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UNIVERSAL THEORIES AND COMPACTLY EXPANDABLE MODELS

ENRIQUE CASANOVAS AND SAHARON SHELAH

Abstract. Our aim is to solve a quite old question on the difference between expandability and compact
expandability. Toward this, we further investigate the logic of countable cofinality.

§1. Introduction. In this article we solve an open problem on expandability of
models by an application of some new results we obtain on the logic L(Qcfℵ0 ), first-
order logic with the additional quantifierQcfℵ0 of cofinality ℵ0. The syntax ofL(Qcfℵ0 )
allows the construction of formulas of the form Qcfℵ0xyϕ(x, y, z). The meaning
of this formula in a structure M is given by the rule: M |= Qcfℵ0xyϕ(x, y, a) if
and only if the relation {(b, c) : M |= ϕ(b, c, a)} is a linear ordering of the set
{c :M |= ∃xϕ(x, c, a)} and has cofinality ℵ0.
The second author has introduced L(Qcfℵ0 ) in [4] and has proved that is a fully
compact logic, i.e., a set Σ of L(Qcfℵ0 )-sentences (of any cardinality) has a model if
every finite subset of Σ has a model. In the same article it is proved that L(Qcfℵ0 )
satisfies the Löwenheim–Skolem theorem down to ℵ1, in the following particularly
strong form combining downward an upward Löwenheim–Skolem theorems: if Σ
is a set of L(Qcfℵ0 )-sentences having an infinite model, then Σ has a model in every
cardinal κ ≥ ℵ1, |Σ|. See Theorems 2.5 and 2.6 of [4] applied to n = 0, � = 1 and
�0 = ℵ0. Compactness of L(Qcfℵ0 ) will be used here to show that for any cardinal
κ = 2<κ > ℵ0, L(Qcfℵ0 ) has a κ-universal theory. The Löwenheim–Skolem theorem
won’t be used until the very end, in the proof of Proposition 3.6.
In Section 2 we define some classes of L(Qcfℵ0 )-theories, in particular the class
Tec<κ of theories with vocabulary of cardinality <κ which are in some sense an
analog of existentially closed models and its extension Tab<κ , the class of theories
with vocabulary of cardinality <κ which are amalgamation bases. We prove that
if κ = 2<κ > ℵ0, then any amalgamation base T∗ ∈ Tab<κ can be extended to
some existentially closed T ∈ Tec<κ+ which is universal over T∗, meaning that every
consistent extension of T∗ of cardinality ≤κ can be embedded over T∗ in T . The
proof only uses compactness and some basic facts of the logic L(Qcfℵ0 ), such as
finitary character and possibility of renaming, and they can be easily generalized to
other similar compact logics (see Remark 2.8).
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1216 ENRIQUE CASANOVAS AND SAHARON SHELAH

The notions of expandability and compact expandability were introduced by the
first author in [1] and further discussed in [2]. They are notions of largeness for
models related to first-order theories, similar to resplendency but without the use of
parameters. In these articles the existence of a compactly expandable model which
is not expandable is left as an open problem. In Section 3 we solve the problem
using the tools developed in Section 2.
To simplify notation,wewill only consider relational languages, but the results can
be easily adapted to languages with constants and function symbols. A vocabulary
� is a set of symbols, predicates in our case. If T is a theory (a first-order theory or
a L(Qcfℵ0 )-theory) �(T ) will be the vocabulary of T . L(Q

cf
ℵ0 )(�) is the set of L(Q

cf
ℵ0 )-

sentences of vocabulary �. Along thewhole article κ, � are infinite cardinal numbers.
Along all this article, consistent means finitely satisfiable. Since we are dealing with
a compact logic, this is the same thing as being satisfiable.

§2. Universal theories in L(Qcfℵ0 ). In this section we work with sentences and
theories of the compact logic L(Qcfℵ0 ) of countable cofinality.

Definition 2.1. Let �1, �2 be vocabularies.

