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ABSTRACT. We are interested in subgroups of the reals that are small in one and large in another
sense. We prove that, in ZFC, there exists a non-meager Lebesgue null subgroup of R, while it is

consistent that there there is no non-null meager subgroup of R.
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1. Introduction

Subgroups of the reals which are small in one and large in another sense were crucial in Filipczak,
Ros lanowski and Shelah [5]. If there is a non-meager Lebesgue null subgroup of (R,+), then there
is no translation invariant Borel hull operation on the σ-ideal N of Lebesgue null sets. That is,
there is no mapping ψ from N to Borel sets such that for each null set A ⊆ R:

• A ⊆ ψ(A) and ψ(A) is null, and

• ψ(A+ t) = ψ(A) + t for every t ∈ R.

Parallel claims hold true if “Lebesgue null” is interchanged with “meager” and/or (R,+) is replaced
with (ω2,+2).

IfM is the σ-ideal of meager subsets of R (and N is the null ideal on R) and {I,J } = {N ,M},
then various set theoretic assumptions imply the existence of a subgroup of R which belongs to I
but not to J . But in [5: Problem 4.1] we asked if the existence of such subgroups can be shown
in ZFC. This question is interesting per se, regardless of its connections to translation invariant
Borel hulls.

The present paper presents two theorems. First, in Theorem 2.3 we give ZFC examples of null
non-meager subgroups of (ω2,+2) and (R,+), respectively. Next in Theorem 4.1 we show that it is
consistent with ZFC that every meager subgroup of (ω2,+2) and/or (R,+) has Lebesgue measure
zero. This answers [5: Problem 4.1]. Also, our results give another example of a strange asymmetry
between measure and category.

Notation. Our notation is rather standard and compatible with that of classical textbooks (like
Jech [6] or Bartoszyński and Judah [1]). However, in forcing we keep the older convention that a
stronger condition is the larger one.
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(1) The Cantor space ω2 of all infinite sequences with values 0 and 1 is equipped with the natural
product topology, the product measure λ and the group operation of coordinate-wise addition
+2 modulo 2.

(2) Ordinal numbers will be denoted be the lower case initial letters of the Greek alphabet
α, β, γ, δ. Finite ordinals (non-negative integers) will be denoted by letters i, j, k, `,m, n
while integers will be called L,M .

(3) Most of our intervals will be intervals of non-negative integers, so [m,n) = {k ∈ ω : m ≤ k <
n} etc. They will be denoted by letter J (with possible indices). However, we will also use
the notation [0, 1) to denote the unit interval of reals.

(4) The Greek letter κ will stand for an uncountable cardinal such that κℵ0 = κ ≥ ℵ2.

(5) For a forcing notion P, all P-names for objects in the extension via P will be denoted with
a tilde below (e.g., τ

˜
, X

˜
), and G

˜
P will stand for the canonical P-name for the generic filter

in P.

(6) We fix a well ordering ≺∗ of all hereditarily finite sets.

(7) The set of all partial finite functions with domains included in ω and with values in 2 is
denoted ω

^2.

2. Null non-meager

Here we will give a ZFC construction of a non-meager Lebesgue null subgroup of the reals. The
main construction is done in ω2 and then we transfer it to R using the standard binary expansion E.

Definition 2.1. Let D∞0 = {x ∈ ω2 : (∃∞i < ω)(x(i) = 0)} and for x ∈ D∞0 let E(x) =
∞∑
i=0

x(i)2−(i+1).

Proposition 2.2.

(1) The function E : D∞0 −→ [0, 1) is a continuous bijection, it preserves both the measure and
the category.

(2) Assume that
(a) x, y, z ∈ D∞0 , E(z) = E(x) + E(y) modulo 1, and
(b) n < m < ω and both x�[n,m] and y�[n,m] are constant.

Then z�[n,m− 1] is constant.

(3) Assume that
(a) x, y ∈ D∞0 , 0 < E(x) and E(y) = 1−E(x),
(b) n < m < ω and x�[n,m] is constant.

Then y�[n,m− 1] is constant.

P r o o f. (1) Well known, cf. Bukovský [4: §2.4].

(2), (3) Straightforward (just consider the possible constant values and analyze how the addition
is performed). �

Theorem 2.3.

(1) There exists a null non-meager subgroup of (ω2,+2).

(2) There exists a null non-meager subgroup of (R,+).
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P r o o f. (1) For k ∈ ω let nk = 1
2k(k + 1) and let D be a non-principal ultrafilter on ω. Define

HD =
{
x ∈ ω2 :

(
∃m < ω

)(
∃j < 2

)({
k > m : x�[nk, nk+1 −m) ≡ j

}
∈ D

)}
.

(i) HD is a subgroup of (ω2,+2).

Why? Suppose that x0, x1 ∈ HD and let m` < ω and j` < 2 be such that

A`
def
=
{
k > m` : x`�[nk, nk+1 −m`) ≡ j`

}
∈ D.

Let m = max(m0,m1) and j = j0 −2 j1. Then A0 ∩ A1 ∈ D and for each k ∈ A0 ∩ A1 we have
(x0 −2 x2)�[nk, nk+1 −m) ≡ j. Hence x0 −2 x1 ∈ HD.

