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Abstract
We construct a model in which the splitting number is large and every ultrafilter has
a small subset with no pseudo-intersection.
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A set b ⊂ N is a pseudo-intersection of a family A of subsets of N, if b is infinite
and b\a is finite for all a ∈ A. The pseudo-intersection number of a free ultrafilter U
on N, denoted π p(U) is the smallest cardinal μ such that there is a subset A ⊂ U of
cardinalityμwith no pseudo-intersection. The splitting number, s, is very well known.
It can be defined as the minimum cardinal such that for every family A ⊂ [N]ℵ0 of
smaller cardinality, there is a maximal free filter on the Boolean algebra generated by
A ∪ [N]<ℵ0 that has a pseudo-intersection.

It was shown in [7] that it is consistent to have π p(U)+ ≤ s for all free ultrafilters
U on N. We improve this by showing that the gap can between s and the pseudointer-
section number of every ultrafilter can be arbitrarily large. We construct such a model
by ccc forcing in which s = λ = c and π p(U) ≤ κ for all ultrafilters U on N. In
fact we construct two models, one in which b = λ and the second in which b = κ .
The posets are constructed using a modification of the matrix-iteration method (see

The research of the first author was supported by the NSF Grant No. NSF-DMS 1501506. Research of the
second author partially supported by NSF Grant No. 136974. Paper 1134 on Shelah’s list.

B Alan Dow
adow@uncc.edu

Saharon Shelah
shelah@math.rutgers.edu

1 Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223,
USA

2 Department of Mathematics, Hill Center, Rutgers University, Piscataway, NJ 08854-8019, USA

3 Present Address: Institute of Mathematics, Hebrew University, 91904 Givat Ram, Jerusalem, Israel

123

Sh:1134

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-019-00674-x&domain=pdf
http://orcid.org/0000-0002-4643-1290


1006 A. Dow, S. Shelah

[3,5]). The modification requires extra set-theoretic hypotheses introduced in the next
paragraph which is the key to obtaining that π p(U) is made small for all ultrafilters
U . The first construction uses the Mathias-style poset used in [5], also often called a
Laver-style poset as in [6,11], to raise the splitting number. This poset adds dominating
reals. The second construction utilizes the ccc posets from [12] to raise the splitting
number while preserving the bounding number. We define a special collection of such
posets that we call PBould in recognition of the fact that these are all extracted from
the poset introduced by the second author in [15]. In Sect. 2 we introduce the modified
matrix-iteration methodology for constructing our posets. In Sect. 3 we establish the
combinatorial properties of the Laver-style poset that we will need, and we construct
the iteration of the first type in Sect. 4. In Sect. 5, we establish more combinatorial
properties of the posets in PBould that we will need, and then finish the construction
of the second iteration in Sect. 6.

Throughout the paper, Hyp(κ, λ) will denote the assumptions detailed in this para-
graph. Each of κ and λ is a regular cardinal and ℵ1 < κ < λ = λ<λ. The set E is a
stationary subset of Sλ

κ where Sλ
κ ⊂ λ is the set of ordinals of cofinality κ . There is a

�-sequence {Cα : α ∈ λ} such that for limit ordinals α < β ∈ λ

(1) Cα is a closed unbounded subset of α,
(2) if α ∈ acc(Cβ), then Cα = Cβ ∩ α,
(3) Cα ∩ E is empty.

Naturally E is a non-reflecting stationary set.We also assume there is a♦(E)-sequence
{Xα : α ∈ E}, where Xα ⊂ α and for all X ⊂ λ, there is a stationary set EX ⊂ E
such that Xα = X ∩ α for all α ∈ EX . The consistency of Hyp(κ, λ) is discussed in
Proposition 1.8.

1 Preliminaries

For a poset (P,<P ), a set D ⊂ P is dense if for each p ∈ P , there is a d ∈ D with
p < d. Similarly, a set G ⊂ P is a filter (using the Jerusalem convention) if it is
closed downwards and finitely directed upwards. Therefore in the forcing language if
p < q are in P , q is a stronger condition and a subset A of P is an antichain if no
pair of elements of A have a common upper bound. For convenience, we assume each
forcing poset has a minimum element 1P .

A P-name ȧ of a subset of ω (respectively N) is canonical if for each n ∈ ω

(respectively n ∈ N), there is a (possibly empty) antichain An of P such that ȧ =⋃{{n} × An : n ∈ ω}. There should be no risk of confusion if we abuse notation and
let each n ∈ ω also denote a P-name for itself.

For an infinite set I , the poset Fn(I , 2) is the standard Cohen poset consisting of
finite partial functions from I into 2 ordered by extension. When considering Fn(I ×
N, 2), we let the sequence {ẋi : i ∈ I } denote the canonical names for Cohen reals
where ẋi = {(n, 〈(i, n), 1〉) : n ∈ N}. We will refer to this sequence as the canonical
generic sequence we get from Fn(I × N, 2). This family is forced to have the finite
intersection property, moreover, it is forced to be an independent family. Additionally,
rather than design a new poset, we can use such sequences to define uncountable
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Pseudo P-points and splitting number 1007

families of pairwise almost disjoint subsets that are eachCohen over the groundmodel.
Fix a sequence {eα : α ∈ ω1} (in the ground model) so that for each ω ≤ α ∈ ω1, eα

is a bijection from ω onto α.

Definition 1.1 For any sequence �x = {xα : α ∈ ω1} of subsets of N, define, for
α ∈ ω1, c(�x, α) and a(�x, α) where

(1) for α < ω, c(�x, α) = xα\⋃
k<α xk ,

(2) for ω ≤ α, c(�x, α) = {min
(
xα\ ⋃{xeα(k) : k < n}) : n ∈ ω},

(3) a(�x, α) = N\c(�x, α).

Definition 1.2 For any set I , we have the canonical generic sequence {ẋi,α : i ∈
I , α ∈ ω1} for the poset Fn(I × ω1 × N , 2). For each i ∈ I , we will let �xi denote the
subsequence {ẋi,α : α ∈ ω1}.We then similarly have the sequences {ċ(�xi , α) : α ∈ ω1}
and {ȧ(�xi , α) : α ∈ ω1} defined as in Definition 1.1.

Let us recall that a poset (P,<P ) is a complete suborder of a poset (Q,<Q)

providing P ⊂ Q,<P⊂<Q , and eachmaximal antichain of (P,<P ) is also amaximal
antichain of (Q,<Q). Note that it follows that incompatible members of (P,<P ) are
still incompatible in (Q,<Q), i.e. p1 ⊥P p2 implies p1 ⊥Q p2. We use P<·Q
to denote the relation that (P,<P ) is a complete suborder of a poset (Q,<Q) and
say that a chain {Pi : i < κ} of posets is a <·-chain of posets if Pi<·Pj for all
i < j < κ . We will say such a chain is a continuous <·-chain if Pj = ⋃

i< j Pi
whenever j has uncountable cofinality. We will use the term strongly continuous for
a chain {Pα : α < γ } of posets if Pβ = ⋃

α<β Pα for all limits β < γ .

Proposition 1.3 If P<·Q and q ∈ Q, then there is a p ∈ P (a projection) with the
property that for all r ∈ P with p <P r (r is stronger than p), there is a qr ∈ Q that
is stronger than each of q and r.

When we say that V or V ′ is a model, we will mean a transitive set that is a model
of a sufficiently large fragment of ZFC. We introduce the notion of families of sets
being thin and very thin as these are the key combinatorial properties of the factor
posets in our iteration.

Definition 1.4 Let V and V ′ be models with V ⊂ V ′ and let A ⊂ [N]ℵ0 be in V ′.
(1) If P ∈ V and Q ∈ V ′ are posets, we write P <V Q if P ⊂ Q, <P⊂<Q , and

each maximal antichain A ⊂ P in V is also a maximal antichain of Q. Of course
P <V ′ Q is the same as V ′ |� P<·Q.

(2) The family A is thin over V if for each 	 ∈ ω and each infinite sequence {Hn :
n ∈ ω} ⊂ [N]≤	 in V of pairwise disjoint sets, there is, for each a in the ideal
generated by A, an n such that Hn ∩ a is empty.

(3) The family A is very thin over V if for each a in the ideal generated by A and
each g ∈ N

N ∩ V , there is an n ∈ N such that a ∩ [n, g(n)] is empty.

We also will need the next result taken from [5, Lemma 13].

Lemma 1.5 Let P,Q be partial orders such that P<·Q. Recall that the name idP =
{(p, p) : p ∈ P} is the P-name for the generic filter on P. Let Ȧ be a P-name for a
forcing notion and let Ḃ be aQ-name for a forcing notion such that �Q Ȧ <V [idP ] Ḃ,
then P ∗ Ȧ<·Q ∗ Ḃ
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1008 A. Dow, S. Shelah

It is immediate that the conclusion of Lemma 1.5 holds ifP forces that eitherA = B

or if A = Fn(I , 2) ⊂ Fn(J , 2) = B.

Proposition 1.6 If V ⊂ V ′ are models andA is thin (very thin) over V , then for each
α ∈ ω1,A∪{a(�x, α)} is thin (respectively very thin) over V where �x = {ẋα : α ∈ ω1}
is the canonical generic sequence we get from forcing with Fn(ω1 × N, 2) over V .

Proof Fix any a in the ideal generated by A and let {Hn : n ∈ ω} ⊂ [N]<ℵ0 be any
pairwise disjoint family in V . Let p ∈ Fn(ω × N, 2) be any condition and assume
that {n ∈ ω : a ∩ Hn} is infinite. It suffices to prove that there is a q extending p
and an n such that a ∩ Hn = ∅ and q � Hn ∩ ȧ(�x, α) = ∅. We will skip the case
when α < ω since it is easier. Choose a finite set F ⊂ ω1 and an integer m ∈ N

such that dom(p) ⊂ F × {1, . . . ,m}. By extending F but not m, we can assume that
{eα(k) : k < m} ⊂ F and dom(p) = F ×{1, . . . ,m}. Choose n so thatm < min(Hn)

and Hn ∩ a = ∅. We define an extension q of p that forces that Hn ⊂ c(�x, α). Recall
that eα is a bijection from ω to α. Choose m0 > m so that F ⊂ {eα(k) : k < m0} and
let 	 = m0 + max(Hn). Set F ′ = F ∪ {eα(k) : k ≤ 	}.

Define q ⊃ p so that the domain of q is F ′ × {1, . . . , 	} and
(1) for all m < j ≤ 	, q(α, j) = 1,
(2) for all k < m0 and m < j ≤ 	, q(eα(k), j) = 0,
(3) for each m0 ≤ i ≤ 	 and j ≤ 	, q(eα(i), j) = 1 if and only if j ≤ m + (i −m0).