1. An embedding of �1 in �2 is a one-to-one mapping f : �1 → �2 that preserves
arities. It is over �0 ⊆ �1 if every symbol of �0 remains fixed by f. It is
an isomorphism if it is moreover surjective. If R = 〈R1, . . . , Rn〉 and S =
〈S1, . . . , Sm〉 are tuples of predicates, we write R ≈ S if they have the same
length n = m and the mapping defined by Ri �→ Si is an isomorphism of
vocabularies, i.e., it is one-to-one and preserves arities.

2. Any embedding f : �1 → �2 induces a renaming, a mapping from L(Qcfℵ0 )(�1)
into L(Qcfℵ0 )(�2) for which we will use the same notationf. If � ∈ L(Qcfℵ0 )(�1),
f(�) is the sentence obtained by substitution of every symbol R ∈ �1 of � by
the corresponding symbol f(R) ∈ �2.

3. Assume �1 ⊆ �2. The notation �(R,S) will be used for L(Qcfℵ0 )(�2)-sentences
with the understanding that R ⊆ �1 and S ⊆ �2 � �1 are tuples of predicates
without repetitions and they include all predicates appearing in the sentence.

Definition 2.2. 1. Let T<κ be the class of consistent L(Qcfℵ0 )-theories T such
that �(T ) has cardinality <κ.

2. Let Tc<κ be the class of all theories T ∈ T<κ which are complete in
L(Qcfℵ0 )(�(T )), so in particular are closed under conjunction.

3. Let Tab<κ be the class of all T0 ∈ Tc<κ which are amalgamation bases in the
following sense: if �0 = �(T0) and �1, �2 are vocabularies with �0 = �1 ∩ �2 and
Tl ∈ T<κ for l = 1, 2 are theories with �(Tl ) = �l and T0 = T1 ∩ T2, then
T1 ∪ T2 is consistent in L(Qcfℵ0 ).

4. Finally, let Tec<κ be the class of all theories T ∈ Tc<κ which are existentially
closed in the following sense: for any vocabulary �1 ⊇ �(T ), for any L(Qcfℵ0 )-
sentence �(R,S), whereR ⊆ �(T ) and S ⊆ �1� �(T ) are tuples of predicates
without repetitions, if T ∪ {�(R,S)} is consistent, then �(R,S ′

) ∈ T for
some tuple of predicates S

′ ⊆ �(T ) such that S ≈ S ′
.
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UNIVERSAL THEORIES AND COMPACTLY EXPANDABLEMODELS 1217

Existentially closed theories are a parallel of existentially closed models. We do
not mean, of course, that they are theories of existentially closed models.

Lemma 2.3. 1. T<κ ⊇ Tc<κ ⊇ Tab<κ ⊇ Tec<κ.
2. Any T ∈ T<κ can be extended to a member of Tc<κ with the same vocabulary.
3. Assume �i ∩ �j = � for i < j < �, Ti ∈ T<κ, T ∈ Tab<κ, �(Ti ) = �i , �(T ) = �,
and T ⊆ Ti . Then

⋃
i<� Ti is consistent.

4. If κ > ℵ0 and T ∈ T<κ, then it can be extended to a member of Tec<κ .
5. For l = c, ab, ec: if f is an isomorphism from �1 onto �2, and T ∈ Tl<κ , then
f(T ) ∈ Tl<κ .

Proof. 1. We check that Tec<κ ⊆ Tab<κ . Let T0 ∈ Tec<κ be of vocabulary �0, let
�1, �2 be vocabularies such that �0 = �1 ∩ �2 and let Tl ∈ Tc<κ for l = 1, 2 be
corresponding theories with �(Tl ) = �l and T0 = T1 ∩ T2. Toward a contradiction,
assume �(R,S) ∈ T1, R ⊆ �0, S ⊆ �1 � �0 have no repetitions and {�(R,S)} ∪ T2
is inconsistent. Since {�(R,S)} ∪ T0 is consistent and T0 ∈ Tec<κ, for some tuple of
predicates S