(ii) HD ∈ N .

Why? For each m < k < ω and j < 2 we have

λ({x ∈ ω2 : x�[nk, nk+1 −m) ≡ j}) = 2m−(k+1)

and therefore for each m < ω and j < 2

λ({x ∈ ω2 : (∃∞k)(x�[nk, nk+1 −m) ≡ j)}) = 0.

Now note that HD ⊆
⋃
m<ω

⋃
j<2

{
x ∈ ω2 : (∃∞k)(x�[nk, nk+1 −m) ≡ j)

}
.

(iii) HD /∈M.

Why? Suppose that W is a dense Π0
2 subset of ω2. Then we may choose an increasing sequence

〈ki : i ∈ ω〉 and a function f ∈ ω2 such that{
x ∈ ω2 :

(
∃∞i

)(
x�[nki , nki+1) = f�[nki , nki+1)

)}
⊆W.

Let A =
⋃
{[k2i, k2i+1) : i ∈ ω} and B =

⋃
{[k2i+1, k2i+2) : i ∈ ω}. Then either A ∈ D or B ∈ D.

Let xA, xB ∈ ω2 be such that, for each i ∈ ω,

xA�[nk2i , nk2i+1
) ≡ 0, xA�[nk2i+1

, nk2i+2
) = f�nk2i+1

, nk2i+2
) and

xB�[nk2i+1 , nk2i+2) ≡ 0, xB�[nk2i , nk2i+1) = f�nk2i , nk2i+1).

Then xA, xB ∈W and either xA ∈ HD or xB ∈ HD. Consequently, W ∩HD 6= ∅.
(2) Consider H∗D = E[HD∩D∞0 ]+Z. It follows from 2.2(1) that H∗D is a Lebesgue null meager

subset of R. We will show that it is a subgroup of (R,+).

Suppose that x0, x1 ∈ HD ∩D∞0 and L0, L1 ∈ Z and we will argue that (E(x0) +L0) + (E(x1) +
L1) ∈ H∗D. Let m` < ω be such that

A`
def
=
{
k > m` : x`�[nk, nk+1 −m`) is constant

}
∈ D

and letm = max(m0,m1)+1. Choose y ∈ D∞0 andM ∈ {0, 1} such that E(x0)+E(x1) = E(y)+M .
It follows from 2.2(2) that for every k ∈ A0∩A1, k > m, we have that y�[nk, nk+1−m) is constant
and since A0 ∩ A1 ∈ D we conclude y ∈ HD. Consequently, (E(x0) + L0) + (E(x1) + L1) =
E(y) + (M + L0 + L1) ∈ H∗D.

Now assume that x ∈ HD ∩D∞0 , L ∈ Z and we will argue that −(E(x) +L) ∈ H∗D. If E(x) = 0
then the assertion is clear, so assume also E(x) > 0. Let m < ω be such that

A
def
=
{
k > m : x�[nk, nk+1 −m) is constant

}
∈ D.

Choose y ∈ D∞0 such that 1−E(x) = E(y). It follows from 2.2(3) that for every k ∈ A, k > m+ 1,
we have that y�[nk, nk+1 − (m + 1)) is constant. Consequently, y ∈ HD and −(E(x) + L) =
E(y)− 1− L ∈ H∗D. �
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Remark 2.4. A somewhat simpler non-meager null subgroup of (ω2,+2) is

H−D =
{
x ∈ ω2 :

{
k ∈ ω : x�[nk, nk+1) ≡ 0

}
∈ D

}
.

The group HD, however, was necessary for our construction of H∗D < R.

Corollary 2.5. There exists no translation invariant Borel hull for the null ideal on ω2 and/or
on R.

3. Some technicalities

Here we prepare the ground for our consistency results.

3.1. Moving from R to ω2

First, let us remind connections between the addition in R and that of ω2 (via the binary
expansion E, see 2.1).

Definition 3.1. Let J = [m,n) be a non-empty interval of integers and c ∈ {0, 1}. For sequences
ρ, σ ∈ J2 we define ρ~c σ as the unique η ∈ J2 such that( n−1∑

i=m

ρ(i)2−(i+1) +

n−1∑
i=m

σ(i)2−(i+1) + c · 2−n
)
−
n−1∑
i=m

η(i)2−(i+1) ∈ {0, 2−m}.

For notational convenience we also set ρ~2 σ = ρ+2 σ (coordinate-wise addition modulo 2).

The operation ~c is defined on the set J2, so it does depend on J . We may, however, abuse
notation and use that same symbol ~c for various J .

Observation 3.2. Let m, `, n be integers such that m < ` < n and let J = [m,n).

(1) For each c ∈ {0, 2}, (J2,~c) is an Abelian group.

(2) If ρ, σ ∈ J2 and ρ(`) = σ(`), then (ρ~0 σ)�[m, `) = (ρ~1 σ)�[m, `).

(3) If ρ, σ ∈ J2 and (ρ~0 σ)(`) = 0, then (ρ~0 σ)�[m, `) = (ρ~1 σ)�[m, `).

