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Abstract. Let K be the class of countable structures M with the strong small index
property and locally finite algebraicity, and K∗ the class of M ∈ K such that aclM ({a})
= {a} for every a ∈ M . For homogeneous M ∈ K, we introduce what we call the expanded
group of automorphisms of M , and show that it is second-order definable in Aut(M). We
use this to prove that for M,N ∈ K∗, Aut(M) and Aut(N) are isomorphic as abstract
groups if and only if (Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups.
In particular, we deduce that for ℵ0-categorical structures the combination of the strong
small index property and no algebraicity implies reconstruction up to bi-definability, in
analogy with Rubin’s (1994) well-known ∀∃-interpretation technique. Finally, we show that
every finite group can be realized as the outer automorphism group of Aut(M) for some
countable ℵ0-categorical homogeneous structure M with the strong small index property
and no algebraicity.

1. Introduction. Reconstruction theory deals with the problem of re-
construction of countable structures from their automorphism groups. The
first degree of reconstruction that is usually dealt with is the so-called recon-
struction up to bi-interpretability. The second and stronger degree of recon-
struction is known as reconstruction up to bi-definability. In group-theoretic
terms, the first degree of reconstruction corresponds to reconstruction of
topological group isomorphisms from abstract group isomorphisms, while the
second degree of reconstruction corresponds to reconstruction of permuta-
tion group isomorphisms from abstract group isomorphisms. Two indepen-
dent techniques lead the scene in this field: the (strong) small index property
(see e.g. [4]) and Rubin’s ∀∃-interpretation [9].
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26 G. Paolini and S. Shelah

On the reconstruction up to bi-interpretability side, the cornerstones of
the theory are the following two results:

Theorem (Rubin [9]). Let M and N be countable ℵ0-categorical struc-
tures and suppose that M has a ∀∃-interpretation. Then Aut(M) ∼= Aut(N)
if and only if M and N are bi-interpretable.

Theorem (Lascar [5]). Let M and N be countable ℵ0-categorical struc-
tures and suppose that M has the small index property. Then Aut(M) ∼=
Aut(N) if and only if M and N are bi-interpretable.

On the reconstruction up to bi-definability side, all the known results are
based on the following theorem of Rubin:

Theorem (Rubin [9]). Let M and N be countable ℵ0-categorical struc-
tures with no algebraicity and suppose that M has a ∀∃-interpretation. Then
Aut(M) ∼= Aut(N) if and only if M and N are bi-definable.

In particular, on the small index property side there is no result that pairs
with the last cited result of Rubin. In this paper we fill this gap proving the
following:

Theorem 1.1. Let K∗ be the class of countable structures M satisfying:

(1) M has the strong small index property;
(2) for every finite A ⊆M , aclM (A) is finite;
(3) for every a ∈M , aclM ({a}) = {a}.
Then for M,N ∈ K∗, Aut(M) and Aut(N) are isomorphic as abstract
groups if and only if (Aut(M),M) and (Aut(N), N) are isomorphic as
permutation groups. Moreover, if π : Aut(M) ∼= Aut(N) is an abstract
group isomorphism, then there is a bijection f : M → N witnessing that
(Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups and
such that π(α) = fαf−1.

Thus we deduce an analog of Rubin’s result on reconstruction up to
bi-definability:

Corollary 1.2. Let M and N be countable ℵ0-categorical structures
with the strong small index property and no algebraicity. Then Aut(M) and
Aut(N) are isomorphic as abstract groups if and only if M and N are
bi-definable. Moreover, if π : Aut(M) ∼= Aut(N) is an abstract group iso-
morphism, then there is a bijection f :M → N witnessing the bi-definability
of M and N such that π(α) = fαf−1.

