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Another ordering of the ten cardinal

characteristics in Cichoń’s diagram

Jakob Kellner, Saharon Shelah, Anda R. Tănasie

Dedicated to the memory of Bohuslav Balcar (1943–2017)

Abstract. It is consistent that

ℵ1 < add(N ) < add(M) = b < cov(N ) < non(M) < cov(M) = 2ℵ0 .

Assuming four strongly compact cardinals, it is consistent that

ℵ1 < add(N ) < add(M) = b < cov(N ) < non(M)

< cov(M) < non(N ) < cof(M) = d < cof(N ) < 2ℵ0 .
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Introduction

We assume that the reader is familiar with basic properties of Amoeba, Hech-
ler, random and Cohen forcing, and with the cardinal characteristics in Cichoń’s
diagram, given in Figure 1: An arrow between x and y indicates that Zermelo–
Fraenkel set theory (ZFC) proves x ≤ y. Moreover, max(d, non(M)) = cof(M)
and min(b, cov(M)) = add(M). These (in)equalities are the only one provable.
More precisely, all assignments of the values ℵ1 and ℵ2 to the characteristics
in Cichoń’s diagram are consistent, provided they do not contradict the above
(in)equalities. (A complete proof can be found in [2, Chapter 7].)

In the following, we will only deal with the ten “independent” characteristics
listed in Figure 2 (they determine cof(M) and add(M)).

Regarding the left hand side, it was shown in [8] that consistently

(leftold) ℵ1 < add(N ) < cov(N ) < add(M) = b < non(M) < cov(M) = 2ℵ0 .

(This corresponds to λ1 to λ5 in Figure 3.) The proof is repeated in [7], in
a slightly different form which is more convenient for our purpose. Let us call this
construction the “old construction”.
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cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M) //

OO

cov(M) //

OO

non(N )

OO

Figure 1. Cichoń’s diagram.

cov(N ) // non(M) // // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

//

OO

cov(M) //

OO

non(N )

OO

Figure 2. The ten “independent” characteristics.

In this paper, building on [16], we give a construction to get a different order
for these characteristics, where we swap cov(N ) and b:

(leftnew) ℵ1 < add(N ) < add(M) = b < cov(N ) < non(M) < cov(M) = 2ℵ0 .

(This corresponds to λ1 to λ5 in Figure 4.)
This construction is more complicated than the old one. Let us briefly describe

the reason: In both constructions, we assign to each of the cardinal characteristics
of the left hand side a relation R. E.g., we use the “eventually different” relation
R4 ⊆ ωω × ωω for non(M). We can then show that the characteristic remains
“small” (i.e., is at most the intended value λ in the final model), because all single
forcings we use in the iterations are either small (i.e., smaller than λ) or are “R-
good”. However, b (with the “eventually dominating” relation R2 ⊆ ωω × ωω)
is an exception: We do not know any variant of an eventually different forcing
(which we need to increase non(M)) which satisfies that all of its subalgebras are
R2-good. Accordingly, the main effort (in both constructions) is to show that b

remains small.
In the old construction, each non-small forcing is a (σ-centered) subalgebra of

the eventually different forcing E. To deal with such forcings, ultrafilter limits
of sequences of E-conditions are introduced and used (and we require that all
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λ2 // λ4 // // λ8 // λ9

λ3 //

OO

λ6

OO

ℵ1
// λ1 //

OO

//

OO

λ5 //

OO

λ7

OO

Figure 3. The old order.

λ3 // λ4 // // λ8 // λ9

λ2 //

OO

λ7

OO

ℵ1
// λ1 //

OO

//

OO

λ5 //

OO

λ6

OO

Figure 4. The new order.

E-subforcings are basically E intersected with some model, and thus closed under
limits of sequences in the model). In the new construction, we have to deal with
an additional kind of “large” forcing: (subforcings of) random forcing. Ultrafilter
limits do not work any more, but, similarly to [16], we can use finite additive
measures (FAMs) and interval-FAM-limits of random conditions. But now E

doesn’t seem to work with interval-FAM-limits any more, so we replace it with

a creature forcing notion Ẽ.
We also have to show that cov(N ) remains small. In the old construction, we

could use a rather simple (and well understood) relation Rold and use the fact

that all σ-centered forcings are Rold-good: As all large forcings are subalgebras of
either eventually different forcing or of Hechler forcing, they are all σ-centered. In

the new construction, the large forcings we have to deal with are subforcings of Ẽ.

But Ẽ is not σ-centered, just (̺, π)-linked for a suitable pair (̺, π) (a property
between σ-centered and σ-linked, first defined in [15], see Definition 1.18). So we
use a different (and more cumbersome) relation R3, introduced in [15], where it
is also shown that (̺, π)-linked forcings are R3-good.

Regarding the whole diagram, in [7], starting with the iteration for (leftold),
a new iteration is constructed to get simultaneously different values for all char-
acteristics: Assuming four strongly compact cardinals, the following is consistent
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(cf. Figure 3):

ℵ1 < add(N ) < cov(N ) < b < non(M) < cov(M)

< d < non(N ) < cof(N ) < 2ℵ0 .

The essential ingredient is the concept of the Boolean ultrapower of a forcing
notion.

In exactly the same way we can expand our new version (leftnew) to the right
hand side, where also the characteristics dual to b and cov(N ) are swapped. So
we get: If four strongly compact cardinals are consistent, then so is the following
(cf. Figure 4):

ℵ1 < add(N ) < b < cov(N ) < non(M) < cov(M)

< non(N ) < d < cof(N ) < 2ℵ0 .

We closely follow the presentation of [7]. Several times, we refer to [7] and
to [16] for details in definitions or proofs. We thank M. Goldstern and D.A. Mej́ıa
for valuable discussions, and an anonymous referee for a very detailed and helpful
report pointing out (and even fixing) several mistakes in the first version of the
paper.

1. Finitely additive measure limits and the Ẽ-forcing

1.1 FAM-limits and random forcing. We briefly list some basic notation
and facts around finite additive measures. (A bit more details can be found in
Section 1 of [16].)

Definition 1.1. ◦ A “partial FAM” (finitely additive measure) Ξ′ is a fi-
nitely additive probability measure on a sub-Boolean algebra B of P(ω),
the power set of ω, such that {n} ∈ B and Ξ′({n}) = 0 for all n ∈ ω. We
set dom(Ξ′) = B.

◦ Ξ is a FAM if it is a partial FAM with dom(Ξ) = P(ω).
◦ For every FAM Ξ and bounded sequence of non-negative reals a = (an)n∈ω
we can define in the natural way the average (or: integral) AvΞ(a), a non-
negative real number.

[16, 1.2] lists several results that informally say:

(∗)

There is a FAM Ξ that assigns the values ai to the sets Ai (for
all i in some index set I) if and only if for each I ′ ⊆ I finite
and ε > 0 there is an arbitrary large1 finite u ⊆ ω such that the
counting measure on u for Ai approximates ai with an error of at
most ε for all i ∈ I ′.

1Equivalently: “a finite u with arbitrary large minimum”, which is the formulation actually
used in most of the results.
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For the size of such an “ε-good approximation” u to some FAM Ξ we can give
an upper bound for |u| which only depends on |I ′| and ε (and not on Ξ):

Lemma 1.2. Given N, k∗ ∈ ω and ε > 0, there is an M ∈ ω such that: For all
FAMs Ξ and (An)n<N there is a nonempty u ⊆ ω of size less than or equal to M
such that min(u) > k∗ and Ξ(An)− ε < |An ∩ u|/|u| < Ξ(An) + ε for all n < N .

Proof: We can assume that ε = 1/L for an integer L. The set {An : n ∈ N}
generates the set algebra B ⊆ P(ω). Let X be the set of atoms of B. So X is
a partition of ω of size less than or equal to 2N . Set X ′ = {x ∈ X : Ξ(x) > 0}.
Every x ∈ X ′ is infinite, and

∑
x∈X ′ Ξ(x) = 1.

Round Ξ(x) to some number Ξε(x) = lx/(L · 2N ) for some integer 0 ≤ lx ≤
L · 2N , such that |Ξ(x) − Ξε(x)| < (L · 2N)−1 and

∑
x∈X ′ Ξε(x) is still 1. So∑

x∈X ′ lx = L · 2N , and we construct u consisting of lx many points that are
bigger than k∗ and in x (for each x ∈ X ′). �

We will use the following variants of (∗), regarding the possibility to extend
a partial FAM Ξ′ to a FAM Ξ. The straightforward, if somewhat tedious, proofs
are given in [16, 1.3 (G) and 1.7].

Fact 1.3. Let Ξ′ be a partial FAM, and I some index set.

(a) Fix for each i ∈ I some Ai ⊆ ω.
If A∩⋂

i∈I′ Ai 6= ∅ for all I ′ ⊆ I finite and A ∈ dom(Ξ′) with Ξ′(A) > 0,
then Ξ′ can be extended to a FAM Ξ such that Ξ(Ai) = 1 for all i ∈ I.

(b) Fix for each i ∈ I some real bi and some bounded sequence of non-negative
reals ai = (aik)k∈ω.
If for each finite partition (Bm)m<m∗ of ω into elements of dom(Ξ′) for
each ε > 0, k∗ ∈ ω, and I ′ ⊆ I finite there is a finite u ⊆ ω \ k∗ such that

◦ for all m < m∗, Ξ′(Bm)− ε ≤ |Bm ∩ u|/|u| ≤ Ξ′(Bm) + ε, and
◦ for all i ∈ I ′, |u|−1

∑
k∈u a

i
k ≥ bi − ε,

then Ξ′ can be extended to a FAM Ξ such that AvΞ(a
i) ≥ bi for all i ∈ I.

We first define what it means for a forcing Q to have FAM limits.

Remark 1.4. Intuitively, this means (in the simplest version): Fix a FAM Ξ. We
can define for each sequence qk of conditions that are all “similar” (e.g., have the
same stem and measure) a limit limΞ q. And we find in the Q-extension a FAM Ξ′

extending Ξ, such that limΞ(q) forces that the set of k satisfying P (k) ≡ “qk ∈ G”
has “large” Ξ′-measure. Up to here, we get the notion used in [8] and [7] (but there
we use ultrafilters instead of FAMs, and “large” means being in the ultrafilter).
However, we need a modification: Instead of single conditions qk we use a finite
sequence (pl)l∈Ik (where Ik is a fixed, finite interval); and the condition P (k),
which we want to satisfy on a large set, now is “|{l ∈ Ik : pl ∈ G}|/|Ik| > b” for
some suitable b. This is the notion used implicitly in [16].

Notation. Let T ∗ be a compact subtree of ω<ω, for example T ∗ = 2<ω. Let
s, t ∈ T ∗. Let S be a subtree of T ∗.
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◦ t⊲ s means “t is immediate successor of s”.
◦ |s| is the length of s (i.e.: the height, or level, of s).
◦ [t] is the set of nodes in T ∗ comparable with t.
◦ We set lim(S) = {x ∈ ωω : (∀n ∈ ω) x ↾ n ∈ S}.
◦ trunk(S) is the smallest splitting node of S. With “t ∈ S above the
stem” we mean that t ∈ S and t ≥ trunk(S); or equivalently: t ∈ S and
|t| ≥ | trunk(S)|.

◦ Leb is the canonical measure on the Borel subsets of lim(T ∗). We also
write Leb(S) instead of Leb(lim(S)).2

We fix for the rest of the paper an interval partition I = (Ik)k∈ω of ω such that
|Ik| converges to infinity. We will use forcing notions Q satisfying the following
setup:

Assumption 1.5. ◦ Q′ ⊆ Q is dense and the domain of functions trunk
and loss, where trunk(q) ∈ H(ℵ0) and loss(q) is a non-negative rational.

◦ For each ε > 0 the set {q ∈ Q′ : loss(q) < ε} is dense (in Q′ and thus
in Q).