′ ≈ S we have �(R,S ′
) ∈ T0 and hence {�(R,S ′

)} ∪ T2 is consistent.
Since the predicates of S do not belong to �2, we may rename again the formula,
showing the consistency of {�(R,S)} ∪ T2, which is against our assumption.
2. By compactness of the logic L(Qcfℵ0 ).
3. The amalgamation of finitely many theories with common intersection in Tab<κ
can be proved by induction. The general case follows by compactness.
4. Fix a countable vocabulary �∞ disjoint of �(T ) and containing for each natural
number n ≥ 1 infinitely many n-ary predicates. Let T0 = T and �0 = �(T ). We
claim that for some vocabulary �1 ⊇ �0 of cardinality |�0| + ℵ0 and disjoint of �∞,
there is some complete L(Qcfℵ0 )(�1)-theory T1 ⊇ T0 such that for every L(Qcfℵ0 )-
sentence �(R,S), if T1 ∪ {�(R,S)} is consistent and R ⊆ �0 and S ⊆ �∞, then
there is a tuple of predicates S

′ ⊆ �1 such that S ′ ≈ S and �(R,S ′
) ∈ T1. For this

purpose, let � = |�0| + ℵ0 and let us enumerate (�i : i < �) all L(Qcfℵ0 )(�0 ∪ �∞)-
sentences. We inductively define a continuous ascending chain (Σi : i < �) of
sets of L(Qcfℵ0 )-sentences. Start with Σ0 = T0. If �i = �(R,S) (with R ⊆ �0 and
S ⊆ �∞) is consistent with Σi , take a new tuple S ′ ≈ S of predicates and put
Σi+1 = Σi ∪ {�(R,S ′

)}. Otherwise, Σi+1 = Σi . In the limit case take the union.
Then let �1 be the vocabulary of

⋃
i<� Σi and let T1 be a completeL(Q

cf
ℵ0 )(�1)-theory

extending
⋃
i<� Σi .

Iterating, we define Ti+1 for i < 	 as a complete extension of Ti in a vocabulary
�i+1 ⊇ �i = �(Ti ) of cardinality |�i+1| = |�i | + ℵ0 which is disjoint with �∞. We
require that for every L(Qcfℵ0 )(�i ∪ �∞)-sentence �(R,S), if Ti+1 ∪ {�(R,S)} is
consistent and R ⊆ �i and S ⊆ �∞, then there is a tuple of predicates S ′ ⊆ �i+1
such that S

′ ≈ S and �(R,S ′
) ∈ Ti+1. Then T ′ =

⋃
i<	 Ti has the required

properties: T ′ ∈ Tec<k extends T . In fact, its vocabulary �′ =
⋃
i<	 �i verifies |�′| =

|�(T )|+ ℵ0 < κ. Moreover, if T ′ ∪ {�(R,S)} is consistent, R ⊆ �′ and S ∩ �′ = ∅,
we may assume that S ⊆ �∞ and we may fix i < 	 such that R ⊆ �i . Hence
�(R,S

′
) ∈ Ti+1 ⊆ T ′ for some S

′ ≈ S.
5. Obvious. �
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1218 ENRIQUE CASANOVAS AND SAHARON SHELAH

Lemma 2.4. 1. Assume l = c, ab or ec and Ti ∈ Tl<κ for every i < 
. If Ti ⊆ Tj
for all i < j < 
 and

⋃
i<
 Ti has vocabulary �
 with |�
 | < κ (in particular, if

cf(
) < cf(κ)), then
⋃
i<
 Ti ∈ Tl<κ.

2. Assume l = c, ab or ec, T0 ⊆ T2 ∈ Tl<κ , � < κ and |T0| ≤ �. Then T0 ⊆ T1 ⊆
T2 for some T1 ∈ Tl<�+ .

3. If ℵ0 < κ1 < κ2 and |�(T )| < κ1, then for l = c, ab or ec: T ∈ Tl<κ1 if and only
if T ∈ Tl<κ2 .

4. Let |�(T )| < κ. Then for l = c, ab or ec: T ∈ Tl<κ if and only if for some club
E ⊆ [�(T )]≤ℵ0 , for every � ∈ E, T ∩ L(Qcfℵ0 )(�) ∈ Tl<ℵ1 .