Conditions (1)–(2) ensure that q � [m + 1, 	] ⊂ ẋα\⋃{ẋeα(k) : k < m0}. Condition
(3) for i = m0 ensures that q � m + 1 = min(ẋα\⋃{ẋeα(k) : k ≤ m0}), and
therefore that q � m + 1 = min(ẋα\⋃{ẋeα(k) : k < m0 + 1}). This implies that
q � m + 1 ∈ ċ(�x, α). It is now follows by an easy induction on 1 ≤ i ≤ 	 − m0,
using condition (3) and that eα is 1-to-1, that

q � m + i = min(ẋα\
⋃

{ẋeα(k) : k < m0 + i}) ∈ ċ(�x, α)

and this completes the proof. ��
Definition 1.7 For a poset P and infinite set X , let℘(X , P) denote the set of canonical
names of infinite subsets of X (meaning 1P forces that each ȧ ∈ ℘(X , P) is infinite).
When E is a subset of℘(X , P)wewill use it in forcing statements tomean the P-name
{(ȧ, 1P ) : ȧ ∈ E}.
Proposition 1.8 If ℵ1 < κ < λ are regular cardinals then Hyp(κ, λ) holds in L. More
generally, there is a forcing poset that preserves all regular cardinals below λ+ and
forces Hyp(κ, λ) to hold in the generic extension.

Proof For the claim that Hyp(κ, λ) holds in L we refer the reader to [9]. More specif-
ically, the desired �-sequence and the stationary set E is easily obtained from the
�(E)-sequence as formulated in [9, IX 2.1] where one lets A be the set Sκ

λ . Similarly,
by [9, IV 3.2], there is a ♦(E) sequence.

On the other hand, it is stated in [13, 23.4, Ex. 23.3] that “squares are relatively
easy to force”, as are diamonds. Let P be the poset consisting of conditions p that
are pairs of sequences (〈cpα : α ≤ γp〉, 〈a p

α : α ≤ γp〉) where γp < λ and, for each
α ≤ γ :
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Pseudo P-points and splitting number 1009

(1) if α = β + 1, cpα = a p
α = {β},

(2) if α is a limit, a p
α ∪ cpα ⊂ α with cpα being closed and unbounded,

(3) if β ∈ acc(cα), then cpβ = cpα ∩ β.

The ordering on P is simply extension – hence P is < λ-closed and the claim about
the preservation of all cardinals below λ+ follows from [13, 15.6, 15.7]. For a set of
ordinals a, let t ype(a) denote the order-type of a. LetG be a P-generic filter and let, for
each α ∈ λ, (cα, aα) be the pair such that there is a p ∈ G, with (cpα , a p

α ) = (cα, aα).
In the generic extension, let E = {ξ < λ : t ype(cξ ) = κ}. For each α < λ such
that t ype(cα) > κ , let, by condition (3), ξα denote the unique element in cξα ∩ E .
For each α, let Cα = cα\ξα+1 if t ype(cα) > κ and let Cα = cα otherwise. It is
routine to verify that {Cα : α ∈ λ} satisfies the requirements (1)–(3) in the statement
of Hyp(κ, λ). Since ♦(E) implies that λ<λ = λ, it remains only to prove, by a forcing
argument, that E is stationary and that {aα : α ∈ E} is a ♦(E)-sequence. Let Ċ be the
P-name of a closed and unbounded subset of λ and let Ẋ be a P-name of a subset of
λ. Fix any p0 ∈ P and recursively choose a strictly increasing sequence {pξ : ξ ∈ κ}
of conditions in P satisfying, for each ξ < κ ,

(1) there is δ ∈ [γpξ , γpξ+1 ] such that pξ+1 � δ ∈ Ċ ,
(2) there is a bξ ⊂ γpξ , pξ+1 � Ẋ ∩ γpξ = bξ ,

(3) if ξ is a limit, c
pξ
γpξ

= {γpζ : ζ < ξ}.
Let γ = ⋃

ξ<κ γpξ and aκ
γ = ⋃

ξ<κ bξ . Define the sequence 〈cκ
β : β ≤ γ 〉 so that

cκ
γ = {γpξ : ξ < κ} and, for β < γξ (with ξ < κ), cκ

β = c
pξ

β . Similarly, define aκ
β to

equal a
pξ

β for β < γξ and ξ < κ . The condition pκ = (〈cκ
β : β ≤ γ 〉, 〈aκ

β : β ≤ γ 〉)
forces that γ ∈ Ċ ∩ E and that Ẋ ∩ γ = aκ

γ . ��

2 The tools

In this section we introduce the modified matrix-iteration technique that will be
employed to construct our final posets.

Definition 2.1 AP is the set of all structures a ∈ H(λ), where a = 〈{Pa
i : i < κ}, {Aa

i :
i < κ}〉 and for each i < κ

(1) the sequence {Pa
i : i < κ} is a continuous <·-chain of ccc posets,

(2) Aa
i ⊂ ℘(N, Pa

i+1),
(3) Pa

i+1 forces that the ideal generated by Aa
i is thin over the forcing extension by

Pa
i .

Definition 2.2 APv is the set of all structures a ∈ H(λ), where a = 〈{Pa
i : i <

κ}, {Aa
i : i < κ}〉 and for each i < κ

(1) the sequence {Pa
i : i < κ} is a continuous <·-chain of ccc posets,

(2) Aa
i ⊂ ℘(N, Pa

i+1),
(3) Pa

i+1 forces that the ideal generated by Aa
i is very thin over the forcing extension

by Pa
i .
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1010 A. Dow, S. Shelah

Definition 2.3 For i < κ , we let ≤i
AP be the following two place relation on AP:

a ≤i
AP b iff for all
j ∈ [i, κ): a,b ∈ AP, Pa

j <·Pb
j , and Aa

j ⊂ Ab
j .

Similarly we let ≤∗
AP=

⋃
i<κ ≤i

AP, i.e. a ≤∗
AP b if a ≤i

AP b for some i < κ .

For each a ∈ AP, we may let Pa
κ = ⋃{Pa

i : i < κ} and note that Pa
i <·Pa

κ for all
i < κ . Similarly, it follows immediately that Pa

κ <·Pb
κ whenever a ≤∗

AP b.

Lemma 2.4 Each of ≤i
AP and ≤∗

AP are transitive and reflexive orders on AP. If i < j ,

then ≤ j
AP⊂≤i

AP. If a ≤i
AP b and b ≤i

AP a, then Pa
j = Pb

j and Aa
j = Ab

j for all
j ∈ [i, κ).

Since APv ⊂ AP, we do not need new relation symbols to denote the same binary
relations on APv.

Lemma 2.5 If a ≤i
AP b1 for some i < κ , then there is a b2 ∈ AP such that a ≤0

AP b2
and b ≤i

AP b2. Similarly, if b1 ∈ APv, then a ∈ APv and we can choose b2 ∈ APv.

Definition 2.6 For any i < κ and ordinal δ, a sequence 〈aα : α < δ〉 is a ≤i
AP-

increasing continuous chain if for all α < β < δ and j ∈ [i, κ):

(1) aα ≤i
AP aβ ,

(2) the chain {Paα

j : α < δ} is strongly continuous, and,
(3) if α is a limit, then Aaα

j = ⋃{Aaξ

j : ξ < α}.
Lemma 2.7 Suppose that {aα : α < δ} is a ≤∗

AP-chain for some limit ordinal δ < λ

and that there is a cub C ⊂ δ and an i < κ such that {aα : α ∈ C} is a≤i
AP-increasing

continuous chain. Then there is an aδ ∈ AP so that

(1) {aα : α ∈ C ∪ {δ}} is also a ≤i
AP-increasing continuous chain,

(2) amin(C) ≤0
AP aδ , and

(3) aα ≤∗
AP aδ for all α < δ.

If i = 0, then {aα : α ∈ C} uniquely determines aδ .

Lemma 2.8 If {aα : α < λ} is a ≤∗
AP-increasing chain from APv and if Aa0

i �= ∅ for
all i < κ , then the ccc forcing extension by P = ⋃{Paα

κ : α < λ} satisfies that b ≤ κ .

Proof For each i < κ , choose any ȧi ∈ Aa0
i and let ḟi denote the order-preserving

enumeration function from N onto ȧi . Note that n ≤ ḟi (n) for all n ∈ N. Let ġ be
any P-name of an element of NN. Since P is ccc, we can assume that ġ is a countable
name. Choose any α ∈ λ so that ġ is a Paα

κ -name. Then similarly choose i0 < κ so that
ġ is a Paα

i0
-name. Since a0 ≤∗

AP aα we may choose an i > i0 so that a0 ≤i
AP aα . Now

we show that no condition p ∈ P forces that ḟi <∗ ġ. Since Pa
i+1<·P and each of ḟi

and ġ are Pa
i+1-names, it suffices to prove that if p ∈ Pa

i+1 then, for any n0 there is an
extension p′ of p and an n > n0 so that p′ �Paα

i+1
“ ḟi (n) > ġ(n)”. Since ȧi ∈ Aaα

i and

aα ∈ APv, there is a such a p′ and n such that p′ �Pa
i+1

“ ȧi ∩ [n, ġ(n)] = ∅”. There is
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Pseudo P-points and splitting number 1011

no loss to assuming that p′ decides the value of the finite set {k < n : ḟi (k) < n}. If
this set is empty, let m = 1, otherwise, let m be the maximum value. Clearly m < n
and we now have that p′ forces ḟi (m + 1) > ġ(n). Since ḟi is an increasing function,
p′ �Paα

i
“ ḟi (n) > ġ(n)” as required. ��

Lemma 2.9 If {aα : α < λ} is a≤∗
AP-increasing chain then the ccc forcing extension by

P = ⋃{Paα
κ : α < λ} satisfies that ifU ⊂ ℘(N, P) is such that {i < κ : U∩Aaα

i �= ∅}
has cardinality κ for some α < λ, then U does not have a pseudo-intersection.