◦ {p ∈ Q′ : (trunk(p), loss(p)) = (trunk∗, loss∗)} is ⌊1/loss∗⌋-linked. I.e.,
each ⌊1/loss∗⌋ many such conditions are compatible.3

In this paper, Q will be one of the following two forcing notions: random

forcing, or Ẽ (as defined in Definition 1.12). We will now specify the instance of
random forcing that we will use:

Definition 1.6. ◦ A random condition is a tree T ⊆ 2<ω such that the
measure Leb(T ∩ [t]) > 0 for all t ∈ T .

◦ trunk(T ) is the stem of T (i.e., the shortest splitting node).
◦ If Leb(T ) = Leb([trunk(T )]), we set loss(T ) = 0. Otherwise, let m be the
maximal natural number such that

Leb(T ) > Leb([trunk(T )])
(
1− 1

m

)

and set4 loss(T ) = 1/m.

Note that Leb(T ) ≥ 2−| trunk(T )|(1 − loss(T )) (and the inequality is strict if
loss(T ) > 0).

Note that this definition of random forcing satisfies Assumption 1.5 (with
Q′ = Q).

2I.e., we define Leb([s]) by induction on the height of s ∈ T ∗ as follows: Leb(T ∗) = 1, and
if s has n many immediate successors in T ∗, then Leb([t]) = Leb([s])/n for any such successor.
This defines a measure on each basic clopen set, which in turn defines a (probability) measure
on the Borel subsets of lim(T ∗) (a closed subset of ωω).

3In [16, 2.9], trunk and loss are called h2 and h1; and instead of Ik the interval is called
[n∗

k
, n∗

k+1
−1]. Moreover, in [16] the sequence (n∗

k
)k∈ω is one of the parameters of a “blueprint”,

whereas we assume that the Ik are fixed.
4In [16], this is implicit in 2.11 (f).
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Definition 1.7. Fix Q and functions (trunk, loss) as in Assumption 1.5, a FAM
Ξ and a function limΞ : Q

ω → Q. Let us call the objects mentioned so far a “limit
setup”. Let a (trunk∗, loss∗)-sequence be a sequence (ql)l∈ω of Q-conditions such
that trunk(ql) = trunk∗ and loss(ql) = loss∗ for all l ∈ ω.

We say “limΞ is a strong FAM limit for intervals”, if the following is satisfied:
Given

◦ a pair (trunk∗, loss∗), j∗ ∈ ω, and (trunk∗, loss∗)-sequences qj for j < j∗;
◦ ε > 0, k∗ ∈ ω;
◦ m∗ ∈ ω and a partition of ω into sets Bm, m ∈ m∗; and
◦ a condition q stronger than all limΞ(q

j) for all j < j∗;

there is a finite u ⊆ ω \ k∗ and a q′ stronger than q such that

◦ Ξ(Bm)− ε < |u ∩Bm|/|u| < Ξ(Bm) + ε for m < m∗;

◦ |u|−1
∑
k∈u |{l ∈ Ik : q

′ ≤ qjl }|/|Ik| ≥ 1− loss∗ − ε for j < j∗.

(We are only interested in limΞ(q) for q as above, so we can set limΞ(q) to be
undefined or some arbitrary value for other q ∈ Qω.)

The motivation for this definition is the following:

Lemma 1.8. Assume that limΞ is such a limit. Then there is a Q-name Ξ+

such that for every (trunk∗, loss∗)-sequence q the limit limΞ(q) forces Ξ+(Aq) ≥
1−

√
loss∗, where

(1.9) Aq = {k ∈ ω : |{l ∈ Ik : ql ∈ G}| ≥ |Ik|(1 −
√
loss∗)}.

Proof: Work in the Q-extension. Now Ξ is a partial FAM. Let J enumerate all
suitable sequences q ∈ V with limΞ(q) ∈ G, and for such a sequence qj set ajk =

|{l ∈ Ik : q
j
l ∈ G}|/|Ik|, and bj = 1−loss∗. Using that Ξ satisfies Definition 1.7, we

can apply Fact 1.3 (b), we can extend Ξ to some FAM Ξ+ such that AvΞ+(aj) ≥
1 − loss∗ for j < j∗. So Ξ+(Aqj ) + (1 − Ξ+(Aqj ))(1 −

√
loss∗) ≥ AvΞ+(ajk) ≥

1− loss∗, and thus Ξ+(Aqj ) ≥ 1−
√
loss∗. �

Definition 1.10. (Q, trunk, loss) as in Assumption 1.5 “has strong FAM limits
for intervals”, if for every FAM Ξ there is a function limΞ that is a strong FAM
limit for intervals.

Lemma 1.11 ([16]). Random forcing has strong FAM-limits for intervals.

Proof: limΞ is implicitly defined in [16, 2.18], in the following way: Given a se-
quence rl with (trunk(pl), loss(pl)) = (trunk∗, loss∗), we can set r∗ = [trunk∗] and
b = 1 − loss∗; and we set n∗

k such that Ik = [n∗
k, n

∗
k+1 − 1]. We now use these

objects to apply [16, 2.18] (note that (c)(∗) is satisfied). This gives r⊗, and we
define limΞ(r) to be r⊗.

In [16, 2.17], it is shown that this r⊗ satisfies Definition 1.7, i.e., is a limit: If
r is stronger than all limits r⊗i, then r satisfies [16, 2.17 (∗)]. �
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1.2 The forcing Ẽ. We now define Ẽ, a variant of the forcing notion Q2 defined
in [9]:

Definition 1.12. By induction on the height h ≥ 0, we define a compact homo-
geneous tree T ∗ ⊂ ω<ω, and set

(1.13) ̺(h) := max(|T ∗ ∩ωh|, h+2) and π(h) := ((h+1)2̺(h)h+1)̺(h)
h

,

we set Ωs to be the set {t⊲ s : t ∈ T ∗}, i.e., the set of immediate successors of s,
and define for each s a norm µs on the subsets of Ωs. In more detail:

◦ The unique element of T ∗ of height 0 is 〈 〉, i.e., T ∗ ∩ ω0 = {〈 〉}.
◦ We set

a(h) = π(h)h+2, M(h) = a(h)2, and µh(n) = loga(h)

( M(h)

M(h)− n

)

for natural numbers 0 ≤ n < M(h), and we set µh(M(h)) = ∞.
◦ For any s ∈ T ∗ ∩ ωh, we set Ωs = {s⌢l : l ∈ M(h)} (which defines
T ∗ ∩ ωh+1). For A ⊂ Ωs, we set µs(A) := µh(|A|). So |Ωs| = M(h),
µs(∅) = 0 and µs(Ωs) = ∞. Note that |A| = |Ωs|(1− a(h)−µs(A)).

We can now define Ẽ:

Definition 1.14. ◦ For a subtree p ⊆ T ∗, the stem of p is the smallest
splitting node. For s ∈ p, we set µs(p) = µs({t ∈ p : t⊲ s}).
The set Ẽ consists of subtrees p with some stem s∗ of height h∗ such that
µt(p) ≥ 1+1/h∗ for all t ∈ p above the stem. (So the only condition with
h∗ = 0 is the full condition, where all norms are ∞.)

The set Ẽ is ordered by inclusion.
◦ trunk(p) is the stem of p.
loss(p) is defined if there is an m ≥ 2 satisfying the following, and in that
case loss(p) = 1/m for the maximal such m:

– p has stem s∗ of height h∗ > 3m,
– µs(p) ≥ 1 + 1/m for all s ∈ p of height greater than or equal to h∗.

We set Q′ = dom(loss).

By simply extending the stem, we can find for any p ∈ Ẽ and ε > 0 some q ≤ p
in Q′ with loss(q) < ε; i.e., one of Assumptions 1.5 is satisfied. (The other one is

dealt with in Lemma 1.19 (a).) In particular Q′ ⊆ Ẽ is dense.
We list a few trivial properties of the loss function:

Facts 1.15. Assume p ∈ Q′ with s = trunk(p) of height h.

(a) loss(p) < 1, µs(p) ≥ 1 + loss(p) for any s above the stem, and loss(p) >
3/h.

(b) If q is a subtree of p such that all norms above the stem are greater than

or equal to 1 + loss(p)− 2/h, then q is a valid Ẽ-condition.
(c)

∏∞
l=h(1− 1/l2) = 1− 1/h > 1− loss(p)/3.
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Lemma 1.16. Let s ∈ T ∗ be of height h and A ⊂ Ωs.

(a) If µs(A) ≥ 1, then |A| ≥ |Ωs|(1− 1/h2).
(b) If A ( Ωs, i.e., A is a proper subset, then µs(A \ {t}) > µs(A) − 1/h for

t ∈ A.
(c) For i < π(h), assume that Ai ⊆ Ωs satisfies µs(Ai) ≥ x. Consequently

µs
(⋂

i∈π(h)Ai
)
> x− 1/h.

(d) For i < I (an arbitrary finite index set) pick proper subsets Ai ( Ωs such
that µs(Ai) ≥ x, and assign weighs ai to Ai such that

∑
i∈I ai = 1. Then

(1.17) µs(B) > x− 1

h
for B :=

{
t ∈ Ωs :

∑

t∈Ai

ai > 1− 1

h2

}
.

Proof: (a) Trivial, as a(h)−µs(A) ≤ 1/a(h) < 1/h2.
(b) µs(A \ {t}) = loga(h)(|Ωs|)− loga(h)(|Ωs| − |A|+ 1)

≥ loga(h)(|Ωs|)− loga(h)(2(|Ωs| − |A|))
≥ µs(A)− loga(h)(2) > µs(A) − 1/h.

(c) µs
(⋂

i∈π(h)Ai
)
= loga(h)(|Ωs|)− loga(h)

(
|Ωs| −

∣∣⋂
i∈π(h)Ai

∣∣)

= loga(h)(|Ωs|)− loga(h)
(∣∣⋃

i∈π(h)(Ωs −Ai)
∣∣)

≥ loga(h)(|Ωs|)− loga(h)
(
π(h) ·maxi∈π(h) |Ωs −Ai|

)

≥ x− loga(h)(π(h)) > x− 1/h.

(d) Set y =
∑
i∈I ai|Ai|. On the one hand, y ≥ |Ωs|(1 − a(h)−x). On the

other hand, y =
∑

t∈Ωs

∑
t∈Ai

ai ≤ |B|+ (|Ωs \B|)(1− 1/h2).

So |B| ≥ |Ωs|(1 − h2a(h)−x) > |Ωs|(1 − a(h)−(x−1/h)), as a(h)1/h >
π(h) > h2.

�

The set Ẽ is not σ-centered, but it satisfies a property, first defined in [15],
which is between σ-centered and σ-linked:

Definition 1.18. Fix f, g functions from ω to ω converging to infinity. Set Q is
(f, g)-linked if there are g(i)-linked Qij ⊆ Q for i < ω, j < f(i) such that each

q ∈ Q is in every
⋃
j<f(i)Q

i
j for sufficiently large i.

Recall that we have defined ̺ and π in (1.13).

Lemma 1.19. (a) If π(h) many conditions (pi)i∈π(h) have a common node
s above their stems, |s| = h, then there is a q stronger than each pi.

(b) The set Ẽ is (̺, π)-linked (in particular it is countable chain condition
(ccc)).

(c) The Ẽ-generic real η is eventually different (from every real in lim(T ∗),
and therefore from every real in ωω as well).

(d) Leb(p) ≥ Leb([trunk(p)])(1 − loss(p)/2); more explicitly: for any h >
| trunk(p)|,

|p ∩ ωh|
|T ∗ ∩ ωh ∩ [trunk(p)]| ≥ 1− 1

2
loss(p).
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(e) The set Q′ (which is a dense subset of Ẽ) is an incompatibility-preserving
subforcing of random forcing, where we use the variant5 of random forcing
on lim(T ∗) instead of 2ω. LetB′ be the sub-Boolean-algebra of Borel/Null
generated by {lim(q) : q ∈ Q′}. Then Q′ is dense in B′.

