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Abstract
We construct a model in which the splitting number is large and every ultrafilter has
a small subset with no pseudo-intersection.

Keywords Ultrafilter - Matrix forcing - Splitting number

Mathematics Subject Classification 03E05 - 03E35

A set b C N is a pseudo-intersection of a family A of subsets of N, if b is infinite
and b\a is finite for all @ € A. The pseudo-intersection number of a free ultrafilter I/
on N, denoted 7 p(Uf) is the smallest cardinal w such that there is a subset A C U of
cardinality u with no pseudo-intersection. The splitting number, s, is very well known.
It can be defined as the minimum cardinal such that for every family A C [N]® of
smaller cardinality, there is a maximal free filter on the Boolean algebra generated by
AU [N]<® that has a pseudo-intersection.

It was shown in [7] that it is consistent to have 7 p(U{) T < s for all free ultrafilters
U on N. We improve this by showing that the gap can between s and the pseudointer-
section number of every ultrafilter can be arbitrarily large. We construct such a model
by ccc forcing in which s = A = ¢ and 7w p(U/) < « for all ultrafilters / on N. In
fact we construct two models, one in which b = X and the second in which b = «.
The posets are constructed using a modification of the matrix-iteration method (see
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[3,5]). The modification requires extra set-theoretic hypotheses introduced in the next
paragraph which is the key to obtaining that 7 p({/) is made small for all ultrafilters
U. The first construction uses the Mathias-style poset used in [5], also often called a
Laver-style poset as in [6,11], to raise the splitting number. This poset adds dominating
reals. The second construction utilizes the ccc posets from [12] to raise the splitting
number while preserving the bounding number. We define a special collection of such
posets that we call Pp,,14 in recognition of the fact that these are all extracted from
the poset introduced by the second author in [15]. In Sect. 2 we introduce the modified
matrix-iteration methodology for constructing our posets. In Sect. 3 we establish the
combinatorial properties of the Laver-style poset that we will need, and we construct
the iteration of the first type in Sect. 4. In Sect. 5, we establish more combinatorial
properties of the posets in Pp,,14 that we will need, and then finish the construction
of the second iteration in Sect. 6.

Throughout the paper, Hyp(x, A) will denote the assumptions detailed in this para-
graph. Each of x and A is a regular cardinal and 8 < k < A = A<*. The set E is a
stationary subset of S where S} C A is the set of ordinals of cofinality «. There is a
U-sequence {C, : a € A} such that for limit ordinals @ < B8 € A

(1) Cq is a closed unbounded subset of «,
(2) if o € acc(Cp), then Cy = Cp Na,
(3) Cq N E is empty.

Naturally E is anon-reflecting stationary set. We also assume there is a >(E)-sequence
{Xq : @ € E}, where X, C « and for all X C A, there is a stationary set Ex C E
such that X, = X N« for all « € Ex. The consistency of Hyp(k, 1) is discussed in
Proposition 1.8.

1 Preliminaries

For a poset (P, <p),aset D C P is dense if for each p € P, thereisad € D with
p < d. Similarly, a set G C P is a filter (using the Jerusalem convention) if it is
closed downwards and finitely directed upwards. Therefore in the forcing language if
p < g are in P, g is a stronger condition and a subset A of P is an antichain if no
pair of elements of A have a common upper bound. For convenience, we assume each
forcing poset has a minimum element 1 p.

A P-name a of a subset of w (respectively N) is canonical if for eachn €
(respectively n € N), there is a (possibly empty) antichain A, of P such that a =
U{{n} x A, : n € w}. There should be no risk of confusion if we abuse notation and
let each n € w also denote a P-name for itself.

For an infinite set I, the poset Fn(7, 2) is the standard Cohen poset consisting of
finite partial functions from I into 2 ordered by extension. When considering Fn(/ x
N, 2), we let the sequence {x; : i € I} denote the canonical names for Cohen reals
where x; = {(n, ((i,n), 1)) : n € N}. We will refer to this sequence as the canonical
generic sequence we get from Fn(/ x N, 2). This family is forced to have the finite
intersection property, moreover, it is forced to be an independent family. Additionally,
rather than design a new poset, we can use such sequences to define uncountable
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families of pairwise almost disjoint subsets that are each Cohen over the ground model.
Fix a sequence {e, : @ € w1} (in the ground model) so that for each w < o € w1, ey
is a bijection from w onto «.

Definition 1.1 For any sequence X = {x, : @ € w;} of subsets of N, define, for
a € wi, c(X,a) and a(¥, o) where

(1) fora < w, c(x, @) = xo\ Uy~ Xk

(2) forw < «, ¢(X, «) = {min (xa\ Ufxe ) 1 k < n}) ‘n € wl,

(3) a(x,a) = N\c(X, a).

Definition 1.2 For any set /, we have the canonical generic sequence {X; o : i €
I, a € wy} for the poset Fn(I x w; x N, 2). Foreachi € I, we will let X; denote the
subsequence {X; o : @ € w;}. We then similarly have the sequences {¢(X;, &) : o € w1}
and {a(X;, ®) : a € w1} defined as in Definition 1.1.

Let us recall that a poset (P, <p) is a complete suborder of a poset (Q, <p)
providing P C Q, <pC <, and each maximal antichain of (P, < p) is also a maximal
antichain of (Q, <¢). Note that it follows that incompatible members of (P, <p) are
still incompatible in (Q, <p), i.e. p1 Lp pr implies p1 Ly p2. We use P<-Q
to denote the relation that (P, <p) is a complete suborder of a poset (Q, <p) and
say that a chain {P; : i < «} of posets is a <--chain of posets if P;<-P; for all
i < j < k. We will say such a chain is a continuous <--chain if P; = Ui<j P;
whenever j has uncountable cofinality. We will use the term strongly continuous for
achain {P, : a < y} of posets if Pg = Ua<ﬁ P, for all limits 8 < y.

Proposition 1.3 If P<-Q and q € Q, then there is a p € P (a projection) with the
property that for all r € P with p <p r (r is stronger than p), there is a q, € Q that
is stronger than each of q and r.

When we say that V or V' is a model, we will mean a transitive set that is a model
of a sufficiently large fragment of ZFC. We introduce the notion of families of sets
being thin and very thin as these are the key combinatorial properties of the factor
posets in our iteration.

Definition 1.4 Let V and V’ be models with V C V’ and let A C [N]® be in V.

(1) If P € Vand Q € V' are posets, we write P <y Q if P C Q, <pC<g, and
each maximal antichain A C P in V is also a maximal antichain of Q. Of course
P <y Qisthesameas V' = P<-Q.

(2) The family A is thin over V if for each £ € w and each infinite sequence {H,, :
n e w} C [N]=¢ in V of pairwise disjoint sets, there is, for each a in the ideal
generated by .4, an n such that H, N a is empty.

(3) The family A is very thin over V if for each a in the ideal generated by .4 and
each g € NN NV, there is an n € N such that a N [n, g(n)] is empty.

We also will need the next result taken from [5, Lemma 13].

Lemma 1.5 Let P, Q be partial orders such that P<-Q. Recall that the name idp =
{(p, p) : p € P} is the P-name for the generic filter on P. Let A be a P- namefor a
forcing notion and let B be a Q- -name for a forcing notion such that - A <Vl[idp] B,
then P« A<-Q B
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It is immediate that the conclusion of Lemma 1.5 holds if IP forces that either A = B
orif A =Fn(/l,2) C Fn(J,2) = B.

Proposition 1.6 If V C V' are models and A is thin (very thin) over V, then for each
a € wy, AU{a(X, o)} is thin (respectively very thin) over V where X = {4 : a € w1}
is the canonical generic sequence we get from forcing with Fn(w, x N, 2) over V.

Proof Fix any a in the ideal generated by A and let {H,, : n € w} C [N]=™0 be any
pairwise disjoint family in V. Let p € Fn(w x N, 2) be any condition and assume
that {n € w : a N Hy} is infinite. It suffices to prove that there is a ¢ extending p
and an n such thata N H,, = Y and ¢ IF H, N a(X, ) = ¥. We will skip the case
when @ < w since it is easier. Choose a finite set F C w; and an integer m € N
such that dom(p) C F x {1, ..., m}. By extending F but not m, we can assume that
{eq(k) : k <m} C Fanddom(p) = F x {1, ..., m}. Choose n so thatm < min(H,)
and H, Na = (. We define an extension ¢ of p that forces that H,, C ¢(X, a). Recall
that ey is a bijection from w to . Choose my > m so that F' C {e, (k) : k < mo} and
let £ = mqo + max(Hy). Set F' = F U ey (k) : k < £}.
Define ¢ D p so that the domain of g is F' x {1, ..., £} and

(1) forallm < j <¢,q(a, j) =1,
(2) forallk <mgandm < j < £, g(eq(k), j) =0,
(3) foreachmg <i <{and j < {,q(ea(i), j) = lifand only if j < m + (i —mo).