Proof Note that Pa
κ <·P for all α < λ. Let U ⊂ ℘(N, P) and assume that {i < κ :

U ∩Aaα

i �= ∅} is cofinal in κ . Let ḃ be any canonical P-name of a subset ofN. Choose

α ≤ β < λ such that ḃ is a P
aβ
κ -name. Since Pa

β = ⋃{Paβ

i : i < κ}, there is an

iβ < κ so that ḃ is a P
aβ

iβ
-name. Choose i < κ so that aα ≤i

AP aβ . Now choose any

j < κ so that i, iβ < j and U ∩ Aaα

j is not empty. Since Aaα

j ⊂ Aaβ

j , Aaα

j is forced

by P
aβ

j+1 to be thin over the forcing extension by P
aβ

j . In particular, P
aβ

j forces that ḃ

is not an infinite subset of any element of U ∩ Aaα

j . Since P
aβ

j <·Paβ
κ <·P , this is also

forced by P . ��
Lemma 2.10 If a ∈ AP (respectively a ∈ APv) and Q̇ ∈ H(λ) is a Pa

i -name of a poset
that is forced by Pa

κ to be ccc, then there is a b ∈ AP (respectively b ∈ APv) such that
a ≤0

AP b and Pb
κ = Pa

κ ∗ Q̇.

Proof We define b as follows. Set Ab
j = Aa

j for all j < κ . For j < i , let Pb
j = Pa

j ,

and for j ≥ i , let Pb
j = Pa

j ∗ Q̇. By Proposition 1.5, we have that {Pb
j : j < κ} is a

continuous <·-chain. By assumption, Pb
j ∗ Q̇ is ccc for all j < κ . Now we check that

Ab
j is forced by Pb

j+1 to be thin (respectively very thin) over the forcing extension by

Pb
j . For j < i this is immediate.

Now assume that i ≤ j and that {Ḣn : n ∈ ω} is a sequence of Pb
j -names that are

forced to be pairwise disjoint subsets of [N]	 (for some 	 ∈ ω) and that ġ is a Pb
j -

name of an element of NN. Let ȧ be any name from Aa
j . Let (p, q) be any condition

in Pa
j+1 ∗ Q̇ = Pb

j+1. We show that b ∈ AP by showing that for some n ∈ ω, (p, q)

has an extension forcing that Ḣn ∩ ȧ is empty. We similarly show that if a ∈ APv, then
for some n ∈ ω, (p, q) has an extension forcing that [n, ġ(n)] ∩ ȧ is empty.

It will be convenient to pass to the forcing extension by Pa
j+1 so let p ∈ G j+1 be

a generic filter for Pa
j+1. Let Q denote the interpretation of Q̇ by G j = G j+1 ∩ Pa

j .
We are now working in the extension V [G j ]. Recursively define a sequence {H ′

n :
n ∈ N} ⊂ [N]	 and values {mn : n ∈ N} ⊂ N so that, for each n, max(H ′

n) <

min(H ′
n+1), and there is a condition qn ∈ Q stronger than q such that, for some

rn ∈ G j , (rn, qn) �Pb
j
“ H ′

n = Ḣn and ġ(n) = mn”. Since {H ′
n : n ∈ ω} is a pairwise

disjoint sequence in the forcing extension by Pa
j , there is a p′ ∈ G j+1 (stronger than

p) and an n ∈ ω such that p′ forces that H ′
n is disjoint from a. Since G j+1 is a filter,

we may also assume that p′ is stronger than rn . Now we have that (p′, qn) is stronger
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1012 A. Dow, S. Shelah

than (p, q) and (p′, qn) �Pb
j+1

“ Ḣn ∩ ȧ = ∅”. Similarly, if a ∈ APv, there is an n ∈ N

and a p′ ∈ G j+1 stronger than each of p and rn such that p′ forces that ȧ is disjoint
from [n,mn]. This ensures that (p′, qn) �Pb

j+1
“ [n, ġ(n)] ∩ ȧ = ∅”. ��

Note that it follows from Lemma 2.10 that if a ∈ AP and if {Q̇i : i < κ} ∈ H(λ)

is a sequence such that Q̇i is a Pa
i -name with {Pi ∗ Q̇i : i < κ} forming a continuous

<·-sequence, then for each i < κ , Pi+1 ∗ Q̇i forces that Aa
i is thin over the extension

by Pi ∗ Q̇i . This means that it is only the behavior of Q̇i+1 that affects if there is
b ∈ AP with a ≤0

AP b and Pb
i = Pa

i ∗ Q̇i for all i < κ .

Definition 2.11 If a ∈ AP (respectively a ∈ APv) and Q̇ ∈ H(λ) is a Pa
κ -name such

that

(1) Q̇ has cardinality less than κ ,
(2) Pa

κ forces that Q̇ is ccc

then a ∗ Q̇ denotes the ≤0
AP-extension b as in Lemma 2.10 where i < κ is chosen to

be minimal such that Q̇ is a Pa
i -name.

We can also make the following definition.

Definition 2.12 For any a ∈ AP (or a ∈ APv) and ordinal θ < λ say that b ∈ AP is the
Cohenθ -extension of a if, for each i < κ ,

(1) Pb
i = Pa

i ∗ Fn(i+1 × θ × N, 2)
(2) Ab

i = Aa
i .

This next lemma illustrates the device we use to ensure that every ultrafilter will
have pseudo-intersection number at most κ .

Lemma 2.13 Suppose that δ < λ has cofinality κ and that {aα : α ∈ δ} ⊂ AP is a
≤∗
AP-increasing sequence. Further suppose that there is a cub C ⊂ δ of order type

κ such that {aα : α ∈ C} is a ≤0
AP-increasing continuous chain and that, for each

α ∈ acc(C), aα+1 is a Cohenω1 -extension of aα . Then, if P = ⋃{Paα
κ : α ∈ acc(C)}

and E ⊂ ℘(N, P) is a maximal family that is forced to be a free ultrafilter onN, there
is a b ∈ AP such that aα ≤∗

AP b for all α ∈ δ, P = Pb
κ , and, for all i < κ , E ∩ Ab

i is
not empty.

Proof Let E ⊂ ℘(N, P) and assume that 1P forces that E is a free ultrafilter on N and
thatE is amaximal such family. This justmeans that if ḃ ∈ ℘(N, P) and1p �P “ (∃ė ∈
E)ḃ ⊃ ė”, then ḃ ∈ E . Let {αi : i < κ} be the order-preserving enumeration of acc(C).
For each i < κ we now describe how to choose a value βi ∈ ω1. By our assumption,
aαi+1 is a Cohenω1 -extension. That is, P

aαi+1

i is equal to P
aαi
i+1 ∗ Q̇

aαi
i+1 where Q̇

aαi
i+1 is

equal to (the trivial) P
aαi
i+1-name for Fn(i +1×ω1 ×N, 2). Let �xi denote the canonical

ω1-sequence associated with Fn({i} × ω1 × N, 2) for this particular copy of Cohen
forcing. Similarly, let {c(�xi , β), a(�xi , β) : β < ω1} ⊂ ℘(N, P

aαi+1

i+1 ) be the family
of names as constructed as in Definition 1.1. Since the family {c(�xi , β) : β < ω1} is
forced to be pairwise almost disjoint, there is amaximal antichain Ai ⊂ P such that for
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each p ∈ Ai , there is a βp such that p forces that a(�xi , ξ) is in E for all βp < ξ ∈ ω1.
Since P is ccc, Ai is countable, and so we may choose any value βi ∈ ω1 that is
larger than βp for each p ∈ Ai . It follows that 1 �P “ (∃ė ∈ E)a(�xi , βi ) ⊃ ė”. By the
maximality assumption on E , a(�xi , βi ) ∈ E .

Now we define b. For each i < κ , Pb
i = P

aαi
i and Ab

i = Aaαi
i ∪ {a(�xi , βi )}.

Evidently we have that E ∩ Ab
i is not empty for all i < κ . Since P

aαi+1

i+1 <·Paαi+1
i+1 ,

we have that Ab
i is a subset of ℘(N, Pb

i+1). It follows from Proposition 1.6 that Ab
i

is forced to be thin over the forcing extension by Pb
i = P

aαi
i . Now for i < j < κ ,

Pb
i = P

aαi
i <·Paαi

j <·Pα j
j = Pb

j . Now suppose that j < κ is a limit of uncountable

cofinality, we have to check that Pb
j = ⋃{Pb

i : i < j}. Let p ∈ Pb
j . Since Pb

j =
P
aα j
j = ⋃{Paα j

i : i < j}, we may choose i1 < j such that p ∈ P
aα j
i1

. By the

assumption that {aα : α ∈ C} is a ≤0
AP-increasing continuous chain, there is an i < j

with i1 ≤ i and p ∈ P
aαi
i1

. Finally, p ∈ P
aαi
i1

⊂ P
aαi
i = Pb

i which completes this

step. It also shows that Pb
κ = P . This completes the verification that b ∈ AP. Fix any

ξ < δ we verify that aξ ≤∗
AP b. Choose i < κ so that ξ < αi and choose i∗ < κ

so that aξ ≤i∗
AP aαi . We show that aξ ≤i∗

AP b. Let i∗ ≤ j < κ . First we have that

Aaξ

j ⊂ Aαi
j ⊂ A

α j
j ⊂ Ab

j . Secondly, P
aξ

j <·Paαi
j <·Paα j

j = Pb
j . ��

The proof of this next lemma is the same so the proof is omitted.

Lemma 2.14 Suppose that {aα : α ∈ κ} ⊂ APv is a ≤0
AP-increasing continuous chain

for some i < κ and that, for each limit α ∈ κ , aα+1 is a Cohenω1-extension of aα .
Then, if P = ⋃{Paα

κ : α < κ} and E ⊂ ℘(N, P) is a maximal family that is forced
to be a free ultrafilter on N, there is a b ∈ APv such that aα ≤∗

AP b for all α ∈ κ ,
P = Pb

κ , and {i < κ : E ∩ Ab
i �= ∅} has cardinality κ .

3 The Laver style posets

In this section we develop the tools to allow us to incorporate posets into ≤∗
AP-chains

that will increase the splitting number. An ultrafilter D on N is Ramsey if for each
function f with domain N and range an ordinal, there is a D ∈ D such that f � D is
either constant or is strictly increasing. For any family D of subsets of N that has the
finite intersection property, we let 〈D〉 denote the filter generated by D. We use the
standard notation,D+, to denote the set of subsets ofN that meet every member ofD.

Proposition 3.1 If D0 is a free filter on N and θ is an ordinal with θ ≥ c, then D0 can
be extended to a Ramsey ultrafilter in the forcing extension by Fn(θ, 2).

Definition 3.2 For a filter D on ω, we define the Laver style poset L(D) to be the set
of trees T ⊂ N

<ω with the property that T has a minimal branching node stem(T ) and
for all stem(T ) ⊆ t ∈ T , the branching set SuccT (t) = {k : t�k ∈ T } is an element
of D. For any tree T ⊂ N

<ω and t ∈ T , we let Tt = {s ∈ T : s ∪ t ∈ T }.
The name L̇D = {(k, T ) : (∃t)T = (N<ω)t�k} will be referred to as the canonical

name for the real (pseudo-intersection) added by L(D).
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Proposition 3.3 If D is any free filter on N, then L̇D is forced to be a pseudo-
intersection for D and for every function f ∈ N

N, the enumeration function of L̇D is
forced to be mod finite greater than f .