(Here, Borel refers to the set of Borel subsets of lim(T ∗). In the following
proof, we will denote the equivalence class of a Borel set A by [A]N .)

Proof: (a) Set S = [s]∩⋂
i<π(h) pi. According to 1.16 (c), for each t ∈ S of

height h′ ≥ h, the successor set has norm bigger than 1+ 1/h− 1/h′ > 1,
so in particular there is a branch x ∈ S, and S∩[x ↾ 2h] is a valid condition
stronger than all pi.

(b) For each h ∈ ω, enumerate T ∗ ∩ ωh as {sh1 , . . . , sh̺(h)}, and set Qhi =

{p ∈ Ẽ : shi ∈ p and | trunk(p)| ≤ h}. So for all h, Qhi is π(h)-linked, and
p ∈ ⋃

i<̺(h)Q
h
i for all p ∈ Q with | trunk(p)| ≤ h.

(c) Use 1.16 (b).
(d) Use 1.16 (a) and the definition of loss.
(e) As in the previous item, we get that Leb(p ∩ [t]) > 0 whenever p ∈ Q′

and t ∈ p. So Q′ is a subset of random forcing. As both sets are ordered
by inclusion, Q′ is a subforcing. If q1, q2 ∈ Q′ and q1, q2 are compatible
as random conditions, then q1 ∩ q2 has arbitrary high nodes, in particular
a node above both stems, which implies that q1 is compatible with q2
in Ẽ and therefore in Q′. It remains to show that Q′ is dense in B′. It
is enough to show: If x 6= 0 in B′ has the form x =

∧
i<i∗ [lim(qi)]N ∧∧

j<j∗ [lim(T ∗) \ lim(qj)]N then there is some q ∈ Q′ with [lim(q)]N < x.

Note that 0 6= x = [A]N for A = lim
(⋂

i<i∗ qi
)
\ ⋃

j<j∗ lim(qj), so pick
some r ∈ A and pick h > i∗ large enough such that s = r ↾ h is not in
any qj . Then any q ∈ Q′ stronger than all qi∩ [s] for i < i∗ is as required.

�

Lemma 1.20. The set Ẽ has strong FAM-limits for intervals.

Proof: Let (pl)l∈ω be a (s∗, loss∗)-sequence, s∗ of height h∗. Set ζ̃ h
∗

= 0 and

ζ̃ h := 1−
h−1∏

m=h∗

(
1− 1

m2

)
for h > h∗.

This is a strictly increasing sequence below loss∗/3, cf. Fact 1.15 (c). Also, all
norms in all conditions of the sequence are at least 1 + loss∗, cf. Fact 1.15 (a).

We will first construct (qk)k∈ω with stem s∗ and all norms greater than 1 +
loss∗ −1/h∗ such that qk forces |{l ∈ Ik : pl ∈ G}|/|Ik| > 1− loss∗/3. We will then
use q to define limΞ(p), and in the third step show that it is as required.

Step 1: So let us define qk. Fix k ∈ ω.

5We can use Definition 1.6, replacing 2ω with lim(T ∗).
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◦ Set Xt = {l ∈ Ik : t ∈ pl} and Yh = {t ∈ [s∗] ∩ ωh : |Xt| ≥ |Ik|(1− ζ̃ h)}.
◦ We define qk by induction on the level, such that qk ∩ ωh ⊆ Yh. The
stem is s∗. (Note that Xs∗ = Ik and so s∗ ∈ Yh∗ .) For s ∈ qk ∩ ωh (and
thus, by induction hypothesis, in Yh), we set qk ∩ [s] ∩ ωh+1 = [s]∩ Yh+1,
i.e., a successor t of s is in qk if and only if it is Yh+1. Then µs(qk) >
1 + loss∗ −1/h.

Proof: Set I = Xs. By induction, |Xs| ≥ |Ik|(1 − ζ̃ h). For l ∈ I, set
Al = pl ∩ [s] ∩ ωh+1, i.e., the immediate successors of s in pl. Obviously
µs(Al) ≥ 1 + loss∗. We give each Al equal weight al = 1/|I|. According
to (1.17), the set B = {t ⊲ s : |{l ∈ Xs : t ∈ Al}| ≥ |I|(1 − 1/h2)} has
norm greater than 1 + loss∗ −1/h. �

◦ The condition qk forces that pl ∈ G for ≥ |Ik|(1− loss∗/2) many l ∈ Ik.

Proof: Let r < qk have stem s′ of length h′, without loss of generality
h′ > |Ik| + 1. As s′ ∈ Yh′ , there are greater than |Ik|(1 − loss∗/3) many
l ∈ Ik such that s′ ∈ pl. So we can find a condition r′ stronger than r
and all these pl (as these are at most |Ik| + 1 ≤ h′ many conditions all
containing s′ above the stem). �

Step 2: Now we use (qk)k∈ω to construct by induction on the height q∗ =
limΞ(p), a condition with stem s∗ and all norms greater than or equal to 1 +
loss∗ −2/h such that for all s ∈ q∗ of height h ≥ h∗,

(∗) Ξ(Zs) ≥ 1− ζ̃h for Zs := {k ∈ ω : s ∈ qk}. So Ξ(Zs) > 1− 1

3
loss∗ .

Note that Zs∗ = ω, so (∗) is satisfied for s∗. Fix an s ≥ s∗ satisfying (∗). Set
A(k) to be the s-successors in qk for each k ∈ Zs. Enumerate the (finitely many)
A(k) as (Ai)i∈I . Clearly µs(Ai) > 1 + loss∗ −1/h. Assign to Ai the weight ai =
(1/Ξ(Zs))Ξ({k ∈ Zs : A(k) = Ai}). Again using (1.17), µs(B) ≥ 1 + loss∗ −2/h,
where B consists of those successors t of s such that

1− 1

h2
<

∑

t∈Ai

ai =
1

Ξ(Zs)
Ξ({k ∈ Zs : t ∈ qk}) ≤

1

Ξ(Zs)
Ξ(Zt).

So every t ∈ B satisfies Ξ(Zt) > Ξ(Zs)(1− 1/h2) ≥ ζ̃ h+1, i.e., satisfies (∗). So we
can use B as the set of s-successors in q∗.

This defines q∗, which is a valid condition by Fact 1.15 (b).

Step 3: We now show that this limit works: As in Definition 1.7, fix m∗,
(Bm)m<m∗ , ε, k∗, i∗ and sequences (pil)l<ω for i < i∗, such that (trunk(pil),
loss(pil)) = (trunk∗, loss∗).

For each i < i∗, q i = (qik)k∈ω is defined from p i = (pil)l∈ω, and in turn defines
the limit limΞ(p

i). Let q be stronger than all limΞ(p
i).
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Let M be as in Lemma 1.2 for N = m∗ + i∗. So for any N many sets there is
a u of size at most M (above k∗) which approximates the measure well. We use
the following N many sets:

◦ Bm for m < m∗.
◦ Fix an s ∈ q of height h > M ·i∗, and use the i∗ many sets Zis ⊆ ω defined
in (∗).

Accordingly, there is a u (starting above k∗) of size less than or equal to M with

◦ Ξ(Bm)− ε ≤ |Bm ∩ u|/|u| ≤ Ξ(Bm) + ε for each m < m∗, and
◦ |Zis ∩ u|/|u| ≥ 1− loss∗/3− ε for each i < i∗.

So for each i ∈ i∗ there are at least |u|(1 − loss∗/2− ε) many k ∈ u with s ∈ qik.
There is a condition r stronger than q and all those qik (as less than or equal to
Mi∗ + 1 many conditions of height h > M · i∗ with common node s above their
stems are compatible). So r forces for all i < i∗ and k ∈ u ∩ Zis that qik ∈ G and
therefore that |{l ∈ Ik : p

i
l ∈ G}| ≥ |Ik|(1 − loss∗/3). By increasing r to some q′,

we can assume that r decides which pil are in G and that r is actually stronger
than each pil decided to be in G. So all in all we get q′ ≤ q such that

1

|u|
∑

k∈u

|{l ∈ Ik : q
′ ≤ pjl }|

|Ik|
≥ 1

|u| |{k ∈ u : k ∈ Zjs}|
(
1− 1

3
loss∗

)
> 1− loss∗ −ε,

as required. �

2. The left hand side of Cichoń’s diagram

We write x1 for add(N ), x2 for b (which will also be add(M)), x3 for cov(N )
and x4 for non(M).

2.1 Good iterations and the LCU property. We want to show that some
forcing P5 results in xi = λi for i = 1, . . . , 4. So we have to show two “directions”,
xi ≤ λi and xi ≥ λi.

For i = 1, 3, 4 (i.e., for all the characteristics on the left hand side apart from
b = add(M)), the direction xi ≤ λi will be given by the fact that P5 is (Ri, λi)-
good for a suitable relation Ri. (For i = 2, i.e., the unbounding number, we will
have to work more.)

We will use the following relations:

Definition 2.1. 1. Let C be the set of strictly positive rational sequences
(qn)n∈ω such that

∑
n∈ω qn ≤ 1.6 Let R1 ⊆ C2 be defined by: f R1 g if

(∀∗n ∈ ω) f(n) ≤ g(n).
2. R2 ⊆ (ωω)2 is defined by: f R2 g if (∀∗n ∈ ω) f(n) ≤ g(n).
4. R4 ⊆ (ωω)2 is defined by: f R4 g if (∀∗n ∈ ω) f(n) 6= g(n).

6It is easy to see that C is homeomorphic to ωω , when we equip the rationals with the discrete
topology and use the product topology.
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So far, these relations fit the usual framework of goodness, as introduced in [10]
and [3] and summarized, e.g., in [2, 6.4] or [8, Section 3] or [13, Section 2]. For x3,
i.e., cov(N ), we will use a relation R3 that does not fit this framework (as the range
of the relation is not a Polish space). Nevertheless, the property “(R3, λ)-good”
behaves just as in the usual framework (e.g., finite support limits of good forcings
are good, etc.). The relation R3 was implicitly used by S. Kamo and N. Osuga
in [15], who investigated (R3, λ)-goodness.

7 It was also used in [4]; a unifying
notation for goodness (which works for the usual cases as well as relations such
as R3) is given in [5, Section 4].

Definition 2.2. We call a set E ⊂ ωω an R3-parameter, if for all e ∈ E
◦ lim e(n) = ∞, e(n) ≤ n, lim(n− e(n)) = ∞,
◦ there is some e′ ∈ E such that (∀∗n) e(n) + 1 ≤ e′(n), and
◦ for all countable E ′ ⊆ E there is some e ∈ E such that for all e′ ∈ E ′

(∀∗n) e(n) ≥ e′(n).

Note that such an R3-parameter of size ℵ1 exists. This is trivial if we assume
continuum hypothesis (CH), which we could in this paper, but also true without
this assumption, see [5, 4.20]. Recall that ̺ and π were defined in equation (1.13).

Definition 2.3. We fix for the rest of the paper, an R3-parameter E of size ℵ1,
and set

b(h) = (h+ 1)2̺(h)h+1, S =

{
ψ ∈

∏
h∈ω

P (b(h)) : (∀h ∈ ω) |ψ(h)| ≤ ̺(h)h
}
,

Se =
{
ϕ ∈

∏
h∈ω

P (b(h)) : (∀h ∈ ω) |ϕ(h)| ≤ ̺(h)e(h)
}

and Ŝ =
⋃

e∈E

Se.

We can now define the relation for cov(N ):

3. R3 ⊆ S × Ŝ is defined by: ψR3 ϕ if and only if (∀∗n ∈ ω)ϕ(n) 6⊆ ψ(n).

Note that Se ⊂ Ŝ ⊂ S and that Se and S are Polish spaces. Assume that M is
a forcing extension of V by either a ccc forcing (or by a σ-closed forcing). Then E
is an “R3-parameter” in M as well, and we can evaluate in M for each e ∈ E the

sets SMe and SM , as well as ŜM =
⋃
e∈E SMe . Absoluteness gives SVe = SMe ∩ V

and Ŝ V = ŜM ∩ V .