Proof. 1. Clear, using compactness of L(Qcfℵ0 ).
2. This is obvious for complete theories (case l = c). Let us consider existentially
closed theories (case l = ec). Fix, as above, a countable vocabulary �∞ disjoint of
�(T2) and containing for eachn ≥ 1 infinitelymany n-ary predicates. Let (�i : i < �)
be an enumeration of all L(Qcfℵ0 )(�(T0) ∪ �∞)-sentences �i = �(R,S) consistent
with T0 with R ⊆ �(T0) and S ⊆ �∞. We inductively define a corresponding
sequence (� ′i : i < �) of sentences �

′
i ∈ T2. If �i = �(R,S) is consistent with T2,

we use the fact that T2 ∈ Tec<κ to find some tuple S
′ ⊆ �(T2) such that S ′ ≈ S

and �(R,S
′
) ∈ T2, and we put � ′i = �(R,S

′
). If �i is not consistent with T2 we

choose as � ′i some sentence in T2 inconsistent with �i . Let �0 be the vocabulary
of {� ′i : i < �} and let Σ0 = T2 � �0. Notice that T0 ⊆ Σ0. Notice that every
L(Qcfℵ0 )-sentence �(R,S) with R ⊆ �(T0) and S ⊆ �∞ which is consistent with Σ0
is also consistent with T2, and therefore there is some S

′ ⊆ �0 such that S ′ ≈ S and
�(R,S

′
) ∈ Σ0. Now we iterate this construction 	 times, obtaining an ascending

chain of vocabularies (�i : i < 	) with �(T0) ⊆ �0, �i ⊆ �(T2) and |�i | = �
together with corresponding theories Σi = T2 � �i such that for every L(Qcfℵ0 )-
sentence �(R,S) consistent with Σi+1 and with R ⊆ �i and S ⊆ �∞, there is some
S
′ ⊆ �i+1 such that S ′ ≈ S and �(R,S ′

) ∈ Σi+1. Then T1 =
⋃
i<	 Σi satisfies the

requirements.
The case of an amalgamation base (l = ab) is similar. We extend T0 to T1 ∈ Tc<�+
such that T1 ⊆ T2 and every sentence �(R,S) consistent with T1 with R ⊆ �(T1)
and S ⊆ �∞ is consistent with T2, and then one easily checks that T1 ∈ Tab<�+ .
3 is clear and 4 follows from 1 and 2. �
Lemma 2.5. Let T0, T1, T2 ∈ Tec<κ and assume T0 ⊆ T1 and the embedding f :
�(T0)→ �(T2) maps T0 into T2. Then there is some T3 ∈ Tec<κ such that T2 ⊆ T3 and
there is some embedding g : �(T1)→ �(T3) extending f and mapping T1 into T3.
Proof. Extendf to an embedding g with domain �(T1) and such that g(�(T1))∩
�(T2) = f(�(T0)), define T ′

0 and T
′
1 as the images of T0 and T1 by g respectively,

and apply items 5 and 1 of Lemma 2.3 toT0 to show thatT ′
0 ∈ Tab<κ . Now, obviously,

T ′
0 ⊆ T ′

1 ∈ T<κ , T ′
0 ⊆ T2 ∈ T<κ and hence, by definition of T ′

0 ∈ Tab<κ, T ′
1 ∪ T2 is

consistent. By item 4 of Lemma 2.3, it can be extended to some T3 ∈ Tec<κ . Clearly,
g maps T1 into T3. �
Definition 2.6. Assume T∗ ∈ T<κ , T ∈ Tec<κ+ , and T∗ ⊆ T . We call the theory
T κ-universal over T∗ if for every T ′ ∈ Tec<κ+ such that T∗ ⊆ T ′, there is some
embedding f : �(T ′)→ �(T ) over �∗ = �(T∗) mapping T ′ into T .
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UNIVERSAL THEORIES AND COMPACTLY EXPANDABLEMODELS 1219

Theorem 2.7. AssumeT∗ ∈ Tab<κ, i.e., it is an amalgamation base. Ifκ = 2<κ > ℵ0,
then there exists some κ-universal theory T ∈ Tec<κ+ over T∗.
Proof.