For a structure M satisfying the conclusion of Theorem 1.1 it is easy
to determine the outer automorphism group of Aut(M): in fact any f ∈
Aut(Aut(M)) is induced by a permutation of M . For example, as already
noted by Rubin in [9], using this fact it is easy to see that for Rn the
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Reconstructing structures up to bi-definability 27

n-coloured random graph (n ≥ 2) we have Out(Aut(Rn)) ∼= Sym(n). Sim-
ilarly, but in a different direction, one easily sees that for Mn the Kn-free
random graph (n ≥ 3), Aut(Mn) is complete. We show here that in this
setting any finite group can occur:

Theorem 1.3. Let K be a finite group. Then there exists a countable
ℵ0-categorical homogeneous structure M with the strong small index property
and no algebraicity such that K ∼= Out(Aut(M)).

Our main technical tool is what we call the expanded group of automor-
phisms of a homogeneous structure M with the strong small index property
and locally finite algebraicity. This powerful object encodes the combina-
torics of Aut(M)-stabilizers of M , and it is a crucial ingredient of our proof
of Theorem 1.1. In Theorem 2.13 we show that the expanded group of auto-
morphisms is second-order orbit-definable in Aut(M) (cf. Definition 2.12), a
fact of essential importance.

The results of this paper pair with those of [8] and [7], where sufficient
conditions for the strong small index property are isolated and applied in the
concrete case of the group of automorphisms of Hall’s universal locally finite
group. Finally, we would like to mention another recent result of ours [6] in
this area, a powerful non-reconstruction theorem: no algebraic or topolog-
ical property of Aut(M) can detect any form of stability of the countable
structure M .

2. The expanded group of automorphisms. In this section we in-
troduce the expanded group of automorphisms of M (for certain M), and
show that it is second-order definable in Aut(M).

Given a structure M and A ⊆ M , and considering Aut(M) = G in its
natural action on M , we denote the pointwise (resp. setwise) stabilizer of
A under this action by G(A) (resp. G{A}). Also, we denote the subgroup
relation by ≤.

Definition 2.1. Let M be a structure and G = Aut(M).

(1) We say that a is algebraic (resp. definable) over A ⊆M inM if the orbit
of a under G(A) is finite (resp. trivial).

(2) The algebraic closure of A ⊆M in M , denoted by aclM (A), is the set of
elements of M which are algebraic over A.

(3) The definable closure of A ⊆M in M , denoted by dclM (A), is the set of
elements of M which are definable over A.

Definition 2.2. Let M be a countable structure and G = Aut(M).

(1) We say that M (or G) has the small index property (SIP) if every sub-
group of Aut(M) of index less than 2ℵ0 contains the pointwise stabilizer
of a finite set A ⊆M .
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(2) We say thatM (or G) has the strong small index property (SSIP) if every
subgroup of Aut(M) of index less than 2ℵ0 lies between the pointwise
and the setwise stabilizer of a finite set A ⊆M .

Hypothesis 2.3. Throughout this section, let M be a countable homo-
geneous structure with the strong small index property and locally finite
algebraicity, i.e. for every finite A ⊆M we have | aclM (A)| < ω.

Remark 2.4. Notice that all ω-categorical structures have locally finite
algebraicity.

Notation 2.5. We let

A(M) = {aclM (B) : B ⊆fin M},
EA(M) = {(K,L) : K ∈ A(M) and L ≤ Aut(K)}.

Definition 2.6. For (K,L) ∈ EA(M), we define

G(K,L) = {f ∈ Aut(M) : f�K ∈ L}.

Notice that if L = {idK}, then G(K,L) = G(K), i.e. it equals the pointwise
stabilizer of K, and that if L = Aut(K), then G(K,L) = G{K}, i.e. it equals
the setwise stabilizer of K. We then let

PS(M) = {G(K) : K ∈ A(M)}, SS(M) = {G(K,L) : (K,L) ∈ EA(M)}.
The crucial point is the following:

Lemma 2.7. Let G = {H ≤ G : [G : H] < 2ω}. Then G = SS(M).