Definition 2.4. Fix one of these relations R ⊆ X × Y .

◦ We say “f is bounded by g” if f R g, and for Y ⊆ ωω “f is bounded by Y”
if (∃ y ∈ Y) f R y. We say “unbounded” for “not bounded”. (I.e., f is
unbounded by Y if (∀ y ∈ Y)¬f R y.)

◦ We call X an R-unbounded family, if ¬(∃ g) (∀x ∈ X )xR g, and an R-
dominating family if (∀ f) (∃x ∈ X ) f Rx.

7They use the notation (∗<λ
c,h

), cf. [15, Definition 6].
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◦ Let bi be the minimal size of an Ri-unbounded family,
◦ and let di be the minimal size of an Ri-dominating family.

We only need the following connection between Ri and the cardinal character-
istics:

Lemma 2.5. (1) add(N ) = b1 and cof(N ) = d1.
(2) b = b2 and d = d2.
(3) cov(N ) ≤ b3 and non(N ) ≥ d3.
(4) non(M) = b4 and cov(M) = d4.

Proof: (2) holds by definition. (1) can be found in [2, 6.5.B]. (4) is a result
of [14] and [1], cf. [2, 2.4.1 and 2.4.7].

To see (3), we work in the space Ω =
∏
h∈ω b(h), with the b defined in Defini-

tion 2.3 and the usual (uniform) measure. It is well known that we get the same
values for the characteristics cov(N ) and non(N ) whether we define them using
Ω or, as usual, 2ω (or [0, 1] for that matter, etc). Given ψ ∈ S, note that

Nψ = {η ∈ Ω: (∃∞h) η(h) ∈ ψ(h)}

is a Null set, as {η ∈ Ω: (∀h > k) η(h) /∈ ψ(h)} has measure
∏
h>k(1 −

|ψ(h)|/b(h)) ≥ ∏
h>k(1 − (h+ 1)−3), which converges to 1 for k → ∞.

Let A ⊆ S be an R3-unbounded family. So for every ϕ ∈ Ŝ there is some ψ ∈ A
such that (∃∞h) ψ(h) ⊇ ϕ(h). In particular, for each η ∈ Ω there is a ψ ∈ A with
η ∈ Nψ; i.e., cov(N ) ≤ |A|.

Analogously, let X be a non-null set (in Ω). For each ψ there is an x ∈ X \Nψ,
so ϕx(n) = {x(n)} satisfies ψR3 ϕx. �

Remark 2.6. As shown implicitly in [15], and explicitly in [5, 4.22], we actually
get cov(N ) ≤ c∃b,̺Id ≤ b3.

Definition 2.7. Let P be a ccc forcing, λ an uncountable regular cardinal, and
Ri ⊆ X × Y one of the relations above (so for i = 1, 2, 4, Y = X , and for i = 3

Y = Ŝe). The forcing P is (Ri, λ)-good, if for each P -name r for an element of Y
there is (in V ) a nonempty set Y ⊆ Y of size less than λ such that every f ∈ X
(in V ) that is Ri-unbounded by Y is forced to be Ri-unbounded by r as well.

Note that λ-good trivially implies µ-good if µ ≥ λ are regular.

Lemma 2.8. Let λ be uncountable regular.

(a) Forcings of size less than λ are (Ri, λ)-good. In particular, Cohen forcing
is (Ri,ℵ1)-good.

(b) A FS ccc iteration of (Ri, λ)-good forcings (and in particular, a compo-
sition of two such forcings) is (Ri, λ)-good.

(1) A sub-Boolean-algebra of the random algebra is (R1,ℵ1)-good. Any σ-
centered forcing notion is (R1,ℵ1)-good.

(3) A (̺, π)-linked forcing is (R3,ℵ1)-good (for the ̺, π of Definition 1.12).
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Proof: (a) & (b) For i = 1, 2, 4 this is proven in [10], cf. [2, 6.4]. The same proof
works for i = 3, as shown in [15, Lemmas 12, 13]. The proof for the uniform
framework can be found in [5, 4.10, 4.14].

(1) follows from [10] and [11], cf. [2, 6.5.17–18].
(3) is shown in [15, Lemma 10], cf. [5, Lemma 4.24]; as our choice of π, ̺ and

b (see Definition 2.3) satisfies π(h) ≥ b(h)̺(h)
h

= ((h+ 1)2̺(h)h+1)̺(h)
h

. �

Each relation Ri is a subset of some X × Y , where X is either 2ω, ωω (or
homeomorphic to it) or S, and Y is the range of Ri.

Lemma 2.9. For each i and each g ∈ Y , the set {f ∈ X : f Ri g} ⊆ X is meager.

Proof: We have explicitly defined each f Ri g as ∀∗n Rni (f, g) for some Rni . The
lemma follows easily from the fact that for each n ∈ ω, the set {f ∈ X : Rni (f, g)}
is closed nowhere dense. �

Lemma 2.10. Let λ ≤ κ ≤ µ be uncountable regular cardinals. Force with
µ many Cohen reals (cα)α∈µ, followed by an (Ri, λ)-good forcing. Note that
each Cohen real cβ can be interpreted as element of the Polish space X where
Ri ⊆ X × Y . Then we get: For every real r in the final extension Y , the set
{α ∈ κ : cα is Ri-unbounded by r} is cobounded in κ. I.e., (∃α ∈ κ) (∀β ∈ κ \ α)
¬cα Ri r.
Proof: Work in the intermediate extension after κ many Cohen reals, let us call
it Vκ. The remaining forcing (i.e., µ \ κ many Cohens composed with the good
forcing) is good; so applying the definition we get (in Vκ) a set Y ⊆ Y of size less
than λ.

As the initial Cohen extension is ccc, and κ ≥ λ is regular, we get some α ∈ κ
such that each element y of Y already exists in the extension by the first α many
Cohens, call it Vα.

Fix some β ∈ κ \ α and y ∈ Y . As {x ∈ X : xRi y} is a meager set already
defined in Vα, we get ¬cβ Ri y. Accordingly, cβ is unbounded by Y; and, by the
definition of good, unbounded by r as well. �

In the light of this result, let us revisit Lemma 2.5 with some new notation,
the “linearly cofinally unbounded” property LCU:

Definition 2.11. For i = 1, 2, 3, 4, γ a limit ordinal, and P a ccc forcing notion,
let LCUi(P, γ) stand for:

There is a sequence (xα)α∈γ of P -names such that for every
P -name y (∃α ∈ γ) (∀β ∈ γ \ α) P  ¬xβ Ri y).

Lemma 2.12. ◦ The LCUi(P, δ) property is equivalent to LCUi(P, cf(δ)).
◦ If λ is regular, then LCUi(P, λ) implies bi ≤ λ and di ≥ λ.

In particular:

(1) The LCU1(P, λ) property implies P  ( add(N ) ≤ λ & cof(N ) ≥ λ ).
(2) The LCU2(P, λ) property implies P  ( b ≤ λ & d ≥ λ ).
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(3) The LCU3(P, λ) property implies P  ( cov(N ) ≤ λ & non(N ) ≥ λ ).
(4) The LCU4(P, λ) property implies P  ( non(M) ≤ λ & cov(M) ≥ λ ).

Proof: Assume that (αβ)β∈cf(δ) is increasing continuous and cofinal in δ. If
(xα)α∈δ witnesses LCUi(P, δ), then (xαβ

)β∈cf(δ) witnesses LCUi(P, cf(δ)). And if
(xβ)β∈cf(δ) witnesses LCUi(P, cf(δ)), then (yα)α∈δ witnesses LCUi(P, cf(δ)), where
yα := xβ for α ∈ [αβ , αβ+1).

The set {xα : α ∈ λ} is certainly forced to be Ri-unbounded; and given a set
Y = {yj : j < θ} of θ < λ many P -names, each has a bound αj ∈ λ so that
(∀β ∈ λ \αj) P  ¬xβ Ri yj), so for any β ∈ λ above all αj we get P  ¬xβ Ri yj
for all j; i.e., Y cannot be dominating. �

2.2 The initial forcing P5 and the COB property. We will assume the fol-
lowing throughout the paper:

Assumption 2.13. ◦ λ1 < λ2 < λ3 < λ4 < λ5 are regular uncountable
cardinals such that µ < λi implies µℵ0 < λi.

◦ We set δ5 = λ5 + λ5, and partition δ5 \ λ5 into unbounded sets Si for
i = 1, . . . , 4. Fix for each α ∈ δ5 \ λ5 a wα ⊆ α such that {wα : α ∈ Si} is
cofinal8 in [δ5]

<λi for each i = 1, . . . , 4.

The reader can assume that (λi)i=1,...,5 and (Si)i=1,...,4 have been fixed once
and for all (let us call them “fixed parameters”), whereas we will investigate
various possibilities for w = (wα)α∈δ5\λ5

in the following. (We will call a w which
satisfies the assumption a “cofinal parameter”.)

We define by induction:

Definition 2.14. We define the FS iteration (Pα, Qα)α∈δ5 and for α > λ5, P
′
α as

follows: If α ∈ λ5, then Qα is Cohen forcing. In particular, the generic at α is
determined by the Cohen real ηα. For α ∈ δ5 \ λ5:

(1) Qfull
α :=





Amoeba
Hechler
Random

Ẽ





for α in





S1

S2

S3

S4

.

So Qfull
α is a Borel definable subset of the reals, and the Qfull

α -generic is
determined, in a Borel way, by the canonical generic real ηα.

(2) The set P ′
α is the set of conditions p ∈ Pα satisfying the following for

each β ∈ supp(p): β ∈ wα and there is (in the ground model) a countable
u ⊆ wα ∩ β and a Borel function B : (ωω)u → Qfull

β such that p ↾ β forces

that p(β) = B((ηγ)γ∈u). We assume that

(2.15) P ′
α is a complete subforcing of Pα.

(3) In the Pα-extension, let Mα be the induced P ′
α-extension of V . Then Qα

is the Mα-evaluation of Qfull
α . Or equivalently (by absoluteness): Qα =

8i.e., if α ∈ Si then |wα| < λi, and for all u ⊆ δ5, |u| < λi there is some α ∈ Si with wα ⊇ u.
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Qfull
α ∩Mα. We call Qα a “partial Qfull

α forcing” (e.g.: a “partial random
forcing”).

Some notes:

◦ For item (3) of Definition 2.14 to make sense, (2.15) is required.
◦ We do not require any “transitivity” of the wα, i.e., β ∈ wα does generally
not imply wβ ⊆ wα.

◦ We do not require (and it will generally not be true) that Pα forces that
Qα is a complete subforcing of Qfull

α .

A simple absoluteness argument (between Mα and V [Gα]) shows:

Lemma 2.16. Pα forces:

(a) The forcing Qα is an incompatibility preserving subforcing of Qfull
α and

in particular ccc. (And so, Pα itself is ccc for all α.)
(b) For α ∈ Si, |Qα| < λi.
(c) The forcing Qα forces that its generic filter G(α) is also generic overMα.

So from the point of view of Mα, Mα[G(α)] is a Q
full
α -extention.

(2) For α ∈ S2, the partial Hechler forcing Qα is σ-centered.
(3) For α ∈ S3, the partial random forcing Qα is equivalent to a subalgebra

of the random algebra.

(4) For α ∈ S4, a partial Ẽ forcing is (̺, π)-linked and basically equivalent to
a subalgebra of the random algebra (as in Lemma 1.19 (e)).

Proof: (b) |P ′
α| ≤ |wα|ℵ0 × 2ℵ0 < λi by Assumption 2.13. There is a set of

nice P ′
α-names of size less than λi such that every P ′

α-name for a real has an
equivalent name in this set. Accordingly, the size of the reals in Mα is forced to
be less than λi.