Case 1. κ is regular.
Let �∞ be some vocabulary such that �∗ ⊆ �∞, |�∞| = κ and for every n ≥ 1,
�∞ has κ many n-ary predicates. Let (Si : i < κ) be a enumeration of all theories
in Tec<κ whose vocabulary is a subset of �∞. Notice that every theory in Tec<κ is a
renaming of some Si .
We are going to construct a continuous ascending chain of L(Qcfℵ0 )-theories (Ti :
i < κ) extending T∗ such that for every i < κ:
1. Ti ∈ Tec<κ+ .
2. If j, l < i , Sj ⊆ Sl and f is an embedding of : �(Sj ) into �(Ti ) mapping
Sj into Ti , then f can be extended to an embedding g : �(Sl ) → �(Ti+1)
mapping Sl into Ti+1.

We start by choosing some arbitrary initial theory T0 ∈ Tec<κ with T∗ ⊆ T0 and
�0 = �(T0) ⊆ �∞. By Lemma 2.4, we may take unions at limit stages. Now we show
how to obtain Ti+1. Let us consider a particular case of j, l < i , such that Sj ⊆ Sl
and f : �(Sj) → �(Ti ), an embedding mapping Sj into Ti . By Lemma 2.5, there
is some Tj,l,f ∈ Tec<κ+ extending Ti and some embedding g : �(Sl ) → �(Tj,l,f) that
maps Sl into Tj,l,f and extends f. The number of the possible triples (j, l, f) is
≤κ and hence, by iteration and taking unions at limits, we obtain Ti+1 ∈ Tec<κ+ as
desired.
Now let T =

⋃
i<κ Ti . By Lemma 2.4, T ∈ Tec<κ+ .

Claim 1. If S, S′ ∈ Tec<κ, S ⊆ S′ and f : �(S) → �(T ) is an embedding mapping
S into T , then there is an embedding f′ : �(S′) → �(T ) extending f that maps S′
into T .

Proof of Claim 1. Since for some l < κ there is some isomorphism between �(Sl )
and �(S′) mapping Sl onto S′, we may assume that S′ = Sl and S = Sj for some
j, l < κ. Now choose i < κ such that i > j, l and the range of f is contained in
�(Ti ) and notice that f maps Sj into Ti . By construction of Ti+1, there is some
extension f′ : �(Sl )→ �(Ti+1) of f mapping Sl into Ti+1 and hence into T . This
proves the claim.
We show now that T is κ-universal over T∗. Let T ′ ∈ Tec<κ+ be such that T∗ ⊆ T ′

and decompose it (using Lemma 2.4) as T ′ =
⋃
i<κ T

′
i where (T

′
i : i < κ) is a

continuous ascending chain of theories T ′
i ∈ Tec<κ . Since T∗ ∈ Tab<κ , we may assume

that T0 ⊆ T ′, and hence, without loss of generality, T ′
0 = T0. We claim that there is

a continuous ascending chain (fi : i < κ) of embeddings fi : �(T ′
i ) → �(T ) over

�∗ mapping T ′
i into T . Notice that in this case f =

⋃
i<κ fi will be an embedding

of �(T ′) into �(T ) over �∗ mapping T ′ into T . We start taking f0 as the identity in
�(T ′

0) and we take unions at limit stages. If fi : �(T
′
i ) → �(T ) has been obtained,

then by Claim 1 we can extend fi to fi+1 mapping T ′
i+1 into T .

Case 2. κ is singular.