Conditions (1)—(2) ensure that g I [m + 1, €] C %o\ (U{xe, ) : K < mo}. Condition
(3) for i = myg ensures that g |- m + 1 = min(%,\ U{%e, 00 : K < mo}), and
therefore that ¢ IF m + 1 = min(%,\ U{%., %) : kK < mo + 1}). This implies that
g IFm+1 € éX, a). It is now follows by an easy inductionon 1 < i < £ — my,
using condition (3) and that ¢, is 1-to-1, that

g lkm+i=minCie\ | Jle,u) 1k < mo+i}) € ¢, a)

and this completes the proof. O

Definition 1.7 For a poset P and infinite set X, let o (X, P) denote the set of canonical
names of infinite subsets of X (meaning 1 p forces that each a € o (X, P) is infinite).
When € is a subset of g (X, P) we will use it in forcing statements to mean the P-name

{(a,1p):a €&}

Proposition 1.8 IfR| < k < X are regular cardinals then Hyp(k, \) holds in L. More
generally, there is a forcing poset that preserves all regular cardinals below A+ and
forces Hyp(k, 1) to hold in the generic extension.

Proof For the claim that Hyp(x, 1) holds in L. we refer the reader to [9]. More specif-
ically, the desired [J-sequence and the stationary set E is easily obtained from the
O(E)-sequence as formulated in [9, IX 2.1] where one lets A be the set S§. Similarly,
by [9, IV 3.2], there is a <(E) sequence.

On the other hand, it is stated in [13, 23.4, Ex. 23.3] that “squares are relatively
easy to force”, as are diamonds. Let P be the poset consisting of conditions p that
are pairs of sequences ((c} : a < Yp)s (al :a < ¥p)) where y, < A and, for each
a<vy:
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(1) ifa=B+1,ch =ay = (B},
(2) if o is a limit, af U ¢ C o with & being closed and unbounded,
3) if B € acc(cy), then cg =cbng.

The ordering on P is simply extension — hence P is < A-closed and the claim about
the preservation of all cardinals below A follows from [13, 15.6, 15.7]. For a set of
ordinals a, lettype(a) denote the order-type of a. Let G be a P-generic filter and let, for
each o € A, (cy, ay) be the pair such that there is a p € G, with (e, aly = (cq, an).
In the generic extension, let £ = {§ < A : type(cg) = k}. For each o < A such
that type(cy) > k, let, by condition (3), &, denote the unique element in cg, N E.
For each «, let Cy = c4\&y+1 if type(cy) > « and let C, = ¢4 otherwise. It is
routine to verify that {C, : o € A} satisfies the requirements (1)—(3) in the statement
of Hyp(k, 1). Since <>(E) implies that A<* = A, it remains only to prove, by a forcing
argument, that E is stationary and that {a, : @ € E}is a <>(E)-sequence. Let C be the
P-name of a closed and unbounded subset of A and let X be a P-name of a subset of
A. Fix any po € P and recursively choose a strictly increasing sequence {pg : & € «}
of conditions in P satisfying, for each & < «,

(1) thereis 8 € [Vp,. Vpe.,] such that pey IF 8 € C,

(2) thereis abg C yp,, pe+1 XN Ype = be,

(3) if & is a limit, Cﬁj& =A{yp, 1 ¢ < &L

Lety = Us<,< Yp. and ay = U$<K be. Define the sequence (cg : B < y) so that
¢y, ={yp; 1§ <«}and, for B < ye (With§ < «), ¢y = c?. Similarly, define aj to
equal agf for B < y¢ and & < k. The condition p, = ((cg B <), (ag B =<y
forcesthaty e CN E andthat X Ny = ag. O

2 The tools

In this section we introduce the modified matrix-iteration technique that will be
employed to construct our final posets.

Definition 2.1 AP is the set of all structuresa € H (1), wherea = ({P? :i < «}, {A? :
i <«k})andforeachi <«

(1) the sequence {Pl.a 11 < k}1is a continuous <--chain of ccc posets,
2) A2 C o, P ),
3) Pia+1 forces that the ideal generated by .A? is thin over the forcing extension by
P?.
1

Definition 2.2 APv is the set of all structures a € H(), where a = ({P? : i <
k}, {A?:i < «})and foreachi < «

(1) the sequence {P? : i < k} is a continuous <--chain of ccc posets,

@ A CpN, P,

3) Pl.aJrl forces that the ideal generated by A? is very thin over the forcing extension
by P7.
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Definition 2.3 For i < «k, we let fgp be the following two place relation on AP:
a SfAP b iff for all

j€li,):abeAP, PP<-PP and A3 C A°.

Similarly we let <j,= |J

i * : i i
i< Spps1-€.@ <pp bifa <, bforsomei < «.

For each a € AP, we may let P2 = (J{P? : i < «} and note that P?<-P2 for all
i < k. Similarly, it follows immediately that PKa<~PKb whenever a <}, b.

Lemma 2.4 Each of §;P and <jp are transitive and reflexive orders on AP. If i < j,
then ff\PCSiAP. Ifa Si\P b and b Si\P a, then P;" = P/b and Aj‘. = A?for all
j € li, k).

Since APv C AP, we do not need new relation symbols to denote the same binary
relations on APv.

Lemma 2.5 Ifa SZP by for some i < k, then there is a by € AP such that a Sgp b,
and b SZP by. Similarly, if by € APv, then a € APv and we can choose b, € APv.

Definition 2.6 For any i < « and ordinal §, a sequence (ay : @ < 8) is a fip-
increasing continuous chain if forallee < 8 < §and j € [i, k):

(1) aw <jpp ap.

(2) the chain {Pj"?‘m o < &} is strongly continuous, and,

(3) if o is a limit, then A% = U{AT : & < a).

Lemma 2.7 Suppose that {a, : a@ < 8} is a <jp-chain for some limit ordinal § < A
and that there is a cub C C § and ani < k suchthat{a, : a € C}is a <}p-increasing
continuous chain. Then there is an as € AP so that

(1) {ag : @ € CU{8}} is also a fi_\P—increasing continuous chain,
(2) amin(c) <%p a5, and
(3) aw <jp as forall a < 8.

Ifi =0, then {ay : a € C} uniquely determines as.

Lemma 2.8 If{ay : « < A} is a <jp-increasing chain from APv and ifA?O # () for

alli < k, then the ccc forcing extension by P = | J{P&* : a < A} satisfies that b < «.

Proof For each i < «, choose any &; € .A?O and let f; denote the order-preserving
enumeration function from N onto ;. Note that n < f;(n) for all n € N. Let g be
any P-name of an element of NN, Since P is ccc, we can assume that g is a countable
name. Choose any & € A so that ¢ is a P2*-name. Then similarly choose ig < « so that
gisa Pl.‘;” -name. Since ag fzp a, we may choose an i > ig so that ag SfAP ay. Now
we show that no condition p € P forces that f; <* g. Since Pl.a+1 <-P and each of f;
and ¢ are Pf‘Jr (-names, it suffices to prove that if p e P[.aJrl then, for any ng there is an
extension p’ of p andann > ng so that p’ ||_P?a1 “fi(n) > £(n)”.Since a; € .A?“ and
i+
ay € APy, there is a such a p” and n such that p’ IFpa,, “aiNln, gn)] = ¥”. There is
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no loss to assuming that p’ decides the value of the finite set {k < n : ﬁ(k) < n}. If
this set is empty, let m = 1, otherwise, let m be the maximum value. Clearly m < n
and we now have that p’ forces fl (m+1) > g(n). Since f, is an increasing function,
)4 \praa “ fi(n) > &(n)” as required. O

Lemma 2.9 If{a, : @ < A}isa <pp-increasing chain then the ccc forcing extension by
P = (P& : a < A}satisfies that ifU C o (N, P) is suchthat {i < :Uﬂ.A?” # 0}
has cardinality k for some a < A, then U does not have a pseudo-intersection.

Proof Note that P2<-P for all a < A Let U C p (N, P) and assume that {i < « :
un .A?" # ()} is cofinal in k. Let b be any canonical P-name of a subset of N. Choose

o < B < A such that bisa P,?ﬂ-name. Since Pg = U{Piaﬁ 11 < «k}, there is an
ig < i sothat b is a P;;ﬂ -name. Choose i < k so that a, <h, ag. Now choose any
j <ksothati,ig < jandU N Aj." is not empty. Since Aj" C Ajﬂ, Aj" is forced
by P;f_] to be thin over the forcing extension by P;ﬂ . In particular, P;ﬂ forces that b

is not an infinite subset of any element of &/ N Aj.". Since P;’S <-P,f 4 <-P, this is also
forced by P. O

Lemma 2.10 Ifa € AP (respectively a € APv) and QeH®Misa P2-name of a poset
that is forced by P2 to be ccc, then there is a b € AP (respectively b € APv) such that
a <AP b and P® = P2 x Q.