Proof. The containment from right to left is trivial. Let then H ≤ G with
[G : H] < 2ω. By the strong small index property, there is a finite K ⊆ M
such that G(K) ≤ H ≤ G{K}. It follows that G(aclM (K)) ≤ H ≤ G{aclM (K)},
and so without loss of generality we can assume that K ∈ A(M). First
of all we claim that G(K) E G{K}. In fact, for g ∈ G{K}, h ∈ G(K) and
a ∈ K, we have ghg−1(a) = gg−1(a) = a, since g−1(a) ∈ K and h ∈ G(K).
Furthermore, for g, h ∈ G{K}, we have g−1h ∈ G(K) iff g�K = h�K. Hence,
the map f : gG(K) 7→ g�K, for g ∈ G{K}, is such that

(?) f : G{K}/G(K)
∼= Aut(K),

since every f ∈ Aut(K) extends to an automorphism of M . Thus, by the
fourth isomorphism theorem we have H = G(K,L) for L = {f�K : f ∈ H}.

Proposition 2.8. Let H1, H2 ∈ SS(M). The following conditions are
equivalent:

(1) H1 E H2 and [H2 : H1] < ω;
(2) there are K ∈ A(M) and L1 E L2 ≤ Aut(K) such that Hi = G(K,Li)

for i = 1, 2.
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Reconstructing structures up to bi-definability 29

Proof. The proof of (2)⇒(1) is immediate, since by the normality of L1

in L2 we know that, for g ∈ G(K,L2) and h ∈ G(K,L1), ghg−1�K ∈ L1, while
the fact that [H2 : H1] < ω follows from the proof of Lemma 2.7.

We show that (1) implies (2) via statements (∗)i below (each is followed
by its proof). By assumption,Hi = G(Ki,Li) for (Ki, Li) ∈ EA(M) (i = 1, 2).
(∗)1 K2 ⊆ K1.
Suppose not, and let a ∈ K2−K1 witness this. Then we can find f ∈ G such
that f�K1 = idK1 and f(a) 6∈ K2. It follows that f ∈ H1 −H2, a contradic-
tion.
(∗)2 K1 ⊆ K2.
Suppose not, and let fn ∈ G, for n < ω, be such that fn�K2 = idK2 , and
in addition {fn(K1 − K2) : n < ω} are pairwise disjoint. Then clearly, for
every n < ω, fn ∈ H2 and {fnH1 : n < ω} are distinct, contradicting the
assumption [H2 : H1] < ω.
(∗)3 L1 ≤ L2.
Suppose not, and let h ∈ L1 − L2. Then h extends to an automorphism f
of M . Clearly f ∈ H1 −H2, a contradiction.
(∗)4 L1 E L2.
Suppose not, and let gi ∈ Li (i = 1, 2) be such that g2g1g

−1
2 6∈ L1. Then gi

extends to an automorphism fi of M (i = 1, 2). Clearly fi ∈ Hi (i = 1, 2),
and f2f1f

−1
2 6∈ H1, a contradiction.

Proposition 2.9. Let G = {H ∈ SS(M) : there is no H ′ ∈SS(M) with
H ′ ( H, H ′ E H and [H : H ′] < ω}. Then PS(M) = G.

Proof. First we show the containment from left to right. Let H2 ∈
PS(M) and assume that there exists H1 ∈ SS(M) such that H1 ( H2,
H1 E H2 and [H2 : H1] < ω. By Proposition 2.8, Hi = G(Ki,Li) for
(Ki, Li) ∈ EA(M) (i = 1, 2) and K1 = K = K2. Now, as H2 ∈ PS(M), we
have L2 = {idK}. Hence, L1 = L2, and so H1 = H2, a contradiction.

We now show the containment from right to left. Let H ∈ G; then H =
G(K,L) for (K,L) ∈ EA(M). If L 6= {idK} then letting H ′ = G(K,{idK}) we
have H ′ ( H, H ′ E H and [H : H ′] < ω, a contradiction.

Let L(M) be a set of finite groups such that for every K ∈ A(M) there
is a unique L ∈ L(M) such that L ∼= Aut(K).