(4) Suppose that r, s ∈ [0, 1), ρ, σ, η ∈ D∞0 , E(ρ) = r, E(σ) = s and E(η) = r + s modulo 1.
Then
• if

∑
i≥n

(
(ρ(i) + σ(i))/2i+1

)
≥ 2−n, then η�J = (ρ�J)~1 (σ�J);

• if
∑
i≥n

(
(ρ(i) + σ(i))/2i+1

)
< 2−n, then η�J = (ρ�J)~0 (σ�J).

3.2. The combinatorial heart of our forcing arguments

For this subsection we fix a strictly increasing sequence n̄ = 〈nj : j < ω〉 ⊆ ω.

Definition 3.3. We define m̄[n̄] = 〈mi : i < ω〉, N̄ [n̄] = 〈N(i) : i < ω〉, J̄ [n̄] = 〈Ji : i < ω〉,
H̄[n̄] = 〈Hi : i < ω〉, π[n̄] = 〈πi : i < ω〉 and F[n̄] as follows.

We set m0 = 0 and then inductively for i < ω we let

(∗)1 mi+1 = 2nmi+1081.

Next, for i < ω,

(∗)2 N(i) = nmi , Ji =
[
N(2i), N(2i+1)

)
, and

(∗)3 Hi =
{
a ⊆ Ji2 : (1− 2−N(2i)) · 2|Ji| ≤ |a|

}
.
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We also set πi : |Hi| −→ Hi to be the ≺∗-first bijection from |Hi| onto Hi. Finally, for η ∈∏
m<ω

(m+ 1) we let

(∗)4
F0[n̄](η) =

{
x ∈ ω2 :

(
∀i < ω

)(
x�Ji ∈ πi(η(|Hi| − 1))

)}
and

F[n̄](η) =
{
x ∈ ω2 :

(
∀∞i < ω

)(
x�Ji ∈ πi(η(|Hi| − 1))

)}
.

Clearly, the set {|Hi| − 1 : i < ω} is infinite and co-infinite. Moreover |Hi| < |Hj | − 1 for i < j
and, as a matter of fact, these values grow fast.

Lemma 3.4. For every η ∈
∏
m<ω

(m+1), F0[n̄](η) ⊆ ω2 is a closed set of positive Lebesgue measure,

and F[n̄](η) is a Σ0
2 set of Lebesgue measure 1.

P r o o f. Note that Ji ∩ Jj = ∅ and
∞∑
i=0

2−N(2i) < 1. �

Lemma 3.5. Let i < ω, c ∈ {0, 2} and let η ∈ Ji2 (remember Ji = [nm2i
, nm2i+1 )). Suppose that

for each ` < 2i and x < 2 we are given a function Zx` : Hi −→ Ji2 such that Zx` (a) ∈ a for
each a ∈ Hi. Then there are a0, a1 ∈ Hi such that for every ` < 2i there is k ∈ [m2i+`,m2i+`+1)
satisfying (

Z0
` (a0)�[nk, nk+1)

)
~kc
(
Z1
` (a1)�[nk, nk+1)

)
= η�[nk, nk+1),

where ~kc denotes the operation ~c on [nk,nk+1)2.

P r o o f. We start the proof with the following Claim.

Claim 3.5.1. If A ⊆ Hi, |A| ≤ 2|Ji|−N(2i)−i and x < 2, then there is b ∈ Hi such that Zx` (b) /∈
{Zx` (a) : a ∈ A} for each ` < 2i.

P r o o f o f t h e C l a i m. Note that |{Zx` (a) : ` < 2i & a ∈ A}| ≤ 2i · 2|Ji|−N(2i)−i = 2|Ji|−N(2i),
so letting b = Ji2 r {Zx` (a) : ` < 2i & a ∈ A} we have b ∈ Hi. Since Zx` (b) ∈ b we see that b is as
required in the claim. �

It follows from Claim 3.5.1 that we may pick sequences 〈a0j : j < j∗〉 ⊆ Hi and 〈a1j : j < j∗〉 ⊆ Hi

with Zx` (axj1) 6= Zx` (axj2) for j1 < j2 < j∗, ` < 2i, x < 2 and such that j∗ > 2|Ji|−N(2i)−i. Now, by

induction on ` < 2i, we choose sets X`, Y` ⊆ j∗ and integers k` ∈ [m2i+`,m2i+`+1) such that the
following demands are satisfied.

(i) X`+1 ⊆ X` ⊆ j∗, Y`+1 ⊆ Y` ⊆ j∗,
(ii) if j0 ∈ X` and j1 ∈ Y` then(

Z0
` (a0j0)�[nk` , nk`+1)

)
~k`c

(
Z1
` (a1j1)�[nk` , nk`+1)

)
= η�[nk` , nk`+1),

(iii) min
(
|X`|, |Y`|

)
≥ j∗ · 2N(2i)−N(2i+`+1)−`−1.