(c) is trivial, as Qα is element of the transitive class Mα.

(4) By Lemma 1.19 (b) we know that Mα thinks that Ẽ is (̺, π)-linked; i.e.,
that there is a family9 Qij as in Definition 1.18. Being l-linked is obviously

absolute between Mα and V [Gα] for any l < ω, and Mα �
⋃
h∈ω,i<̺(h)Q

h
i = Qfull

α

translates to V [Gα] �
⋃
h∈ω,i<̺(h)Q

h
i = Qα.

Similarly, Mα thinks that Ẽ satisfies 1.19 (e), i.e., that there is some dense

Q′ ⊆ Ẽ and a dense embedding from Q′ to a subalgebra B′ of the random algebra.

So from the point of view of V [Gα], there is a Q′ dense in Ẽ∩Mα and a dense
embedding of Q′ into some B′, which is a subalgebra of the random algebra in
Mα and therefore of the random algebra in V [Gα]. �

It is easy to see that (2.15) is a “closure property” of wα:

Lemma 2.17. Assume we have constructed (in the ground model) (Pβ , Qβ)β<α
and wα according to Definition 2.14 for some α ∈ Si, i = 1, . . . , 4. This determines
the (limit or composition) Pα.

9Actually there is even a Borel definable family Qi
j , see the proof of Lemma 1.19 (a), but

this is not required here.
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(a) For every Pα-name τ of a real, there is (in V ) a countable u ⊆ α and
a Borel function B : (ωω)u → ωω such that Pα forces τ = B((ηγ)γ∈u).
(So if wα ⊇ u satisfies (2.15), then Pα forces that τ ∈Mα.)

(b) The set of wα satisfying (2.15) is an ω1-club in [α]<λi (in the ground
model).

(A set A ⊆ [α]<λi is an ω1-club, if for each a ∈ [α]<λi there is a b ⊇ a in A,
and if (ai)i∈ω1

is an increasing sequence of sets in A, then the limit b :− ⋃
i∈ω1

ai

is in A as well.)

Proof: The first item follows easily from the fact that we are dealing with
a forsing set (FS) ccc iteration where the generics of all iterands Qβ are Borel-
determined by some generic real ηβ . (See, e.g., [12, 1.2] for more details.)

Any w ∈ [α]<λi defines some Pwα . We first define w′ for such a w:
Set X = [Pwα ]≤ℵ0 , as set of size at most (2ℵ0 × |w|ℵ0 )ℵ0 < λi. For x ∈ X ,

pick some p ∈ Pα stronger than all conditions in x (if such a condition exists),
and some q ∈ Pα incompatible to each element of x (again, if possible). There is
a countable wx ⊆ α such that p, q ∈ Pwx . Set w′ := w ∪⋃

x∈X wx.

Start with any w0 ∈ [α]<λi . Construct an increasing continuous chain in [α]<λi

with wk+1 = (wk)′. Then wω1 ⊇ w0 is in the set of w satisfying (2.15); which
shows that this set is unbounded. It is equally easy to see that it is closed under
increasing sequences of length ω1. �

For later reference, we explicitly state the assumption we used (for every α ∈
δ5 \ λ5):
Assumption 2.18. The set wα is sufficiently closed so that (2.15) is satisfied.

Let us also restate Lemma 2.17 (a):

Lemma 2.19. For each P5-name f of a real, there is a countable set u ⊆ δ5 such
that wα ⊇ u implies that (P5 forces that) f ∈Mα.

Lemma 2.20. The LCUi(P
5, κ) property holds for i = 1, 3, 4 and each regular

cardinal κ in [λi, λ5].

Proof: This follows from Lemma 2.16:
For i = 1, partial random and partial Ẽ forcings are basically equivalent to

a sub-Boolean-algebra of the random algebra; and partial Hechler forcings are
σ-centered. The partial amoeba forcings are small, i.e., have size less than λ1.
So according to Lemma 2.8, all iterands Qα (and therefore the limits as well) are
(R1, λ1)-good.

For i = 3, note that partial Ẽ forcings are (̺, π)-linked. All other iterands have
size less than λ3, so the forcing is (R3, λ3)-good.

For i = 4 it is enough to note that all iterands are small, i.e., of size less
than λ4.

We can now apply Lemma 2.10. �

Sh:1131



Another ordering of the ten cardinal characteristics in Cichoń’s diagram 79

So in particular, P5 forces add(N ) ≤ λ1, cov(N ) ≤ λ3, non(M) ≤ λ4 and
cov(M) = non(N ) = cof(N ) = λ5 = 2ℵ0 ; i.e., the respective left hand character-
istics are small. We now show that they are also large, using the “cone of bounds”
property COB:

Definition 2.21. For a ccc forcing notion P , regular uncountable cardinals λ, µ
and i = 1, 2, 4, let COBi(P, λ, µ) stand for:

There is a<λ-directed partial order (S,≺) of size µ and a sequence
(gs)s∈S of P -names for reals such that for each P -name f of a real
(∃ s ∈ S) (∀ t ≻ s)P  f Ri gt.

For i = 3, let COB3(P, λ, µ) stand for:

There is a<λ-directed partial order (S,≺) of size µ and a sequence
(gs)s∈S of P -names for reals such that for each P -name f of a null-
set (∃ s ∈ S) (∀ t ≻ s)P  gt /∈ f .

So s is the tip of a cone that consists of elements bounding f , where in case
i = 3 we implicitly use an additional relation N R3

′ r expressing that the null-
set N does not contain the real r. Note that cov(N ) is the bounding number
b′3 of R3

′, and non(N ) the dominating number d′3. So add(N ) = b′3 ≤ b3 and
non(N ) = d′3 ≥ d3 (as defined in Lemma 2.5).

The COBi(P, λ, µ) property implies that P forces that bi ≥ λ and that di ≤ µ
for i = 1, 2, 4, and the same for i = 3 and b′3, d

′
3: Clearly P forces that {gs : s ∈ S}

is dominating. And if A is set of names of size κ < λ, then for each f ∈ A
the definition gives a bound s(f) and directedness some t ≻ s(f) for all f , i.e.,
gt bounds all elements of A. So we get:

Lemma 2.22. (1) The COB1(P, λ, µ) property implies P  (add(N ) ≥ λ &
cof(N ) ≤ µ).

(2) The COB2(P, λ, µ) property implies P  (b ≥ λ & d ≤ µ).
(3) The COB3(P, λ, µ) property implies P  (cov(N ) ≥ λ & non(N ) ≤ µ).
(4) The COB4(P, λ, µ) property implies P  (non(M) ≥ λ & cov(M) ≤ µ).

Lemma 2.23. The COBi(P
5, λi, λ5) property holds for i = 1, 2, 3, 4.

Proof: We use the following facts (provable in ZFC, or true in the Pα-extention,
respectively):

(1) Amoeba forcing adds a sequence b which R1-dominates the old elements
of C.
(The simple proof can be found in [7, Lemma 1.4], a slight variation in [2].)
Accordingly (by absoluteness), the generic real ηα for partial amoeba
forcing Qα R1-dominates C ∩Mα.

(2) Hechler forcing adds a real which R2-dominates all old reals.
Accordingly, the generic real ηα for partial Hechler forcing Qα R2-domi-
nates all reals in Mα.

(3) Random forcing adds a random real.
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Accordingly, the generic real ηα for partial random forcing Qα is not in
any null set whose Borel-code is in Mα.

(4) The generic branch η ∈ lim(T ∗) added by Ẽ is eventually different to each
old real, i.e., R4-dominates the old reals.
(This was shown in Lemma 1.19 (c).)

Accordingly, the generic branch ηα for partial Ẽ forcing Qα R4-dominates
the reals in Mα.

Fix i ∈ {1, 2, 3, 4}, and set S = Si and s ≺ t if ws ( wt, and let gs be ηs, i.e.,
the generic added at s (e.g., the partial random real in case of i = 3, etc.).

Fix a P5-name f for a real. It depends (in a Borel way) on a countable index
set w∗ ⊆ δ5. Fix some s ∈ Si such that ws ⊇ w∗. Pick any t ≻ s. Then
wt ⊇ ws ⊇ w∗, so (P5 forces that) f ∈ Mt, so, as just argued, P5  f Ri gt (or:
P5  f R′

3 gt for i = 3). �

So to summarize what we know so far about P5: Whenever we choose (in
addition to the “fixed” λi, S

i) a cofinal parameter w satisfying Assumptions 2.13
and 2.18, we get

Fact 2.24. ◦ The COBi property holds for i = 1, 2, 3, 4. So the left hand
side characteristics are large.

◦ The LCUi property holds for i = 1, 3, 4. So the left hand side character-
istics other than b are small.

What is missing is “b small”. We do not claim that this will be forced for every
w as above; but we will show in the rest of Section 2 that we can choose such a w.

2.3 FAMs in the Pα-extension compatible with Mα, explicit conditions.
We first investigate sequences q = (ql)l∈ω of Qα-conditions that are in Mα, i.e.,
the (evaluations of) P ′

α-names for ω-sequences in Qfull
α . For α ∈ S3∪S4,Mα thinks

that Qα (i.e., Qfull
α ) has FAM-limits. So if Mα thinks that Ξ0 is a FAM, then for

any sequence q in Mα there is a condition limΞ0
(q) in Mα (and thus in Qα). We

can relativize Lemma 1.8 to sequences in Mα:

Lemma 2.25. Assume that α ∈ S3 ∪ S4, that Ξ is a Pα-name for a FAM and
that Ξ0, the restriction of Ξ to Mα, is forced to be in Mα. Then there is a Pα+1-
name Ξ+ for a FAM such that for all (trunk∗, loss∗)-sequences q in Mα,

limΞ0
(q) ∈ G(α) implies Ξ+(Aq) ≥ 1−

√
loss∗.

Aq was defined in (1.9) (here we use G(α) instead of G, of course).

Proof: This Lemma is implicitly used in [16]. Note that P ′
α is a complete sub-

forcing of Pα, and so there is a quotient R such that Pα = P ′
α ∗ R. We consider
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the following (commuting) diagram:

V
Pα //

P ′

α   ❆
❆

❆

❆

❆

❆

❆

Vα
Qα // Vα+1

Mα

R

OO

Qα

//

OO

Note that (P ′
α forces that) R ∗Qα = R ×Qα. So from the point of view of Mα:

◦ Qα = Qfull
α has FAM limits, and Ξ0 is a FAM. So there is a Qα-name for

a FAM Ξ+
0 satisfying Lemma 1.8.

◦ R is a ccc forcing, and there is an R-name10 Ξ for a FAM extending Ξ0.
◦ So there is R×Qα-name Ξ+ for a FAM extending both Ξ+

0 and Ξ (cf. [16,
Claim 1.6]).

Back in V , this defines the Pα+1-name Ξ+. Let q = (ql)l∈ω be a sequence in Mα.
Then Mα[G(α)] thinks: If limΞ0

(q) ∈ G(α), then Ξ+
0 (Aq) is large enough. This is

upwards absolute to V [Gα+1] (as Aq is absolute). �

For later reference, we will reformulate the lemma for a specific instance of
“sequence in Mα”. Recall that a sequence in Mα corresponds to a “P ′

α-name
of a sequence in Qfull

α ”. This is not equivalent to a “Pα-name for a sequence
in Qα”, which would correspond to an arbitrary sequence in Qα (of which there
are |α + ℵ0|ℵ0 many, while there are only less than λi many sequences in Mα).
However, we can define the following:

Definition 2.26. ◦ An explicitQα-condition (in V ) is a P ′
α-name for aQfull

α

condition.
◦ A condition p ∈ P5 is explicit, if for all α ∈ supp(p) ∩ (S4 ∪ S5), p(α) is
an explicit Qα-condition.

