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Polish topologies for graph products of groups

Gianluca Paolini and Saharon Shelah

Abstract

We give strong necessary conditions on the admissibility of a Polish group topology for an
arbitrary graph product of groups G(Γ, Ga), and use them to give a characterization modulo
a finite set of nodes. As a corollary, we give a complete characterization in case all the factor
groups Ga are countable.

1. Introduction

Definition 1. Let Γ = (V,E) be a graph and {Ga : a ∈ Γ} a set of non-trivial groups each
presented with its multiplication table presentation and such that for a �= b ∈ Γ we have eGa

=
e = eGb

and Ga ∩Gb = {e}. We define the graph product of the groups {Ga : a ∈ Γ} over Γ ,
denoted G(Γ, Ga), via the following presentation:

generators:
⋃
a∈V

{g : g ∈ Ga},

relations:
⋃
a∈V

{the relations for Ga} ∪
⋃

{a,b}∈E

{gg′ = g′g : g ∈ Ga and g′ ∈ Gb}.

This paper is the sixth in a series of paper written by the authors which address the following
problems:

Problem 2. Characterize the graph products of groups G(Γ, Ga) admitting a Polish group
topology (respectively, a non-Archimedean Polish group topology).

Problem 3. Determine which graph products of groups G(Γ, Ga) are embeddable into a
Polish group (respectively, into a non-Archimedean Polish group).

The beginning of the story is the following question†: can a Polish group be an uncountable
free group? This was settled in the negative by Shelah in [10], in the case the Polish group
was assumed to be non-Archimedean, and in general in [11]. Later this negative result has
been extended by the authors to the class of so-called right-angled Artin groups [6]. After
the authors wrote [6], they discovered that the impossibility results therein follow from an
old important result of Dudley [2]. In fact, Dudley’s work proves more strongly that any
homomorphism from a Polish group G into a right-angled Artin group H is continuous with
respect to the discrete topology on H. The setting of [6] has then been further generalized by
the authors in [8] to the class of graph products of groups G(Γ, Ga) in which all the factor
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Figure 1. Logical structure of the references.

groups Ga are cyclic, or, equivalently, cyclic of order a power of prime or infinity. In this case
the situation is substantially more complicated, and the solution of the problem establishes
that G = G(Γ, Ga) admits a Polish group topology if and only if it admits a non-Archimedean
Polish group topology if and only if G = G1 ⊕G2 with G1 a countable graph product of cyclic
groups and G2 a direct sum of finitely many continuum-sized vector spaces over a finite field.
Concerning Problem 3, in [7] the authors give a complete solution in the case all the Ga are
cyclic, proving that G(Γ, Ga) is embeddable into a Polish group if and only if it is embeddable
into a non-Archimedean Polish group if and only if Γ admits a metric which induces a separable
topology in which EΓ is closed. We hope to conclude this series of studies with an answer to
Problem 3 at the same level of generality of this paper. The logical structure of the references
just mentioned (plus the present paper) is illustrated in Figure 1, where we use the numbering
of Shelah’s publication list, and one-direction arrows mean generalization and two-direction
arrows mean solutions to Problem 2/Problem 3 at the same level of generality.

In the present study we focus on Problem 2, proving the following theorems:

Notation 4. (1) We denote by Q = G∗
∞ the rational numbers, by Z∞

p = G∗
p the divisible

abelian p-group of rank 1 (for p a prime), and by Zpk = G∗
(p,k) the finite cyclic group of order

pk (for p a prime and k � 1).
(2) We let S∗ = {(p, k) : p prime and k � 1} ∪ {∞} and S∗∗ = S∗ ∪ {p : p prime};
(3) For s ∈ S∗∗ and λ a cardinal, we let G∗

s,λ be the direct sum of λ copies of G∗
s.

Theorem 5. Let G = G(Γ, Ga) and suppose that G admits a Polish group topology. Then
for some countable A ⊆ Γ and 1 � n < ω we have

(a) for every a ∈ Γ and a �= b ∈ Γ −A, a is adjacent to b;
(b) if a ∈ Γ −A, then Ga =

⊕{G∗
s,λa,s

: s ∈ S∗} (cf. Notation 4);
(c) if λa,(p,k) > 0, then pk | n;
(d) if in addition A = ∅, then for every s ∈ S∗ we have that

∑{λa,s : a ∈ Γ} is either � ℵ0

or 2ℵ0 .

The following more involved theorems give more information on the possible graph products
decompositions of a group G admitting a Polish group topology, and it can be seen as a solution
modulo a finite set of nodes to Problem 2.
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Theorem 6. (1) Let G = G(Γ, Ga). If G admits a Polish group topology, then there is
Ā = (A0, A5, A6, A7, A8, A9) such that

(a) Ā is a partition of Γ;
(b) for every a ∈ Γ and a �= b ∈ Γ −A0, a is adjacent to b;
(c) A5 and A6 are finite;
(d) A0, A7 and A8 are countable,
(e) for each a ∈ A0, Ga is countable;
(f) if a ∈ A7 ∪A8, then Ga = Ha ⊕

⊕{G∗
s,λa,s

: s ∈ S∗∗}, for some countable Ha � Ga;

(g) if a ∈ A9, then Ga =
⊕{G∗

s,λa,s
: s ∈ S∗∗};

(h) for each s ∈ S∗∗ − S∗,
∑{λa,s : a ∈ A7 ∪A8 ∪A9} � ℵ0;

(i) for each s ∈ S∗,
∑{λa,s : a ∈ A7 ∪A8 ∪A9} is � 2ℵ0 ;

(j) for some 1 � n < ω we have
∑{λa,(p,k) : a ∈ A7 ∪A8 ∪A9} > ℵ0 ⇒ pk | n;

(k) we can define explicitly the functions Ai from {Ga : a ∈ Γ}.
(2) Furthermore, if we assume CH and we let Ā = (A0, A5, A6, A7, A8, A9) be as above and

A = A0 ∪A7 ∪A8 ∪A9, then G(Γ � A,Ga) admits a non-Archimedean Polish group topology.

Theorem 7. (1) For given G = G(Γ, Ga) the following conditions are equivalent:
(a) for some finite B1 ⊆ Γ, for every finite B2 such that B1 ⊆ B2 ⊆ Γ, G(Γ � Γ −B2, Ga)
admits a Polish group topology;
(b) there is Ā as in Theorem 6 and for some finite B ⊇ A5 ∪A6, for every s ∈ S∗ the
cardinal λB

s =
∑{λa,s : a ∈ (A7 ∪A8 ∪A9) −B} is either ℵ0 or 2ℵ0 .

(2) If B0 ⊆ Γ is finite, Ā is as in Theorem 6 for G(Γ � Γ −B0, Ga) and we let B1 = B0 ∪A5 ∪
A6 (which is a finite subset of Γ), then the following conditions on B ⊆ Γ −B1 are equivalent:

(a) G(Γ � B) admits a Polish group topology;
(b) for every s ∈ S∗ the cardinal λB

s =
∑{λa,s : a ∈ B} is either ℵ0 or 2ℵ0 .

Remark 8. Let

(a) s ∈ S∗;
(b) ℵ0 < λ < 2ℵ0 ;
(c) Γ a complete graph on ω1;
(d) G0 = Gs,2ℵ0 ⊕G∗;
(e) G∗ an uncountable centerless group admitting a Polish group topology;
(f) Gα = Gs,λ, for α ∈ [1, ω1).

Then G(Γ, Ga) admits a Polish group topology, but letting Ā be the partition from Theorem 6
we have that

∑{λa,s : a ∈ A7 ∪A8 ∪A9} = λ < 2ℵ0 , and so for A = A0 ∪A7 ∪A8 ∪A9, we
have that G(Γ � A,Ga) does not admit a Polish group topology (in fact in this case A0 = A6 =
A7 = A8 = ∅, A5 = {0} and A9 = [1, ω1), cf. the explicit definition of the functions Ai in the
proof of Theorem 6).

From our theorems and their proofs we get the following corollaries.