Definition 3.4 If E is a dense subset of L(D), then there is a (rank) function ρE from
N

<ω into ω1 where ρE (t) = 0 if and only if t = stem(T ) for some T ∈ E , and
for all t ∈ N

<ω and 0 < α ∈ ω1, ρE (t) = α if α is minimal such that the set
{k ∈ ω : ρE (t�k) < α} is in D+.

Proposition 3.5 If D is a Ramsey ultrafilter and E ⊂ L(D) is a dense set, then for
each t ∈ N

<ω with ρE (t) > 0, there is a Dt ∈ D such that {ρE (t�k) : k ∈ Dt } is
increasing and cofinal in ρE (t).

Lemma 3.6 [14, 1.9] Suppose that P,Q are posets with P<·Q. Suppose also that Ḋ0
is a P-name of a filter on N and Ḋ1 is a Q-name of a filter on N. If �Q Ḋ0 ⊆ Ḋ1
then P ∗ L(Ḋ0) is a complete subposet of Q ∗ L(Ḋ1) if either of the two equivalent
conditions hold:

(1) �Q (℘ (N,P) ∩ Ḋ+
0 ) ⊆ Ḋ+

1 ,
(2) �Q Ḋ1 ∩ ℘(N,P) ⊆ 〈Ḋ0〉.
Proof Let Ė be any P-name of a maximal antichain of L(Ḋ0). By Lemma 1.5, it
suffices to show that Q forces that every member of L(Ḋ1) is compatible with some
member of Ė . Let G be any Q-generic filter and let E denote the valuation of Ė by
G ∩ P. Working in the model V [G ∩ P], we have the function ρE as in Lemma 3.4.
Choose δ ∈ ω1 satisfying that ρE (t) < δ for all t ∈ ω<ω. Now, working in V [G],
we consider any T ∈ L(Ḋ1) and we find an element of E that is compatible with
T . In fact, by induction on α < δ, one easily proves that for each T ∈ L(Ḋ1) with
ρE (stem(T )) ≤ α, T is compatible with some member of E . ��

If Ḋ0 is theP-name of amaximal filter (ultrafilter), then the conditions in Lemma3.6
hold.

Lemma 3.7 If V ⊂ V ′ are models and A ∈ V ′ is thin over V , then for every Ramsey
ultrafilter D ∈ V , there is an ultrafilter D′ ⊃ D in V ′ such that, for each V ′-generic
filter G ′ forL(D′),A is thin over V [G ′∩L(D)]. In otherwords, in the forcing extension
of V ′ by L(D′), A is thin over the forcing extension of V by L(D).

Proof LetO denote the set of strictly increasing functions f ∈ V such that f ∈ N
D for

some D ∈ D. By the definition of thin over V , we may assume thatA is closed under
finite unions. For each D ∈ D,a ∈ A and f ∈ O, let E(D, f , a) = {n ∈ D∩dom( f ) :
f (n) /∈ a}. We show that the family {E(D, f , a) : f ∈ O, D ∈ D, a ∈ A} has the
finite intersection property. It suffices to prove that if { fk : k < 	} is a finite subset of
O, D ∈ D, and a ∈ A, then there is an n ∈ D such that fk(n) /∈ a for all k < 	. By
shrinking D we can assume that D ⊂ dom( fk) for each k < 	. Choose any strictly
increasing function f ∈ V satisfying that for all n ∈ N, [ f (n), f (n + 1)) ∩ D �= ∅,
and for all j ∈ D with j ≤ f (n), fk( j) < f (n + 1) for each k < 	. Therefore, for
each n ∈ N and j ∈ D∩[ f (n), f (n+1)), we have that f (n−1) < fk( j) < f (n+2)
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for all k < 	. By re-indexing, we can assume that
⋃{[ f (3n), f (3n + 1)) : n ∈ N} is

in D. Since D is Ramsey, we may choose D1 ⊂ D so that D1 = { jn : n ∈ N} and
f (3n) ≤ jn < f (3n + 1) for all n ∈ N. Now define Hn = { fk( jn) : k < 	} and
observe that Hn ⊂ [ f (3n−1), f (3n+2)) and so the sequence {Hn : n ∈ N} consists
of pairwise disjoint sets. Since A is thin over V , there is an n such that Hn ∩ a is
empty. It follows that jn ∈ D and fk( jn) /∈ a for each k < 	 as required.

Let D′ be any ultrafilter in V ′ extending the family {E(D, f , a) : f ∈ O, D ∈
D, a ∈ A}. Now we let {Ḣn : n ∈ ω} be a sequence in V of L(D)-names that are
forced by some T0 ∈ L(D) to be pairwise disjoint and of cardinality at most 	 ∈ ω.
Let a be any element of A and T ′

0 ∈ L(D′) be any condition stronger than T0. We
prove there is an extension T ′

0 ⊃ T ′
1 ∈ L(D′) and an n ∈ ω such that T ′

1 � Ḣn ∩ a
is empty. Let t0 = stem(T0) and for each 1 < n ∈ ω, let Hn,0 be the maximal set
such that there is a Tn ∈ L(D) with Tn � Hn,0 ⊂ Ḣn and stem(Tn) = t0. There
is a D0 ∈ D so that each element of the sequence {Hn,0 : n ∈ D0} has the same
cardinality. Since we can assume that D0 ⊂ SuccT0(t0), it follows that the elements
of {Hn,0 : n ∈ D0} are pairwise disjoint. Choose any 1 < n ∈ D0 so that Hn,0 ∩ a
is empty. If Tn � Ḣn = Hn,0, then we are done because Tn and T ′

0 have the same
stem, and so are compatible. Let 	′ ≤ 	 be the value such that Tn � |Ḣn\Hn,0| = 	′
and let E0 = {T ∈ L(D) : stem(T ) /∈ Tn or(∃ j)T � j ∈ Ḣn\Hn,0}. Since E0 is
a dense subset of L(D), we have the associated rank function ρE0 where for t ∈ Tn ,
ρE0(t) = 0 implies that there is a T ∈ E0 with stem(T ) = t and j ∈ N\Hn,0 such
that T � j ∈ Ḣn . By the maximality assumption on Tn , we have that ρE0(t0) > 0. If
ρE0(t0) > 1, then by Proposition 3.5, there is a k0 such that 1 ≤ ρE0(t

�
0 k0) < ρE0(t0)

and t�0 k0 ∈ T ′
0. By repeating this step finitely many times, we can find a t1 ∈ T ′

0 such
thatρE0(t1) is equal to 1.Wemay assume thatρE0(t

�
1 k) = 0 for all k ∈ SuccT0(t1). For

each k ∈ SuccT0(t1), let Hn(t�1 k) be the maximal (non-empty) set of j such that there
is some condition in L(D) with stem equal to t�1 k that forces Hn(t�1 k) ⊂ Ḣn\Hn,0.
There is some Dt1 ∈ D and 	t ∈ ω such that {Hn(t�1 k) : k ∈ Dt1} all have cardinality
	t . For each j < 	t , define the function f j with domain Dt1 such that f j (k) is in
Hn(t�1 k) and, for each k ∈ Dt1 , { f j (k) : j < 	t } enumerates Hn(t�1 k) in increasing
order. By shrinking Dt1 we can assume that each f j � Dt1 is either constant or is
strictly increasing. Since ρE0(t1) > 0, f0 is not constant. To see this, assume that
f0(k) = m for each k ∈ Dt1 . For each k ∈ Dt1 , choose a condition T k ∈ L(D)

so that stem(T k) = t�1 k and T k � m ∈ Ḣn . But now, the contradiction is that⋃{T k : k ∈ Dt1} can be shown to be a condition with stem equal to t1 that forces that
m ∈ Ḣn . Choose any k in the non-empty set SuccT ′

0
(t1) ∩ ⋂{E(Dt1, f j , a) : j < 	′}

and set t2 = t�1 k ∈ T ′
0. Now define Hn,1 = Hn,0 ∪ Hn(t�1 k) and choose T2 ⊂ T0 as

above so that stem(T2) = t2 and T2 � Hn,1 ⊂ Ḣn . Define E2 analogous to how we
defined E0 so that for t ∈ (T k)t2 , ρE2(t) = 0 if and only if there is a condition with
stem t that forces some j to be in Ḣn\Hn,1. We again note that when we proved that
each f j ( j < 	′) above was strictly increasing, we have also shown that ρE2(t2) > 0.
Since Hn,1 is a proper extension of Hn,0 and is also disjoint from a, we can repeat
this argument finitely many (at most 	) times until we have found an element t ∈ T ′

0
which has a stem preserving extension that forces Ḣn is disjoint from a. ��
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Corollary 3.8 Suppose that a ∈ AP and let |Pa
κ | ≤ θ = θℵ0 < λ, then there is a b ∈ AP

and a sequence {Di : i < κ} satisfy that, for i < j < κ ,

(1) a ≤0
AP b,

(2) Di ⊂ ℘( N, Pi ∗ Fn(i+1 × θ, 2) ),
(3) Di ⊂ D j ,
(4) Pi ∗ Fn(i+1 × θ, 2) forces that Di is a Ramsey ultrafilter on N,
(5) Pb

i = Pa
i ∗ Fn(i × θ, 2) ∗ L(Di ).

Definition 3.9 For any a ∈ AP we will say that b is an L( �D)-extension of a if there is
a sequence {Di : i < κ} such that for all i < j < κ ,

(1) a ≤0
AP b,

(2) Di ⊂ ℘(N, Pa
i ),

(3) Di is forced by Pa
i to be a Ramsey ultrafilter on N,

(4) Di ⊂ D j ,
(5) Pb

i = Pa
i ∗ L(Di ).

4 �p(U) ≤ � and b = s = �

Fix a 1-to-1 function h from λ onto H(λ). Recall that {Xα : α ∈ E} is the♦-sequence
on λ as in Hyp(κ, λ).