Proposition 2.10. Let L ∈ L(M) and H ∈ SS(M). The following
conditions are equivalent:

(1) H = G(K) ∈ PS(M) and Aut(K) ∼= L;
(2) there is H ′ ∈ SS(M) such that H E H ′, [H ′ : H] < ω, H ′ is maximal

under these conditions and H ′/H ∼= L.
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Proof. For (1)⇒(2), let H ′ = G{K}; then, by Proposition 2.8 and (?) in
the proof of Lemma 2.7, we find that H ′ is as wanted. For (2)⇒(1), if H and
H ′ are as in (2), then, by Proposition 2.8 and (?), it must be the case that
H ′ = G{K} and H = G(K) for some K ∈ A(M) such that Aut(K) ∼= L.

Definition 2.11. We define the structure ExAut(M), the expanded
group of automorphisms of M , as follows:

(1) ExAut(M) is a two-sorted structure;
(2) the first sort has set of elements Aut(M) = G;
(3) the second sort has set of elements EA(M);
(4) we identify {(K, {idK}) : K ∈ A(M)} with A(M);
(5) the relations are:

(a) PA(M) = {K ∈ A(M)} (recalling the above identification);
(b) for L ∈ L(M), PL(M) = {K ∈ A(M) : Aut(K) ∼= L};
(c) ≤EA(M)= {((K1, L1), (K2, L2)) : (Ki, Li) ∈ EA(M) (i = 1, 2),

K1 ≤ K2 and L2�K1 ≤ L1};
(d) ≤A(M)= {(K1,K2) : Ki ∈ A(M) (i = 1, 2) and K1 ≤ K2};
(e) Pmin

A(M) = {K ∈ A(M) : acl(∅) 6= K ∈ A(M) is minimal in
(A(M),⊆)};

(6) the operations are:

(f) composition on Aut(M);
(g) for f ∈ Aut(M) and K ∈ A(M), Op(f,K) = f(K);
(h) for f ∈Aut(M) and (K1, L1) ∈ EA(M), Op(f, (K1, L1)) = (K2, L2)

iff f(K1) = K2 and L2 = {f�K1πf
−1�K2 : π ∈ L1}.

Definition 2.12. We say that a set of subsets of a structure N is in-
variant if it is preserved by automorphisms of N . We say that a structureM
is second-order orbit-definable in a structure N if there is a injective map j
mapping ∅-definable subsets of M to invariant sets of subsets of N .

Theorem 2.13. Let M and N be as in Hypothesis 2.3, and let G =
Aut(M). Then:

(1) The map jM = j : (f, (K,L)) 7→ ({f}, G(K,L)) witnesses second-order
orbit-definability of ExAut(M) in Aut(M).

(2) Every F : Aut(M) ∼= Aut(N) has an extension F̂ : ExAut(M) ∼=
ExAut(N).

Proof. We prove (1) by establishing statements (∗)i below.
(∗)1 The map (f, (K,L)) 7→ ({f}, G(K,L)) is one-to-one.

Suppose that (K1, L1) 6= (K2, L2) ∈ EA(M); we want to show that G(K1,L1)

6= G(K2,L2). Suppose that K1 6= K2. By symmetry, we can assume that
K1 6⊆ K2. Then there is f ∈ G such that f�K2 = idK2 and f(K1) 6= K1,
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since K2 is algebraically closed. Thus, f ∈ G(K2,L2) − G(K1,L1). Suppose
now that K1 = K = K2 and L1 6= L2. By symmetry, we can assume that
L1 6⊆ L2. Let g ∈ L1 − L2; then g extends to an automorphism f of M .
Thus, f ∈ G(K,L1) − G(K,L2). Finally, notice that it is not possible that
{f} = G(K,L), and so we are done.

(∗)2 The range j(EA(M)) = SS(M) is mapped onto itself by any F ∈
Aut(G).

By Lemma 2.7.

(∗)3 The range j(PA(M))) = PS(M) is mapped onto itself by any F ∈
Aut(G).

By Proposition 2.9.

(∗)4 For L ∈ L(M), the range j(PL(M)) = {G(K) : Aut(K) ∼= L} is mapped
onto itself by any F ∈ Aut(G).

By Proposition 2.10.

(∗)5 The range j(≤EA(M)) = {(G(K1,L1), G(K2,L2)) : G(K1,L1) ⊇ G(K2,L2),
(Ki, Li) ∈ EA(M) (i = 1, 2), K1 ≤ K2 and L2�K1 ≤ L1} is preserved
by any F ∈ Aut(G).