By König’s Theorem on cofinality, κ is a strong limit. Let � = cf(κ) and choose
(κi : i < �), an increasing sequence of cardinal numbers which is cofinal in κ and
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1220 ENRIQUE CASANOVAS AND SAHARON SHELAH

such that |�∗| < κ+0 and 2κi ≤ κi+1 for all i < �. For each i < � let �i,∞ be some
vocabulary such that �∗ ⊆ �i,∞, |�i,∞| = κi and for every n ≥ 1, �i,∞ has κi many
n-ary predicates. Let (Si,j : j < 2κi ) be a enumeration of all theories in Tec<κ+i whose
vocabulary is a subset of �i,∞. Every theory in Tec<κ+i is a renaming of some Si,j .

We inductively construct a continuous ascending chain of L(Qcfℵ0 )-theories (Ti :
i < �) such that for every i < �:

1. Ti ∈ Tec<κ+i .
2. If j, l < 2κi , Si,j ⊆ Si,l , and f : �(Si,j ) → �(Ti ) is an embedding mapping
Si,j into Ti , then f can be extended to an embedding g : �(Si,l ) → �(Ti+1)
mapping Si,l into Ti+1.

We choose T0 ∈ Tec<κ+0 arbitrary with T∗ ⊆ T0 and �0 = �(T0) ⊆ �0,∞ and we take
unions at limit stages. This is possible by Lemma 2.4, since for any limit ordinal

 < �, |⋃i<
 �(Ti )| ≤ κ
 . In order to obtain Ti+1, we consider a particular case of
j, l < 2κi such that Si,j ⊆ Si,l and there is some embedding f : �(Si,j ) → �(Ti )
mapping Si,j into Ti . By Lemma 2.5, there is some Tj,l,f ∈ Tec<κ extending Ti
and some embedding g : �(Si,l ) → �(Tj,l,f) that extends f and maps Si,l into
Tj,l,f . By Lemma 2.4 we may find such Tj,l,f with the additional property that
|�(Tj,l,f)| < κ+i . Note that the number of possible embeddings f from �(Si,j ) into
�(Ti ) is ≤ κκii ≤ κi+1 and therefore the number of triples (j, l, f) is ≤ κi+1. We
may assume that �(Tj,l,f) ∩ �(Tj′ ,l ′,f′) = �(Ti ) whenever (j, l, f) �= (j′, l ′, f′).
By item 3 of Lemma 2.3, we see that the union of all Tj,l,f is consistent. Since
it has cardinality ≤κi+1, by item 4 of Lemma 2.3 this union can be extended to
Ti+1 ∈ Tec<κ+i+1 as required.
Now let T =

⋃
i<� Ti . It is clear that T ∈ Tec<κ+ .

Claim 2. If S, S′ ∈ Tec<κi , S ⊆ S′ andf : �(S) → �(Ti ) is an embedding mapping
S into Ti , then there is an embeddingf′ : �(S′)→ �(Ti+1) extending f that maps S′
into Ti+1.

Proof of Claim 2. Like in the proof of Claim 1, we may assume that S′ = Si,l and
S = Si,j for some j, l < 2κi .
We finally check that also in this case T is κ-universal over T∗. Let T ′ ∈ Tec<κ+
and decompose it (using Lemma 2.4) as T ′ =

⋃
i<� T

′
i where (T

′
i : i < �) is a

continuous ascending chain of theories T ′
i ∈ Tec<κ+i . As before, we may assume that

T0 ⊆ T ′ and hence that T ′
0 = T0. We claim that there is a continuous ascending

chain (fi : i < �) of embeddings fi : �(T ′
i ) → �(Ti+1) over �0 mapping T ′

i into
Ti+1. Notice that in this case f =

⋃
i<� fi will be an embedding of �(T

′) into �(T )
over �∗ mapping T ′ into T . We start by taking f0 as the identity in �0 and we take
unions at limit stages. If fi : �(T ′

i ) → �(Ti+1) has been obtained, we use Claim 2
(applied to i + 1) to extend fi to fi+1 mapping T ′

i+1 into Ti+2. �
The proof of Theorem 2.7 and the preceeding lemmas use only a few properties
of the logic L(Qcfℵ0 ). The reader can easily check that, besides compactness and
the possibility of building negations and conjunctions of sentences, we only need
to rename symbols and to give small upper bounds to the number of sentences in
given vocabularies. We are only interested here in applications of the logic L(Qcfℵ0 ),
but it may be convenient to state the main results of this section in the more general
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setting of abstract model theory. This is done in the next observation, whose proof
is left to the reader.