Theorem 4.1 Assume Hyp(κ, λ). There is a sequence {aα, ζα : α ∈ λ} such that for
each limit δ ∈ λ

(1) the sequence {aα : α < δ} is≤∗
AP-increasing, {ζα : α < δ} is non-decreasing, and

ζδ ∈ λ is the supremum of {ζα : α < δ},
(2) if δ /∈ E, the sequence {aα : α ∈ acc(Cδ) ∪ {δ}} is a ≤0

AP-increasing continuous
chain,

(3) if δ ∈ E and Eδ = {h(ξ) : ξ ∈ Xδ} is a maximal subset of ℘(N, Paδ
κ ) that is

forced by Paδ
κ to be a free ultrafilter onN, then Eδ ∩Aaδ

i is not empty for all i < κ ,
(4) aδ+1 is the Cohenω1 -extension of aδ and ζδ+1 = ζδ ,
(5) if α = δ + 1 then ζα+1 = ζα and aα+1 is the Cohenθα -extension of aα where

θα = |Paα
κ |ℵ0

(6) if α = δ + 2, then ζα+1 = ζα and aα+1 is an L(D)-extension of aα ,
(7) if α ∈ (δ + 2, δ + ω), then ζα+1 is the minimal value strictly above ζα such that

Q̇α+1 = h(ζα+1 − 1) has cardinality less than κ and is a Paα
κ -name of a poset

that is forced to be ccc, and aα+1 = aα ∗ Q̇α+1 as in Definition 2.11.

Proof The proof is by induction on limit δ < λ. We can define a0 so that Pa0
i =

Fn(i × N, 2) and Aa0
i = ∅ for all i < κ . Similarly, for n ∈ ω, let an+1 be the

Cohenω-extension of an . For all n ∈ ω, set ζn = 0. If δ is a limit ordinal not in E and
acc(Cδ) is cofinal in δ, then {aα : α ∈ acc(Cδ)} is a ≤0

AP-increasing continuous chain,
and so aδ is defined as in Proposition 2.7. If acc(Cδ) is not cofinal in δ, then let α0
be the maximum element of acc(Cδ), and let C = {αn : n ∈ ω} enumerate Cδ\α0.
There is an i < κ such that {aαn : n ∈ ω} is a ≤i

AP-increasing continuous chain.
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Again applying Proposition 2.7 produces aδ so that aα0 ≤0
AP aδ . Case (5) is handled

by Lemma 2.10 per Definition 2.12. Similarly, per Definition 3.9 and by inductive
assumption (5), Corollary 3.8 handles inductive step (6). Inductive step (7) is handled
by Definition 2.11 and Lemma 2.10.

Now we consider inductive step (3) when δ ∈ E . By induction hypothesis (1),
we have that {aα : α ∈ acc(Cδ)} is a ≤0

AP-increasing chain. Let P denote the poset
⋃{Paα

κ : α ∈ acc(Cδ)}. We recall from Lemma 2.9 that P
aβ
κ <·P for all β < δ. If

{h(ξ) : ξ ∈ Xδ} is a subset of ℘(N, P) and is forced to have the finite intersection
property, we can use Zorn’s Lemma to enlarge it to a maximal such family. Otherwise,
choose Eδ ⊂ ℘(N, P) to be any maximal family which is forced to have the finite
intersection property. Since℘(N, P) consists only of sets that are forced to be infinite,
Eδ is forced to be a free filter. We prove that Eδ is forced to be an ultrafilter. Assume
that ḃ is any canonical P-name of a subset of N and that p ∈ P is any condition that
forces ḃ meets every member of Eδ . There is a ė ∈ ℘(N, P) such that p �P “ ḃ = ė”
and, for all q ∈ P that are incomparable with p, q �P “ ė = N”. Clearly then 1P
forces that Eδ ∪{ė} has the finite intersection property. By themaximality of Eδ , ė ∈ Eδ .
This proves that p � ḃ ∈ Eδ . Now apply Lemma 2.13.

This completes the proof. ��
Theorem 4.2 Assume Hyp(κ, λ). There is a ccc poset P forcing that s = b = λ,
M A(κ), and π p(U) ≤ κ for all free ultrafilters U on N.

Proof Let {aα, ζα : α ∈ λ} be the sequence constructed in Theorem 4.1. Let P be the
poset

⋃{Paα
κ : α ∈ λ}. Since {Paα

κ : α ∈ λ} is a strongly continuous <·-increasing
chain of ccc posets, it follows that P is ccc. Furthermore℘(N, P) is equal to the union
of the increasing sequence {℘(N, Paα

κ ) : α < λ}. It then follows immediately from
condition (6) that s is forced to be λ. Similarly by Proposition 3.3, P forces that b = λ.
Now we check that P forces that MA(κ) holds: that is, if Q is any P-name of a ccc
poset of cardinality less than κ and {Aξ : ξ < μ} is a family of maximal antichains
of Q with μ < κ , then there is a filter G on Q that meets each Aξ . To show that this
is forced by P , we may choose a P-name Q̇ for Q as well as P-name { Ȧξ : ξ < κ}
for the maximal antichains. We may assume that 1P forces that Q̇ is ccc. Since Q̇ has
cardinality less than λ, there is an α < λ such that Q̇, and each Ȧξ is a Paα

κ -name.
Choose any γ < λ so that Q̇ ∗ Fn((γ, γ + ω), 2) is not in the list {h(ζ ) : ζ ≤ ζα} and
let h(ζ ′) = Q̇∗Fn((γ, γ +ω), 2). It follows from inductive conditions (1) and (7), that
the sequence {ζα : α ∈ λ} is unbounded in λ. So we may choose limit δ < λ maximal
so that ζδ ≤ ζ ′. Since ζδ+3 = ζδ and ζδ+ω is greater than ζ ′, there is a minimal n ≥ 3
such that ζ ′ < ζδ+n+1. It should be clear that by inductive condition (7) that ζ ′ + 1 is
equal to ζδ+n+1 and so Q̇αδ+n+1 was chosen to be Q̇ ∗Fn((γ, γ +ω), 2). This ensures
that Paδ+n+1

κ forces that there is a filter on Q̇ that meets each Ȧξ .
Now let U̇ be a P-name of an ultrafilter on N. As we did in the inductive step (3),

we can let E be the set of all ė ∈ ℘(N, P) that are forced by 1P to be an element of
U̇ . There is a cub C ⊂ λ such that for all δ ∈ Sλ

κ , E ∩ ℘(N, Paδ
κ ) is a maximal set that

is forced by Paδ
κ to be an ultrafilter on N. Now let X = {ξ ∈ λ : h(ξ) ∈ E}. We can

pass to a cub subset C ′ of C so that for all δ ∈ C ′ ∩ Sλ
κ , the set {h(ξ) : ξ ∈ X ∩ δ}

is equal to E ∩ ℘(N, Paδ
κ ). Now choose a δ ∈ E ∩ C ′ so that Xδ = X ∩ δ. It follows
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from inductive step (3), that E ∩ Aaδ

i is not empty for all i < κ . By Lemma 2.9, P
forces that U̇ has a subset of size κ with no pseudo-intersection. ��

5 Another ccc poset for raising s

The proper poset QBould is introduced in [15] (also Sh:207 in the Shelah archive) to
establish the consistency of b < s = a. For special directed subfamiliesD ofQBould ,
there is a ccc poset denoted Q(D) that is analogous to L(E) for filters E on N (see
Definition 5.6). Let us note the important properties ofQBould shown to hold in [15].
The first is that it adds an unsplit real.

Proposition 5.1 If L̇ is the generic subset of N added by QBould , then the set {A ⊂
N : A ∈ V and |L̇\A| < ℵ0} is a free ultrafilter over V ∩ P(N).

The second is that the forcing does not add a dominating real. By Lemma 2.8, this
property is needed if such a Q(D) is to replace L(E) in constructing a in APv.

Proposition 5.2 If ḟ is a QBould -name of a function in N
N and if L̇ is the generic

subset ofN added byQBould , then there is a (ground model) h ∈ N
N so that, for every

infinite set A ⊂ N in the ground model, the set {n ∈ A : ḟ (n) < h(n)} will be forced
to be infinite.

We adopt the elegant representation of this poset from [1]. Also many of the tech-
nical details for constructing ccc subposets of this poset, sharing the above mentioned
properties, are similar to the results in [12]. The main tool is to utilize logarithmic
measures.

Definition 5.3 A function h is a logarithmic measure on a set S ⊂ N if h is a function
from [S]<ℵ0 into ω with the property that whenever 	 ≥ 0 and h(a ∪ b) ≥ 	 + 1, then
either h(a) ≥ 	 or h(b) ≥ 	. A pair (s, h) ∈ Ln if s ∈ [N]<ℵ0 and h is a logarithmic
measure on s with h(s) ≥ n. The elements e of [N]<ℵ0 such that h(e) > 0 are called
the positive sets.

When we discuss t ∈ L1, we use int(t) and ht to denote the pair where t =
(int(t), ht ). We say that a subset e of int(t) is t-positive to mean that ht (e) > 0. Note
that if (s, h) ∈ Ln and ∅ �= e ⊂ s, then (e, h � [e]<ℵ0) ∈ Lh(e).

Definition 5.4 The poset QBould consists of all pairs (u, T ) where

(1) u ∈ [N]<ℵ0 ,
(2) T = {t	 : 	 ∈ ω} is a sequence ofmembers ofL1 where for each 	, max(int(t	)) <

min(int(t	+1)), and the sequence {ht	 (int(t	)) : 	 ∈ ω} is monotone increasing
and unbounded.

For each (u, T ) ∈ QBould , let 	u,T be the minimal 	 such that max(u) < min(int(t	))
and let int(u, T ) = ⋃{int(t	) : 	u,T ≤ 	}.

For T1 = {t1	 : 	 ∈ ω} and T2 = {t2	 : 	 ∈ ω} with (u1, T1), (u2, T2) ∈ QBould , the
extension relation is defined by (u2, T2) ≥ (u1, T1) (stronger) providing

123

Sh:1134



Pseudo P-points and splitting number 1019

(1) u2 ⊃ u1 and u2\u1 is contained in int(u1, T1),
(2) int(u2, T2) ⊂ int(u1, T1)
(3) there is a sequence of finite subsets of ω, 〈Bk : k ∈ ω〉, such that for each

k ≥ 	u2,T2 , max(Bk) < min(Bk+1) and int(t2k ) ⊂ ⋃{int(t1	 ) : 	 ∈ Bk},
(4) for every k ≥ 	u2,T2 and every t

2
k -positive e ⊂ int(t2k ) there is a j ∈ Bk such that

e ∩ int(t1j ) is t
1
j -positive.

For a finite subset D of QBould and an element t of L1, we say that t is built from
D if there is a q = (∅, Tq) ∈ QBould with t ∈ Tq such that q ≥ (∅, Tq ′) for each
q ′ = (uq ′, Tq ′) ∈ D.

Definition 5.5 The elementsq ∈ QBould of the form (∅, Tq) are called pure conditions.
We let PBould denote the set of all pure conditions in QBould . A family D ⊂ PBould

is finitely compatible if each finite subset of D has an upper bound in QBould . The
family D is finitely directed if each finite subset has an upper bound in D.