Corollary 9. Let G = G(Γ, Ga) with all the Ga countable. Then G admits a Polish group
topology if and only if G admits a non-Archimedean Polish group topology if and only if there
exist a countable A ⊆ Γ and 1 � n < ω such that

(a) for every a ∈ Γ and a �= b ∈ Γ −A, a is adjacent to b;
(b) if a ∈ Γ −A, then Ga =

⊕{G∗
s,λa,s

: s ∈ S∗};
(c) if λa,(p,k) > 0, then pk | n;

(d) for every s ∈ S∗,
∑{λa,s : a ∈ Γ −A} is either � ℵ0 or 2ℵ0 .
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Corollary 10. Let G be an abelian group which is a direct sum of countable groups, then
G admits a Polish group topology if only if G admits a non-Archimedean Polish group topology
if and only if there exists a countable H � G and 1 � n < ω such that

G = H ⊕
⊕

α<λ∞

Q ⊕
⊕

pk|n

⊕
α<λ(p,k)

Zpk ,

with λ∞ and λ(p,k) � ℵ0 or 2ℵ0 .

Corollary 11 (Slutsky [12]). If G is an uncountable group admitting a Polish group
topology, then G cannot be expressed as a non-trivial free product.

The following problem gets in the way of a complete characterization of the groups G =
G(Γ, Ga) admitting a Polish group topology in the case no further assumptions are made on
the factors Ga. We have

Fact 12. Let s1 �= s2 ∈ S∗ and λ a cardinal (cf. Notation 4).

(1) If ℵ0 < λ < 2ℵ0 , then Gs1,λ ⊕Gs1,2ℵ0
∼= Gs1,2ℵ0 admits a Polish group topology, but

Gs1,λ does not admit one such topology.
(2) If ℵ0 < λ < 2ℵ0 , H1 = Gs1,2ℵ0 ⊕Gs2,λ and H2 = Gs1,λ ⊕Gs2,2ℵ0 , then H1 ⊕H2 admits

a Polish group topology, but neither H1 nor H2 admit one such topology.

Hence, a general characterization seems to depend on the failure of CH. Despite this, our
impression is that CH would not help. This leads to a series of conjectures on the possible
direct summands of a Polish group G:

Conjecture 13 (Polish direct summand conjecture). Let G be a group admitting a Polish
group topology.

(1) If G has a direct summand isomorphic to G∗
s,λ, for some ℵ0 < λ � 2ℵ0 and s ∈ S∗, then

it has one of cardinality 2ℵ0 .
(2) If G = G1 ⊕G2 and G2 =

⊕{G∗
s,λs

: s ∈ S∗}, then for some G′
1, G

′
2 we have

(i) G1 = G′
1 ⊕G′

2;
(ii) G′

1 admits a Polish group topology;
(iii) G′

2 =
⊕{G∗

s,λ′
s

: s ∈ S∗}.
(3) If G = G1 ⊕G2, then for some G′

1, G
′
2 we have

(i) G1 = G′
1 ⊕G′

2;
(ii) G′

1 admits a Polish group topology;
(iii) G′

2 =
⊕{G∗

s,λs
: s ∈ S∗}.

The paper is organized as follows. In Section 2 we prove some preliminaries results to be
used in later sections. In Section 3 we prove Theorem 5. In Section 4 we prove Theorems 6 and
7. In Section 5 we prove Corollaries 9–11.

In a work in preparation we deal with Conjecture 13, and mimic Theorems 5 and 6 in a
weaker context, that is, the topology on G need not be Polish.

2. Preliminaries

In notation and basic results we follow [1]. Given A ⊆ Γ we denote the induced subgraph of Γ
on vertex set A as Γ � A.
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Fact 14. Let G = G(Γ, Ga), A ⊆ Γ and GA = (Γ � A,Ga). Then there exists a unique
homomorphism p = pA : G → GA such that p(g) = g if g ∈ GA, and p(g) = e if g ∈ GΓ−A.

Proof. For arbitrary G = G(Γ, Ga), let Ω(Γ,Ga) be the set of equations from Definition 1
defining G(Γ, Ga). Then for the Ω(Γ,Ga) of the statement of the fact we have Ω(Γ,Ga) = Ω1 ∪
Ω2 ∪ Ω3, where

(a) Ω1 = Ω(Γ�A,Ga);
(b) Ω2 = Ω(Γ�Γ−A,Ga);
(c) Ω3 = {bc = cb : bEΓc and {b, c} � A}.
Note now that p maps each equation in Ω1 to itself and each equation in Ω2 ∪ Ω3 to a trivial

equation, and so p is a homomorphism (clearly unique). �

Definition 15. A word in G(Γ, Ga) is either e (the empty word) or a formal product
g1 · · · gn with each gi ∈ Gai

for some ai ∈ Γ. The elements gi are called the syllables of the
word. The length of the word g1 · · · gn is |g1 · · · gn| = n, with the length of the empty word
defined to be 0. If g ∈ G(Γ, Ga) satisfies G(Γ, Ga) |= g = g1 · · · gn, then we say that the word
g1 · · · gn represents (or spells) g. We will abuse notation and do not distinguish between a word
and the element of G that it represents.

Definition 16. The word g1 · · · gn is a normal form if it cannot be changed into a shorter
word by applying a sequence of moves of the following type:

(M1) delete the syllable gi = e;
(M2) if gi, gi+1 ∈ Ga, replace the two syllables gi and gi+1 by the single syllable gigi+1 ∈ Ga;
(M3) if gi ∈ Ga, gi+1 ∈ Gb and aEΓb, exchange gi and gi+1.

Fact 17 (Green [4] for (1) and Hermiller and Meier [5] for (2)).

(1) If a word in G(Γ, Ga) is a normal form and it represents the identity element, then it is
the empty word.

(2) If w1 and w2 are two words representing the same element g ∈ G(Γ, Ga), then w1 and
w2 can be reduced to identical normal forms using moves (M1) − (M3).

Definition 18. Let g ∈ G(Γ, Ga). We define

(1) sp(g) = {a ∈ Γ : gi is a syllable of a normal form for g and gi ∈ Ga − {e}};
(2) lg(g) = |w|, for w a normal form for g;
(3) F (g) = {g1 : g1 · · · gn is a normal form for g};
(4) L(g) = {gn : g1 · · · gn is a normal form for g};
(5) L̂(g) = {g−1

n : gn ∈ L(g)}.
(Here F and L stand for ‘first’ and ‘last’, respectively.)

Definition 19. (1) We say that the word w is weakly cyclically reduced when

F (w) ∩ L̂(w) = ∅.
(2) We say that the word g1 · · · gn is cyclically reduced if no combination of moves (M1) −

(M4) results in a shorter word, where (M1) − (M3) are as in Definition 16 and the move (M4)
is as follows:

(M4) replace g1 · · · gn by either g2 · · · gng1 or gng1 · · · gn−1.
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(3) We say that g ∈ G(Γ, Ga) is (a, b)-cyclically reduced (or (Ga, Gb)-cyclically reduced)
when g �= e, F (g) ⊆ Ga − {e} and L(g) ⊆ Gb − {e}.

Observation 20. Note that if g ∈ G(Γ, Ga) is spelled by a cyclically reduced (respectively,
a weakly cyclically reduced) normal form, then any of the normal forms spelling g is cyclically
reduced (respectively, weakly cyclically reduced).

Definition 21. Recalling Observation 20, we say that g ∈ G(Γ, Ga) is cyclically reduced
(respectively, weakly cyclically reduced) if any of the normal forms spelling g is cyclically
reduced (respectively, weakly cyclically reduced).

Remark 22. (1) Note that if g is cyclically reduced, then g cannot be written as a normal
form h1h2 · · ·hn−1hn with h1, hn ∈ Ga for some a ∈ Γ, since otherwise lg(h2 · · ·hn−1hnh1) <
lg(h1h2 · · ·hn−1hn).

(2) Note that if g is weakly cyclically reduced, then g cannot be written as a normal form
h1h2 · · ·hn−1h

−1
1 , since otherwise F (w) ∩ L̂(w) �= ∅.

(3) Hence, if g is cyclically reduced and spelled by the normal form h1h2 · · ·hn−1hn, then,
unless n = 1 and h1 = h−1

1 , we have that g is weakly cyclically reduced.

Proposition 23. Let a �= b ∈ Γ, {a, b} �∈ EΓ and g1ug2 ∈ G(Γ, Ga). Assume that
F (g1), F (u), F (g2) ⊆ Ga − {e}, L(g1), L(u), L(g2) ⊆ Gb − {e} and p � 2, then

(a) g1u
pg2 is (a, b)-cyclically reduced;

(b) if g1, u, g2 are written as normal forms, then g1 u · · ·u︸ ︷︷ ︸
p

g2 is a normal form;

(c) lg(g1u
pg2) = lg(g1) + plg(u) + lg(g2) > lg(g1ug2) > lg(u).