Here we mean that for p(α) there is a P ′
α-name qα such that p ↾ α  p(α) = qα

(and the map α 7→ qα exists in the ground model, i.e., we do not just have
a Pα-name for a P ′

α-condition qα).

Lemma 2.27. The set of explicit conditions is dense.

Proof: We show by induction that the set Dα of explicit conditions in Pα is
dense in Pα. As we are dealing with FS iterations, limits are clear. Assume
that (p, q) ∈ Pα+1. Then p forces that there is a P ′

α-name q′ such that q′ = q.
Strengthen p to some p′ ∈ Dα deciding q′. Then (p′, q′) ≤ (p, q) is explicit. �

Note that any sequence in V of explicit Qα-conditions defines a sequence of
conditions in Mα (as V ⊆Mα). So we get:

Lemma 2.28. Let α, Ξ, and Ξ+ be as in Lemma 2.25, and let (pl)l∈ω be (in V )
a sequence of explicit conditions in P5 such that α ∈ supp(pl) for all l ∈ ω. Set

10We identify the Pα-name Ξ in V and the induced R-name in Mα = V [G′
α].
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ql := pl(α) and q := (ql)l∈ω , and assume that (trunk(ql), loss(ql)) is forced to be
equal to some constant (trunk∗, loss∗).

Then there is a P ′
α-name for a Qfull

α -condition (and thus a Pα-name for a Qα-

condition) limΞ0
(q) such that limΞ0

(q) forces that Ξ+(Aq) ≤ 1−
√
loss∗.

2.4 Dealing with b (without generalized continuum hypothesis (GCH)).
In this section, we follow [7, 1.3], additionally using techniques inspired by [16].

We assume the following (in addition to Assumption 2.13):

Assumption 2.29. (This section only.) Let χ < λ3 is regular such that χℵ0 = χ,
χ+ ≥ λ2 and 2χ = |δ5| = λ5.

Set S0 = λ5 ∪S1 ∪S2. So δ5 = S0 ∪S3 ∪S4, and P5 is a FS ccc iteration along
δ5 such that α ∈ S0 implies |Qα| < λ2, i.e., |Qα| ≤ χ (and Qα is a partial random

forcing for α ∈ S3 and a partial Ẽ-forcing for α ∈ S4).
Let us fix for each α ∈ S0 a Pα-name

(2.30) iα : Qα → χ injective.

Definition 2.31. ◦ A “partial guardrail” is a function h defined on a sub-
set of δ5 such that for α ∈ dom(h): h(α) ∈ χ if α ∈ S0; and h(α) is
a pair (x, y) with x ∈ H(ℵ0) and y a rational number otherwise. (Any
(trunk, loss)-pair is of this form.)

◦ A “countable guardrail” is a partial guardrail with countable domain.
A “full guardrail” is a partial guardrail with domain δ5.

We will use the following lemma, which is a consequence of the Engelking–
Karlowicz theorem, see [6], on the density of box products (cf. [8, 5.1]):

Lemma 2.32 (as |δ5| ≤ 2χ). There is a family H∗ of full guardrails of cardinality
χ such that each countable guardrail is extended by some h ∈ H∗. We will fix
such an H∗.

Note that the notion of guardrail (and the density property required in Lem-
ma 2.32) only depends on the “fixed” parameters χ, δ5, S

0, S3 and S4; so we
can fix an H∗ that will work for all these fixed parameters and all choices of the
cofinal parameter w.

Once we have decided on w, and thus have defined P5, we can define the
following:

Definition 2.33. The set D∗ ⊆ P5 consists of p such that there is a partial
guardrail h (and we say: “p follows h”) with dom(h) ⊇ supp(p) and for all
α ∈ supp(p) applies:

◦ If α ∈ S0, then p ↾ α  iα(p(α)) = hα.
◦ If α ∈ S3 ∪ S4, the empty condition of Pα forces

p(α) ∈ Qα and (trunk(p(α)), loss(p(α))) = h(α).
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◦ Furthermore,
∑
α∈supp(p)∩(S3∪S4)

√
loss(p(α)) < 1/2.

◦ A condition p is explicit (as in Definition 2.26).

Lemma 2.34. The set D∗ ⊆ P5 is dense.

Proof: By induction we show that for any sequence (εi)i∈ω of positive numbers
the following set of p is dense: If supp(p) = {α0, . . . , αm}, where α0 > α1 > . . .
(i.e., we enumerate downwards), losspαn

< εn whenever αn ∈ S3 ∪ S4. For the
successor step, we use that the set of q ∈ Qα such that loss(q) < ε0 is forced to
be dense. �

Remark 2.35. So the set of conditions following some guardrail is dense. For
each fixed guardrail h, the set of all conditions p following h is n-linked, provided
that each loss in the domain of h is less than 1/n (cf. Assumption 1.5).

Definition 2.36. A “∆-system with heart∇ following the guardrail h” is a family
p = (pi)i∈I of conditions such that:

◦ all pi are in D∗ and follow h;
◦ (supp(pi))i∈I is a ∆ system with heart ∇ in the usual sense (so ∇ ⊆ δ5
is finite);

◦ the following is independent of i ∈ I:
– | supp(pi)|, which we call mp.

Let (αp,ni )n<mp increasingly enumerate supp(pi).

– Whether αp,ni is less than, equal to or bigger than the kth element
of ∇.
In particular it is independent of i whether αp,ni ∈ ∇, in which case
we call n a “heart position”.

– Whether αp,ni is in S0, in S3 or in S4.

If αp,ni ∈ Sj, we call n an “Sj-position”.

– If n is not an S0-position,11 the value of h(αp,ni ) =: (trunkp,n, lossp,n).

If n is an S0-position, we set lossp,n := 0.

A “countable ∆-system” p = (pl : l ∈ ω) is a ∆ system that additionally satisfies:

◦ For each non-heart position12 n < mp, the sequence (αp,nl )l∈ω is strictly
increasing.

Fact 2.37. ◦ Each infinite ∆-system (pi)i∈I contains a countable ∆-sys-
tem. I.e., there is a sequence il in I such that (pil)l∈ω is a countable
∆-system.

◦ If p is a ∆-system (or: a countable ∆-system) following h with heart ∇,
and β ∈ ∇ ∪ (max(∇ + 1)), then p ↾ β := (pi ↾ β)i∈I is again a ∆-
system (or: a countable ∆-system, respectively) following h, now with
heart ∇ ∩ β.

11If n is a S0-position, h(αp,n
i ) will generally not be independent of i; unless of course n is

a heart position.
12For a heart position n, (αp,n

l
)l∈ω is of course constant.
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Definition 2.38. Let p be a countable ∆-system, and assume that a sequence
Ξ = (Ξα)α∈∇∩ (S3∪S4) is such that each Ξα is a Pα-name for a FAM and Pα forces
that Ξα restricted to Mα is in Mα. Then we can define q = limΞ(p) to be the
following P5-condition with support ∇:

◦ If α ∈ ∇ ∩ S0, then q(α) is the common value of all pn(α). (Recall that
this value is already determined by the guardrail h.)

◦ If α ∈ ∇ ∩ (S3 ∪ S4), then q(α) is (forced by P5
α to be) limΞα

(pl(α))l∈ω ,
see Lemma 2.28.

We now give a specific way to construct such w, which allows to keep b small.

Lemma/Construction 2.39. We can construct by induction on α ∈ δ5 for each
h ∈ H∗ some Ξhα, and if α > κ5, also wα, such that:

(a) Each Ξhα is a Pα-name of a FAM extending
⋃
β<α Ξ

h
β .

(b) Let α be a limit of countable cofinality: Assume p is a countable∆-system

in Pα following h, and n < mp such that (αp,nl )l∈ω has supremum α. Then

Ap,n is forced to have Ξhα-measure 1, where

Ap,n := {k ∈ ω : |{l ∈ Ik : pl(α
p,n
l ) ∈ G(αp,nl )}| ≥ |Ik|(1 −

√
lossp,n )}.

(c) For each countable ∆-system p in Pα following h, the Pα-condition
lim(Ξh

β
)β<α

(p) is well-defined and forces

Ξhα(Ap) ≥ 1−
∑

n<mp

√
lossp,n, where

Ap :=

{
k ∈ ω : |{l ∈ Ik : pl ∈ Gα}| ≥ |Ik|

(
1−

∑

n<mp

√
lossp,n

)}
.

(d) For α > κ5, wα is “sufficiently closed”. More specifically: It satisfies
Assumptions 2.13 and 2.18, and if α ∈ S3 ∪ S4 then Pα forces that Ξhα
restricted to Mα is in Mα.

Actually, the set of wα satisfying this is an ω1-club set.

Proof: (a&c) for cf(α) > ω: We set Ξhα =
⋃
β<α Ξ

h
β . As there are no new reals

at uncountable confinalities, this is a FAM. Each countable ∆-system is bounded
by some β < α, and, by induction, (c) holds for β; so (c) holds for α as well.

(a&b) for cf(α) = ω: Fix h. We will show that Pα forces A∩⋂
j<j∗ Apj ,nj 6= ∅,

where A is a Ξhβ-positive set for some β < α, and each (pj , nj) is as in (b).

Then we can work in the Pα-extension and apply Fact 1.3 (a), using
⋃
β<α Ξ

h
β

as the partial FAM Ξ′. This gives an extension of Ξ′ to a FAM Ξhα that assigns
measure one to all Ap,n, showing that (a) and (b) are satisfied.

So assume towards a contradiction that some p ∈ Pα forces

A ∩
⋂

j<j∗

Apj ,nj = ∅.
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We can assume that p decides the β such that A ∈ Vβ , that β is above the
hearts of all ∆-sequences pj involved, and that supp(p) ⊆ β. We can extend p to
some p∗ ∈ Pβ to decide k ∈ A for some “large” k: By large, we mean:

◦ Let F (l;n, p) (the cumulative binomial probability distribution) be the
probability that n independent experiments, each with success probabil-
ity p, will have at most l successful outcomes. As limn→∞ F (np′;n, p) = 0
for all p′ < p, and as limk→∞ |Ik| = ∞, we can find some k such that

(2.40) F (|Ik|p′j ; |Ik|, pj) <
1

2j∗

for all j < j∗, where we set p′j := 1−
√
lossp

j ,nj

and pj := 1−(1 +
√
2/2)×

lossp
j ,nj

. (Note that p′j < pj , as loss
pj ,nj ≤ 1/2.)

◦ All elements of Y = {αp
j ,nj

l : j < j∗ and l ∈ Ik} are larger than β. (This

is possible as each sequence (αp
j ,nj

l )l<ω has supremum α.) We enumerate
Y by the increasing sequence (βi)i∈M , and set β−1 = β.

We will find q ≤ p∗ forcing that k ∈ ⋂
j<j∗ Apj ,nj .

To this end, we define a finite tree T of height M , and assign to each s ∈ T of
height i a condition qs ∈ Pβi−1+1 (decreasing along each branch) and a probability
prs ∈ [0, 1], such that

∑
t⊲s prt = 1 for all non-terminal nodes s ∈ T . For s the

root of T , i.e., for the unique s of height 0, we set qs = p∗ ∈ Pβ−1
and prs = 1.

So assume we have already constructed qs ∈ Pβi−1+1 for some s of height
i < M . We will now take care of index βi and construct the set of successors of s,
and for each successor t, a qt ≤ qs in Pβi+1.

◦ If βi ∈ S0, the guardrail guarantees that βi ∈ supp(pjl ) implies pjl ↾ βi 

iβi
(pjl (βi)) = h(βi). In that case we use a unique T -successor t of s, and

we set qt = q⌢s (βi, i
−1
βi
h(βi)), and prt = 1.

In the following we assume βi /∈ S0.

◦ Let Ji be the set of j < j∗ such that there is an l ∈ Ik with αp
j ,nj

l = βi
(there is at most one such l). For j ∈ Ji set r

j
i = pjl (βi) for the according l.