Remark 2.8. Let L be a compact logic, in the sense of abstract model theory.
Assume L admits renaming, is closed under boolean operators, in every sentence
only finitely many symbols occur, and in every finite vocabulary there are only
countably many (or ≤�) sentences. Define the classes Tl<κ and the notion of κ-
universal theory in an analogous way for L. If T∗ ∈ Tab<κ and κ = 2<κ > ℵ0 (or
>�), then there exists some κ-universal theory T ∈ Tec<κ+ over T∗. And similarly
the other claims of this section.

§3. Compact expandability. The following definition and the facts stated subse-
quently are given formodels of countable vocabularies. This is only for simplification
purposes, everything can be formulatedwith full generality with a fewmodifications.

Definition 3.1. Let M be a model of countable vocabulary � and of
cardinality κ.

1. M is expandable if for every vocabulary �′ ⊇ � of cardinality≤κ, if Σ is a first-
order set of sentences of vocabulary �′ consistent with the first-order theory
Th(M ) ofM , then there is some expansionM ′ ofM to �′ such thatM ′ |= Σ.

2. Call a set of first-order sentences Σ of vocabulary �′ ⊇ � finitely satisfiable in
M if for every finite subset Σ0 ⊆ Σ there is an expansion ofM that satisfies Σ0.

3. M is compactly expandable if for every vocabulary �′ ⊇ � of cardinality ≤κ, if
Σ is a first-order set of sentences of vocabulary �′ finitely satisfiable inM , then
there is some expansionM ′ ofM to �′ such thatM ′ |= Σ.

The motivation for studying compactly expandable models came originally from
the interest in restricted forms of the compactness theorem for logics with standard
part. These logics were considered by M. Morley in [3] as generalizations of 	-
logic. In 	-logic some notions concerning the natural numbers remain fixed, in
M -logic the structureM replaces the structure of natural numbers. IfM is a model
of cardinality κ, for trivial reasons the M -logic does not satisfy the compactness
theorem for sets of sentences of cardinality larger than κ. One can prove that the
modelM is compactly expandable if and only ifM -logic is κ-compact, that is, if it
satisfies the compactness theorem for sets of sentences of cardinality at most κ. For
more on this see [1] and [2].
For a proof of the following list of facts, see [1].

Fact 3.2. 1. Saturated and special models are expandable.
2. Expandable models are compactly expandable.
3. Compactly expandable models are 	-saturated and universal.
4. The countable compactly expandablemodels are the countable saturatedmodels.
5. If T is superstable and does not have the finite cover property, then every
compactly expandable model of T of cardinality ≥2ℵ0 is saturated.

6. IfT is ℵ0-stable and does not have the finite cover property, then every compactly
expandable model of T is saturated.

7. IfT is superstable and has the finite cover property,T has compactly expandable
models which are not saturated.
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8. Every unsuperstable theory having a saturated model of cardinality κ > ℵ0, has
a compactly expandable model of cardinality κ which is not saturated.

The methods used in [1] to obtain compactly expandable models which are not
saturated nor special are based on ultrapowers and chains of ultrapowers. They
always provide expandable models. In [2] several examples of theories are discussed
where every compactly expandable model is expandable. The question of whether
in some theory there exists a compactly expandable model which is not expandable
was asked in [1] in general and also particularly for the theory of linear dense orders
without endpoints. We will give now an affirmative answer.
We are going to apply the results of the previous section to the particular case
of the vocabulary �< = {<} and to some complete L(Qcfℵ0 )-theory T< in this
vocabulary. We only require from T< to extend the first-order theory DLO of
the dense linear order without endpoints and to contain the L(Qcfℵ0 )-sentences
expressing that < has cofinality ℵ0 while > has cofinality larger than ℵ0 and for
every point a, both ({b : b < a}, <) and ({b : b > a}, >) have cofinality larger
than ℵ0. More precisely:
Definition 3.3. Let �< = {<} and let T< be the L(Qcfℵ0 )(�<)-theory with the
following axioms:

1. ∀xyz(x < y ∧y < z → x < z)∧∀x (¬x < x)∧∀xy(x < y ∨y < x ∨x = y).
2. ∀xy(x < y → ∃z(x < z ∧ z < y)) ∧ ∀x∃yz(y < x ∧ x < z).
3. Qcfℵ0xy (x < y) ∧ ¬Qcfℵ0yx (x < y).
4. ∀x(¬Qcfℵ0zy(x < y ∧ y < z) ∧ ¬Qcfℵ0yz(y < z ∧ z < x)).
Remark 3.4. T< is consistent and complete.

Proof. Let (A,<A) be an ℵ1-saturated dense linear ordering without endpoints
and consider the lexicographic order of the product (	,<) × (A,<A). All the
axioms hold in this ordering. For completeness, use the quantifier elimination of
the first-order theory of linear dense orders without endpoints. �
Remark 3.5. There is a countable T∗ ⊇ T< with vocabulary �∗ = �(T∗) ⊇ �<
such that T∗ ∈ Tec<ℵ1 ; in particular, T∗ is an amalgamation base.
Proof. T< ∈ T<ℵ1 , and by items 4 and 1 of Lemma 2.3, it can be extended to
some T∗ ∈ Tec<ℵ1 ⊆ Tab<ℵ1 . �
Proposition 3.6. Let κ = 2<κ > ℵ0 ( for instance κ = �	) and let T ∈ Tec<κ+ be
κ-universal over the theoryT∗ fromRemark 3.5 (and hence extendT∗ ⊇ T<). Then:
1. T has a model of cardinality κ.
2. IfM is a model of T of cardinality κ andM< =M � {<}, then
(a) M< is compactly expandable, and
(b) M< is not expandable.

Proof. 1. BecauseL(Qcfℵ0 ) satisfies the Löwenheim–Skolem theorem down to any
uncountable cardinal.
2 (a). Let T ′ be a first-order theory in a vocabulary �′ containing the symbol <
and such that |�′| ≤ κ, and assume thatT ′ is finitely satisfiable inM<.We can assume
that �∗ ∩ �(T ′) = {<} and then T∗ ∪ T ′ is finitely satisfiable in M< and can be
extended to some T ′′ ∈ Tec<κ+ . Since T is κ-universal over T∗, there is some embed-
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ding f : �(T ′′) → �(T ) over �< = {<} (and even over �∗) mapping T ′′ into T .
SinceM |= T ,T ′′ holds in an expansion ofM and therefore in an expansion ofM<.
2 (b). Notice that the first-order theory ofM< is DLO, the theory of dense linear
orders without endpoints. There are models of DLO, hence elementarily equiva-
lent to M<, where every open interval is isomorphic to the whole model, e.g., the
ordering of the real numbers. Borrowing terminology from permutation group the-
ory, they are sometimes called doubly transitive linear orders. This property can be
expressed adding a new predicate to the language, that is, there is a finite vocabulary
�′ containing < and some first-order theory T ′ of vocabulary �′ which is consistent
with DLO and in every model of T ′ every open interval is order isomorphic to the
whole model. SinceM< has cofinality ℵ0 and all open intervals have cofinality>ℵ0,
it is not doubly transitive and, hence, no expansion ofM< satisfies T ′. �
Corollary 3.7. There are compactly expandable linear dense orderings without
endpoints which are not expandable.
Proof. By Proposition 3.6. �
Remark 3.8. In the proof of Proposition 3.6 we can use a DLO isomorphic to
its inverse. There are different choices for the theory T< of Definition 3.3. We can
specify the cofinality of the reverse order> to be ℵ0. In fact, we can even not require
density of the order.
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