Proof. Clear. �

Convention 24. Given a sequence of words w1, . . . , wk with some of them possibly empty,
we say that the word w1 · · ·wk is a normal form (respectively, a (weakly) cyclically reduced
normal form) if after deleting the empty words the resulting word is a normal form (respectively,
a (weakly) cyclically reduced normal form).

Fact 25 [1, Corollary 24]. Any element g ∈ G(Γ, Ga) can be written in the form
w1w2w3w

′
2w

−1
1 , where

(1) w1w2w3w
′
2w

−1
1 is a normal form;

(2) the element w3w
′
2w2 is cyclically reduced (cf. Observation 20 and Definition 21);

(3) sp(w2) = sp(w′
2);

(4) if w2 �= e, then Γ � sp(w2) is a complete graph;
(5) F (w2) ∩ L̂(w′

2) = ∅.
(Note that by (5) if w2 �= e then w2w3w

′
2 is weakly cyclically reduced).

Definition 26. Let g ∈ G(Γ, Ga) and g = w1w2w3w
′
2w

−1
1 as in Fact 25. We let

(1) csp(g) = sp(w2w3w
′
2);

(2) clg(g) = lg(w2w3w
′
2).

(Inspection of the proof of Fact 25 from [1] shows that this is well defined).
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Proposition 27. Let G = G(Γ, Ga), with Γ = {a1, a2, b1, b2} and |{a1, a2, b1, b2}| = 4.
Suppose also that, for i = 1, 2, we have that ai and bi are not adjacent. Then

(1) if g ∈ G has finite order, then csp(g) is a complete graph (and so |csp(g)| � 2);
(2) let q < p be primes, gi ∈ Gai

− {e} and hi ∈ Gbi − {e} (i = 1, 2), and g = (g1g2h1h2)p.
Then for every d ∈ G such that csp(g) is a complete graph (and so |csp(g)| � 2) we have
that dg ∈ G does not have a qth root.

Proof. This can be proved using the canonical representation of d ∈ G that we get from
Fact 25, and analyzing the possible cancellations occurring in the word dg, in the style, for
example, of the proof of Proposition 29. The details are omitted. �

Notation 28. We denote the free product of two group H1 and H2 as H1 ∗H2. Note that
H1 ∗H2 is G(Γ, Ga) for Γ a discrete graph (that is, no edges) on two vertices a and b, and
Ga = H1 and Gb = H2. Thus, when we use lg(g), sp(g), etc., for g ∈ H1 ∗H2, we mean with
respect to the corresponding G(Γ, Ga).

Proposition 29. Let k∗ � 2 be even and p >> k∗ (for example, as an overkill, we might
let p = 36k∗ + 100). Then (A) implies (B), where

(A) (a) H = H1 ∗H2;
(b) g∗ ∈ H1 − {e};
(c) h(�,i) ∈ H2 − {e}, for � < k∗ and i = 1, 2;
(d) (h(�,i) : � < k∗ and i = 1, 2) is with no repetitions;
(e) (h(0,2))−1 �= h(k∗−1,1) �= (h(1,2))−1;
(f) for i ∈ {1, 2} and 0 < � < k∗ we have h(0,2) �= (h(�,2))−1;
(g) for i ∈ {1, 2} and 0 � � < k∗ − 1 we have h(k∗−1,1) �= (h(�,1))−1;
(h) gi = h(0,i)g∗h(1,i)g

−1
∗ · · ·h(k∗−2,i)g∗h(k∗−1,i)g

−1
∗ , for i = 1, 2;

(B) for every u ∈ H, at least one of the following holds:
(a) lg(g1u

pg2) > lg(u);
(b) clg(u) � 1, lg(g1u

pg2) � 2k∗ and g1u
pg2 is (H2, H1)-cyclically reduced;

(c) clg(u) � 1, lg(g1u
pg2) � 2k∗ and lg(g1u

pg2) = lg(u).

Proof. Let u ∈ H, write u = w1w2w3w
′
2w

−1
1 as in Fact 25 and set w2w3w

′
2 = w0. Clearly the

element g1u
pg2 is spelled by the following word (thinking of gi as a word (cf. its definition)):

w∗ = g1w1 w0 · · ·w0︸ ︷︷ ︸
p

w−1
1 g2.

Case 1. lg(w0) � 2 and lg(w0) is even.
Note that in this case the word

w1 w0 · · ·w0︸ ︷︷ ︸
p

w−1
1

is a normal form for up, and so the only places where cancellations (that is, consecutive
applications of moves (M1) and (M2) as in Definition 16) may occur in w∗ are at the junction
of g1 and w1 and at the junction of w−1

1 and g2. Since by assumption lg(gi) = 2k∗ (i = 1, 2)
and p >> 4k∗, we get that lg(g1u

pg2) > lg(u). Thus, clause B(a) is true.

Case 2. lg(w0) � 3 and lg(w0) is odd.
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In this case, for some � ∈ {1, 2}, F (w0), L(w0) ∈ H3−� − {e}, w2, w
′
2 ∈ H� − {e} and w′

2w2 �=
e, and so, letting w′

0 stand for a normal form for w3w
′
2w2 (that is, w′

0 = w3(w′
2w2)), we have

that lg(w′
0) � 2. Thus, the word

w1w2 w
′
0 · · ·w′

0︸ ︷︷ ︸
p−1

w3w
′
2w

−1
1

is a normal form for up. Hence, arguing as in Case 1, we see that lg(g1u
pg2) > lg(u). Thus,

clause B(a) is true.

Case 3. lg(w0) = 1, (w0)p �= e, and w1 = e = w−1
1 .

This case is clear by assumption (A)(e). Clearly in this case clause B(a) is true.

Case 4. lg(w0) = 1, (w0)p �= e and w1 �= e �= w−1
1 .

If this is the case, then (w0)p = (w3)p = gp for some g ∈ H1 ∪H2 (and w2 = e = w′
2). Note

crucially that in w∗ = g1w1(w0)pw−1
1 g2 if a cancellation occurs at the junction of g1 and w1

(respectively, of w−1
1 and g2), then it cannot occur at the junction of w−1

1 and g2 (respectively,
of g1 and w1), since for i = 1, 2 we have F (gi) ⊆ H2 and L(gi) ⊆ H1, whereas e �= F (w1) =
L̂(w−1

1 ) �= e.

Case 4.1. No cancellation occurs at the junction of g1 and w1.
Let m∗ be the number of cancellations occurring at the junction of w−1

1 and g2.

Case 4.1.1. 2lg(w1) + 1 > 2k∗.
Clearly m∗ � 2k∗ and so we have

lg(g1u
pg2) � 2k∗ + 2lg(w1) + 1 −m∗

� 2lg(w1) + 1

= lg(u),

and so either clause (B)(a) or B(c) is true.

Case 4.1.2. 2lg(w1) + 1 � 2k∗.
First of all, necessarily 2lg(w1) + 1 < 2k∗. Furthermore, note crucially that m∗ < 2lg(w1) +

1, because otherwise we would have

h0,2 = L̂(w−1
1 ) and hlg(w1),2 = (F (w1))−1,

contradicting assumption (A)(f).
Hence, g1 is an initial segment of a normal form spelling g1u

pg2 and so we have:

lg(u) = 2lg(w1) + 1

< 2k∗

� lg(g1u
pg2),

and so clause B(a) is true.

Case 4.2. No cancellation occurs at the junction of g2 and w−1
1 .

Let m∗ be the number of cancellations occurring at the junction of w−1
1 and g2.

Case 4.2.1. 2lg(w1) + 1 > 2k∗.
As in Case 4.1.1.

Case 4.2.2. 2lg(w1) + 1 � 2k∗.
Similar to Case 4.1.2, using assumption (A)(g).