Proof We define b as follows. Set .Ab Aa forall j < «.For j < i,let Pb = Pa
and for j > i, let P;’ = P;.’ % 0. By Proposmon 1.5, we have that {P;J 1j<k}isa
continuous <--chain. By assumption, Pj'.° s Q is cce for all j < «. Now we check that
A is forced by P ’,1 to be thin (respectively very thin) over the forcing extension by
Pb Forj <i thlS is immediate.

Now assume that i < j and that (Hy :n €w)isa sequence of ij-names that are
forced to be pairwise disjoint subsets of [N]* (for some £ € w) and that ¢ is a PJI.O-
name of an element of N, Let & be any name from Aj.. Let (p, g) be any condition
in PjaJrl x Q= P/b+1' We show that b € AP by showing that for some n € w, (p, q)

has an extension forcing that H,Nais empty. We similarly show thatif a € APv, then
for some n € w, (p, q) has an extension forcing that [n, g¢(n)] N a is empty.

It will be convenient to pass to the forcing extension by P]"?‘ L1 soletpeGjygbe
a generic filter for P;‘ 1 Let O denote the interpretation of 0 byG; =GN P;.’.
We are now working in the extension V[G]. Recursively define a sequence {H,, :
n € N} ¢ [N]¢ and values {m, : n € N} C N so that, for each n, max(H,) <
min(H, .+1)» and there is a condition g, € Q stronger than g such that, for some

rn € Gj, (ru, qn) H—Pb “H = H, and g(n) =m,”. Since {H, : n € w}is a pairwise
disjoint sequence in the forcing extension by Pa there is a p’ € G 41 (stronger than

p) and an n € w such that p forces that H,, is d1s10mt from a. Since G]+1 is a filter,
we may also assume that p’ is stronger than rn. Now we have that (p/, g,,) is stronger
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than (p, ¢) and (p’, g,,) II—Pb 1 “« Hn Na = ¢”. Similarly, if a € APv, thereisann € N
Jj+

and a p’ € G j41 stronger than each of p and r, such that p’ forces that a is disjoint
from [n, m,]. This ensures that (p’, g,) IFpb 1 “In,gm)]Na=0". O
i+

Note that it follows from Lemma 2.10 that if a € AP and if {Q; : i < k} € H(})
is a sequence such that Q;isa P?-name with { P; % Oi:i <k} forming a continuous
<--sequence, then for each i < «k, P41 * Q ; forces that .A? is thin over the extension
by P; % Q;. This means that it is only the behavior of Q;| that affects if there is
b € AP with a fgp b and PiIO = P?x Q; foralli < k.

Definition 2.11 If a € AP (respectively a € APv) and OeHOMOisa PZ2-name such
that

(1) O has cardinalit.y less than «,
(2) P2 forces that Q is ccc

then a * Q denotes the §2P-extension b as in Lemma 2.10 where i < « is chosen to
be minimal such that Q is a P?-name.

We can also make the following definition.

Definition 2.12 For any a € AP (or a € APv) and ordinal 6 < A say that b € AP is the
Cohen?-extension of a if, for each i < «,

(1) PP = P2 xFn(i+1 x 0 x N, 2)
(2) AP = A2

This next lemma illustrates the device we use to ensure that every ultrafilter will
have pseudo-intersection number at most «.

Lemma 2.13 Suppose that § < A has cofinality k and that {aq : o« € §} C AP isa
<jpp-increasing sequence. Further suppose that there is a cub C C § of order type
k such that {ay, : ¢ € C}isa fgp-increasing continuous chain and that, for each
a € acc(C), ag+1 is a Cohen®' -extension of ay. Then, if P = U{P,f“y ta € acc(C)}
and € C o (N, P) is a maximal family that is forced to be a free ultrafilter on N, there
is a b € AP such that a, f’A‘P bforalla € 8, P = PKb, and, foralli <k, EN Af’ is
not empty.

Proof Let £ C g (N, P) and assume that 1 p forces that £ is a free ultrafilter on N and
that £ is amaximal such family. This just means that if be N, P)and1, IFp “(3é €
E)b > e, thenb € E. Let{w; : i < k}bethe order-preserving enumeration of acc(C).
For each i < x we now describe how to choose a value 8; € w;. By our assumption,

. . . Aw: +
ag;+1 is a Cohen®! -extension. That is, P; o

" is equal to Pl.aj"l * Q?il where Q?i’l is
equal to (the trivial) Piaj:"l -name for Fn(i + 1 x 0 x N, 2). Let X; denote the canonical
w1-sequence associated with Fn({i} x w; x N, 2) for this particular copy of Cohen
forcing. Similarly, let {c(¥;, B),a(X;, B) : B < w1} C p (N, PZ‘:"IH) be the family
of names as constructed as in Definition 1.1. Since the family {c(X;, B) : B < w1} is

forced to be pairwise almost disjoint, there is a maximal antichain A; C P such that for
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each p € A;, there is a 8, such that p forces that a(x;, &) isin & forall B, < & € w;.
Since P is ccc, A; is countable, and so we may choose any value 8; € w; that is
larger than B, for each p € A;. It follows that 1 I-p “ (3é € E)a(X;, Bi) D €. By the
maximality assumption on &, a(X;, B;) € £.

Now we define b. For each i < «, Plb = l.a”" and .Ab = aa" U {a(x;, Bi)}).
Evidently we have that £ N AP is not empty for all i < «. Smce P 2ai +' Pﬁ"l“,
we have that .Alb is a subset of g (N, Pl. °1)- It follows from Proposmon 1.6 that A;O
is forced to be thin over the forcing extension by Pb = Paai Now fori < j < «,
PP = Paa‘ -Pl.a’ < P = PID Now suppose that j < « is a limit of uncountable

coﬁnahty, we have to check that Pb U{Pb i< jl.Letp e Pb Slnce Pb

U{P “i < j}, we may choose i; < j such that p € P “/. By the
assumptlon that {ay : o e Clisa <9\P-1ncreasmg continuous chain, there isani < j
withiy <iand p € P . Finally, p € P. e P, i = P.b which completes this
step. It also shows that Pb P. This completes the verification that b € AP. Fix any
& < 6 we verify that ag 5 b. Choose i < k so that & < «; and choose i* < k
so that ag Sfp Ay, - We show that ag <AP b. Let z < j < k. First we have that

a Q; &j b Aa; Y _ pb
Aj CAj C A;’ C A7. Secondly, Pj <P; <~Pj = P). O
The proof of this next lemma is the same so the proof is omitted.

Lemma 2.14 Suppose that {a, : o« € k} C APvisa §2P-increasing continuous chain
for some i < k and that, for each limit @ € k, ag41 is a Cohen® -extension of ag.
Then, if P = |J{P& : a < k}and & C o (N, P) is a maximal family that is forced
to be a free ultrafilter on N, there is a b € APV such that ay, <, b for all a € «,
P = P,?, and {i <k :EN A? # (W} has cardinality k.

3 The Laver style posets

In this section we develop the tools to allow us to incorporate posets into <,-chains
that will increase the splitting number. An ultrafilter D on N is Ramsey 1f for each
function f with domain N and range an ordinal, there is a D € D such that f [ D is
either constant or is strictly increasing. For any family D of subsets of N that has the
finite intersection property, we let (D) denote the filter generated by D. We use the
standard notation, D, to denote the set of subsets of N that meet every member of D.

Proposition 3.1 If Dy is a free filter on N and 0 is an ordinal with 6 > ¢, then Dy can
be extended to a Ramsey ultrafilter in the forcing extension by Fn(6, 2).

Definition 3.2 For a filter D on w, we define the Laver style poset IL(D) to be the set
of trees T C N=¢ with the property that 7" has a minimal branching node stem(7") and
for all stem(7") € t € T, the branching set Succy(f) = {k : t "k € T} is an element
of D.Foranytree T C N<“andt e T,weletT; ={s €T :5sUr e T}

The name Lp = {(k, T) : (ANT = (N=®),~} will be referred to as the canonical
name for the real (pseudo-intersection) added by (D).
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Proposition 3.3 If D is any free filter on N, then Lp is forced to be a pseudo-
intersection for D and for every function f € NN, the enumeration function of Lp is
forced to be mod finite greater than f.

Definition 3.4 If E is a dense subset of IL(D), then there is a (rank) function pg from
N=¢ into w; where pg(t) = 0 if and only if t+ = stem(7T") for some 7" € E, and
forall t € N*“ and 0 < o € wy, pp(t) = « if a is minimal such that the set
(kew: pp(t™k) <a}isin DT,

Proposition 3.5 If D is a Ramsey ultrafilter and E C IL(D) is a dense set, then for
eacht € N~? with pg(t) > 0, there is a D; € D such that {pg(t"k) : k € D;} is
increasing and cofinal in pg (t).