For an elementq ∈ QBould , we let uq and Tq denote the elementswithq = (uq , Tq).
We also use int(q) for int(uq , Tq). The fact that the elements of Tq are enumerated
by ω is unimportant. It will be convenient to adopt the convention that for an infinite
set L ⊂ ω, the sequence (∅, {t	 : 	 ∈ L}) is a pure condition so long as (∅, {t ′n : n ∈
ω}) ∈ QBould where {	n : n ∈ ω} is the increasing enumeration of L and t ′n = t	n for
each n ∈ ω.

Definition 5.6 If D is a finitely directed set of pure conditions, then define Q(D) to
be the subposet {(u, T ) : u ∈ [N]<ℵ0 , (∅, T ) ∈ D} of QBould . We let L̇D denote the
Q(D)-name {(n, q) : q ∈ Q(D) , n ∈ uq}.
Proposition 5.7 If D ⊂ PBould is finitely directed, then Q(D) is a σ -centered poset.
Each q ∈ Q(D) forces that L̇D\int(Tq) ⊂ uq .

It follows from the results in [12] that there is a Fn(2ω, 2)-name Ḋ that is forced to
be a finitely directed subset ofPBould with the property that Fn(2ω, 2)∗Q(Ḋ)will add
an unsplit real and not add a dominating real (see Lemmas 5.16 and 5.22). These will
be the factor posets we will use in place of L(D) in the construction of members of
APv. We will also need an analogue of Lemma 3.6 and we now introduce a condition
on D that will ensure that Q(D) <V Q(D2) when D2 ⊃ D in a forcing extension of
V (see Proposition 5.11).

Definition 5.8 Let D ⊂ PBould be directed mod finite. For a set E = {(un, Tn) : n ∈
ω} ⊂ Q(D) we say that (∅, {t	 : 	 ∈ ω}) ∈ PBould , is a mod finite meet of E if,
for each 0 < 	 ∈ ω, w ⊂ max(int(t	−1)), and h	-positive e ⊂ int(t	), there is an
n < min int(t	+1) and a we ⊂ e such that (w ∪we, {tm : m > 	}) ≥ (un, Tk) for each
k ≤ max{n, 	,max(int(t	−1))}.

A set of pure conditions D is ℵ1-directed mod finite if it is directed mod finite and
each predense subset of Q(D) has a mod finite meet in D.

Lemma 5.9 Suppose that {(un, Tn) : n ∈ ω} is a subset ofQBould and let T be a mod
finite meet. Then, for each w ∈ [N]<ℵ0 , {(un, Tn) : n ∈ ω} is predense below (w, T )

in all of QBould .
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Proof Let (w, T ′) be an arbitrary member ofQBould that is compatible with (w, T ) =
(w, {t	 : 	 ∈ ω}) in QBould . By extending (w, T ′), we may assume that (w, T ′) <

(w, {t	 : 	 > 	w}), where w ⊂ min(int(t	w )). Choose any T ′-positive e so that
(w ∪ e, T ′) < (w, T ′) and max(w) < min(e). Therefore there is an 	 > 	w such that
h	(e ∩ int(t	)) > 0, and so, by Definition 5.8, there is an n < min(int(t	+1)) and a
we ⊂ e so that (w ∪ we, T ) < (un, Tn) and we have that (w ∪ we, T ′) < (w, T ) <

(un, Tn). ��
Definition 5.10 Q207 is the set of Q(D) where D is an ℵ1-directed mod finite set of
pure conditions.

Proposition 5.11 Assume {Pi : i < κ} is a continuous <·-chain of ccc posets and that
{Q̇i : i < κ} is a chain such that, for each i < κ , Q̇i is a Pi -name of a member of
Q207, then {Pi ∗ Q̇i : i < κ} is a continuous <·-chain of ccc posets.

Proof By Lemma 1.5, it suffices to prove that each Pj -name of a predense subset of
Q̇ j is forced by Pi to be predense in Q̇i . Since Q̇ j is forced to be a subset of Q̇i , it is
immediate that [N]<ℵ0 × {T } is a predense subset of Q̇i for each (∅, T ) ∈ Q̇ j . Now
the Proposition follows by Lemma 5.9. ��
Definition 5.12 Say that a subset L̃ of L1 is D-positive if for each finite D′ ⊂ D and
each n ∈ ω, there is a t ∈ L̃ ∩ Ln that is built from D′.

Proposition 5.13 If L̃ ⊂ L1 is D-positive for some D ⊂ PBould , then for each finite
D′ ⊂ D, the set {t ∈ L̃ : t is built from D′} is D-positive.

The poset Fn(N, 2) is forcing isomorphic to the poset ω<ω ordered by extension.
Similarly, each infinite branching (non-empty) subset S ⊂ ω<ω is forcing isomorphic
to ω<ω; we say that S is infinite branching if, for each s ∈ S, the {n ∈ ω : s�n ∈ S}
is infinite. For such infinite branching S ⊂ ω<ω and each k ∈ ω, let ṅSk denote the
S-name {(s(k), s) : s ∈ S and k ∈ dom(s)}.
Definition 5.14 Fix an enumerating function λ from ω onto L1. For D ⊂ PBould , say
that S ⊂ ω<ω is D+-branching if ∅ ∈ S and, for each s ∈ S,

(1) for each k ∈ dom(s), λ(s(k)) ∈ Lk ,
(2) max(int(λ(s( j)))) < min(int(λ(s(k)))) for j < k ∈ dom(s), and
(3) the set {λ(n) : s�n ∈ S} is a D-positive set .

For each k ∈ ω, define the S-name ṙ Sk to be λ(ṅSk ). For each finite D′ ⊂ PBould , let
İ SD′ be the S-name for the set {k ∈ ω : ṙ Sk is built from D′}.
Lemma 5.15 If D ⊂ PBould is finitely compatible and if S ⊂ ω<ω is D+-branching
then �S ḊS = D ∪ {(∅, {ṙ Sk : k ∈ İ SD′ }) : D′ ∈ [D]<ℵ0} is finitely directed.
Lemma 5.16 IfD ⊂ PBould is finitely directed, then there is a Fn(N, 2)-name Ḋ1 such
that

(1) �Fn(ω,2) D ⊂ Ḋ1 ⊂ PBould and Ḋ1 is finitely directed,
(2) for each A ⊂ N, �Fn(N,2) (∃q ∈ Ḋ1) (int(q) ⊂ A or int(q) ∩ A = ∅)
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Proof Let S ⊂ ω<ω be the maximal D+-branching set. That is, S is the set of all
s ∈ ω<ω that satisfy properties (1) and (2) of Definition 5.14. For finite subsets D′ of
D, let İ SD′ be an S-name for the set {k ∈ ω : ṙ Sk is built from D′}.

For a subset A of N, define L(A) to be {t ∈ L1 : int(t) ⊂ A}. If L(A) is not D-
positive, there is a finiteDA ⊂ D and an integerm such that there is no t ∈ Lm ∩L(A)

that is built from DA. Since, for each t ∈ Ln+1, there is an e ⊂ int(t) such that
ht (e) ≥ n and either e ⊂ A or e ⊂ (N\A), it follows that if A is a finite partition of
N, then L(A) is D-positive for some A ∈ A. Therefore, by Zorn’s Lemma, there is
a free ultrafilter U on N so that L(U ) is D-positive for all U ∈ U . For each U ∈ U ,
let İ SU denote an S-name that will evaluate to {k ∈ ω : int(ṙ Sk ) ⊂ U }. It follows from
the fact that L(U ) is D-positive, that �S İ SU ∩ İ SD′ is infinite for each D′ ∈ [D]<ℵ0 . It
is also clear that �S { İ SU ∩ İ SD′ : U ∈ U} is closed under finite intersections. It then
follows that �S ḊS = D ∪ {(∅, {ṙ Sk : k ∈ İ SD′ }) : D′ ∈ [D]<ℵ0} is the desired finitely
directed subset of PBould . ��

In order to produce extensions of finitely directedD ⊂ PBould that are ℵ1-directed
mod finite, we will need the following tools for constructing members of Ln for
arbitrarily large n. A family L ⊂ [N]<ℵ0 naturally induces a logarithmic measure.

Definition 5.17 Let L ⊂ [N]<ℵ0 and define the relation h(s) ≥ 	 for s ∈ [N]<ℵ0 by
induction on |s| and 	 as follows:

(1) h(e) ≥ 0 for all e ∈ [N]<ℵ0 ,
(2) h(e) > 0 if e contains some non-empty element of L ,
(3) for 	 > 0, h(e) ≥ 	 + 1 if and only if, |e| > 1 and whenever e1, e2 ⊂ e are such

that e = e1 ∪ e2 then h(e1) ≥ 	 or h(e2) ≥ 	.

The definition of h(e) is the maximum 	 such that h(e) ≥ 	.

Proposition 5.18 [1, Lemma 4.7] Let L ⊂ [N]<ℵ0 be an upward closed family of non-
empty sets and let h be the associated logarithmic measure. Assume that whenever N
is partitioned into finitely many sets A, there is some A ∈ A such that L ∩ [A]<ℵ0 is
non-empty. Then, for any partition A of N, and any integer n, there is an A ∈ A and
an e ⊂ A such that h(e) ≥ n.

Lemma 5.19 If D ⊂ PBould is finitely directed and E = {(un, Tn) : n ∈ ω} is a
subset of Q(D), then in the forcing extension by Fn(N, 2), there is a finitely directed
D ⊂ D1 ⊂ PBould such that either E is not predense in Q(D1) or there is a condition
(∅, T ) ∈ D1 such that (∅, T ) is the mod finite meet of E.

Proof We assume that in the forcing extension by Fn(N, 2), E is a predense subset of
Q(D1) for each finitely directed D1 with D ⊂ D1 ⊂ PBould . We will prove there is
a D+-branching S ⊂ ω<ω satisfying that �S (∅, {ṙ Sk : k ∈ ω}) is a mod finite meet
of E . By Lemma 5.15, S forces that there is a D1 as required. Since S will be forcing
isomorphic to Fn(N, 2), this will complete the proof.

Let L = {w ∈ [N]<ℵ0 : (∃n ∈ ω) un ⊂ w} , and for each w ∈ [N]<ℵ0 , let

Lw = {w1 ∈ [N]<ℵ0 : max(w) < min(w1) and w ∪ w1 ∈ L}.
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Say that t ∈ L1 is (E, 	)-large (for 	 ∈ N) if 	 < min(int(t)) and for each w ⊂
{1, . . . , 	} each t-positive set contains an element of Lw. For each (E, 	)-large t , let
Nt ≥ max(int(t)) denote a sufficiently large integer such that each t-positive set
contains an element of {un : n < Nt }.
Claim 1 For each 	 ∈ N, the set {t ∈ L	 : t is (E, 	)-large} is D-positive.