Case 5. lg(w0) = 0, or lg(w0) = 1 and (w0)p = e.
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If either of these cases happen, then w∗ = g1g2 is a normal form of length 4k∗, and so clearly
lg(g1u

pg2) � 2k∗ and g1u
pg2 is (H2, H1)-cyclically reduced. Thus, clause B(b) is true. �

Proposition 30. The set of equations Ω has no solution in H, when

(a) k(n) � 2 is even and p(n) >> k(n), for n < ω;
(b) n < m < ω implies k(n) < k(m);
(c) H = H1 ∗H2;
(d) for every n < ω we have

(d.1) g(n,∗) ∈ H1 − {e};
(d.2) h(n,�,i) ∈ H2 − {e}, for � < k(n) and i = 1, 2;
(d.3) (h(n,�,i) : � < k(n) and i = 1, 2) is with no repetitions;
(d.4) (h(n,0,2))−1 �= h(n,k(n)−1,1) �= (h(n,1,2))−1;
(d.5) for i ∈ {1, 2} and 0 < � < k(n) we have h(n,0,2) �= (h(n,�,2))−1;
(d.6) for i ∈ {1, 2} and 0 � � < k(n) − 1 we have h(n,k(n)−1,1) �= (h(n,�,1))−1;
(d.7) for i = 1, 2 we have

g(n,i) = h(n,0,i)g(n,∗)h(n,1,i)g
−1
(n,∗) · · ·h(n,k(n)−2,i)g(n,∗)h(n,k(n)−1,i)g

−1
(n,∗);

(e) Ω = {xn = g(n,1)(xn+1)p(n)g(n,2) : n < ω}.

Proof. Let (tn : n < ω) witness the solvability of Ω in H. Note that

∃n∗
0 such that n � n∗

0 implies tn is not (H2, H1)-cyclically reduced. (1)

(Why? Let n∗
0 = lg(t0) + 1, and, toward contradiction, assume that n � n∗

0 and tn is (H2, H1)-
cyclically reduced. By downward induction on � � n we can prove that t� is (H2, H1)-cyclically
reduced and lg(t�) � lg(tn) + n− �. For � = n, this is clear. For � < n, by the inductive hypoth-
esis we have that t�+1 is (H2, H1)-cyclically reduced and lg(t�+1) � lg(tn) + n− (� + 1). Now,
by Proposition 23 applied to (g1, u, g2) = (g(�,1), t�+1, g(�,2)), we have that g�,1(t�+1)p(�)g�,2 =
t� is (H2, H1)-cyclically reduced and lg(t�) > lg(t�+1), from which it follows that lg(t�) �
lg(tn) + n− �, as wanted. Hence, letting � = 0 we have that lg(t0) � lg(tn) + n � n∗

0 > lg(t0),
a contradiction.)

Thus, we have

for n � n∗
0 we have lg(tn) > lg(tn+1) or lg(tn) = lg(tn+1) ∧ lg(tn) � 2k(n). (2)

(Why? By Proposition 29(B) applied to (g1, u, g2) = (gn,1, tn+1, gn,2), as case (B)(b) of
Proposition 29 is excluded by (1).) Now, by (2), we get

(lg(tn) : n � n∗) is non-increasing. (3)

Thus, by (3), we get

(lg(tn) : n � n∗) is eventually constant. (4)

Hence, by the second half of (2) and (4), we contradict assumption (b). �

We will also need the following results of abelian group theory. We follow [3].

Definition 31. Let G be an abelian group.

(1) For 1 � n < ω, we denote by Torn(G) the set of g ∈ G such that ng = 0 (in [3] this is
denoted as G[n], cf. p. 4).

(2) For 1 � n < ω, we say that G is n-bounded if Torn(G) = G (cf. [3, p. 25]).
(3) We say that G is bounded if it is n-bounded for some 1 � n < ω (cf. [3, p. 25]).
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(4) We say that G is divisible if for every g ∈ H and n < ω there exists h ∈ G such that
nh = g (cf. [3, p. 98]).

(5) We say that G is reduced if it has no divisible subgroups other than 0 (cf. [3, p. 200]).

Fact 32 [3, Theorem 23.1]. Let G be a divisible abelian group and P = {p : p prime}. Then

G ∼=
⊕

α<λ∞

Q ⊕
⊕
p∈P

⊕
α<λp

Z∞
p .

Fact 33 [3, Theorem 17.2]. Let G be a bounded abelian group. Then G is a direct sum of
cyclic groups.

Fact 34. Let G be an abelian group and 1 � n < ω. Then Torn(G) is the direct sum of
finite cyclic groups or order divisible by n.

Proof. This is an immediate consequence of Fact 33. �

Definition 35. Let G be an abelian group and P = {p : p prime}.
(1) For 1 � n < ω, we say that G is n-bounded-divisible when

G ∼=
⊕

α<λ∞

Q ⊕
⊕
p∈P

⊕
α<λp

Z∞
p ⊕

⊕

pm|n

⊕
α<λp,m

Zpm .

(2) We say that G is bounded-divisible if it is n-bounded-divisible for some 1 � n < ω.

Fact 36 [3, p. 200]. Let G be an abelian group. Then for some H � G (unique up to
isomorphism) we have

(1) G has a unique maximal divisible subgroup Div(G);
(2) G = Div(G) ⊕H;
(3) H is reduced.

Fact 37. Let G be an abelian group and 1 � n < ω. If for every g ∈ G there exists a divisible
K � G such that g ∈ K + Torn(G), then G is n-bounded-divisible.

Proof. This is an immediate consequence of Facts 32, 34 and 36. �

Fact 38. Let G be a group, 1 � n < ω and (for ease of notation) G′ = Cent(G). Suppose
that both G/G′ and G′/(Div(G′) + Torn(G′)) are countable. Then G = K ⊕M , with K
countable and M bounded-divisible.

Proof. By Fact 36, G′ = Div(G′) ⊕H, with H reduced. Furthermore, by assumption,
G′/(Div(G′) + Torn(G′)) is countable. So we can find a sequence (gi : i < θ � ℵ0) of members
of G′ such that G′ is the union of (gi + (Torn(G) + Div(G′)) : i < θ). Thus, since also G/G′ is
countable, we can find K � G such that

(a) K is countable;
(b) G =

⋃{G′h : h ∈ K};
(c) K includes {gi : i < θ}.

Now, by Facts 32 and 34, L := Div(G′) + Torn(G′) can be represented as
⊕

i<λ Gi with each
Gi

∼= Q or Gi
∼= Zp� (with p� | n, for some 1 � n < ω). Without loss of generality, for some

countable U ⊆ λ we have K ∩ L =
⊕{Gi : i ∈ U}. Let M =

⊕{Gi : i ∈ λ− U}, and note that
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(1) K and M commute (since M ⊆ G′);
(2) K + M = G;
(3) K ∩M = {e}.

Hence, G = K ⊕M and so we are done. �

Finally, we will make a crucial use of the following special case of [11, 3.1].

Fact 39 [11]. Let G = (G, d) be a Polish group and ḡ = (ḡn : n < ω), with ḡn ∈ G�(n) and
�(n) < ω.

(1) For every non-decreasing f ∈ ωω with f(n) � 1 and (εn)n<ω ∈ (0, 1)ω
R

there is a sequence
(ζn)n<ω (which we call an f -continuity sequence for (G, d, ḡ), or simply an f -continuity
sequence) satisfying the following conditions:

(A) for every n < ω:
(a) ζn ∈ (0, 1)R and ζn < εn;
(b) ζn+1 < ζn/2;

(B) for every n < ω, group term σ(x0, . . . , xm−1, ȳn) and (h(�,1))�<m, (h(�,2))�<m ∈ Gm,
the d-distance from σ(h(0,1), . . . , h(m−1,1), ḡn) to σ(h(0,2), . . . , h(m−1,2), ḡn) is < ζn, when

(a) m � n + 1;
(c) σ(x0, . . . , xm−1, ȳn) has length � f(n) + 1;
(c) h(�,1), h(�,2) ∈ Ball(e; ζn+1);
(d) G |= σ(e, . . . , e, ḡn) = e.

(2) The set of equations Γ = {xn = d(n,1)(xn+1)k(n)d(n,2) : n < ω} is solvable in G when for
every n < ω:

(a) f ∈ ωω is non-decreasing and f(n) � 1;
(b) 1 � k(n) < f(n);
(c) (ζn)n<ω is an f -continuity sequence;
(d) d(d(n,�), e) < ζn+1, for � = 1, 2.

Convention 40. If we apply Fact 39(1) without mentioning ḡ it means that we apply
Fact 39(1) for ḡn = ∅, for every n < ω.

We shall use the following observation freely throughout the paper.

Observation 41. Suppose that (G, d) is Polish, A ⊆ Gk is uncountable, 1 � k < ω and
ζ > 0. Then for some (g1,� : � < k) = ḡ1 �= ḡ2 = (g2,� : � < k) ∈ A we have d((g1,�)−1g2,�, e) < ζ,
for every � < k.