We stipulate X−1 = Y−1 = j∗ and we assume that X`−1, Y`−1 have been already determined (and

min
(
|X`−1|, |Y`−1|

)
≥ j∗ · 2N(2i)−N(2i+`)−` if ` > 0). Let

X∗ =
{
j ∈ X`−1 : |X`−1| · 2N(2i+`)−N(2i+`+1)−1 ≤

∣∣{j′ ∈ X`−1 : Z0
` (a0j′)�[N(2i+`), N(2i+`+1))

= Z0
` (a0j )�[N(2i+`), N(2i+`+1))}

∣∣},
Y ∗ =

{
j ∈ Y`−1 : |Y`−1| · 2N(2i+`)−N(2i+`+1)−1 ≤

∣∣{j′ ∈ Y`−1 : Z1
` (a1j′)�[N(2i+`), N(2i+`+1))

= Z1
` (a1j )�[N(2i+`), N(2i+`+1))}

∣∣}.
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Claim 3.5.2. |X∗| ≥ 1
2 |X`−1| and |Y ∗| ≥ 1

2 |Y`−1|.

P r o o f o f t h e C l a i m. Assume towards contradiction that |X∗| < 1
2 |X`−1|. Then for some

ν0 ∈ [N(2i+`),N(2i+`+1))2 we have∣∣{j ∈ X`−1 rX∗ : ν0 ⊆ Z0
` (a0j )

}∣∣ ≥ |X`−1 rX∗| · 2N(2i+`)−N(2i+`+1)

>
1

2
|X`−1| · 2N(2i+`)−N(2i+`+1).

Let j ∈ X`−1 rX∗ be such that ν0 ⊆ Z0
` (a0j ). Then j ∈ X∗, a contradiction.

Similarly for Y ∗. �

Claim 3.5.3. For some k ∈ [m2i+`,m2i+`+1) we have that both
∣∣{Z0

` (a0j )�[nk, nk+1) : j ∈ X∗
}∣∣ >

2nk+1−nk−1 and
∣∣{Z1

` (a1j )�[nk, nk+1) : j ∈ Y ∗
}∣∣ > 2nk+1−nk−1.

P r o o f o f t h e C l a i m. Let

KX =
{
k ∈ [m2i+`,m2i+`+1) : |{Z0

` (a0j )�[nk, nk+1) : j ∈ X∗}| ≤ 2nk+1−nk−1
}

and

KY =
{
k ∈ [m2i+`,m2i+`+1) : |{Z1

` (a1j )�[nk, nk+1) : j ∈ Y ∗}| ≤ 2nk+1−nk−1
}
.

Assume towards contradiction that |KX | ≥ 1
2 (m2i+`+1 −m2i+`). Then

|X∗| = |{Z0
` (a0j ) : j ∈ X∗}| ≤ 2−1/2(m2i+`+1−m2i+`) · 2|Ji| < 2|Ji| · 2−4N(2i+`).

(Remember 3.3(∗)1.) Hence |X`−1| ≤ 2|Ji|−4N(2i+`)+1. If ` = 0 then we get 2|Ji|−2N(2i) < j∗ ≤
2|Ji|−4N(2i)+1, which is impossible. If ` > 0, then by the inductive hypothesis (iii) we know that

|X`−1| ≥ j∗ · 2N(2i)−N(2i+`)−` > 2|Ji|−i−N(2i+`)−`, so 3N(2i + `)− 1 < i+ `, a clear contradiction.
Consequently |KX | < 1

2 (m2i+`+1 − m2i+`), and similarly |KY | < 1
2 (m2i+`+1 − m2i+`). Pick

k ∈ [m2i+`,m2i+`+1) such that k /∈ KX ∪KY . �

Now, let k` ∈ [m2i+`,m2i+`+1) be as given by Claim 3.5.3. Necessarily the sets
{
ρ ∈ [nk` ,nk`+1)2 :

(∃j ∈ X∗)((Z0
` (a0j )�[nk` , nk`+1))~k`c ρ = η�[nk` , nk`+1))

}
and

{
Z1
` (a1j )�[nk` , nk`+1) : j ∈ Y ∗

}
have

non-empty intersection. Therefore, we may find jX ∈ X∗ and jY ∈ Y ∗ such that(
Z0
` (a0jX )�[nk` , nk`+1)

)
~k`c

(
Z1
` (a1jY )�[nk` , nk`+1)

)
= η�[nk` , nk`+1).

Set

X` =
{
j ∈ X`−1 : Z0

` (a0j )�[N(2i + `), N(2i + `+ 1)) = Z0
` (a0jX )�[N(2i + `), N(2i + `+ 1))

}
,

and

Y` =
{
j ∈ Y`−1 : Z1

` (a1j )�[N(2i + `), N(2i + `+ 1)) = Z1
` (a1jY )�[N(2i + `), N(2i + `+ 1))

}
.

By the definition of X∗, Y ∗ and by the inductive hypothesis (iii) we have

|X`| ≥ |X`−1| · 2N(2i+`)−N(2i+`+1)−1 ≥ j∗ · 2N(2i)−`−N(2i+`+1)−1

and similarly for Y`. Consequently, X`, Y` and k` satisfy the inductive demands (i)–(iii).