Proof of Claim 1 Let 	 ∈ N. SinceD is finitely directed, in order to show that the set of
(E, 	)-large elements is D-positive, it suffices to show that for each q ∈ D there is a
(E, 	)-large t that is built from q. Note t ∈ L1 is built from q if int(t) ⊂ int(q) and,
for each t-positive set e, there is a te ∈ Tq such that e ∩ int(te) is te-positive. Say that
a finite set e is q-positive if there is a te ∈ Tq such that e ∩ int(te) is te-positive. Note
also that if q1, q ∈ PBould and q1 ≥ q, then each q1-positive set is also q-positive.

Define Lq,	 to be the elements of
⋂

w⊂{1,...,	} Lw that are also q-positive. Let hq,	

denote the associated logarithmic measure as in Definition 5.17. If e ∈ Lq,	 is a subset
of int(q), then (e, hq,	 � [e]<ℵ0) is built from q. Therefore, to finish the proof of the
claim it will suffice to prove that there is an e ∈ Lq,	 with hq,	(e) > 	. We prove
this using Proposition 5.18; so let A be a finite partition of N. Pass to the forcing
extension by Fn(N, 2) and choose, by Corollary 5.16, a finitely directedD1 ⊂ PBould

that contains D and satisfies that there is a q1 ≥ q in Q(D1) and an A ∈ A such that
int(q1) ⊂ A. We may arrange that 	 < min(int(q1)). By assumption, E is a predense
subset of Q(D1). Let {tk : k ∈ ω} be the standard enumeration of Tq1 . For each
w ⊂ {1, . . . , 	}, there is a qw ≥ (w, Tq1) and an nw ∈ ω such that qw ≥ (unw , Tnw).
There is a Kw ∈ ω such that (uqw\w) ⊂ ⋃{int(tk) : k ∈ Kw}. Since uqw ⊃ unw , we
have that any finite set containing uqw is in Lw. This shows that, for some K ∈ ω,
e = ⋃

k<K int(tk) is in Lw for eachw ⊂ {1, . . . , 	}. Since e is q1-positive and q1 ≥ q,
it follows that e is q-positive. This completes the proof that e ∈ Lq,	. ��

For each s ∈ ω<ω, define 	s to be the maximum element of the set {1} ∪⋃
k∈dom(s) int(λ(s(k))). Now define the infinite branching S ⊂ ω<ω by the recur-

sive rule that, for each s ∈ S and n ∈ ω, s�n ∈ S if and only if

(1) λ(n) is (E, 	s)-large, and
(2) λ(n) is built from {(∅, Tn) : n < max{Ns(k) : k ∈ dom(s)}} and (∅, T	s ).

Claim 1 and Proposition 5.13 show that S isD+-branching. The definition of the notion
of being (E, 	)-large and the second criterion of being an element of S, ensures that
�S (∅, {ṙ Sk : k ∈ ω}) is the mod finite meet of E . Since Fn(N, 2) is forcing isomorphic
to S, the proof of the Lemma now follows from Lemma 5.15. ��

The next result follows by first applying Lemma 5.15 to obtain directed mod
finite extension of D, next applying Lemma 5.16, and finally repeatedly applying
Lemma 5.19 in a recursive construction of length c.

Lemma 5.20 IfD is a finitely compatible set of pure conditions then there is a Fn(c×
N, 2)-name Ḋ1 such that Fn(c × N, 2) forces that

(1) Ḋ1 ⊂ PBould is finitely directed and includes D,
(2) Q(Ḋ1) is in Q207, and
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(3) the ground model subsets of N is not a splitting family in the further forcing
extension by Q(Ḋ1).

We now establish notation that will be useful when preserving that a family of
names is forced to be very thin.

Definition 5.21 Let Q ∈ Q207 and let ḟ be a Q-name such that �Q ḟ ∈ N
N. A

condition q ∈ Q is ḟ -ready if, for each integer 	 > 0, w ⊂ {1, . . . ,max(int(tq	−1))},
and tq	 -positive e, there is a we ⊂ e such that (w ∪ we, {tqk : k > 	}) decides the value
of ḟ ( j) < min(int(tq	+1)) for each j ∈ {1, . . . ,max(int(tq	−1))}.
Lemma 5.22 For each Q ∈ Q207 and Q-name ḟ such that �Q ḟ ∈ N

N, the set of
ḟ -ready conditions is a dense subset of Q.

Proof Let Q and ḟ be as in the statement of the Lemma and let q be any element
of Q. For each k ∈ N, there is a pre-dense set {(ukn, T k

n ) : n ∈ ω} ⊂ Q satisfying
that (uq , T k

n ) ≥ q and (ukn, T
k
n ) forces a value on ḟ � {1, . . . , k} for each n ∈ ω.

By choosing a cofinite subset of T k
n we may assume also that (ukn, T

k
n ) forces that

the range of ḟ � {1, . . . , k} is contained in min(int(T k
n )). Since Q ∈ Q207, there is,

for each k ∈ N, a condition (∅, {tk	 : 	 ∈ ω}) ∈ Q which is the mod finite meet
of the predense set {(ukn, T k

n ) : n ∈ ω}. We recall that this means that for each
	 ∈ ω, w ⊂ {1, . . .max(int(tk	−1))} and tk	 -positive e, there is a we ⊂ e, such that
(w ∪ we, {tkm : 	 < m ∈ ω}) decides the value of ḟ � {1, . . . , k}. Also, if n was
the value witnessing that (w ∪ we, {tkm : 	 < m ∈ ω}) ≥ (ukn, T

k
n ) then the range of

ḟ � {1, . . . , k} is also forced to be contained in min(int(T k
n )) ≤ min(int(tk	+1)).

Let T0 = {tq	 : 	 ∈ ω} and for each k ∈ N, let Tk = {tk	 : 	 ∈ ω}. Choose
(∅, {t	 : 	 ∈ ω}) to be a mod finite meet of the family {(∅, Tk) : k ∈ ω}. It follows
easily from the definition that (∅, {t	 : max(uq) < 	 ∈ ω}) is also a mod finite meet
of this family, and so by re-indexing, we can assume that t	 is built from a finite subset
of Tmax(int(t	−1)) for each 	 ∈ ω, and that max(uq) < min(int(t0)). We check that
(uq , {t	 : 	 ∈ ω}) is ḟ -ready. Consider any 	 > 0 and let 	̄ denote max int(t	−1).

Choose any w ⊂ {1, . . . , 	̄} and t	-positive e. Choose any k so that e ∩ int(t 	̄k ) is

t 	̄k -positive. Choosewe ⊂ (e∩ int(t 	̄k )) so that (w∪we, {t 	̄m : k < m ∈ ω}) decides the
value of ḟ � {1, . . . , 	̄}. Since (∅, {tm : m ∈ ω}) is a mod finite meet of the sequence
{(∅, Tm) : m ∈ ω}, we also have that (∅, {tm : 	 < m ∈ ω}) ≥ (∅, {t 	̄m : k < m ∈ ω}).
Therefore (w ∪ we, {tm : 	 < m ∈ ω}) ≥ (w ∪ we, {t 	̄m : k < m ∈ ω}). This proves
that (w ∪ we, {tm : 	 < m ∈ ω}) decides the value of ḟ � {1, . . . , 	}. ��
Corollary 5.23 Suppose that a ∈ APv and let |Pa

κ | ≤ θ = θℵ0 < λ and let a1 denote
the Cohenθ -extension of a. Then there is a b ∈ APv and a sequence {Di : i < κ}
satisfy that, for i < j < κ ,

(1) a1 ≤0
AP b and Ab

i = Aa
i ,

(2) Di ⊂ ℘(L1, P
a1
i ),

(3) Di ⊂ D j ,
(4) Pa1

i forces that {∅} × Di = {(∅, T ) : T ∈ Di } is a subset of PBould and is
ℵ1-directed mod finite,
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(5) Pb
i = Pa1

i ∗ Q({∅} × Di ),
(6) Pb

j forces that ℘(N, Pa
i ) is not a splitting family.

Proof Let a ∈ APv and κ ≤ |Pa
κ |ℵ0 ≤ θ < λ. If needed, we can first extend a by

applying Lemma 2.10, so as to assume that�Pa
i
c = θ for all i < κ . Before proceeding

we note that it follows from Lemmas 2.10 and 5.11, that condition (4) will imply that
{Pb

i : i < κ} is a continuous <·-chain of ccc posets as required in the definition of
APv. We construct the sequence {Di : i < κ} by recursion on i < κ . It follows from
Lemma 5.20 that there is a setD0 ⊂ ℘(L1, Pa

0 ∗Fn({0}×θ ×N, 2)) such that {∅}×D0
is forced to be a subset of PBould that is ℵ1-directed mod finite. Assume that ı̄ < κ

and that {Di : i < ı̄} has been constructed so that for i < j < ı̄, properties (2)–(6)
hold and so that Pb

i+1 forces that Aa
i is very thin over the forcing extension by Pb

i . It
will be most convenient to continue the argument in a forcing extension.

Let Gκ ⊂ Pa
κ be a generic filter and, for each i < κ , let Gi = Gκ ∩ Pa

i . For
each i < κ , let Hi ⊂ Fn(i+1 × θ × N, 2) be a filter so that Gi × Hi is a generic
filter for Pa

i ∗ Fn(i+1 × θ × N, 2). It follows that Ḡ = G ı̄ ∗ (⋃{Hi : i < ı̄}) is a
generic filter for Pa

ı̄ ∗ Fn(ı̄ × θ × N, 2). We work in the forcing extension V [Ḡ].
We first handle the case when ı̄ is a limit ordinal. By the definition of the family
APv, the sequence {Aa

i : i < κ} is not a concern, as in Definition 2.2, when defining
Pb
ı̄ in the limit case. It should be clear that the Ḡ-interpretation of the collection

E = ⋃{{∅} × Di : i < ı̄} is a finitely directed subset of PBould . We proceed as in
the base case. By Lemma 5.20, there is a Fn({ı̄} × θ × N, 2)-name, Ė ′, of a subset
of PBould that is forced to be an ℵ1-directed mod finite extension of E that further
forcing by Q(Ė ′) ensures that the family [N]ℵ0 ∩ V [Ḡ] is not a splitting family. The
familyDı̄ is a subset of ℘(L1, Pa

ı̄ ∗Fn(ı̄+1× θ ×N, 2)) that containsDi for all i < ı̄
and is forced to satisfy that Ė ′ is equal to {{∅} × T : T ∈ Dı̄}.