Proof. We give a proof for k = 1, the general case is similar. First of all, note that
we can find g1 ∈ A such that g1 is an accumulation point of A, because otherwise we
contradict the separability of (G, d). Furthermore, the function (x, y) �→ x−1y is continuous
and so for every (x1, y1) ∈ G2 and ζ > 0 there is δ > 0 such that, for every (x2, y2) ∈ G2,
if d(x1, x2), d(y1, y2) < δ, then d((x1)−1y1, (x2)−1y2) < ζ. Let now g2 ∈ Ball(g1; δ) ∩A− {g1},
then d((g1)−1g2, (g1)−1g1) = d((g1)−1g2, e) < ζ. �

3. First venue

In this section we prove Theorem 5. We will prove a series of lemmas from which the theorem
follows.
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Lemma 42. Let Γ be such that either of the following cases happens:

(i) in Γ there are {ai : i < ω1} and {bi : i < ω1} such that if i < j < ω1, then ai �= aj , bi �= bj ,
|{ai, aj , bi, bj}| = 4 and ai is not adjacent to bi;

(ii) in Γ there are a∗ and {bi : i < ω1} such that if i < j < ω1, then |{a∗, bi, bj}| = 3 and a∗
is not adjacent to bi.

Then G(Γ, Ga) does not admit a Polish group topology.

Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish.

Case 1. There are {(ai, bi) : i < ω1} as in (i) above.
Let (ζn)n<ω ∈ (0, 1)ω

R
be as in Fact 39 for f ∈ ωω, for example, constantly 30 (recall

Convention 40). Using Observation 41, by induction on n < ω, choose (i(n), j(n)), (gi(n), gj(n))
and (hi(n), hj(n)) such that

(a) if m < n, then jm < in;
(b) in < jn < ω1;
(c) gi(n) ∈ Gai(n) − {e} and gj(n) ∈ Gaj(n) − {e};
(d) hi(n) ∈ Gbi(n) − {e} and hj(n) ∈ Gbj(n) − {e};
(e) d((gi(n))−1gj(n), e), d((hi(n))−1hj(n), e) < ζn+4.

Consider now the following set of equations:

Ω = {xn = (xn+1)2(tn)−1 : n < ω},
where tn = ((gi(n))−1gj(n)(hi(n))−1hj(n))3. By (e) above and Fact 39(1)(B) we have d(tn, e) <
ζn+1, and so by Fact 39(2) the set Ω is solvable in G. Let (d′n)n<ω witness this. Now sp(d′0) is
finite, and so we can find 0 < n < ω such that sp(d′0) ∩ {ai(n), aj(n), bi(n), bj(n)} = ∅. Let now
A = {ai(n), aj(n), bi(n), bj(n)}, p = pA the corresponding homomorphism from Fact 14 and let
p(d′m) = dm. Then we have

(A) d0 = e;
(B) m < n ⇒ dm = (dm+1)2p(tm) = (dm+1)2.

Thus, (dn)2
n

= e. Hence, by Proposition 27(1), we have that csp(dn) is a complete graph (and
so |csp(dn))| � 2). Furthermore, we have

(dn+1)2 = dntn.

Hence, we reach a contradiction with Proposition 27(2).

Case 2. There is a∗ and {bi : i < ω1} as in (ii) above.
Let k(n) and p(n) be as in Proposition 30, g∗ ∈ Ga∗ − {e} and let (ζn)n<ω ∈ (0, 1)ω

R
be as

in Fact 39 for f ∈ ωω such that f(n) = p(n) + 4k(n) + 4 and ḡn = (g∗) (and so in particular
�(n) = 1). Using Observation 41, by induction on n < ω, choose (i(n), j(n)) = (in, jn) and
(hi(n), hj(n)) such that

(a) if m < n, then jm < in;
(b) in < jn < ω1;
(c) hi(n) ∈ Gbi(n) − {e} and hj(n) ∈ Gbj(n) − {e};
(d) d((hi(n))−1hj(n), e) < ζn+2k(n)+2.

Let g(n,∗) = g∗, hn = (hi(n))−1hj(n), h(n,�,1) = hn!+2� and h(n,�,2) = hn!+(2�+1), for � < k(n). Let
then g(n,i) and Ω be as in Proposition 30. By (e) above and Fact 39(1)(B) we have d(g(n,i), e) <
ζn+1. Thus, by Fact 39(2) the set Ω is solvable in G. Let now A = {a∗} ∪ {bi(n), bj(n) : n < ω}
and p = pA be the corresponding homomorphism from Fact 14. Then projecting onto p(G) =
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G(Γ � A,Ga) and using Proposition 30 we get a contradiction, since, for every n < ω, a∗ is
adjacent to neither bi(n) nor bj(n), and so G(Γ � A,Ga) = Ga∗ ∗G(Γ � A− {a∗}, Ga). �

As a corollary of the previous lemma we get

Corollary 43. Let G = G(Γ, Ga). If G admits a Polish group topology, then there exists
a countable A1 ⊆ Γ such that for every a ∈ Γ and a �= b ∈ Γ −A1, a is adjacent to b.

Lemma 44. If the set

A2 = {a ∈ Γ : Ga is not abelian}
is uncountable, then G(Γ, Ga) does not admit a Polish group topology.

Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish, and let A1 ⊆ Γ be as in Corollary 43
(recall that A1 is countable). By induction on n, choose (an, gn, tn), (bn, dn, zn), (hn, h<n) and
(ζ�n : � = 1, . . . , 4) such that

(a) an �= bn ∈ A2 − (A1 ∪ {a�, b� : � < n});
(b) gn, tn ∈ Gan

and they do not commute;
(c) dn, zn ∈ Gbn and they do not commute;
(d) d((gn)−1dn), e), d((tn)−1zn, e) < ζ4

n;
(e) hn = (gn)−1dn and h<n = h0 · · ·hn−1;
(f) ζ�n ∈ (0, 1)R, 1

4ζ
�
n � ζ�+1

n and 1
4ζ

4
n � ζ1

n+1;
(g) if n = m + 1 and g ∈ Ball(h<n; ζ2

n), then g and (tm)−1zm do not commute;
(h) if n = m + 1, and g ∈ Ball(e; ζ3

n), then d(h<ng, h<n) � ζ2
m.

(How? For n = 0, let ζ�n = 1
4�+1 , and choose (a0, g0, t0), (b0, d0, z0), (h0, h<0) as needed (where

we let h<0 = e). So assume n = m + 1, and let ζ1
n = 1

4ζ
4
m. Now, (gm, dm) are well defined, and

so h<n = h<mhm is well defined. Furthermore, h<n does not commute with (tm)−1zm, that is,
h<n(tm)−1zm(h<n)−1(zm)−1tm �= e. Thus, there is ζ2

n ∈ (0, 1
4ζ

1
n)R such that

g ∈ Ball(h<n, ζ
2
n) ⇒ g(tm)−1zmg−1(zm)−1tm �= e.

Also, let ζ3
n ∈ (0, 1

4ζ
2
n)R be as in Fact 39(1)(B) with (ζ2

n, ζ
3
n, 4) here standing for (ζn, ζn+1, f(n))

there. Similarly, choose ζ4
n ∈ (0, 1

4ζ
3
n)R. Finally, we show how to choose (an, gn, tn) and

(bn, dn, zn). For every a ∈ A2 − (A1 ∪ {a�, b� : � < n}) we have that Ga is not abelian, and so
we can find gan, p

a
n ∈ Ga which do not commute. Since A2 is uncountable whereas A1 ∪ {a�, b� :

� < n} is countable and (G, d) is separable, we can find uncountable A′
n ⊆ A2 − (A1 ∪ {a�, b� :

� < n}) and g∗n such that {gan : a ∈ A′
n} ⊆ Ball(g∗n, ζ

4
n/2). Similarly, we can find uncountable

A′′
n ⊆ A′

n and p∗n such that {pan : a ∈ A′
n} ⊆ Ball(p∗n, ζ

4
n/2). Chose an �= bn ∈ A′′

n and let

gn = gan, tn = pan, g
b
n = dn and pbn = zn.

Then (an, gn, tn), (bn, dn, zn), (hn, h<n) and (ζ�n : � = 1, . . . , 4) are as wanted.) Then we have

(A) (h<n : n < ω) is Cauchy, let its limit be h∞;
(B) d(h∞, h<n+1) < ζ1

n;
(C) h∞ and (tn)−1zn do not commute.