After the above construction is completed fix any j0 ∈ X2i−1, j1 ∈ Y2i−1 and consider a0 = aj0
and a1 = aj1 . For each ` < 2i we have j0 ∈ X`, j1 ∈ Y` so(

Z0
` (a0)�[nk` , nk`+1)

)
~k`c

(
Z1
` (a1)�[nk` , nk`+1)

)
= η�[nk` , nk`+1).

Hence a1, a2 ∈ Hi are as required. �
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3.3. The ∗-Silver forcing notion

The consistency result of the next section will be obtained using CS product of the following
forcing notion S∗.

Definition 3.6.

(1) We define the ∗-Silver forcing notion S∗ as follows.
A condition in S∗ is a partial function p : dom(p) −→ ω such that dom(p) ⊆ ω is coinfinite
and p(m) ≤ m for each m ∈ dom(p).
The order ≤ = ≤S∗ of S∗ is the inclusion, i.e., p ≤ q if and only if p ⊆ q.

(2) For p ∈ S∗ and 1 ≤ n < ω we let u(n, p) be the set of the first n elements of ω r dom(p)
(in the natural increasing order). Then for p, q ∈ S∗ we let p ≤n q if and only if p ≤ q and
u(n, q) = u(n, p).

We also define p ≤0 q as equivalent to p ≤ q.
(3) Let p ∈ S∗. We let S(n, p) be the set of all functions s : u(n, p) −→ ω with the property that

s(m) ≤ m for all m ∈ u(n, p).

(4) We let η
˜

to be the canonical S∗-name such that


 η
˜

=
⋃
{p : p ∈ G

˜
S∗}.

Remark 3.7. The forcing notion S∗ may be represented as a forcing of the type Q∗w∞(K,Σ)
for some finitary creating pair (K,Σ) which captures singletons, see Ros lanowski and Shelah [8:
Definition 2.1.10]. It is a close relative of the Silver forcing notion and, in a sense, it lies right
above all Sn’s studied for instance in Ros lanowski [7] and Ros lanowski and Steprāns [9].

Lemma 3.8.

(1) (S∗,≤S∗) is a partial order of size c. If p ∈ S∗ and s ∈ S(n, p) then p ∪ s ∈ S∗ is a condition
stronger than p.

(2) 
S∗ η
˜
∈
∏
m<ω

(m+ 1) and p 
S∗ p ⊆ η
˜

(for p ∈ S∗).

(3) If p ∈ S∗ and 1 ≤ n < ω, then the family {p∪ s : s ∈ S(n, p)} is an antichain pre-dense above
p.

(4) The relations ≤n are partial orders on S∗, p ≤n+1 q implies p ≤n q.
(5) Assume that τ

˜
is an S∗-name for an ordinal, p ∈ S∗, 1 ≤ n,m < ω. Then there is a condition

q ∈ S∗ such that p ≤n q, max
(
u(n + 1, q)

)
> m and for all s ∈ S(n, q) the condition q ∪ s

decides the value of τ
˜

.

(6) The forcing notion S∗ satisfies Axiom A of Baumgartner [2: §7] as witnessed by the orders
≤n, it is ωω-bounding and, moreover, every meager subset of ω2 in an extension by S∗ is
included in a Σ0

2 meager set coded in the ground model.

P r o o f. Straightforward – the same as for the Silver forcing notion. �

Definition 3.9. Assume κℵ0 = κ ≥ ℵ2.

(1) S∗(κ) is the CS product of κ many copies of S∗. Thus
a condition p in S∗(κ) is a function with a countable domain dom(p) ⊆ κ and with values
in S∗, and
the order ≤ of S∗(κ) is such that
p ≤ q if and only if dom(p) ⊆ dom(q) and (∀α ∈ dom(p))(p(α) ≤S∗ q(α)).
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(2) Suppose that p ∈ S∗(κ) and F ⊆ dom(p) is a finite non-empty set and µ : F −→ ω r {0}.
Let v(F, µ, p) =

∏
α∈F

u(µ(α), p(α)) and T (F, µ, p) =
∏
α∈F

S(µ(α), p(α)).

If σ ∈ T (F, µ, p) then let p|σ be the condition q ∈ S∗(κ) such that dom(q) = dom(p) and
q(α) = p(α) ∪ σ(α) for α ∈ F and q(α) = p(α) for α ∈ dom(q) r F .

We let p ≤F,µ q if and only if p ≤ q and v(F, µ, p) = v(F, µ, q).
If µ is constantly n then we may write n instead of µ.

(3) Suppose that p ∈ S∗(κ) and τ̄
˜

= 〈τ
˜
n : n < ω〉 is a sequence of names for ordinals. We say

that p determines τ̄
˜

relative to F̄ if
• F̄ = 〈Fn : n < ω〉 is a sequence of finite subsets of dom(p), and
• p forces a value to τ

˜
0 and for 1 ≤ n < ω and σ ∈ T (Fn, n, p) the condition p|σ decides

the value of τ
˜
n.

Lemma 3.10.

(1) The forcing notion S∗(κ) satisfies c+-chain condition.