So each rji is a Pβi
-name for an element of Qβi

.
The guardrail gives us the constant value (trunk∗i , loss

∗
i ) := h(βi) (which

is equal to (trunkp
j ,nj

, lossp
j ,nj

) for all j ∈ Ji).
◦ The case βi ∈ S3, i.e., the case of random forcing, is basically [16, 2.14]:

For x ⊆ [trunk∗i ], set Leb
rel(x) = Leb(x)/Leb([trunk∗i ]). Note that the rji

are closed subsets of [trunk∗i ] and Lebrel(rji ) ≥ 1− loss∗i .
Let B∗ be the power set of [trunk∗i ]; and let B be the sub-Boolean-

algebra generated by rji , j ∈ Ji, let X be the set of atoms and X ′ =

{x ∈ X : Lebrel(x) > 0}. So |X ′| ≤ 2Ji ≤ 2j
∗

,
∑

x∈X ′ Leb
rel(x) = 1, and∑

x∈X ′,x⊆rji
Lebrel(x) = Lebrel(rji ).
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So far, X ′ is a Pβi
-name. Now we increase qs inside Pβi

to some
q+ deciding which of the (finitely many) Boolean combinations result in
elements of X ′, and also deciding rational numbers yx, x ∈ X ′, with sum
1 such that |Lebrel(x) − yx| < ((

√
2− 1)/2) loss∗i ·2−j

∗

.
We can now define the immediate successors of s in T : For each

x ∈ X ′, add an immediate successor tx and assign to it the probability
prtx = yx and the condition qtx = q+

⌢
(βi, rx), where rx is a (name

for a) partial random condition below x (such a condition exists, as the
Lebesgue positive intersection of finitely many partial random condition
contains a partial random condition).

Note that when we choose a successor t randomly (according to the
assigned probabilities prt), then for each j ∈ J the probability of q+ 

qt(βi) ≤ rji is at least

∑

x∈X ′,x⊆rji

prx ≥
∑

x∈X ′,x⊆rji

(
Lebrel(x)−

√
2− 1

2
loss∗i ·2−j

∗
)

≥
( ∑

x∈X ′,x⊆rji

Lebrel(x)

)
−

√
2− 1

2
loss∗i

= Lebrel(rji )−
√
2− 1

2
loss∗i

≥ 1− loss∗i −
√
2− 1

2
loss∗i

= 1− 1 +
√
2

2
loss∗i .

◦ The case βi ∈ S4, i.e., the case of Ẽ:

Recall that Ẽ-conditions are subtrees of some basic compact tree T ∗,
and there is a h such that: if max{|Ik|, j∗} many conditions share a com-
mon node (above their stems) at height h, then they are compatible.

All conditions rji have the same stem s∗ = trunk∗i . For each j ∈ Ji, set

d(j) = rji ∩ ωh. Note that (Pβi
forces that) d(j) is a subset of T ∗ ∩ [s∗]∩

ωh of relative size greater than or equal to 1 − loss∗i /2 (according to
Lemma 1.19 (d)). First find q+ ≤ qs in Pβi

deciding all d(j).
We can now define the immediate successors of s in T : For each

x ∈ T ∗ ∩ [s∗] ∩ ωh add an immediate successor tx, and assign to it the
uniform probability (i.e., prtx = |T ∗ ∩ [s∗] ∩ ωh|−1) and the condition

qtx = q+
⌢
(βi, rx), where rx is a partial Ẽ-condition stronger than all rji

that satisfy x ∈ d(j). (Such a condition exists, as we can intersect less
than or equal to j∗ many conditions of height h.)

If we choose t randomly, then for each j ∈ J the probability of q+ 

qt ≤ rji is at least 1− loss∗i /2 ≥ 1− ((1 +
√
2)/2) loss∗i .
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In the end, we get a tree T of height M , and we can choose a random branch
through T , according to the assigned probabilities. We can identify the branch
with its terminal node t∗, so in this notation the branch t∗ has probability∏
n≤M prt∗↾n.

Fix j < j∗. There are |Ik| many levels i < M such that at βi we deal with
the (pj , nj)-case. Let M j be the set of these levels. For each i ∈M j, we perform
an experiment, by asking whether the next step t ∈ T (from the current s at

level i) will satisfy qt ↾ βi  qt(βi) ≤ rji . While the exact probability for success
will depend on which s at level i we start from, a lower bound is given by 1 −
((1 +

√
2)/2) loss∗i . Recall that loss∗i = lossp

j ,nj

, and that we set pj := 1 −
(1 +

√
2/2) loss∗i and p′j := 1−

√
lossp

j ,nj

in (2.40). So the chance of our branch

t∗ having success fewer than |Ik|(1−
√
lossp

j ,nj

) many times, out of the |Ik| many
tries, (let us call such a t∗ “bad for j”) is at most F (|Ik|p′; |Ik|, p) ≤ 1/(2j∗).

Accordingly, the measure of branches that are not bad for any j < j∗ is at
least 1/2. Fix such a branch t∗. Then for each j < j∗,

|{i ∈M j : qt∗ ↾ βi  qt∗(βi) ≤ rji }| ≥ |Ik|
(
1−

√
lossp

j ,nj )
,

and thus qt∗ forces that

|{l ∈ Ik : pl(α
pj ,nj

l ) ∈ G(αp
j ,nj

l )}| ≥ |Ik|
(
1−

√
lossp

j ,nj )
.

(c) for cf(α) = ω: Fix p as in the assumption of (c). To simplify notation, let us
assume that ∇ 6= ∅ and that sup(∇) < sup(supp(pl)) (for some, or equivalently:
all l ∈ ω). Let 0 < n0 < mp be such that sup(∇) is at position n0− 1 in supp(pl),

i.e., sup(∇) = αp,n0−1
l (independent of l), and set β := sup(∇) + 1.

The system p ↾ β is again a countable ∆-system following the same h, and
lim(Ξh

γ)γ<α
(p) is by definition identical to lim(Ξh

γ)γ<β
(p ↾ β), which by induction is

a valid condition and forces (c) for p ↾ β. This gives us the set Ap↾β of measure

at least 1−∑
n<n0

√
lossp,n.

For the positions n0 ≤ n < mp, all (αp,nl )l∈ω are strictly increasing sequences
above β with some limit αn ≤ α. Then (b) (applied to αn) gives us an according
measure-1-set Ap,n.

So lim(Ξh
γ)γ<α

(p) forces that A′ = Ap↾β∩
⋂
n0≤n<mp Ap,n has measure Ξhα(A

′) ≥
1−∑

n<n0

√
lossp,n ≥ 1−∑

n<mp

√
lossp,n.

Note that pl ∈ G if and only if pl ↾ β ∈ Gβ and pl(α
p,n) ∈ G(αp,n) for all

n0 ≤ n < mp.
Fix k ∈ A′. As k ∈ Ap↾β , the relative frequency for l ∈ Ik not to satisfy

pl ↾ β ∈ Gβ is at most
∑

n<n0

√
lossp,n. For any n0 ≤ n < mp, as k ∈ Ap,n, the

relative frequency for not pl(α
p,n) ∈ G(αp,n) is at most

√
lossp,n. So the relative
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frequency for pl ∈ G to fail is at most
∑

n<n0

√
lossp,n +

∑
n0≤n<mp

√
lossp,n, as

required.
(a&c) for α = γ + 1 successor: For γ ∈ S0 this is clear: Let Ξhα be the name

of some FAM extending Ξhγ . Let p be as in (c), without loss of generality γ ∈ ∇.

Then q+ := lim(Ξh
β
)β<α

(p) = q⌢(γ, r), where q := lim(Ξh
β
)β<γ

(p ↾ γ) and r is the

condition determined by h(γ), i.e., each pl ↾ γ forces pl(γ) = r. In particular,
q+ forces that pl ∈ Gα if and only if pl ↾ γ ∈ Gα. By induction, (c) holds for γ,
and therefore we get (c) for α.

Assume γ ∈ S3 ∪ S4. By induction we know that (d) holds for γ, i.e., that Ξhγ
restricted to Mγ (call it Ξ0) is in Mγ . So the requirement in the Definition 2.38
of the limit is satisfied, and thus the limit q+ := limΞh(p) is well defined for any
countable ∆-system p as in (c): q+ has the form q⌢(γ, r) with q and r such that
q = lim(Ξh

β
)β<γ(p ↾ γ) and r = limΞ0

((pl(γ))l∈ω). Now Lemma 2.28 gives us the

Pα-name Ξ+, which will be our new Ξhα.
This works as required: Again without loss of generality we can assume γ ∈ ∇.

By induction, q forces that Ξhγ(Ap↾γ) ≥ 1 − ∑
n<mp−1

√
lossp,n. According to

Lemma 2.28 r forces that Ξ+(A(pl(γ))l∈ω
) ≥ 1−

√
lossp,m

p−1. So q+ = q⌢r forces

that Ξhα(Ap) ≥ 1−∑
n<mp

√
lossp,n.

(d): So we have (in V ) the Pα-name Ξhα. We already know that there is (in V )
an ω1-club set X0 in [α]<λi (for the appropriate i ∈ {3, 4}) such that w ∈ X0

implies that w satisfies Assumptions 2.13 and 2.18. So each such w ∈ X0 defines
a complete subforcing Pw of Pα and the Pα-name for the according Pw-exten-
tion Mw.

Fix some w ∈ X0. We will define w′ ⊇ w as follows: For a Pw-name (and thus
a Pα-name) r ∈ 2ω, let s be the name of Ξα(r) ∈ [0, 1]. As in Lemma 2.17 (a),
we can find a countable wr determining s. (I.e., there is a Borel function that
calculates the real s from the generics at wr; moreover we know this Borel function
in the ground model.) Let w′ ⊇ w be in X0 and contain all these wr, for a (small
representative set of) all Pw-names for reals.

Iterating this construction ω1 many steps gives us a suitable wα: Note that the
assignment of a name r to the Ξα-value s can be done in V , and thus is known
to Mα. In addition, Mα sees that for each “actual real” (i.e., element of Mα),
the value s is already determined (by P ′

α). So the assignment r 7→ s, which is Ξα
restricted to Mα, is in Mα. �

Note that in (c), when we deal with a countable ∆-system p following the
guardrail h ∈ H∗, the condition limΞh p forces in particular that infinitely many
pl are in G. So after carrying out the construction as above, we get a forcing
notion P5 satisfying the following (which is actually the only thing we need from
the previous construction, in addition to the fact that we can choose each wα in
an ω1-club):
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Lemma 2.41. For every countable ∆-system p there is some q forcing that in-
finitely many pl are in the generic filter.

Proof: According to Lemma 2.32, p follows some h ∈ H∗; so q = limΞh(p) will
work. �

Lemma 2.42. The property LCU2(P
5, κ) is for κ ∈ [λ2, λ5] regular, witnessed by

the sequence (cα)α<κ of the first κ many Cohen reals.

Proof: Fix a P5-name y ∈ ωω. We have to show that (∃α ∈ κ) (∀β ∈ κ\α)P5 

¬cβ ≤∗ y).
Assume towards a contradiction that p∗ forces that there are unboundedly

many α ∈ κ with cα ≤∗ y, and enumerate them as (αi)i∈κ. Pick p
i ≤ p∗ deciding

αi to be some βi, and also deciding ni such that (∀m ≥ ni) cαi
(m) ≤ y(m). We

can assume that βi ∈ supp(pi). Note that βi is a Cohen position (as βi < κ ≤ λ5),
and we can assume that pi(βi) is a Cohen condition in V (and not just a Pβi

-name
for such a condition). By strengthening and thinning out, we may assume:

◦ The sequence (pi)i∈κ forms a ∆ system with heart ∇.
◦ All ni are equal to some n∗.
◦ The condition pi(βi) is always the same Cohen condition s ∈ ω<ω, without
loss of generality of length |s| = n∗∗ ≥ n∗.