Lemma 3.6 [14, 1.9] Suppose that P, Q are posets with P<-Q. Suppose also that Dy
is a P-name of a filter on N and Dy is a Q-name of a filter on N. If I Dy C Dy
then P x L(Dy) is a complete subposet of Q * L(D)) if either of the two equivalent
conditions hold:

() Ik (e (N.P)NDY) € DY,
@ Ikg D1 N (N, P) S (Dy).

Proof Let E be any P-name of a maximal antichain of ]L(T)o). By Lemma 1.5, it
suffices to show that QQ forces that every member of L(D)) is compatible with some
member of E. Let G be any Q-generic filter and let E denote the valuation of E by
G N P. Working in the model V[G N P], we have the function pg as in Lemma 3.4.
Choose § € w; satisfying that pg(t) < & for all t € @=“. Now, working in V[G],
we consider any T € ]L(@l) and we find an element of E that is compatible with
T. In fact, by induction on @ < §, one easily proves that for each T € L(D;) with
pe(stem(7T)) < «, T is compatible with some member of E. |

If Dy is the P-name of a maximal filter (ultrafilter), then the conditions in Lemma 3.6
hold.

Lemma3.7 If V C V' are models and A € V' is thin over V, then for every Ramsey
ultrafilter D € V, there is an ultrafilter D' D D in V' such that, for each V'-generic
filter G’ forL(D"), Ais thin over V[G'NIL(D)). In other words, in the forcing extension
of V' by L(D"), A is thin over the forcing extension of V by L(D).

Proof Let O denote the set of strictly increasing functions f € V such that f € N? for
some D € D. By the definition of thin over V, we may assume that A is closed under
finite unions. Foreach D € D,a € Aand f € O,let E(D, f,a) = {n € DNdom(f) :
f(n) ¢ a}. We show that the family {E(D, f,a) : f € O,D € D,a € A} has the
finite intersection property. It suffices to prove that if { fx : k < £} is a finite subset of
O, D € D, and a € A, then there is an n € D such that fy(n) ¢ a for all k < £. By
shrinking D we can assume that D C dom( fi) for each k < £. Choose any strictly
increasing function f € V satisfying that foralln € N, [f(n), f(n + 1)) N D # @,
and for all j € D with j < f(n), fr(j) < f(n + 1) for each k < €. Therefore, for
eachn e Nand j € DN[f(n), f(n+1)),wehavethat f(n—1) < fi(j) < f(n+2)
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for all k < £. By re-indexing, we can assume that ( J{[ f(3n), f(3n + 1)) : n € N} is
in D. Since D is Ramsey, we may choose D1 C D so that D1 = {j, : n € N} and
f@Bn) < j, < fBn+1) for all n € N. Now define H, = {fi(jn) : k < £} and
observe that H, C [f(3n—1), f(3n+2)) and so the sequence {H,, : n € N} consists
of pairwise disjoint sets. Since A is thin over V, there is an n such that H, N a is
empty. It follows that j, € D and f;(j,) ¢ a for each k < £ as required.

Let D’ be any ultrafilter in V' extending the family {E(D, f,a) : f € O,D €
D,a € A}. Now we let {Hn : n € w} be a sequence in V of L(D)-names that are
forced by some Ty € L(D) to be pairwise disjoint and of cardinality at most £ € w.
Let a be any element of A and 7;; € L(D’) be any condition stronger than Tp. We
prove there is an extension 7 D T’ € L(D') and an n € o such that T} I+ H,Na
is empty. Let 7y = stem(7p) and for each | < n € w, let H, o be the max1mal set
such that there is a 7,, € (D) with T,, IF H, o C H, and stem(7,,) = fy. There
is a Dy € D so that each element of the sequence {H, o : n € Dy} has the same
cardinality. Since we can assume that Dy C Succr, (), it follows that the elements
of {H,.0 : n € Dy} are pairwise disjoint. Choose any 1 < n € Dy so that H, o Na
is empty. If 7,, IF Hn = Hp 0, then we are done because 7, and T0 have the same
stem, and so are compatible. Let £ < ¢ be the value such that 7}, I+ |Hn\H,, ol =42
and let Eg = {T € L(D) : stem(T) ¢ T,, or(A))T I+ j € Hn\H,,,o}. Since Eg is
a dense subset of IL(D), we have the associated rank function pg, where for ¢t € T,,
PE,(t) = 0 implies that there is a T € Ep with stem(7') = t and j € N\ H, o such
that T I j € Hn. By the maximality assumption on 7, we have that pg,(fp) > 0. If
PEy(to) > 1, then by Proposition 3.5, there is a ko such that 1 < pg,(t;"ko) < pE,(to)
and ;" ko € T;;. By repeating this step finitely many times, we can find a #; € T} such
that pg, (f1) is equal to 1. We may assume that pg, (t;" k) = Oforallk € Succry, (¢1). For
each k € Succyy (1), let H, (¢]" k) be the maximal (non-empty) set of j such that there
is some condition in IL(D) with stem equal to #;"k that forces H, (¢ k) C H,,\H,, 0-
There is some Dy, € D and ¢; € w such that {H,,(1]"k) : k € D} all have cardinality
L;. For each j < {;, define the function f; with domain D;, such that f;(k) is in
H, (k) and, for each k € Dy, {f;(k) : j < {;} enumerates H,(¢;" k) in increasing
order. By shrinking D, we can assume that each f; [ Dy is either constant or is
strictly increasing. Since pg,(t1) > 0, fo is not constant. To see this, assume that
fo(k) = m for each k € Dy,. For each k € D, choose a condition Tk € L(D)
so that stem(7%) = t[k and T I+ m € H But now, the contradiction is that
U{Tk :k € Dy} can be shown to be a condition with stem equal to #; that forces that
m € H,. Choose any k in the non-empty set Sucegy (1) N (UE(Dy,, fj,a):j <t}
andsetr, =tk € TO/. Now define H, | = Hn,o_U H, (t["k) and choose T> C Ty as
above so that stem(72) = t» and 77 |- H, 1 C H,. Define E; analogous to how we
defined E so that for ¢t € (Tk)lz, pE,(t) = 0 if and only if there is a condition with
stem ¢ that forces some j to be in Hn\H,,yl. We again note that when we proved that
each f; (j < ') above was strictly increasing, we have also shown that pg, () > 0.
Since H, is a proper extension of H, o and is also disjoint from a, we can repeat
this argument finitely many (at most £) times until we have found an element 7 € T
which has a stem preserving extension that forces H, is disjoint from a. O

@ Springer



Sh:1134

1016 A.Dow, S. Shelah

Corollary 3.8 Suppose thata € AP andlet |P2| < § = O™ < A, thenthereisab € AP
and a sequence {D; : i < «} satisfy that, fori < j <k,

(1) a<f b,

2) Di C (N, P xFn(i+1 x6,2)),

(3) Di C Dy,

4) P; xFn(i+1 x 0, 2) forces that D; is a Ramsey ultrafilter on N,
(5) Pb P2« Fn(i x 0,2) x L(D;).

Definition 3.9 For any a € AP we will say that b is an L(ﬁ)—extension of a if there is
asequence {D; : i < k}suchthatforalli < j < «,

(1) a <}, b,

@) Di C p(N, PY),

(3) D; is forced by P? to be a Ramsey ultrafilter on N,
4) D; C Dy,

(5) PP = P?xL(D)).

4mp(l) <kandb=s5=1

Fix a 1-to-1 function /& from A onto H (A). Recall that {X,, : ¢ € E} is the <>-sequence
on X as in Hyp(x, A).

Theorem 4.1 Assume Hyp(k, )). There is a sequence {ay, {y : @ € A} such that for
each limit § € A

(1) the sequence {ay : o < 8} is <jp-increasing, {§o : o < 8} is non-decreasing, and
Ls € A is the supremum of {{y : @ < §},

(2) if§ ¢ E, the sequence {a, : a € acc(Cs) U {8}}isa §2P-increasing continuous
chain,

(3) if8 € E and & = {(h(&) : & € X5} is a maximal subset of o (N, P&) that is
forced by P2 to be a free ultrafilter on N, then Es N A? is not empty foralli < k,

(4) agyy is the Cohen®! -extension of as and {5+ = &5,

S) ifa =6+ 1 then {yy1 = Ly and ay+1 is the Cohen® -extension of aq where
O = | PN

(6) ifa =68+ 2, then {y4+1 = {y and ay+1 is an L(D)-extension of ay,

@) lfOl € (6 4+ 2,8 4+ w), then {y+1 is the minimal value strictly above ¢ such that
Qa+1 = h(&y+1 — 1) has cardinality less than k and is a P& -name of a poset
that is forced to be ccc, and a1 = ag * Qa+1 as in Definition 2.11.