(2) Suppose that p ∈ S∗(κ), F ⊆ dom(p) is finite non-empty, µ : F −→ ω r {0} and τ
˜

is a
name for an ordinal. Then there is a condition q ∈ S∗(κ) such that p ≤F,µ q and for every
σ ∈ T (F, µ, q) the condition q|σ decides the value of τ

˜
.

(3) Suppose that p ∈ S∗(κ) and τ̄
˜

= 〈τ
˜
n : n < ω〉 is a sequence of S∗(κ)-names for objects

from the ground model V. Then there is a condition q ≥ p and a ⊆-increasing sequence
F̄ = 〈Fn : n < ω〉 of finite subsets of dom(q) such that q determines τ̄

˜
relative to F̄ .

(4) Assume p, τ̄
˜

are as in (3) above and p 
 “τ̄
˜

is a sequence of elements of ω
^2 with disjoint

domains”. Then there are a condition q ≥ p and an increasing sequence F̄ of finite subsets of
dom(q) and a function f = (f0, f1) :

⋃
1≤n<ω

T (Fn, n, q) −→ ω × ω
^2 such that q|σ 
 τ

˜
f0(σ) =

f1(σ) (for all σ ∈ dom(f)) and the elements of 〈dom(f1(σ)) : σ ∈
⋃
n<ω

T (Fn, n, q)〉 are

pairwise disjoint.

P r o o f. The same as for the CS product of Silver or Sacks forcing notions, see e.g. Baumgartner
[3: §1]. �

Corollary 3.11. Assume κ = κℵ0 ≥ ℵ2. The forcing notion S∗(κ) is proper and every meager
subset of ω2 in an extension by S∗(κ) is included in a Σ0

2 meager set coded in the ground model.

If CH holds, then S∗(κ) preserves all cardinals and cofinalities and 
S∗(κ) 2ℵ0 = κ.

4. Meager non-null

The goal of this section is to present a model of ZFC in which every meager subgroup of R or
ω2 is also Lebesgue null.

Theorem 4.1. Assume CH. Let κ = κℵ0 ≥ ℵ2. Then

(1) 
S∗(κ)“ 2ℵ0 = κ and each meager subgroup of (ω2,+2) is Lebesgue null.”

(2) 
S∗(κ)“ every meager subgroup of (R,+) is Lebesgue null.”

P r o o f. For α < κ let η
˜
α be the canonical name for the S∗-generic function in

∏
m<ω

(m+ 1) added

on the αth coordinate of S∗(κ).
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(1) Suppose towards contradiction that for some p0 ∈ S∗(κ) and a S∗(κ)-name H
˜

we have

p0 
S∗(κ) “H
˜

is a meager non-null subgroup of (ω2,+2).”

By Corollary 3.11 (or, actually, Lemma 3.10(4)) we may pick a condition p1 ≥ p0, a strictly
increasing sequence n̄ = 〈nj : j < ω〉 ⊆ ω and a function f ∈ ω2 such that

(∗)0 p1 
S∗(κ) “H
˜
⊆
{
x ∈ ω2 :

(
∀∞j < ω

)(
x�[nj , nj+1) 6= f�[nj , nj+1)

)}
.”

Let m̄ = m̄[n̄], N̄ = N̄ [n̄], J̄ = J̄ [n̄], H̄ = H̄[n̄], π = π[n̄] and F = F[n̄] be as defined in
Definition 3.3 for the sequence n̄. Also let A = {|Hi| − 1 : i < ω} and r+ ∈ S∗ be such that
dom(r+) = ω rA and r+(k) = 0 for k ∈ dom(r+).

Since, by Lemma 3.4, we have 
“ F(η
˜
α) ⊆ ω2 is a measure one set”, we know that p1 
S∗(κ)

“(∀α < κ)(F(η
˜
α) ∩H

˜
6= ∅)”. Consequently, for each α < κ, we may choose a S∗(κ)-name ρ

˜
α for

an element of ω2 such that

p1 
S∗(κ) “ρ
˜
α ∈ H

˜
& ρ

˜
α ∈ F(η

˜
α)”.

Let us fix α ∈ κ r dom(p1) for a moment. Let pα1 ∈ S∗(κ) be a condition such that dom(pα1 ) =
dom(p1) ∪ {α}, pα1 (α) = r+ and p1 ⊆ pα1 . Using the standard fusion based argument (like the
one applied in the classical proof of Lemma 3.10(3) with 3.10(2) used repeatedly), we may find a
condition qα ∈ S∗(κ), a sequence F̄ = 〈Fαn : n < ω〉 of finite sets, a sequence 〈µαn : n < ω〉 and an
integer iα < ω such that the following demands (∗)1–(∗)6 are satisfied.

(∗)1 qα ≥ pα1 , dom(qα) =
⋃
n<ω

Fαn , Fαn ⊆ Fαn+1 and Fα0 = {α}.