(Why? By clause (d) above, for each n we have d((gn+1)−1dn+1, e) < ζ4
n+1 < ζ3

n+1, and so by
clause (h) we have d(h<n+1, h<n) � ζ2

n. Furthermore, ζ2
n+1 < ζ1

n+1 � 1
4ζ

4
n < 1

4ζ
2
n. Thus, clearly

the sequence (h<n : n < ω) is Cauchy. Moreover, we have:

d(h∞, h<n+1) �
∑

{ζ2
k : k � n} � 2ζ2

n < ζ1
n,
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so clause (B) is satisfied. Finally, clause (C) follows by (B) and clause (g) above.) Let n < ω
be such that {an, bn} ∩ sp(h∞) = ∅. Then h∞ and (tn)−1zn commute (cf. the choice of A1),
contradicting (C). �

Lemma 45. Let G = G(Γ, Ga) and A1, A2 ⊆ Γ be as in Corollary 43 and Lemma 44. For
n < ω, a ∈ Γ − (A1 ∪A2) and g ∈ Ga we write ϕn(g,Ga) to mean that for no divisible K � Ga

we have g ∈ K + Torn(Ga) (cf. Definition 31). If for every n < ω the set

A3(n) = {a ∈ Γ − (A1 ∪A2) : ∃g ∈ Ga such that ϕn(g,Ga)}
is uncountable, then G does not admit a Polish group topology.

Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish, and let (ζn)n<ω ∈ (0, 1)ω
R

be as in
Fact 39 for f ∈ ωω such that f(n) = n + 4. By induction on n < ω, choose (a(n), b(n)) and
(ga(n), gb(n)) such that

(a) a(n) �= b(n) ∈ Γ − (A1 ∪A2 ∪ {a(�), b(�) : � < n});
(b) ga(n) ∈ Ga(n) − {e} and gb(n) ∈ Gb(n) − {e};
(c) for no divisible K � Ga(n) we have ga(n) ∈ K + Torn!(Ga(n));
(d) d((gb(n))−1ga(n), e) < ζn+1.

Consider now the following set of equations:

Ω = {xn = (xn+1)n+1hn : n < ω},
where hn = (gb(n))−1ga(n). By (d) above we have d(hn, e) < ζn+1, and so by Fact 39(2) the
set Ω is solvable in G. Let (d′n)n<ω witness this. Let then 0 < n < ω be such that sp(d′0) ∩
{a(n), b(n)} = ∅. Let now A = {an}, p = pA the corresponding homomorphism from Fact 14
and let p(d′n) = dn. Then we have (in additive notation):

(i) d0 = e;
(ii) m �= n ⇒ dm = (m + 1)dm+1 + p(hm) = (m + 1)dm+1;

(iiii) dn = (n + 1)dn+1 + p(hn) = (n + 1)dn+1 + ga(n).

Thus, by (ii) for m < n we have n!dn = 0, that is,

dn ∈ Torn!(Ga(n)). (5)

Furthermore, by (ii) for m > n the subgroup K of Ga(n) generated by {dn+1, dn+2, . . .} is
divisible. Hence, by (iii) and (5) we have

ga(n) = −(n + 1)dn+1 + dn ∈ K + Torn!(Ga(n)),

which contradicts the choice of ga(n). �

Definition 46. Let G = G(Γ, Ga). We define (recalling the notation of Lemma 45):

(1) n(G) = min{m � 2 : for all but � ℵ0 many a ∈ Γ, ∀g ∈ Ga(¬ϕm(g,Ga))};
(2) A3 = {a ∈ Γ : Ga is abelian and ∃g ∈ Ga(ϕn(G)(g,Ga))}.
Corollary 47. Let G = G(Γ, Ga), and suppose that G admits a Polish group topology.

Then

(1) the natural number n = n(G) from Definition 46(1) is well defined;
(2) the set A3 from Definition 46(2) is countable;
(3) the set A4 = {a ∈ Γ : Ga is abelian and not n-bounded-divisible} is countable.

Proof. This follows from Lemma 45 and Fact 37. �
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Lemma 48. Suppose that G = G(Γ, Ga) admits a Polish group topology and let A1, . . . , A4

be as Corollary 43, Lemma 44, Definition 46 and Corollary 47. Then there exists a countable
A ⊆ Γ and n < ω such that

(a) A1 ∪ · · · ∪A4 ⊆ A;
(b) if a ∈ Γ −A, then Ga is n-bounded-divisible.

Proof. This is because of Corollaries 43 and 47, and Lemmas 44 and 45. �

Lemma 49. Let G = G′ ⊕G′′, with G′′ =
⊕

α<λ Gα, λ > ℵ0 and Gα
∼= Z∞

p (for Z∞
p cf.

Notation 4). Then G does not admit a Polish group topology.

Proof. Suppose that G = (G, d) is Polish, and that G = G′ ⊕G′′ is as in the assumptions
of the lemma. Let (ζn)n<ω ∈ (0, 1)ω

R
be as in Fact 39 for f ∈ ωω such that f(n) = pk(n) + 1,

k(n) > n and 2nk(n) < k(n + 1). For every n < ω, choose (α(n), β(n)) and (gn, hn) such that

(a) α(n) < β(n) < λ and α(n), β(n) /∈ {α(�), β(�) : � < n};
(b) gn ∈ Gα(n) and hn ∈ Gβ(n);
(c) gn and hn have order pnk(n) (so g0 = e = h0);
(d) d((gn)−1hn, e) < ζn+1.

Consider now the following set of equations:

Ω = {xn = (xn+1)p
k(n)

tn : n < ω},
where tn = (gn)−1hn. By (d) above we have d(tn, e) < ζn+1, and so by Fact 39(2) the set Ω
is solvable in G. Let (d′n)n<ω witness this. Let then p be the natural projection from G onto
G∗ =

⊕
n<ω Gβn

(cf. Fact 14), and set dn = p(d′n). Hence, for every n < ω, we have (in additive
notation):

G∗ |= dn = pk(n)dn+1 + hn,

and so

G∗ |= d0 = h0 + pk(0)h1 + pk(0)+k(1)h2 + · · · + p
∑

�<n k(�)hn + p
∑

��n k(�)hn+1. (6)

Thus, multiplying both sides of (6) by pnk(n), we get

G∗ |= pnk(n)d0 = p
∑

��n k(�)pnk(n)hn+1, (7)

since, for � � n, h(�) has order p�k(�) and �k(�) � nk(n), and so we have pnk(n)h� = 0. Note
now that that the right side of (7) is �= 0, since p

∑
��n k(�)pnk(n) divides pnk(n)pnk(n) = p2nk(n),

2nk(n) < k(n + 1) < (n + 1)k(n + 1) and the order of hn+1 is p(n+1)k(n+1). Hence, also the left
side of (7) is �= 0, but this is contradictory, since G∗ is an abelian p-group and k(n) > n, for
every n < ω. �

The next lemma is stronger than what needed for the proof of Theorem 5, we need this
formulation for the proof of Theorem 6.

Lemma 50. Suppose that G admits a Polish group topology, G = G1 ⊕G2, G1 is countable
and G2 =

⊕{G∗
s,λs

: s ∈ S∗} (cf. Notation 4). Then for every s ∈ S∗ we have that λs is either

� ℵ0 or 2ℵ0 .

Proof. Let G = (G, d) be Polish and G = G1 ⊕G2 be as in the assumptions of the lemma.
Then G2

∼= ⊕{Gt : t ∈ I}, where for each t ∈ I we have Gt
∼= G∗

s for some s ∈ S∗. For s ∈ S∗,
let Is = {t ∈ I : Gt

∼= G∗
s}. So (Is : s ∈ S∗) is a partition of I. We want to show that for each
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s ∈ S∗ we have that |Is| � ℵ0 or |Is| = 2ℵ0 . Since S∗ is countable, |Is| � |G| and (G, d) is Polish,
it suffices to show that |Is| > ℵ0 implies |Is| = 2ℵ0 . Note that the case s = (p, n) is actually
taken care of by [8, Lemma 18 and Observation 19], but for completeness of exposition we give
a direct proof also in the case s = (p, n).