Proof The proof is by induction on limit § < A. We can define ap so that Pl.ao =
Fn(i x N, 2) and .A?O = () for all i < «. Similarly, for n € w, let a,4 be the
Cohen®-extension of a,. For all n € w, set {, = 0. If § is a limit ordinal not in E and
acc(Cy) is cofinal in §, then {ay : @ € acc(Cs)}is a fgp-increasing continuous chain,
and so as is defined as in Proposition 2.7. If acc(Cs) is not cofinal in §, then let o
be the maximum element of acc(Cs), and let C = {an : n € w} enumerate Cs\«p.
There is an i < « such that {a,, : n € w}isa < Ap—lncreasing continuous chain.
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Again applying Proposition 2.7 produces as so that ag, SRP as. Case (5) is handled
by Lemma 2.10 per Definition 2.12. Similarly, per Definition 3.9 and by inductive
assumption (5), Corollary 3.8 handles inductive step (6). Inductive step (7) is handled
by Definition 2.11 and Lemma 2.10.

Now we consider inductive step (3) when § € E. By induction hypothesis (1),
we have that {a, : @ € acc(Cs)} is a ggp-increasing chain. Let P denote the poset

U{P,f"‘ : o € acc(Cs)}. We recall from Lemma 2.9 that PKaﬁ <-P forall B < 6. 1If
{h(§) : &€ € X5} is a subset of p (N, P) and is forced to have the finite intersection
property, we can use Zorn’s Lemma to enlarge it to a maximal such family. Otherwise,
choose & C o (N, P) to be any maximal family which is forced to have the finite
intersection property. Since g (N, P) consists only of sets that are forced to be infinite,
Es is forced to be a free filter. We prove that & is forced to be an ultrafilter. Assume
that b is any canonical P-name of a subset of N and that p € P is any condition that
forces b meets every member of &. Thereisa e € p (N, P) such that p IFp b=¢"
and, for all ¢ € P that are incomparable with p, g IFp “é = N”. Clearly then 1p
forces that £ U {é} has the finite intersection property. By the maximality of &, é € &;.
This proves that p |- b € . Now apply Lemma 2.13.

This completes the proof. O

Theorem 4.2 Assume Hyp(x, )). There is a ccc poset P forcing that s = b = A,
MA(k), and & p(U) < « for all free ultrafilters U on N.

Proof Let {ay, {y : @ € A} be the sequence constructed in Theorem 4.1. Let P be the
poset U{Pf"‘ ta € A}. Since {P3 : a € A} is a strongly continuous <--increasing
chain of ccc posets, it follows that P is ccc. Furthermore g (N, P) is equal to the union
of the increasing sequence {g (N, P&) : o < A}. It then follows immediately from
condition (6) that s is forced to be A. Similarly by Proposition 3.3, P forces thatb = A.
Now we check that P forces that M A (k) holds: that is, if Q is any P-name of a ccc
poset of cardinality less than « and {Ag : & < p} is a family of maximal antichains
of Q with & < «, then there is a filter G on Q that meets each Ag. To show that this
is forced by P, we may choose a P-name Q for Q as well as P-name {A'g 1€ <k}
for the maximal antichains. We may assume that 1 p forces that QO is ccc. Since O has
cardinality less than A, there is an « < A such that Q, and each Ag is a P2 -name.
Choose any y < A so that Q * Fn((y, y 4+ ), 2) is not in the list {1(¢) : ¢ < ¢,} and
leth(¢') = Q *Fn((y, y +w), 2). It follows from inductive conditions (1) and (7), that
the sequence {¢, : @ € A} is unbounded in A. So we may choose limit § < A maximal
so that ¢s < ¢’. Since £513 = &5 and 54, 18 greater than ¢’, there is a minimal n > 3
such that ¢’ < ¢s4n+1. It should be clear that by inductive condition (7) that ¢' + 1 is
equal to {54,+1 and so QQHH1 was chosen to be Q * Fn((y, v + w), 2). This ensures
that P! forces that there is a filter on Q that meets each Ag.

Now let I be a P-name of an ultrafilter on N. As we did in the inductive step (3),
we can let £ be the set of all ¢ € p (N, P) that are forced by 1p to be an element of
U. There is a cub C C A such that for all § € S,’}, ENp (N, P,?‘S) is a maximal set that
is forced by P2 to be an ultrafilter on N. Now let X = {£ € A : h(£) € £}. We can
pass to a cub subset C’ of C so that for all § € C’' N SZ, the set {h(§) : & € X N 8}
isequalto &N gp (N, P2%). Now choose a 8 € E N C’ so that X5 = X N 8. It follows
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from inductive step (3), that £ N A?a is not empty for all i < k. By Lemma 2.9, P
forces that I has a subset of size k with no pseudo-intersection. O

5 Another ccc poset for raising s

The proper poset O pouiq is introduced in [15] (also Sh:207 in the Shelah archive) to
establish the consistency of b < s = a. For special directed subfamilies D of Qpouia,
there is a ccc poset denoted Q(D) that is analogous to LL(E) for filters £ on N (see
Definition 5.6). Let us note the important properties of Qp,,;4 shown to hold in [15].
The first is that it adds an unsplit real.

Proposition 5.1 IfL is the generic subset of N added by Qpouia, then the set {A C
N: A € Vand |L\A| < Ko} is a free ultrafilter over V N P(N).

The second is that the forcing does not add a dominating real. By Lemma 2.8, this
property is needed if such a Q (D) is to replace LL.(£) in constructing a in APv.

Proposition 5.2 If f is a Qpouia-name of a function in NN and if L is the generic
subset of N added by Qpou1a, then there is a (ground model) h € NN so that, for every
infinite set A C N in the ground model, the set {n € A : f(n) < h(n)} will be forced
to be infinite.

We adopt the elegant representation of this poset from [1]. Also many of the tech-
nical details for constructing ccc subposets of this poset, sharing the above mentioned
properties, are similar to the results in [12]. The main tool is to utilize logarithmic
measures.

Definition 5.3 A function £ is a logarithmic measure on a set S C N if / is a function
from [S]<™ into w with the property that whenever £ > 0 and h(a Ub) > £ + 1, then
either 1(a) > € or h(b) > L. A pair (s, h) € L, if s € [N]<N0 and £ is a logarithmic
measure on s with (s) > n. The elements e of [N]<X0 such that 4(e) > 0 are called
the positive sets.

When we discuss # € L, we use int(t) and h; to denote the pair where r =
(int (1), hy). We say that a subset e of in#(¢) is t-positive to mean that /,(e) > 0. Note
that if (s, h) € £, and @ # e C s, then (e, i | [e]™™0) € Ly ().

Definition 5.4 The poset Qp,u1q consists of all pairs (u, T) where

(1) u € [N]=%,

(2) T = {t; : £ € w}isasequence of members of £; where for each ¢, max(int(ty)) <
min(int(t¢4+1)), and the sequence {h;, (int(t;)) : £ € w} is monotone increasing
and unbounded.

For each (u, T) € Qpoula, let £, r be the minimal £ such that max(u) < min(int(y))
and letint(u, T) = Ufint(tg) : Ly 7 < £}.

For Ty = {t} : £ € w}and T» = {17 : £ € w} with (u1, T1), (2, T») € Qpouia, the
extension relation is defined by (u>, 72) > (u1, T1) (stronger) providing

@ Springer



Sh:1134

Pseudo P-points and splitting number 1019

(1) up D uy and up\u is contained in int(uy, T1),

) int(up, Tr) Cint(uy, T1)

(3) there is a sequence of finite subsets of w, (Br : k € w), such that for each
k > £y, 1,, max(By) < min(By41) and int(t,?) C U{im‘(tzl) 1€ € By},

(4) forevery k > £,, 1, and every t,f—positive e C int(t,?) there is a j € By such that
en int(t}) is t} -positive.

For a finite subset D of Qpy,q and an element 7 of £, we say that ¢ is built from
Difthereisaqg = (4, T;)) € Qpoua With t € Ty such that g > (4, T,/) for each
q' = (uy,Ty) €D.

Definition 5.5 Theelementsg € Qpouiq of the form (4, T, ) are called pure conditions.
We let Ppouia denote the set of all pure conditions in Qpg,uiq. A family D C Ppouia
is finitely compatible if each finite subset of D has an upper bound in Qp,,14. The
family D is finitely directed if each finite subset has an upper bound in D.