(∗)2 µαn : Fαn −→ ω, µαn(α) = n+ 1, µαn(β) = n for β ∈ Fαn r {α}.
(∗)3 min

(
ω r dom(qα(α))

)
> |Hiα | and if max

(
u(n + 1, qα(α))

)
= |Hi| − 1 and n ≥ 1, then

|T (Fn, n, q
α)|2 < 2i,

(∗)4 qα 

(
∀i ≥ iα

)(
ρ
˜
α�Ji ∈ πi(η

˜
α(|Hi| − 1))

)
, and

(∗)5 qα determines ρ
˜
α relative to F̄ , moreover

(∗)6 if σ ∈ T (Fαn , µ
α
n, q

α) and max
(
u(n + 1, qα(α))

)
= |Hi| − 1, then qα|σ decides the value of

ρ
˜
α�Ji.

Unfixing α and using a standard ∆-system argument with CH we may find distinct γ, δ ∈
κr dom(p1) such that otp(dom(qγ)) = otp(dom(qδ)) and if g : dom(qγ) −→ dom(qδ) is the order
preserving bijection, then the following demands (∗)7–(∗)9 hold true.

(∗)7 iγ = iδ, g�
(
dom(qγ) ∩ dom(qδ)

)
is the identity, g(γ) = δ,

(∗)8 qγ(β) = qδ(g(β)) for each β ∈ dom(qγ), and g[F γn ] = F δn ,

(∗)9 if F ⊆ dom(qδ) is finite, µ : F −→ ω r {0}, i < ω, σ ∈ T (F, µ, qδ), then

qδ|σ 
 ρ
˜
δ�Ji = z if and only if qγ |(σ ◦ g) 
 ρ

˜
γ�Ji = z.

Clearly q∗
def
= qγ ∪ qδ is a condition stronger than both qγ and qδ. Let F ∗n = F γn ∪ F δn for n < ω.

Let 〈k` : ` < ω〉 be the increasing enumeration of ω r dom(qγ(γ)) = ω r dom(qδ(δ)). Note that
by the choice of r+ and pγ1 , we have ω r dom(qγ(γ)) ⊆ A, so each k` is of the form |Hi| − 1 for
some i. Now we will choose conditions rδ, rγ ∈ S∗ so that

dom(rδ) = dom(rγ) = dom(qδ(δ)) ∪ {k2` : ` < ω},

qδ(δ) ≤ rδ, qγ(γ) ≤ rγ and the values of rδ(k2`), rγ(k2`) are picked as follows.

Let i be such that k2` = |Hi| − 1. If x ∈ {γ, δ} and σ ∈ T (F x2`, µ
x
2`, q

x) then qx|σ decides the
value of ρ

˜
x�Ji (by (∗)6) and this value belongs to πi

(
σ(x)(k2`)

)
(by (∗)4 + (∗)3). Consequently, for

x ∈ {γ, δ} and τ ∈ T (F ∗2`, 2`, q
∗) we may define a function Zxτ : Hi −→ Ji2 so that
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(∗)10 if a ∈ H(i), µ : F ∗2` −→ ω is such that µ(x) = 2` + 1 and µ(α) = 2` for α 6= x, and τa ∈
T (F ∗2`, µ, q

∗) is such that τa(α) = τ(α) for α ∈ F ∗2` r {x} and τa(x) = τ(x) ∪ {(k2`, a)},then
q∗|τa 
S∗(κ) ρ

˜
x�Ji = Zxτ (a) and Zxτ (a) ∈ a.

Since |T (F ∗2`, 2`, q
∗)| ≤ |T (F γ2`, 2`, q

γ)|2 < 2i (remember (∗)3), we may use Lemma 3.5 to find
rδ(k2`), rγ(k2`) ≤ k2` such that

(∗)11 for every τ ∈ T (F ∗2`, 2`, q
∗) there is k ∈ [m2i ,m2i+1) satisfying(

Zγτ (πi(rγ(k2`)))�[nk, nk+1)
)

+2

(
Zδτ (πi(rδ(k2`)))�[nk, nk+1)

)
= f�[nk, nk+1).

(Remember, f was chosen in (∗)0.)

This completes the definition of rγ and rδ. Let q+ ∈ S∗(κ) be such that dom(q+) = dom(q∗) =
dom(qγ) ∪ dom(qδ) and q+(α) = q∗(α) for α ∈ dom(q+) r {γ, δ} and q+(γ) = rγ and q+(δ) = rδ.
Then q+ is a (well defined) condition stronger than both qγ and qδ and such that

(♣) q+ 

(
∃∞k < ω

)((
ρ
˜
γ�[nk, nk+1)

)
+2

(
ρ
˜
δ�[nk, nk+1)

)
= f�[nk, nk+1)

)
(by (∗)10 + (∗)11). Consequently, by (∗)0,

(♥) q+ 
 “ρ
˜
γ , ρ

˜
δ ∈ H

˜
and ρ

˜
γ +2 ρ

˜
δ /∈ H

˜
and (H

˜
,+2) is a group”,

a contradiction.

(2) The proof is a small modification of that for the first part, so we describe the new points
only. Assume towards contradiction that for some p0 ∈ S∗(κ) and a S∗(κ)-name H

˜
∗ we have

p0 
S∗(κ) “H
˜
∗ is a meager non-null subgroup of (R,+)”.