For s ∈ S∗ and t ∈ Is, let gt ∈ Gt − {e} be such that gt satisfies no further demands in
the case s = ∞, and gt generates Gt in the case s = (p, n). Now, fix s ∈ S∗ and, using
Observation 41, by induction on n < ω, choose

(a(n), b(n), ga(n), gb(n), (hU : U ⊆ n), hn, ζ
1
n, ζ

2
n),

such that

(a) hU =
∏

�∈U h�;
(b) 0 < ζ1

n < ζ2
n < 1;

(c) if U ⊆ n and g ∈ Ball(e; ζ2
n), then d(hUg, hU ) < ζ1

n;
(d) a(n) �= b(n) ∈ Is − {a(�), b(�) : � < n};
(e) hn = (ga(n))−1gb(n);
(f) d(hn, e) < ζ2

n;
(g) ζ2

n+1 < 1
2ζ

1
n.

Then for U ⊆ ω we have that (hU∩n : n < ω) is a Cauchy sequence. Let hU be its limit.

Case 1. s = ∞.
Let:

E∞ = {(U1,U2) : U1,U2 ⊆ ω and ∃n � 2 and ∃g ∈ G1((hU1(hU2)
−1)ng−1 = e)}.

Note that

(i) E∞ is an equivalence relation on P(ω);
(ii) E∞ is analytic (actually even Borel, recalling G1 is countable);
(iii) U1,U2 ⊆ ω and U2 − U1 = {m}, then ¬(U1E∞U2).

Hence, by [9, Lemma 13], we get (Uα : α < 2ℵ0) such that the functions hUα
are pairwise

non-E∞-equivalent. Note now that
⊕{Gt : t �∈ I∞} is torsion, while the functions hUα

have
infinite order. Furthermore, by the choice of E∞ we have that α < β < 2ℵ0 implies that for
every n � 2 we have ((hUα

(hUβ
)−1)n �∈ G1. It follows that

G/(
⊕

{Gt : t �∈ I∞} ⊕G1)

has cardinality 2ℵ0 , and so |I∞| = 2ℵ0 , as wanted.

Case 2. s = (p, n).
Let

E(p,n) = {(U1,U2) : U1,U2 ⊆ ω and (hU1(hU2)
−1)p

n−1 ∈ G1 + pG2)}.
Note that

(i) E(p,n) is an equivalence relation on P(ω);
(ii) E(p,n) is analytic (actually even Borel, recalling G1 is countable);
(iii) U1,U2 ⊆ ω and U2 − U1 = {m}, then ¬(U1E(p,n)U2).

Hence, by [9, Lemma 13], we get (Uα : α < 2ℵ0) such that the functions hUα
are pairwise

non-E(p,n)-equivalent. Note now that

(hUa
)p

n

= e and (hUa
)p

n−1 �= e. (8)
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Furthermore, by the choice of E(p,n) we have that

α < β < 2ℵ0 implies (hUα
(hUβ

)−1)p
n−1 �∈ G1 + pG2. (9)

Let p be the projection of G onto G2 (cf. Fact 14), and for α < 2ℵ0 let p(hUα
) = h′

α. Thus, by
(9), we get

α < β < 2ℵ0 implies (h′
α(h′

β)−1)p
n−1 �= e. (10)

Thus, from (8) and (10) it follows that

Torpn(G2)/(Torpn−1(G2) + pG2)

has cardinality 2ℵ0 , and so |I(p,n)| = 2ℵ0 , as wanted. �

Proof of Theorem 5. This follows directly from Lemma 48 (cf. the definitions of A1, . . . , A4

there), Lemma 49 (recalling Definition 35) and Lemma 50. �

4. Second venue

In this section we prove Theorem 6. As in the previous section, we will prove a series of lemmas
from which the theorem follows.

Lemma 51. If G = G(Γ, Ga), a �= b ∈ Γ, {a, b} /∈ EΓ and Gb is uncountable, then G does
not admit a Polish group topology.

Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish, and let a �= b ∈ Γ be as in the
assumptions of the lemma. Let k(n) and p(n) be as in Proposition 30, g∗ ∈ Ga − {e} and let
(ζn)n<ω ∈ (0, 1)ω

R
be as in Fact 39 for f ∈ ωω such that f(n) = p(n) + 4k(n) + 4 and ḡn = (g∗)

(and so in particular �(n) = 1). Using Observation 41, by induction on n < ω, choose hn such
that

(a) e �= hn ∈ Gb − {h� : � < n};
(b) d(hn, e) < ζn+2k(n)+2.

Let g(n,∗) = g∗, h(n,�,1) = hn!+2� and h(n,�,2) = hn!+(2�+1), for � < k(n). Let then g(n,i) and
Ω be as in Proposition 30. By (b) above and Fact 39(1)(B) we have d(g(n,i), e) < ζn+1,
and so by Fact 39(2) the set Ω is solvable in G. Let now A = {a, b} and p = pA be the
corresponding homomorphism from Fact 14. Then projecting onto p(G) = G(Γ � A,Ga) and
using Proposition 30 we get a contradiction, since a is not adjacent to b, and so G(Γ � A,Ga) =
Ga ∗Gb. �

Definition 52. For Γ a graph, let

A0 = A0(Γ) = {a ∈ Γ : for some b ∈ Γ − {a} we have {a, b} �∈ EΓ}.

Lemma 53. If the set

A5 = {a ∈ Γ −A0 : Ga is not abelian and [Ga : Cent(Ga)] is uncountable}

is infinite, then G(Γ, Ga) does not admit a Polish group topology.
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Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish and that the set A5 in the statement
of the lemma is infinite. Let then {a(n) : n < ω} be an enumeration of A5 without repetitions.
First of all, note that for every a ∈ Γ such that [Ga : Cent(Ga)] is uncountable we have

for every ε ∈ (0, 1)R we have Ball(e; ε) ∩Ga � Cent(Ga). (11)

Now, by induction on n < ω, choose (gn,1, gn,2, (hU : U ⊆ n), ζ2
n, ζ

1
n) such that

(a) hU =
∏

�∈U h�;

(b) ζ1
n < ζ2

n ∈ (0, 1)R, and for n = m + 1 we have ζ2
n <

ζ1
m

4 ;
(c) if h ∈ Ball(e; ζ2

n+1) ∩Ga(n) and U ⊆ n, then d(hUh, hU ) < ζ1
n;

(d) gn,1 ∈ (Ball(e; ζ2
n) ∩Ga(n)) − Cent(Ga(n)), gn,2 ∈ Ga(n) and gn,1 and gn,2 do not com-

mute;
(e) if h ∈ Ball(gn,1; ζ1

n) ∩Ga(n), then h ∈ Ball(e; ζ2
n) ∩Ga(n), and h and gn,2 do not

commute;
(f) hn = gn,1.

(How? First choose ζ2
n satisfying clauses (b) and (c). Then, using (11), choose gn,1 = hn as

in clause (d). Finally, choose ζ1
n ∈ (0, ζ2

n)R as in clause (e).) For n < ω, let h<n = h0 · · ·hn−1.
Then (h<n : n < ω) is Cauchy, let its limit be h∞. Note now that because of Lemma 51 without
loss of generality we can assume that n < m < ω implies {a(n), a(m)} ∈ EΓ, and also that if
b ∈ Γ − {a(n)} then a(n)EΓb. For n < m, let hn,m = hn · · ·hm and hn,∞ = lim(hn,m : n < m <
ω). Let now n < ω be such that sp(h∞) ∩ {a(n)} = ∅. Then we have

(a′) gn,2 and hn do not commute;
(b′) gn,2 commutes with h0, . . . , hn−1 and with hn+1,∞;
(c′) h∞ = h0 · · ·hn−1hnhn+1,∞;
(d′) h∞ and gn,2 do not commute.

(Why? Clause (a′) is by the inductive choices (a)–(f). Clause (b′) is because for � < n we
have a(�)EΓa(n). Clause (c′) is easy. Clause (d′) is an immediate consequence of (a′), (b′)
and (c′).] Thus, by (d′) we get a contradiction, since sp(h∞) ∩ {a(n)} = ∅, gn,2 ∈ Ga(n) and
b ∈ Γ − {a(n)} implies a(n)EΓb. �

Lemma 54. For G a group, we write ψ(G) to mean that [G : Cent(G)] is countable, and
(for ease of notation) we let G′ = Cent(G). If for every n < ω the set (recalling Fact 36 and
Definition 31):

A6(n) = {a ∈ Γ −A0 : ψ(Ga) and G′
a/(Div(G′

a) + Torn(G′
a)) is uncountable}

is infinite, then G(Γ, Ga) does not admit a Polish group topology.