Foranelementq € Qpgouia, weletu, and T, denote the elements withg = (ug, Ty).
We also use int(q) for int(ug, T,). The fact that the elements of 7, are enumerated
by w is unimportant. It will be convenient to adopt the convention that for an infinite
set L C o, the sequence (@, {t; : £ € L}) is a pure condition so long as (4, {t, : n €
}) € Qpoutd Where {€, : n € w} is the increasing enumeration of L and ¢, = 1, for
eachn € w.

Definition 5.6 If D is a finitely directed set of pure conditions, then define Q(D) to
be the subposet {(u, T) : u € [N]<N0, (@, T) € D} of Qpouia. We let Lp denote the
Q(D)-name {(n,q) : g € Q(D) , n € ug}.

Proposition5.7 If D C 7330,.41,1 is finitely directed, then Q (D) is a o-centered poset.
Each q € Q(D) forces that Lp\int(Ty) C uq.

It follows from the results in [12] that there is a Fn(2%, 2)-name D that is forced to
be a finitely directed subset of Pp,,;4 With the property that Fn(2®, 2) * Q (T)) will add
an unsplit real and not add a dominating real (see Lemmas 5.16 and 5.22). These will
be the factor posets we will use in place of LL(D) in the construction of members of
APv. We will also need an analogue of Lemma 3.6 and we now introduce a condition
on D that will ensure that Q(D) <y Q(D») when D> D D in a forcing extension of
V (see Proposition 5.11).

Definition 5.8 Let D C Ppgouia be directed mod finite. For a set E = {(u,, T,) : n €
w} C Q(D) we say that (@, {t; : £ € w}) € Ppouid, 1S @ mod finite meet of E if,
foreach 0 < £ € w, w C max(int(¢t;—1)), and hg-positive e C int(ty), there is an
n < minint(tg+1) and a w, C e such that (wUw,, {t,, : m > €}) > (u,, Ty) for each
k < max{n, £, max(int(t;_1))}.

A set of pure conditions D is N{-directed mod finite if it is directed mod finite and
each predense subset of Q(D) has a mod finite meet in D.

Lemma 5.9 Suppose that {(u,, T,) : n € w} is a subset of Qpouia and let T be a mod
finite meet. Then, for each w € [N]<R0, {(u,, Tp) : n € o) is predense below (w, T)
in all of Qpouid-
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Proof Let (w, T') be an arbitrary member of Q p,,14 that is compatible with (w, T) =
(w, {t; : £ € w}) in Qpouia- By extending (w, T'), we may assume that (w, T') <
(w,{ty : £ > £y)}), where w C min(int(t,,)). Choose any T'-positive e so that
(wUe, T") < (w, T') and max(w) < min(e). Therefore there is an £ > £,, such that
h¢(e Nint(tg)) > 0, and so, by Definition 5.8, there is an n < min(int(#;+1)) and a
w, C e so that (w U w,, T) < (u,, T,) and we have that (w U w,, T") < (w,T) <
(un, Ty). O

Definition 5.10 Q07 is the set of Q(D) where D is an Ri-directed mod finite set of
pure conditions.

PropOSItlon 5.11 Assume {P; : i < k}is a continuous <--chain of ccc posets and that
{Q, 11 < Kk} is a chain such that, for each i < k, Ql is a P;-name of a member of
Q207, then {P; * Q, 11 < k} is a continuous <--chain of ccc posets.

Proof By Lemma 1.5, it suffices to prove that each Pj-name of a predense subset of
0, j is forced by P; to be predense in 0;. Since O ; jis forced to be a subset of Q;, it is
immediate that [N]<™0 x {T'} is a predense subset of Q; foreach (4, T) € Q; j- Now
the Proposition follows by Lemma 5.9. O

Definition 5.12 Say that a subset L of £ is D-positive if for each finite D’ C D and
eachn € w, thereisat € £ N L, that is built from D’.

Proposition 5.13 If/::c L is D-positive for some D C Ppouid, then for each finite
D' C D, the set {t € L : t is built from D'} is D-positive.

The poset Fn(N, 2) is forcing isomorphic to the poset v = ordered by extension.
Similarly, each infinite branching (non-empty) subset S C w=® is forcing isomorphic
to w=?; we say that S is infinite branching if, for each s € S, the {n € w : s"n € S}
is infinite. For such infinite branching S C ©»<“ and each k € w, let n,f denote the
S-name {(s(k),s) : s € S and k € dom(s)}.

Definition 5.14 Fix an enumerating function A from w onto L. For D C Ppgouia, say
that S C w=® is D*-branching if ¥ € S and, for each s € §,

(1) foreach k € dom(s), A(s(k)) € Ly,
(2) max(int(A(s(j)))) < min(int(A(s(k)))) for j < k € dom(s), and
(3) the set {A(n) : s—n € S} is a D-positive set .

For each k € w, define the S-name r',f to be A(r't,f ). For each finite D' C Pgouia, let
I%, be the S-name for the set {k € w : i’ks is built from D'}.

Lemma5.15 If D C Ppouiq is finitely compatible and if S C w=% is DT -branching
then s DS =D U@, {(f 1k € [5,}) : D' € [DI™} is finitely directed.

Lemma5.16 IfD C Ppouiq is finitely directed, then there is a Fn(N, 2)-name bl such
that

(1) IFEn@,2) D C D1 C Paoula and @1 is finitely directed,
(2) foreach A C N, IFpan,2) (3g € D) (int(q) C A or int(q) N A =)
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Proof Let S C @~ be the maximal D -branching set. That is, S is the set of all
s € w=“ that satisfy properties (1) and (2) of Definition 5.14. For finite subsets D’ of
D, let Ig, be an S-name for the set {k € w : r',f is built from D’}.

For a subset A of N, define L(A) tobe {t € L1 : int(t) C A}. If L(A) is not D-
positive, there is a finite D4 C D and an integer m such that thereisnot € £,, N L(A)
that is built from Dy4. Since, for each r € L, 11, there is an e C int(t) such that
hi(e) > n and either e C A or e C (N\A), it follows that if A is a finite partition of
N, then L£(A) is D-positive for some A € A. Therefore, by Zorn’s Lemma, there is
a free ultrafilter &/ on N so that L(U) is D-positive for all U € U. For each U € U,
let g denote an S-name that will evaluate to {k € w : int(i’,f ) C U}. It follows from
the fact that L(U) is D-positive, that IFg I 5 N Ig, is infinite for each D’ € [D]<N0. It
is also clear that IFg {i 5 N Ig, : U € U} is closed under finite intersections. It then
follows that I-s DS =D U {(@, {#{ : k € I5,}) : D' € [D]<™0} is the desired finitely
directed subset of Pgouid- O

In order to produce extensions of finitely directed D C Ppouiq that are R -directed
mod finite, we will need the following tools for constructing members of L, for
arbitrarily large n. A family L C [N]<™0 naturally induces a logarithmic measure.

Definition 5.17 Let L C [N]<% and define the relation i(s) > £ for s € [N]<™ by
induction on |s| and £ as follows:

(1) h(e) > 0 forall e € [N]=™0,

(2) h(e) > 0 if e contains some non-empty element of L,

(3) for ¢ > 0, h(e) > € + 1 if and only if, |e|] > 1 and whenever e, e; C e are such
that e = e; U ey then h(ey) > £ or h(ey) > L.

The definition of A (e) is the maximum £ such that i(e) > £.

Proposition 5.18 [1, Lemma4.7] Let L C [N]=™0 be an upward closed family of non-
empty sets and let h be the associated logarithmic measure. Assume that whenever N
is partitioned into finitely many sets A, there is some A € A such that L N [A]<X0 is
non-empty. Then, for any partition A of N, and any integer n, there is an A € A and
an e C A such that h(e) > n.

Lemma5.19 If D C Ppouiq is finitely directed and E = {(u,, T,) : n € w}is a
subset of Q(D), then in the forcing extension by Fn(N, 2), there is a finitely directed
D C D1 C Ppould such that either E is not predense in Q (D) or there is a condition
(@, T) € Dy such that (¥, T) is the mod finite meet of E.

Proof We assume that in the forcing extension by Fn(N, 2), E is a predense subset of
Q(Dy) for each finitely directed Dy with D C D1 C Ppouia- We will prove there is
a DT -branching S C w=® satisfying that I-g (4, {r'kS : k € w}) is a mod finite meet
of E. By Lemma 5.15, S forces that there is a Dy as required. Since S will be forcing
isomorphic to Fn(N, 2), this will complete the proof.

Let L = {w € [N]<™ : (3n € w) u, C w}, and for each w € [N]<N0, let

Ly = {w; € [N : max(w) < min(w;) and w U w; € L}.
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Say that r € Ly is (E, £)-large (for £ € N) if £ < min(int(¢)) and for each w C
{1, ..., £} each r-positive set contains an element of L,,. For each (E, £)-large t, let
N; > max(int(t)) denote a sufficiently large integer such that each ¢-positive set
contains an element of {u, : n < N;}.