Now we may assume that ı̄ = i + 1 and we note that Aa
i is a family of Pa

i+1-
names that is forced to be very thin over the forcing extension by Pa

i . It follows from
Lemma 2.10 that Aa

i is forced to be very thin over the model V [Gi ∗ Hi ]. We again
work in the forcing extension V [Ḡ] where Ḡ = Gi+1 ∗ Hi . Let A denote the ideal
generated by the Ḡ interpretations of the names fromAa

i . Let E denote the ℵ1-directed
mod finite family {{∅} × T : T ∈ Di }. Let ẋ0 denote the canonical subset of N added
by Fn({(i +1, 0)}×N, 2) over the model V [Ḡ] as in Definition 1.2. Let {ṅm : m ∈ ω}
denote the name of the increasing enumeration of ẋ0. For all a ∈ A, let İ (a) be a
canonical Fn({(i + 1, 0)} × N, 2)-name for the set {m ∈ N : a ∩ [ṅm, ṅm+1] = ∅}.
For each q ∈ Q(E), let J̇ (a, q) be a canonical Fn({(i + 1, 0)} × N, 2)-name for the
set {	 ∈ N : (∃m ∈ İ (a)) ṅm ≤ max(int(t	−1)) < min(int(t	+1)) ≤ ṅm+1}.
Claim 2 The family E0 = {(∅, {tq	 : 	 ∈ J̇ (a, q)}) : a ∈ A, q ∈ Q(E)} is forced to be
a finitely directed subset of PBould .

Proof of Claim Each q ∈ E is in the model V [Gi ∗ Hi ] and each a ∈ A is thin over
that model. Therefore there is an infinite set of 	 ∈ N such that a is disjoint from
[max(int(t	−1)),min(int(t	+1))]. This implies, by a simple genericity argument, that
J̇ (a, q) is forced to be an infinite set for each a ∈ A and q ∈ E . Let H be the generic
filter for Fn({(i + 1, 0)} × N, 2) that is equal to Hi+1 ∩ Fn({(i + 1, 0)} × N, 2). For
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all a ∈ A and q ∈ E , let I (a) and J (a, q) denote the interpretations by H of İ (a) and
J̇ (a, q) respectively. Similarly let {nm : m ∈ N} denote the increasing enumeration
of the interpretation of ẋ0.

Evidently, if a1 ⊂ a2 are elements of A, then I (a2) is a subset of I (a1). To prove
the claim it suffices to assume that if q2 ≥ q1 are in E , then, for each 	 ∈ J (a, q2), t

q2
	

is built from a finite subset of {tq1k : k ∈ J (a, q1)}. Fix any 	 ∈ J (a, q2) and choose
minimal finite subsets B	−1, B	 and B	+1 of ω such that, for each r ∈ {−1, 0, 1}, tq2	+r
is built from {tq1k : k ∈ B	+r }. Let k0 be the maximum element of B	−1 and let k1
be the minimum element of B	+1. From the definition of QBould , we have, for each
k ∈ B	, that

(1) k0 < k < k1,
(2) max(int(tq2	−1)) ≤ max(int(tq1k0 )) ≤ max(int(tq1k−1)), and

(3) min(int(tq1k+1)) ≤ min(int(tq1k1 )) ≤ min(int(tq2	−1)).

Fix the unique m ∈ I (a) such that nm ≤ max(int(tq2	−1)) < max(int(tq2	+1)) < nm+1,
and now conclude that nm ≤ max(int(tq1k−1)) < max(int(tq1k+1)) < nm+1. This proves
that B	 ⊂ J (a, q1) as required. ��

Let H̃ be the generic filter Hi+1 ∩ Fn({i + 1} × θ ×N, 2). For each q ∈ Q(E) and
a ∈ A, let q(a) ∈ Q(E0) denote the condition (uq , {tq	 : 	 ∈ J (a, q)}).
Claim 3 In the forcing extension V [Ḡ ∗ H̃ ] there is a family E1 ⊂ PBould such that

(1) E0 ∪ E is a subset of E1,
(2) E1 is ℵ1-directed mod finite,
(3) the family [N]ℵ0 ∩ V [Ḡ] is not a splitting family in the further forcing extension

by Q(E1),
(4) for each Q(E)-name ḟ ∈ V [Gi ∗ Hi ] of an element of NN and each ḟ -ready

q ∈ Q(E), q(a) �Q(E1) (∃n) a ∩ [n, ḟ (n)] = ∅ for each a ∈ A.

Proof of Claim We simply apply Lemma 5.20 to select E1. This ensures that conditions
(1)–(3) hold. Now we verify that (4) holds. Let ḟ , a and q be as in the statement of
(4). Let r ∈ Q(E1) be any condition stronger than q(a). Fix any k so that max(ur ) <

min(int(trk )). Since r ≥ q(a), there is a finite subset B of J (a, q) such that trk is
built from {tq	 : 	 ∈ B}. Choose any 	 ∈ B such that e = int(trk ) ∩ int(tq	 ) is tq	 -
positive. Since 	 ∈ J (a, q), there is an m ∈ I (a) so that nm ≤ max(int(tq	−1)) <

min(int(tq	+1)) < nm+1. Since q is ḟ -ready, there is awe ⊂ e such that (ur ∪we, {tqj :
	 < j ∈ ω}) forces that ḟ (nm) < min(int(tq	+1)). Since m ∈ I (a), this completes the
proof that r has an extension forcing that a is disjoint from [nm, ḟ (nm)]. ��
The proof of the Corollary is completed by choosing a subsetDı̄ of℘(L1, Pa

ı̄ ∗Fn(ı̄+
1× θ ×N, 2)) (recall that ı̄ = i +1) so thatDi ⊂ Dı̄ and {{∅}× T : T ∈ Dı̄} is forced
to equal E1. We prove that Pb

i+1 forces that Ai is very thin over the forcing extension

by Pb
i . Recall that Gi+1 is a Pa

i+1-generic filter and, similarly, Gi = Gi+1 ∩ Pa
i is

Pa
i -generic. Let Ei denote the interpretation of {∅}×Di , and similarly, let Ei+1 denote

the interpretation of {∅} × Di+1. We already know that Ai is forced to be very thin
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over the model V [Gi ∗ Hi ], so it suffices to consider a Q(Ei )-name ḟ in V [Gi ∗ Hi ]
of an element of NN. By Lemma 5.22, the set of ḟ -ready conditions is a dense subset
of Q(Ei ). Since Ei is ℵ1-directed mod finite, we also have, by Proposition 5.11, that
the set of ḟ -ready conditions from Q(Ei ) is a pre-dense subset of Q(Ei+1). The result
now follows from item (4) of Claim 3. ��
Definition 5.24 For any a ∈ APv we will say that b ∈ APv is a Q( �D)-extension of a
if there is cardinal θ < λ with |Pa

κ | ≤ θ = θℵ0 and a sequence {Di : i < κ} such that
for all i < j < κ ,

(1) a1 ≤0
AP b where a1 is the Cohenθ -extension of a,

(2) Aa
i = Ab

i ,
(3) Di ⊂ ℘(L1, P

a1
i ),

(4) {∅} × Di is forced by Pa1
i to be an ℵ1-directed subset of PBould ,

(5) Di ⊂ D j ,
(6) Pb

i = Pa1
i ∗ Q({∅} × Di ),

(7) Pb
j forces that ℘(N, Pa

i ) is not a splitting family.

Now we formulate the APv version of Theorem 4.1.

6 �p(U) ≤ � = b and s = �

Fix, as in Sect. 4, a 1-to-1 function h from λ onto H(λ). Recall that by our assumption
Hyp(κ, λ), E is a stationary subset of Sλ

κ and {Cα : α ∈ λ} is �-sequence. We let
{Xα : α ∈ E} be the ♦-sequence on λ as postulated in by Hyp(κ, λ).

Theorem 6.1 Assume Hyp(κ, λ). There is a sequence {aα, ζα : α ∈ λ} such that for
each limit δ ∈ λ:

(1) the sequence {aα : α < δ} is ≤∗
AP-increasing subset of APv,

(2) {ζα : α < δ} ⊂ λ is non-decreasing, and ζδ ∈ λ is the supremum,
(3) if δ /∈ E, the sequence {aα : α ∈ acc(Cδ) ∪ {δ}} is a ≤0

AP-increasing continuous
chain,

(4) if δ ∈ E and Eδ = {h(ξ) : ξ ∈ Xδ} is a maximal subset of ℘(N, Paδ
κ ) that is

forced by Paδ
κ to be a free ultrafilter onN, then Eδ ∩Aaδ

i is not empty for all i < κ ,
(5) aδ+1 is the Cohenω1 -extension of aδ and ζδ+1 = ζδ ,
(6) if α = δ + 1 then ζα+1 = ζα and aα+1 is a Cohenθα -extension of aα where

θα = |Paα
κ |ℵ0

(7) if α = δ + 2, then ζα+1 = ζα and aα+1 is a Q( �D)-extension of aδ ,
(8) if α ∈ (δ + 2, δ + ω), then ζα+1 is the minimal value strictly above ζα such that

Q̇α+1 = h(ζα+1 − 1) has cardinality less than κ and is a Paα
κ -name of a poset

that is forced to be ccc, and aα+1 = aα ∗ Q̇α+1 as in Definition 2.11.

Proof The proof only involves very minor modifications to the proof of Theorem 4.1
and can be omitted. ��
Theorem 6.2 Assume Hyp(κ, λ). There is a ccc poset P forcing that s = λ, M A(κ),
and π p(U) ≤ b = κ for all free ultrafilters U on N.
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Proof Let {aα, ζα : α ∈ λ} be the sequence constructed in Theorem 4.1. Let P be the
poset

⋃{Paα
κ : α ∈ λ}. Since {Paα

κ : α ∈ λ} is a strongly continuous <·-increasing
chain of ccc posets, it follows that P is ccc. Furthermore℘(N, P) is equal to the union
of the increasing sequence {℘(N, Paα

κ ) : α < λ}. It then follows immediately from
condition (7) that s is forced to be λ. By Proposition 2.8, P forces that b ≤ κ . The fact
that P forces that b = κ follows once we we note that P forces that MA(κ) holds.
This is proven exactly as in the proof of Theorem 4.2 and so can be omitted. Similarly,
simply repeating that portion of the proof from Theorem 4.2 also proves that P forces
that π p(U) ≤ κ for all free ultrafilter U on N. ��
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