Let H
˜

0, H
˜

1 be S∗-names for subsets of D∞0 such that

p0 
S∗(κ) “H
˜

0 = E−1[H
˜
∗ ∩ [0, 1/2)] and H

˜
1 = E−1[H

˜
∗ ∩ [0, 1)]”.

Necessarily p0 
 “H
˜
∗ ∩ [0, 1/2) is not null”, so it follows from 2.2(1) that

p0 
S∗(κ) “H
˜

0 /∈ N and H
˜

1 ∈M and H
˜

0 ⊆ H
˜

1”.

Clearly we may pick a condition p1 ≥ p0, a sequence n̄ = 〈nj : j < ω〉 ⊆ ω and a function f ∈ ω2
such that

(⊕)0 nj+1 > nj + j + 1 for each j,

(⊕)1 f(nj+1 − 1) = 0 for each j, and

(⊕)2 p1 
S∗(κ) “H
˜

1 ⊆
{
x ∈ ω2 :

(
∀∞j < ω

)(
x�[nj , nj+1−1) 6= f�[nj , nj+1−1)

)}
.”

(Note: “[nj , nj+1 − 1)” not “[nj , nj+1)”.)

Like in part (1), let m̄ = m̄[n̄], N̄ = N̄ [n̄], J̄ = J̄ [n̄], H̄ = H̄[n̄], π = π[n̄] and F = F[n̄]. Let
A = {|Hi|−1 : i < ω} and r+ ∈ S∗ be such that dom(r+) = ωrA and r+(k) = 0 for k ∈ dom(r+).
Then each α < κ fix a S∗(κ)-name ρ

˜
α such that p1 
S∗(κ)“ ρ

˜
α ∈ H

˜
0 ∩ F(η

˜
α) ”.

Now repeat the arguments of the first part (with (∗)1–(∗)11 there applied to our n̄, f, ρ
˜
α and

the operation ~0 here) to find q+ ≥ p1 and γ, δ ∈ dom(q+) such that

(♦) q+ 
“
(
∃∞k < ω

)(
(ρ
˜
γ�[nk, nk+1))~0 (ρ

˜
δ�[nk, nk+1)) = f�[nk, nk+1)

)
”.

Let G ⊆ S∗(κ) be a generic over V such that q+ ∈ G and let us work in V[G]. Let η ∈ D∞0 be
such that E(ρ

˜

G
γ ) + E(ρ

˜

G
δ ) = E(η) (remember E(ρ

˜

G
γ ),E(ρ

˜

G
δ ) < 1/2). We know from (♦) that there

are infinitely many k < ω satisfying

(�) (ρ
˜

G
γ �[nk, nk+1))~0 (ρ

˜

G
δ �[nk, nk+1)) = f�[nk, nk+1).

482

Sh:1081



SMALL-LARGE SUBGROUPS

Since f(nk+1− 1) = 0 (see (⊕)1), we get from Observation 3.2(3) that for each k as in (�) we also
have (

(ρ
˜

G
γ �[nk, nk+1))~0 (ρ

˜

G
δ �[nk, nk+1))

)
�[nk, nk+1 − 1)

=
(
(ρ
˜

G
γ �[nk, nk+1))~1 (ρ

˜

G
δ �[nk, nk+1))

)
�[nk, nk+1 − 1) = f�[nk, nk+1 − 1).

Therefore (by Observation 3.2(4)) for each k satisfying (�), we have

η�[nk, nk+1 − 1) = f�[nk, nk+1 − 1),
so (

∃∞k < ω
)(
η�[nk, nk+1 − 1) = f�[nk, nk+1 − 1)

)
.

Consequently, by (⊕)2, we have that η /∈ H
˜
G
1 , i.e., E(η) /∈ (H

˜
∗)G ∩ [0, 1). This contradicts the fact

that E(ρ
˜

G
γ ),E(ρ

˜

G
δ ) ∈ (H

˜
∗)G, E(η) = E(ρ

˜

G
γ ) + E(ρ

˜

G
δ ) and (H

˜
∗)G is a subgroup of (R,+). �

Remark 4.2. Instead of the CS product of forcing notions S∗ we could have used their CS iteration
of length ω2. Of course, that would restrict the value of the continuum in the resulting model.

5. Problems

Both Theorems 2.3(1) and 4.1(1) can be repeated for other product groups. We may consider a
sequence 〈Hn : n < ω〉 of finite groups and their coordinate-wise product H =

∏
n<ω

Hn. Naturally,

H is equipped with product topology of discrete Hn’s and the product probability measure. Then
there exists a null non-meager subgroup of H but it is consistent that there is no meager non-null
such subgroup. It is natural to ask now:

Problem 5.1.

(1) Does every locally compact group (with complete Haar measure) admit a null non-meager
subgroup?

(2) Is it consistent that no locally compact group has a meager non-null subgroup?

In relation to Theorem 4.1, we still should ask:

Problem 5.2. Is it consistent that there exists a translation invariant Borel hull for the meager
ideal on ω2? On R?
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