Claim 1 Foreach € N, the set {t € Ly : t is (E, £)-large} is D-positive.

Proof of Claim 1 Let £ € N. Since D is finitely directed, in order to show that the set of
(E, £)-large elements is D-positive, it suffices to show that for each g € D there is a
(E, £)-large ¢ that is built from ¢g. Note t € L is built from q if int(t) C int(q) and,
for each t-positive set e, there is a . € T, such that e Nint(z,) is t.-positive. Say that
a finite set e is g-positive if there is a #, € T, such that e Nint(t,) is t,-positive. Note
also that if g1, ¢ € Ppouia and g1 > g, then each g -positive set is also g-positive.
Define Ly ¢ to be the elements of (), (;. ., Lw that are also g-positive. Let hig ¢
denote the associated logarithmic measure as in Definition 5.17.If e € L, ¢ is a subset
of int(g), then (e, hy ¢ | [e]<%0) is built from q. Therefore, to finish the proof of the
claim it will suffice to prove that there is an e € Ly ¢ with hy ¢(e) > £. We prove
this using Proposition 5.18; so let .4 be a finite partition of N. Pass to the forcing
extension by Fn(N, 2) and choose, by Corollary 5.16, a finitely directed D; C Ppouid
that contains D and satisfies that there is a ¢; > ¢ in Q(D;) and an A € A such that
int(q1) C A. We may arrange that £ < min(int(q)). By assumption, E is a predense
subset of Q(Dy). Let {tx : k € w} be the standard enumeration of T, . For each
w C{l,..., ¢}, thereis a gy > (w, Ty) and an n,, € w such that g, > (uy,,, Ty,,).
There is a Ky, € w such that (ug, \w) C (J{int(t) : k € K,,}. Since ug,, D uy,,, we
have that any finite set containing u,, is in L. This shows that, for some K € o,
e = Uk<K int(t;)isin Ly, foreachw C {1, ..., £}. Since e is g1 -positive and g1 > ¢,
it follows that e is g-positive. This completes the proof that e € L, y. O

For each s € w=?, define £; to be the maximum element of the set {1} U
Ukedom(s) int(A(s(k))). Now define the infinite branching S C @=<® by the recur-
sive rule that, foreach s € S andn € w, s n € S if and only if

(1) A(n)is (E, £y)-large, and
(2) A(n) is built from {(4, T,) : n < max{Nyy) : k € dom(s)}} and (4, Ty, ).

Claim 1 and Proposition 5.13 show that S is D" -branching. The definition of the notion
of being (E, £)-large and the second criterion of being an element of S, ensures that
IFs (2, {ifks : k € w}) is the mod finite meet of E. Since Fn(N, 2) is forcing isomorphic
to S, the proof of the Lemma now follows from Lemma 5.15. O

The next result follows by first applying Lemma 5.15 to obtain directed mod
finite extension of D, next applying Lemma 5.16, and finally repeatedly applying
Lemma 5.19 in a recursive construction of length c.

Lemma 5.20 If D is a finitely compatible set of pure conditions then there is a Fn(c x
N, 2)-name D such that Fn(c x N, 2) forces that

(D) T)l - PBould is finitely directed and includes D,
(2) O(Dy) is in Qa07, and
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(3) the ground model subsets of N is not a splitting family in the further forcing
extension by Q(Dy).

We now establish notation that will be useful when preserving that a family of
names is forced to be very thin.

Definition 5.21 Let Q € Q7 and let f be a Q-name such that IFo f e NN A

condition g € Q is f—ready if, for each integer £ > 0, w C {1, ..., max(int(tg_l))},
and tg -positive e, there is a w, C e such that (w U w,, {tZ : k > £}) decides the value
of £(j) < min(int(t{ ) foreach j € {1,..., max(int(t{_,))}.

Lemma5.22 For each Q € Q207 and Q-name f such that IFo f e NN, the set of
f-ready conditions is a dense subset of Q.

Proof Let Q and f be as in the statement of the Lemma and let ¢ be any element
of Q. For each k € N, there is a pre-dense set {(un, n) i n € w} C Q satisfying
that (ug, T ) > g and (uﬁ, Tnk) forces a value on f[{l ,k} for each n € w.
By choosmg a cofinite subset of TX we may assume also that (uk, T*) forces that
the range of f [{l,...,k}is contalned in mln(znt(Tk)) Since Q € Qy7, there is,
for each k € N, a condition (9, {té‘ : £ € w}) € Q which is the mod finite meet
of the predense set {(u’,‘l, T,{‘) : n € w}. We recall that this means that for each
L ew wcC({l,. ..max(int(té‘fl))} and té‘-positive e, there is a w, C e, such that

(w U w,, {t,’fl : L < m € w}) decides the value of f [ {1,...,k}. Also, if n was
the value witnessing that (w U w,, {t < me w}) > (un, n) then the range of
fI{1,..., k}is also forced to be contained in mm(znt(Tnk)) < mm(znt(tHl)).

Let To = {tg : £ € w} and for each k € N, let T}, = {t{,‘ : £ € w}. Choose
@, {te : £ € w}) to be a mod finite meet of the family {(4, Ty) : k € w}. It follows
easily from the definition that (4, {z; : max(u,;) < £ € w}) is also a mod finite meet
of this family, and so by re-indexing, we can assume that #, is built from a finite subset
of Tmax(int(r,_p)) for each £ € w, and that max(u,) < min(int(tp)). We check that
(g, {te - £ € w}) is f ready. Consider any £ > 0 and let ¢ denote maxznt(tg 1).
Choose any w C {I,..., £} and fe- positive e. Choose any k so that e N znt(tk) is
t,f-positive. Choose w, C (eﬂznt(tk)) so that (w U w,, {r¢ . Lk < m € w}) decides the
value of f I {1,...,£}. Since (&, {t,, : m € w}) is a mod finite meet of the sequence
{@, T,,) - m € w}, we also have that (4, {t,, : £ <m € w}) > (9, {t,ﬁ k< m e w}).
Therefore (w U we, {ty, : £ < m € w}) > (w U w,, {tf;, : k < m € w}). This proves
that (w U we, {t,, : £ < m € w}) decides the value off [{1,...,¢}. O

Corollary 5.23 Suppose that a € APv and let |P3| < 6 = 6% < X and let a| denote

the Cohen?-extension of a. Then there is a b € APV and a sequence {D; : i < K}

satisfy that, fori < j < k,

(1) a; <8 band A® = A2,

(2) Di C 9 (L1, P,

(3) D; Cc Dy,

4) Pl.al forces that {0} x D; = {(@,T) : T € D;} is a subset of Ppouia and is
R -directed mod finite,
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(5) PP =P % Q({9} x D),

1

b . .. .
(6) Pj forces that o (N, P?) is not a splitting family.

Proof Let a € APv and ¥ < |P,f‘|NO < 6 < A. If needed, we can first extend a by
applying Lemma 2.10, so as to assume that |- pa ¢ = 6 foralli < «. Before proceeding
we note that it follows from Lemmas 2.10 and 5.11, that condition (4) will imply that
{Pib 11 < K} is a continuous <--chain of ccc posets as required in the definition of
APv. We construct the sequence {D; : i < «} by recursion on i < «. It follows from
Lemma 5.20 that thereisaset Dy C g (L1, P§+*Fn({0} x 6 x N, 2)) such that {}} x Dy
is forced to be a subset of Pp,,q that is Rj-directed mod finite. Assume that 1 < «
and that {D; : i < 1} has been constructed so that for i < j < 1, properties (2)—(6)
hold and so that Piljr] forces that A? is very thin over the forcing extension by Pl.b. It
will be most convenient to continue the argument in a forcing extension.

Let G, C P¢ be a generic filter and, for each i < «, let G; = G, N Pia. For
eachi < «,let H; C Fn(i+1 x 0 x N, 2) be a filter so that G; x H; is a generic
filter for P x Fn(i+1 x 6 x N, 2). It follows that G = Gj (U{Hi 1< i}) is a
generic filter for PTa * Fn(1 x 6 x N, 2). We work in the forcing extension VIG].
We first handle the case when 1 is a limit ordinal. By the definition of the family
APv, the sequence {.A? 1 i < k}is not aconcern, as in Definition 2.2, when defining
be in the limit case. It should be clear that the G-interpretation of the collection
E =¥} x D; : i < 1}is a finitely directed subset of Ppyyi4. We proceed as in
the base case. By Lemma 5.20, there is a Fn({i} x 6 x N, 2)-name, &, of a subset
of Ppouia that is forced to be an R-directed mod finite extension of £ that further
forcing by Q(&') ensures that the family [N]® N V[G] is not a splitting family. The
family D is a subset of (L1, P? *Fn(i+1 x 6 x N, 2)) that contains D; foralli <1
and is forced to satisfy that & is equalto {{#} x T : T € Dy}.

