

This concludes the proof of (1). Finally, (2) follows directly from (1), in fact for

F ∈ Aut(Aut(M)), letting F̂ = j−1F j we have F̂ ∈ Aut(ExAut(M)).

3. Reconstruction and Outer Automorphisms

In this section we prove the theorems stated in the introduction.

Let K∗ be the class of countable structures M satisfying:

(1) M has the strong small index property;
(2) for every finite A ⊆M , aclM (A) is finite;
(3) for every a ∈M , aclM ({a}) = {a};

As in the previous section, we let G = Aut(M). We denote G({a}) simply as
G(a). The crucial point in asking these additional conditions is the following:

Proposition 13. Let M ∈ K∗ be homogeneous, and define:

(1) M = {G(a) : a ∈M};
(2) G = {G(K) ∈ PS(M) : acl(∅) 6= K ∈ A(M) is minimal in (A(M),⊆)}.
Then M = G.

Proof. This is clear from the work done in the previous section.

We will use the suggestive notation M = {G(a) : a ∈M} also below.

Definition 14. Let M and N be structures and consider Aut(M) (resp. Aut(N))
as acting naturally on M (resp. N). We say that (Aut(M),M) and (Aut(N), N)
are isomorphic as permutation groups if there exists a bijection f : M → N such
that the map h 7→ fhf−1 is an isomorphism from Aut(M) onto Aut(N).

Proof of Theorem 1. Let M,N ∈ K∗, and suppose that F : Aut(M) ∼= Aut(N).
Passing to canonical relational structures (cf. [2, pg. 26]), we can assume without
loss of generality that M and N are homogeneous. Now, the isomorphism F induces
an isomorphism F̂ : ExAut(M) ∼= ExAut(N). In particular, F̂ maps Pmin

A(M) onto

Pmin
A(N). Thus, by Proposition 13, we have:

jM (Pmin
A(M)) =M and jN (Pmin

A(N)) = N .

Hence, F̂ induces the bijection f : M → N :

f(a) = F̂ (Aut(M)(a)) = Aut(N)f(a) ∈ N .
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Let G : h 7→ fhf−1, for h ∈ Aut(M). We claim that G = F . Let in fact h ∈
Aut(M), a, b ∈M and suppose that F (h)(f(a)) = f(b). Then:

F (h)(f(a)) = f(b) ⇔ F (h)Aut(N)(f(a))(F (h))−1 = Aut(N)(f(b))

⇔ hAut(M)(a)h
−1 = Aut(M)(b)

⇔ h(a) = b.

So, fhf−1(f(a)) = fh(a) = f(b), as wanted. Hence, f : M → N witnesses that
(Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups.

Definition 15. We say that two structures M and N are bi-definable if there is
a bijection f : M → N such that for every A ⊆ Mn, A is ∅-definable in M if and
only if f(A) is ∅-definable in N .

Fact 16 ([7], Proposition 1.3). Let M and N be countable ℵ0-categorical structures.
Then the following are equivalent:

(1) (Aut(M),M) ∼= (Aut(N), N);
(2) M and N are bi-definable.

Proof of Corollary 2. Let M,N ∈ K∗, and suppose that Aut(M) ∼= Aut(N). As
before, passing to canonical relational structures, we can assume without loss of
generality that M and N are homogeneous. Furthermore, since M and N are ℵ0-
categorical, this passage preserves definability. Thus, by Theorem 1 and Fact 16
we are done.

We now pass to the proof of Theorem 3.

Fact 17 (Frucht’s Theorem [3]). Every finite group is the group of automorphisms
of a finite graph.

Proof of Theorem 3. Let Γ be a finite graph on vertex set {0, ..., n− 1} and

LΓ = {P` : ` < n} ∪ {R`,k : ` < k < n and {`, k} ∈ EΓ}

be such that the P` are unary predicates and the R`,k are binary relations. Let KΓ

be the class of finite LΓ-models M such that:

(1) (PM
` : ` < n) is a partition of M ;

(2) RM
`,k is a symmetric irreflexive relation on P` × Pk.

Notice that KΓ is a free amalgamation class (cf. [6, Definition 4]). Let MΓ be
the corresponding countable homogeneous structure. By [6, Corollary 2], MΓ has
the strong small index property, and, obviously, MΓ is ℵ0-categorical and has no
algebraicity. Using Corollary 2 it is now easy to see that:

Aut(Γ) ∼= Aut(Aut(MΓ))/Inn(Aut(MΓ)) = Out(Aut(MΓ)).

Thus, by Fact 17 we are done.
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