Proof. Suppose that G = G(Γ, Ga) = (G, d) is Polish, and let A∗
6 =

⋃
n<ω A6(n). Note now

that

(a) a ∈ A∗
6 implies a /∈ A0(Γ) (cf. Definition 52);

(b) (Cent(G), d � Cent(G)) is a Polish group;
(a) Cent(G) ⊆ G(Γ � B,Ga), where B = Γ −A0(Γ);
(b) G(Γ � B,Ga) =

⊕
a∈B Ga;

(c) Cent(
⊕

a∈B Ga) =
⊕

a∈B Cent(Ga) = G(Γ � B,Cent(Ga)).

(Why? (a) is because of Lemma 51. (b) is because the commutator function is continuous
and a closed subgroup of a Polish group is Polish. The rest is clear.) Hence it suffices to prove
the lemma for the abelian case, that is, assume that Γ is complete and all the factors groups
Ga are abelian. Let then (ζn)n<ω ∈ (0, 1)ω

R
be as in Fact 39 for f ∈ ωω such that f(n) = n + 4.

Toward contradiction, assume that for every n < ω the set A6(n) is infinite. Then we can
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choose a(n) ∈ Γ − {a(�) : � < n} such that a(n) ∈ A6(n!), by induction on n. So we can find
gn,α ∈ Ga(n) − {e}, for α < ω1, such that

(gn,α + (Div(Ga(n)) + Torn!(Ga(n))) : α < ω1) are pairwise distinct. (12)

By induction on n < ω, choose α(n) < β(n) < ω1 such that d((gn,α(n))−1gn,β(n), e) < ζn+1.
Then hn = (gn,β(n))−1gn,α(n) ∈ Ga(n) satisfies

(a) d(hn, e) < ζn+1;
(b) hn /∈ Div(Ga(n)) + Torn!(Ga(n)).

(Why? Clause (a) is clear. Clause (b) is by (12).) Consider now the following set of equations:

Ω = {xn = (xn+1)n+1hn : n < ω}.
By (a) above and Fact 39(2) the set Ω is solvable in G. Let (d′n)n<ω witness this. Let then
0 < n < ω be such that sp(d′0) ∩ {a(n)} = ∅. Let now A = {a(n)}, p = pA the corresponding
homomorphism from Fact 14 and let p(d′n) = dn. Then we have (in additive notation):

(i) d0 = e;
(ii) m �= n ⇒ dm = (m + 1)dm+1 + p(hm) = (m + 1)dm+1;
(iii) dn = (n + 1)dn+1 + p(hn) = (n + 1)dn+1 + hn.

Thus, by (ii) for m < n we have n!dn = 0, that is,

dn ∈ Torn!(Ga(n)). (13)

Furthermore, by (ii) for m > n the subgroup K of Ga(n) generated by {dn+1, dn+2, . . .} is
divisible. Hence, by (iii) and (13) we have

h(n) = −(n + 1)dn+1 + dn ∈ K + Torn!(Ga(n)),

which contradicts (b) above. �

We now have all the ingredients for proving Theorem 6.

Proof of Theorem 6. Suppose that G = G(Γ, Ga) admits a Polish group topology, and let n
be minimal such that A6(n) is finite (cf. Lemma 54). We define (note that A6 below is in fact
A6(n)):

(i) A0 = {a ∈ Γ : for some b ∈ Γ − {a} we have {a, b} �∈ EΓ};
(ii) A5 = {a ∈ Γ : Ga is not abelian and [Ga : Cent(Ga)] is uncountable};
(iii) A6 = {a ∈ Γ : ψ(Ga) and G′

a/(Div(G′
a) + Torn(G′

a)) is uncountable};
(iv) A7 = {a ∈ Γ : a �∈ A0 ∪A5 ∪A6 and Ga is not abelian};
(v) A8 = {a ∈ Γ : a �∈ A0 ∪A5 ∪A6 and Ga is abelian and not bounded-divisible};
(vi) A9 = {a ∈ Γ : a �∈ A0 ∪A5 ∪A6 and Ga is abelian and bounded-divisible}.

We claim that Ā = (A0, A5, A6, A7, A8, A9) is as wanted, that is, we verify clauses (1a)–(1k) of
the statement of the theorem. Clauses (1a), (1b) and (1k) are clear. Clause (c) is by Lemmas 53
and 54. Clause (1d) for A0 is by Lemma 42, for A7 is by Lemma 44 and for A8 is by Corollary 47.
Clause (1e) is by Lemma 51. Clause (1f) is by Fact 38. Clause (1g) is by Definition 35. Clause
(1h) is by Lemma 49. Clause (1j) is by Lemma 48, modulo renaming the factor groups Ga (if
necessary).

Finally, we want to show that assuming CH and letting A = A0 ∪A7 ∪A8 ∪A9 we have that
GA = G(Γ � A,Ga) admits a non-Archimedean Polish group topology. By clauses (1a)–(1k) of
the statement of the theorem we have

GA
∼= H ⊕

⊕
α<λ∞

Q ⊕
⊕

pn|n∗

⊕
α<λ(p,n)

Zpn ,
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for some countable H and λ∞, λ(p,n) ∈ {0, 2ℵ0}. Since finite sums of groups admitting a
non-Archimedean Polish group topology admit a non-Archimedean Polish group topology,
it suffices to show that H1 =

⊕
α<2ℵ0 Q ∼= Qω and H2 =

⊕
α<2ℵ0 Zpn ∼= Zω

pn admit one such
topology. Let K be either Q or Zpn , and let A be a countable first-order structure such that
Aut(A) = K. Let B be the disjoint union of ℵ0 copies of A, then Kω ∼= Aut(B), and so we are
done. �

Proof of Theorem 7. The fact that (1)(a) (respectively, (2)(a)) implies (1)(b) (respectively,
(2)(b)) is clear. Concerning the other implications, argue as in the proof of Theorem 6. �

5. Third venue

In this section we prove Corollaries 9–11.

Proof of Corollary 9. By Theorem 5 and Lemma 50 the necessity of the conditions is clear.
Concerning the sufficiency, argue as in the proof of Theorem 6. �

Proof of Corollary 10. This is an immediate consequence of Corollary 9. �

Proof of Corollary 11. This is a consequence of Corollary 43 and Lemma 51. �

References

1. D. A. Barkauskas, ‘Centralizers in graph products of groups’, J. Algebra 312 (2007) 9–32.
2. R. M. Dudley, ‘Continuity of homomorphisms’, Duke Math. J. 28 (1961) 34–60.
3. L. Fuchs, Infinite Abelian groups — vol. I, Pure and Applied Mathematics 36 (Academic Press, New

York-London, 1970).
4. E. R. Green, Graph Products, PhD Thesis (University of Warwick, Coventry, 1991).
5. S. Hermiller and J. Meier, ‘Algorithms and geometry for graph products of groups’, J. Algebra 171

(1995) 230–257.
6. G. Paolini and S. Shelah, ‘No uncountable polish group can be a right-angled Artin group’, Axioms 6

(2017) 13.
7. G. Paolini and S. Shelah, ‘Groups metrics for graph products of cyclic groups’, Topology Appl. 232

(2017) 281–287.
8. G. Paolini and S. Shelah, ‘Polish topologies for graph products of cyclic groups’, Israel J. Math. 228

(2018) 305–319.
9. S. Shelah, ‘Can the fundamental (homotopy) group of a space be the rationals?’, Proc. Amer. Math. Soc.

103 (1988) 627–632.
10. S. Shelah, ‘A countable structure does not have a free uncountable automorphism group’, Bull. London

Math. Soc. 35 (2003) 1–7.
11. S. Shelah, ‘Polish algebras, shy from freedom’, Israel J. Math. 181 (2011) 477–507.
12. K. Slutsky, ‘Automatic continuity for homomorphisms into free products’, J. Symbolic Logic 78 (2013)

1288–1306.

Sh:1121



POLISH TOPOLOGIES FOR GRAPH PRODUCTS OF GROUPS 403

Gianluca Paolini
Department of Mathematics “Giuseppe

Peano”
University of Torino
Via Carlo Alberto 10
Torino, 10123
Italy

gianluca.paolini@unito.it

Saharon Shelah
Einstein Institute of Mathematics
The Hebrew University of Jerusalem
Israel

and

Department of Mathematics
Rutgers University
USA

shelah@math.huji.ac.il

The Journal of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

Sh:1121

mailto:gianluca.paolini@unito.it
mailto:shelah@math.huji.ac.il

	1. Introduction
	2. Preliminaries
	3. First venue
	4. Second venue
	5. Third venue
	References