For (Ki, Li) ∈ EA(M) (i = 1, 2) and F ∈ Aut(G), we obviously have
j(K1, L1) ⊇ j(K2, L2) if and only if F (j(K1, L1)) ⊇ F (j(K2, L2)), since F
induces an automorphism of (P(Aut(G)),⊆).

(∗)6 The range j(≤A(M))={(G(K1), G(K2)) :G(K1)⊇G(K2), K1,K2∈A(M),
K1 ≤ K2} is preserved by any F ∈ Aut(G).

As in (∗)5, i.e. because any F ∈ Aut(G) induces an automorphism of
(P(Aut(G)),⊆).

(∗)7 The range

j(Pmin
A(M)) = {H ∈ PS(M) : G 6= H is maximal in (PS(M),⊆)}

is preserved by any F ∈ Aut(G).

As in (∗)5, i.e. because any F ∈ Aut(G) induces an automorphism of
(P(Aut(G)),⊆).

(∗)8 For any F ∈ Aut(G), F ({gh}) = F ({g})F ({h}).

Obvious.

(∗)9 j(Op(f,K)) = j(f(K)) = G(f(K)) = fG(K)f
−1 and

F (j((Op(f,K)))) = Op(F (f), F (j(K))) for any F ∈ Aut(G).
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Observe that

F (j((Op(f,K)))) = F (fG(K)f
−1) = F (f)F (G(K))(F (f))

−1

= F (f)(F (j(K)) = Op(F (f), F (j(K))),

since by (∗)3, PS(M) is mapped onto itself by any F ∈ Aut(G).

(∗)10 j(Op(f, (K1, L1))) = (fG(K1)f
−1, fG(K1,L1)f

−1) and

F (j((Op(f, (K1, L1))))) = Op(F (f), F (j((K1, L1))))

for any F ∈ Aut(G).

Similar to (∗)9.

This concludes the proof of (1). Finally, (2) follows directly from (1),
in fact for F : Aut(M) ∼= Aut(N) letting F̂ = j−1

N F jM we have F̂ :
ExAut(M) ∼= ExAut(N).

3. Reconstruction and outer automorphisms. In this section we
prove the theorems stated in the introduction.

Definition 3.1. Let K∗ be the class of countable structures M satisfy-
ing:

(1) M has the strong small index property;
(2) for every finite A ⊆M , aclM (A) is finite;
(3) for every a ∈M , aclM ({a}) = {a};

As in the previous section, we let G = Aut(M). We denote G({a}) sim-
ply as G(a). The crucial point in asking the additional condition of Defini-
tion 3.1(3) is the following:

Proposition 3.2. Let M ∈ K∗ be homogeneous, and define

M = {G(a) : a ∈M}.

Then jM (Pmin
A(M)) =M (recall Definition 2.11 and Theorem 2.13).

Proof. Notice that by (3) of Definition 3.1 we have Pmin
A(M) = {{a} : a∈M},

and so directly by the definition of the interpretation jM (Theorem 2.13) we
obtain jM (Pmin

A(M)) =M.

We will use the suggestive notationM = {G(a) : a ∈M} also below.

Definition 3.3. LetM and N be structures and consider Aut(M) (resp.
Aut(N)) as acting naturally onM (resp. N). We say that (Aut(M),M) and
(Aut(N), N) are isomorphic as permutation groups if there exists a bijection
f :M → N such that the map h 7→ fhf−1 is an isomorphism from Aut(M)
onto Aut(N).
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Reconstructing structures up to bi-definability 33

We recall the statement of Theorem 1.1 (without the “moreover” part)
and prove it.

Theorem 1.1. Let K∗ be the class of countable structures M satisfying:

(1) M has the strong small index property;
(2) for every finite A ⊆M , aclM (A) is finite;
(3) for every a ∈M , aclM ({a}) = {a}.
Then for M,N ∈ K∗, Aut(M) and Aut(N) are isomorphic as abstract
groups if and only if (Aut(M),M) and (Aut(N), N) are isomorphic as per-
mutation groups.