◦ For some position n < mp, βi is the nth element of supp(pi).

Note that this n cannot be a heart condition: For any β ∈ κ, at most |β| many
pi can force αi = β, as pi forces that αi ≥ i for all i.

Pick a countable subset of this ∆-system which forms a countable ∆-system
p := (pl)l∈ω . So pl = pil for some il ∈ κ, and we set βl = βil . In particular
all βl are distinct. Now extend each pl to p

′
l by extending the Cohen condition

pl(βl) = s to s⌢l (i.e., forcing cβl
(n∗∗) = l). Note that p′ := (p′i)i∈ω is still

a countable ∆-system13, and by Lemma 2.41 some q forces that infinitely many of
the p′l are in the generic filter. But each such p′l forces that cβl

(n∗∗) = l ≤ y(n∗∗),
a contradiction. �

2.5 The left hand side. We have now finished the consistency proof for the
left hand side:

Theorem 2.43. Assume GCH and let λi be an increasing sequence of regular
cardinals, none of which is a successor of a cardinal of countable cofinality for
i = 1, . . . , 5. Then there is a cofinalities-preserving forcing P resulting in

add(N ) = λ1 < add(M) = b = λ2 < cov(N ) = λ3

< non(M) = λ4 < cov(M) = 2ℵ0 = λ5.

Proof: Set χ = λ2, and let R be the set of partial functions f : χ× λ5 → 2 with
| dom(f)| < χ (ordered by inclusion). The set R is <χ-closed, χ+-cc, and adds
λ5 many new elements to 2χ. So in the R-extension, Assumption 2.29 is satisfied,

13Note that p′ will not follow the same guardrail as p.
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and we can construct P5 according to Assumption 2.13 and Construction 2.39.
Fact 2.24 gives us all inequalities for the left hand side, apart from b ≤ λ2, which
we get from 2.42.

In the R-extension, CH holds and P is a FS ccc iteration of length δ5, |δ5| = λ5,
and each iterated is a set of reals; so 2ℵ0 ≤ λ5 is forced. Also, any FS ccc
iteration of length δ (of nontrivial iterands) forces cov(M) ≥ cf(δ): Without loss
of generality cf(δ) = λ is uncountable. Any set A of (Borel codes for) meager sets
that has size less than λ already appears at some stage α < δ, and the iteration
at state α+ ω adds a Cohen real over the Vα, so A will not cover all reals. �

Remark 2.44. So this consistency result is reasonably general, we can, e.g., use
the values λi = ℵi+1. This is in contrast to the result for the whole diagram, where
in particular the small λi have to be separated by strongly compact cardinals.

3. Ten different values in Cichoń’s diagram

We can now apply, with hardly any change, the technique of [7] to get the
following:

Theorem 3.1. Assume GCH and that ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 < λ3 <
κ6 < λ4 < λ5 < λ6 < λ7 < λ8 < λ9 are regular, λi is not a successor of a cardinal
of countable cofinality for i = 1, . . . , 5, λ2 = χ+, with χ regular, and κi strongly
compact for i = 6, 7, 8, 9. Then there is a ccc forcing notion P9 resulting in:

add(N ) = λ1 < b = add(M) = λ2 < cov(N ) = λ3 < non(M) = λ4 < cov(M)

= λ5 < non(N ) = λ6 < d = cof(M) = λ7 < cof(N ) = λ8 < 2ℵ0 = λ9.

To do this, we first have to show that we can achieve the order for the left hand
side, i.e., Theorem 2.43, starting with GCH and using a FS ccc iteration P5 alone
(instead of using P = R ∗P5, where R is not ccc). This is the only argument that
requires λ2 = χ+. We will just briefly sketch it here, as it can be found with all
details in [7, 1.4]:

◦ We already know that in the R-extension, (where R is <χ-closed, χ+-
cc and forces 2χ = λ5) we can find by the inductive Construction 2.39
suitable wα such that R ∗ P5 works.

◦ We now perform a similar inductive construction in the ground model:
At stage α, we know that there is an R-name for a suitable w1

α of size less

than λi (where i is 3 in the random and 4 in the Ẽ-case). This name can
be covered by some set w̃1

α in V , still of size less than λi, as R is χ+-cc.
Moreover, in the R-extension, the suitable parameters form an ω1-club;
so there is a suitable w2

α ⊇ w̃1
α, etc. Iterating ω1 many times and taking

the union at the end leads to wα in V which is forced by R to be suitable.
◦ Not only wα is in V , but the construction for wα is performed in V , so
we can construct the whole sequence w = (wα)α∈δ5 in V .
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◦ We now know that in the R-extension, the forcing P5 defined from w will
satisfy LCU2(P

5, κ) in the form of Lemma 2.42.
◦ By an absoluteness argument, we can show that actually in V the forcing
P5 defined form w will satisfy Lemma 2.42 as well.

The rest of the proof is the same as in [7, Section 2], where we interchange b

and cov(N ) as well as d and non(N ).
We cite the following facts from [7, 2.2–2.5]:

Facts 3.2. (a) If κ is a strongly compact cardinal and θ > κ regular, then
there is an elementary embedding jκ,θ : V → M (in the following just
called j) such that

– the critical point of j is κ, cf(j(κ)) = |j(κ)| = θ,
– max(θ, λ) ≤ j(λ) < max(θ, λ)+ for all λ ≥ κ regular, and
– cf(j(λ)) = λ for λ 6= κ regular,

and such that the following is satisfied:
(b) If P is a FS ccc iteration along δ, then j(P ) is a FS ccc iteration along j(δ).
(c) The LCUi(P, λ) property implies the LCUi(j(P ), cf(j(λ))) property, and

thus LCUi(j(P ), λ) if λ 6= κ regular.14

(d) If COBi(P, λ, µ), then COBi(j(P ), λ, µ
′) for µ′ =

{
|j(µ)| if κ > λ,

µ if κ < λ.

Using these facts, it is easy to finish the proof15:

Proof of Theorem 3.1: Recall that we want to force the following values to
the characteristics of Figure 2 (where we indicate the positions of the κi as well):

λ3
κ6 // λ4 // // λ8 // λ9

λ2 //

OO
κ7

λ7

OO

ℵ1 κ9

// λ1 //

OO

κ8

//

OO

λ5 //

OO

λ6

OO

Step 5: Our first step, called “Step 5” for notational reasons, just uses P5. This
is an iteration of length δ5 with cf(δ5) = |δ5| = λ5, satisfying:

(3.3) For all i : LCUi(P
5, µ) for all µ ∈ [λi, λ5] regular, and COBi(P

5, λi, λ5).

14In [7], we only used “classical” relations R3 that are defined on a Polish space in an absolute
way. In this paper, we use the relation R3 which is not of this kind. However, the proof still
works without any change: The parameter E used to define the relation R3, cf. Definition 2.2,
is a set of reals. So j(E) = E, and we can still use the usual absoluteness arguments between M
and V . (A parameter not element of H(κ9) might be a problem.)

15This is identical to the argument in [7], with the roles of b and cov(N ), as well as their
duals, switched.
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As a consequence, the characteristics are forced by P5 to have the following val-
ues16 (we also mark the position of κ6, which we are going to use in the following
step):

λ3
κ6 // λ4 // // λ5 // λ5

λ2 //

OO

λ5

OO

ℵ1
// λ1 //

OO

//

OO

λ5 //

OO

λ5

OO

Step 6: Consider the embedding j6 := jκ6,λ6
. According to Fact 3.2 (b),

P6 := j6(P
5) is a FS ccc iteration of length δ6 := j6(δ5). As |δ6| = λ6, the

continuum is forced to have size λ6.
For i = 1, we have LCU1(P

5, µ) for all regular µ ∈ [λ1, λ5], so using Fact 3.2 (c)
we get LCU1(P

6, µ) for all regular size µ ∈ [λ1, λ5] different to κ6; as well as
LCU1(P

6, λ6) (as cf(j(κ6)) = λ6). For µ = λ1 the former implies for the iteration
P6  add(N ) ≤ λ1, and the latter P6  cof(N ) ≥ λ6 = 2ℵ0 .

More generally, we get from (3.3) and Fact 3.2 (c):

(3.4)
For all i : LCUi(P

6, µ) for all regular µ ∈ [λi, λ5] \ {κ6}.
For i < 4: LCUi(P

6, λ6).

So in particular for µ = λi, we see that the characteristics on the left do not
increase; for µ = λ5 that the ones on the right are still at least λ5; and for
i < 4 and µ = λ6 that the according characteristics on the right will have size
continuum. (But not for i = 4, as κ4 < λ4. And we will see that cov(M) is at
most λ5.)

Dually, because λ3 < κ6 < λ4, we get from (3.3) and Fact 3.2 (d):

(3.5)
For i < 4: COBi(P

6, λi, λ6).

For i = 4: COB4(P
6, λ4, λ5).

(The former because |j6(λ5)| = max(λ6, λ5) = λ6.) So the characteristics on the
left do not decrease, and P6  cov(M) ≤ λ5.

16These values, and the ones forced by the “intermediate forcings” P6 to P8, are not required
for the argument; they should just illustrate what is going on.
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Accordingly, P6 forces the following values:

λ3 // λ4 // // λ6 // λ6

λ2 //

OO
κ7

λ6

OO

ℵ1
// λ1 //

OO

//

OO

λ5 //

OO

λ6

OO

Step 7: We now apply a new embedding, j7 := jκ7,λ7
, to the forcing P6 that we

just constructed. (We always work in V , not in any inner model M or any forcing
extention.) As before, set P7 := j7(P

6), a FS ccc iteration of length δ7 = j7(δ6),
forcing the continuum to have size λ7.

Now κ7 ∈ (λ2, λ3), so arguing as before, we get from (3.4):

(3.6)

For all i : LCUi(P
7, µ) for all regular µ ∈ [λi, λ5] \ {κ6, κ7}.

For i < 4: LCUi(P
7, λ6).

For i < 3: LCUi(P
7, λ7).

And from (3.5):

(3.7)

For i < 3: COBi(P
7, λi, λ7).

For i = 3: COB3(P
7, λ3, λ6).

For i = 4: COB4(P
7, λ4, λ5).

Accordingly, P7 forces the following values:

λ3 // λ4 // // λ7 // λ7

λ2 //

OO

λ7

OO

ℵ1
// λ1 //

OO

κ8

//

OO

λ5 //

OO

λ6

OO

Step 8: Now we set P8 := jκ8,λ8
(P7), a FS ccc iteration of length δ8. Now

κ8 ∈ (λ1, λ2), and as before, we get from (3.6):

(3.8)

For all i : LCUi(P
8, µ) for all regular µ ∈ [λi, λ5] \ {κ6, κ7, κ8}.

For i < 4: LCUi(P
8, λ6).

For i < 3: LCUi(P
8, λ7).

For i < 2 (i.e., i = 1): LCU1(P
8, λ8).
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And from (3.7):

(3.9)

For i = 1: COB1(P
8, λ1, λ8).

For i = 2: COB2(P
8, λ2, λ7).

For i = 3: COB3(P
8, λ3, λ6).

For i = 4: COB4(P
8, λ4, λ5).

Accordingly, P8 forces the following values:

λ3 // λ4 // // λ8 // λ8

λ2 //

OO

λ7

OO

ℵ1 κ9

// λ1 //

OO

//

OO

λ5 //

OO

λ6

OO

Step 9: Finally we set P9 := jκ9,λ9
(P8), a FS ccc iteration of length δ9 with

|δ9| = λ9, i.e., the continuum will have size λ9. As κ9 < λ1, (3.8) and (3.9) also
hold for P9 instead of P8. Accordingly, we get the same values for the diagram as
for P8, apart from the value for the continuum, λ9. �
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[1] Bartoszyński T., Combinatorial aspects of measure and category, Fund. Math. 127 (1987),
no. 3, 225–239.
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