Now we may assume that T = i + 1 and we note that A? is a family of P2 -
names that is forced to be very thin over the forcing extension by P?. It follows from
Lemma 2.10 that A? is forced to be very thin over the model V[G; * H;]. We again
work in the forcing extension V[G] where G = G, * H;. Let A denote the ideal
generated by the G interpretations of the names from A?. Let £ denote the X -directed
mod finite family {{(}} x T : T € D;}. Let x¢ denote the canonical subset of N added
by Fn({(i + 1, 0)} x N, 2) over the model V[G] as in Definition 1.2. Let {11, : m € w)}
denote the name of the increasing enumeration of xy. For all a € A, let I(a) be a
canonical Fn({(i + 1, 0)} x N, 2)-name for the set {m € N : a N [1n,, nue1] = 0}
For each ¢ € Q(£), let j(a, q) be a canonical Fn({(i 4+ 1, 0)} x N, 2)-name for the
set{{ e N: (Im € [(a)) fim < max(int(tr_1)) < min(int(tg4+1)) < Ry}

Claim 2 The family & = {(¥, {tg l € J(a, QY ae A g e QE)}isforced to be
a finitely directed subset of Ppoula.

Proof of Claim Each ¢ € £ is in the model V[G; x H;] and each a € A is thin over
that model. Therefore there is an infinite set of £ € N such that a is disjoint from
[max(int(te—1)), min(int(t,+1))]. This implies, by a simple genericity argument, that
J(a, q) is forced to be an infinite set for each a € A and g € £. Let H be the generic
filter for Fn({(i + 1, 0)} x N, 2) that is equal to H;+1 NFn({( + 1,0)} x N, 2). For
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alla € Aand g € &,let I(a) and J(a, q) denote the interpretations by H of I(a) and
J(a, q) respectively. Similarly let {n,, : m € N} denote the increasing enumeration
of the interpretation of xg.

Evidently, if a; C ay are elements of A, then I (ay) is a subset of I (a;). To prove
the claim it suffices to assume that if g > ¢ are in &, then, for each £ € J(a, ¢2), tgz
is built from a finite subset of {t,i“ :k € J(a,q1)}. Fix any £ € J(a, ¢q2) and choose
minimal finite subsets By_1, By and By of w such that, foreachr € {—1, 0, 1}, tgir
is built from {t,f1 1 k € Bys,}. Let kg be the maximum element of B,_; and let k;
be the minimum element of By, . From the definition of Qp,,14, We have, for each
k € By, that

() ko < k < ky,
(2) max(int(t]*))) < max(int(tgol )) < max(int(t]" ))), and

(3) min(int(t} ) < min(im(tgl')) < min(int (1% ).

Fix the unique m € I(a) such that n,, < max(int(t}>|)) < max(int(tgi])) < il
and now conclude that n,, < max(int(t,?‘_l)) < max(int(t,fjrl)) < Myu+1. This proves

that B, C J(a, gq1) as required. ]

Let H be the generic filter H; 1 NFn({i + 1} x 6 x N, 2). For each ¢ € Q(€) and
a € A, letg(a) € Q(&) denote the condition (ug, {tg e, ).

Claim 3 In the forcing extension V[G H] there is a family £, C Ppouia such that

(1) E U E is a subset of &1,

(2) & is Ry-directed mod finite,

(3) the family [N]Y N V[G] is not a splitting family in the further forcing extension
by Q(&1), ' .

(4) for each Q(E)-name f € V[G; * H;] of an element of NY and each f-ready
q € Q(&), qa) lFge,y @n) anln, f(n)] = @ for each a € A.

Proof of Claim We simply apply Lemma 5.20 to select £;. This ensures that conditions
(1)—(3) hold. Now we verify that (4) holds. Let f, a and ¢ be as in the statement of
(4). Let r € Q(&1) be any condition stronger than ¢ (a). Fix any k so that max(u,) <
min(int(t;)). Since r > q(a), there is a finite subset B of J(a, ¢) such that ¢ is
built from {tZ : £ € B}. Choose any £ € B such that e = int(t;) N int(tg) is tZ-
positive. Since £ € J(a, q), there is an m € [I(a) so that n,, < max(int(tg_l)) <
min(int(tgﬂ)) < My4+1.51ince q is f—ready, there is a w, C e such that (1, Uw,, {t;l :
{ < j € w}) forces that f(nm) < min(int(tgH)). Since m € I(a), this completes the
proof that r has an extension forcing that a is disjoint from [n,,, f (n;,)]. O

The proof of the Corollary is completed by choosing a subset D; of o (L1, P2 *Fn(1+
1x 6 xN,?2)) (recall that1 =i+ 1)sothat D; C D;and {{#} x T : T € D;} is forced
to equal £;. We prove that PBFI forces that A; is very thin over the forcing extension
by Pl.b. Recall that G4 is a Piil-generic filter and, similarly, G; = G; 1 N P? is
P?2-generic. Let £; denote the interpretation of {#J} x D;, and similarly, let & 41 denote
the interpretation of {#f} x D;1. We already know that A; is forced to be very thin

@ Springer



Sh:1134

1026 A.Dow, S. Shelah

over the model V[G; * H;], so it suffices to consider a Q(&;)-name f in V[G; * H;]
of an element of NN. By Lemma 5.22, the set of f-ready conditions is a dense subset
of Q(&;). Since &; is R-directed mod finite, we also have, by Proposition 5.11, that
the set of f -ready conditions from Q(&;) is a pre-dense subset of Q(&;+1). The result
now follows from item (4) of Claim 3. O

Definition 5.24 For any a € APv we will say that b € APv is a Q(@)—extension of a
if there is cardinal 0 < A with |[P?| <0 = 6™ and a sequence {D; : i < «} such that
foralli < j < «,

(1) a1 SRP b where a; is the Cohen?-extension of a,

(2) A2 = AP,

(3) D; C p(L1, P,

(4) {4} x D; is forced by PI.al to be an N-directed subset of Pgouid,
(5) D: Cc Dy,

(6) PP =P % Q({0)} x D)),

7 P/IO forces that p (N, P?) is not a splitting family.

Now we formulate the APv version of Theorem 4.1.

6mp(l) <k=bands =121

Fix, as in Sect. 4, a 1-to-1 function / from A onto H (). Recall that by our assumption
Hyp(k, 1), E is a stationary subset of S* and {C, : @ € A} is [-sequence. We let
{Xy : @ € E} be the <>-sequence on A as postulated in by Hyp(x, 1).

Theorem 6.1 Assume Hyp(k, )). There is a sequence {ay, {y : @ € A} such that for
each limit § € A:

(1) the sequence {ay : a < 8} is <jp-increasing subset of APV,

(2) {¢o : @ < 8} C Ais non-decreasing, and {s € X is the supremum,

(3) if§ ¢ E, the sequence {a, : a € acc(Cs) U {§}} isa Sgp—increasing continuous
chain,

(4) if 8 € E and E = {h(§) : € € X3} is a maximal subset of o (N, P&®) that is
forced by PZ to be a free ultrafilter on N, then s N A?E is not empty foralli < «k,

(5) as+1 is the Cohen®' -extension of as and s+ = s,

©) ifa = 6+ 1 then {441 = o and ag41 is a Cohen® -extension of a, where
O = | P2 N0 }

(7 ifa =8 + 2, then {41 = {o and a1 is a Q(D)-extension of as,

8) ifa € (5+2,8+ w), then Ly is the minimal value strictly above ¢y such that
Qa+1 = h(¢us1 — 1) has cardinality less than k and is a PE*-name of a poset
that is forced to be ccc, and a1 = aq * Qa+l as in Definition 2.11.

Proof The proof only involves very minor modifications to the proof of Theorem 4.1
and can be omitted. O

Theorem 6.2 Assume Hyp(k, A). There is a ccc poset P forcing that s = A, M A(k),
and T p(U) < b = « for all free ultrafilters U on N.
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Proof Let {ay, {y : @ € A} be the sequence constructed in Theorem 4.1. Let P be the
poset U{P,f"‘ ta € A). Since {P2® : « € A} is a strongly continuous <--increasing
chain of ccc posets, it follows that P is ccc. Furthermore g (N, P) is equal to the union
of the increasing sequence {p (N, P&®) : @ < A}. It then follows immediately from
condition (7) that s is forced to be 1. By Proposition 2.8, P forces that b < «. The fact
that P forces that b = « follows once we we note that P forces that M A(x) holds.
This is proven exactly as in the proof of Theorem 4.2 and so can be omitted. Similarly,
simply repeating that portion of the proof from Theorem 4.2 also proves that P forces
that 7 p(U) < « for all free ultrafilter &/ on N. O
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