Proof of Theorem 1.1. Let M,N ∈ K∗, and suppose that F : Aut(M) ∼=
Aut(N). Passing to canonical relational structures (see [2, p. 26]), i.e. adding
a relation symbol R of arity n for every n-ary Aut(M)-orbit Ω ⊆ Mn, we
can assume without loss of generality thatM and N are homogeneous. Now,
by Theorem 2.13(2), the isomorphism F induces the isomorphism

F̂ = j−1
N F jM : ExAut(M) ∼= ExAut(N).

In particular, F̂ maps Pmin
A(M) onto Pmin

A(N). Furthermore, by Proposition 3.2,

jM (Pmin
A(M)) =M and jN (P

min
A(N)) = N .

Hence, F̂ induces a bijection f :M → N such that (recall that F̂ = j−1
N F jM )

F (Aut(M)(a)) = Aut(N)f(a) ∈ N .

Let G : h 7→ fhf−1 for h ∈ Aut(M). We claim that G = F . Let in fact
h ∈ Aut(M), a, b ∈M and suppose that F (h)(f(a)) = f(b). Then

F (h)(f(a)) = f(b) ⇐⇒ F (h)Aut(N)(f(a))(F (h))
−1 = Aut(N)(f(b))

⇐⇒ hAut(M)(a)h
−1 = Aut(M)(b)

⇐⇒ h(a) = b.

So, fhf−1(f(a)) = fh(a) = f(b), as wanted. Hence, f : M → N witnesses
that (Aut(M),M) and (Aut(N), N) are isomorphic as permutation groups.
Notice that the “moreover” part of the theorem is clear from the proof (since
G = F ).

Definition 3.4. We say that two structuresM and N are bi-definable if
there is a bijection f :M → N such that for every A ⊆Mn, A is ∅-definable
in M if and only if f(A) is ∅-definable in N .

Fact 3.5 ([9, Proposition 1.3]). Let M and N be countable ℵ0-categorical
structures. Then the following are equivalent:

(1) (Aut(M),M) ∼= (Aut(N), N);
(2) M and N are bi-definable.

Sh:1109



34 G. Paolini and S. Shelah

Proof of Corollary 1.2. Let M,N ∈ K∗, and suppose that Aut(M) ∼=
Aut(N). As before, passing to canonical relational structures, we can assume
that M and N are homogeneous. Furthermore, since M and N are ℵ0-
categorical, this passage preserves definability. Now, since M and N are
ℵ0-categorical and with no algebraicity, the conditions of Theorem 1.1 are
met (see Remark 2.4), and so (Aut(M),M) ∼= (Aut(N), N) as permutation
groups. Hence, by Fact 3.5, we are done. Notice that the “moreover” part of
the corollary is taken care of by the “moreover” part of Theorem 1.1.

We now pass to the proof of Theorem 1.3.

Fact 3.6 (Frucht’s Theorem [3]). Every finite group is the group of au-
tomorphisms of a finite graph.

Proof of Theorem 1.3. Let Γ be a finite graph on the vertex set
{0, . . . , n− 1} and

LΓ = {P` : ` < n} ∪
{
R`,k : ` < k < n and {`, k} ∈ EΓ

}
be such that the P` are unary predicates and the R`,k are binary relations.
Let KΓ be the class of finite LΓ -models M such that

(1) (PM` : ` < n) is a partition of M ;
(2) RM`,k is a symmetric irreflexive relation on P` × Pk.

Notice that KΓ is a free amalgamation class (see [8, Definition 4]). Let MΓ

be the corresponding countable homogeneous structure. By [8, Corollary 2],
MΓ has the strong small index property, and obviously MΓ is ℵ0-categorical
and has no algebraicity. Using Corollary 1.2 it is now easy to see that

Aut(Γ ) ∼= Aut(Aut(MΓ ))/Inn(Aut(MΓ )) = Out(Aut(MΓ )).

Thus, by Fact 3.6 we are done.
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