

DOI: 10.1515/ms-2017-0117 Math. Slovaca **68** (2018), No. 3, 473–484

SMALL-LARGE SUBGROUPS OF THE REALS

Andrzej Rosłanowski* — Saharon Shelah**

(Communicated by David Buhagiar)

ABSTRACT. We are interested in subgroups of the reals that are small in one and large in another sense. We prove that, in ZFC, there exists a non-meager Lebesgue null subgroup of \mathbb{R} , while it is consistent that there there is no non-null meager subgroup of \mathbb{R} .

©2018 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Subgroups of the reals which are small in one and large in another sense were crucial in Filipczak, Rosłanowski and Shelah [5]. If there is a non-meager Lebesgue null subgroup of $(\mathbb{R}, +)$, then there is no translation invariant Borel hull operation on the σ -ideal \mathcal{N} of Lebesgue null sets. That is, there is no mapping ψ from \mathcal{N} to Borel sets such that for each null set $A \subseteq \mathbb{R}$:

- $A \subseteq \psi(A)$ and $\psi(A)$ is null, and
- $\psi(A+t) = \psi(A) + t$ for every $t \in \mathbb{R}$.

Parallel claims hold true if "Lebesgue null" is interchanged with "meager" and/or $(\mathbb{R}, +)$ is replaced with $(^{\omega}2, +_2)$.

If \mathcal{M} is the σ -ideal of meager subsets of \mathbb{R} (and \mathcal{N} is the null ideal on \mathbb{R}) and $\{\mathcal{I}, \mathcal{J}\} = \{\mathcal{N}, \mathcal{M}\}$, then various set theoretic assumptions imply the existence of a subgroup of \mathbb{R} which belongs to \mathcal{I} but not to \mathcal{J} . But in [5: Problem 4.1] we asked if the existence of such subgroups can be shown in ZFC. This question is interesting *per se*, regardless of its connections to translation invariant Borel hulls.

The present paper presents two theorems. First, in Theorem 2.3 we give ZFC examples of null non-meager subgroups of $({}^{\omega}2, +_2)$ and $(\mathbb{R}, +)$, respectively. Next in Theorem 4.1 we show that it is consistent with ZFC that every meager subgroup of $({}^{\omega}2, +_2)$ and/or $(\mathbb{R}, +)$ has Lebesgue measure zero. This answers [5: Problem 4.1]. Also, our results give another example of a strange asymmetry between measure and category.

NOTATION. Our notation is rather standard and compatible with that of classical textbooks (like Jech [6] or Bartoszyński and Judah [1]). However, in forcing we keep the older convention that a stronger condition is the larger one.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E35; Secondary: 28A05, 54A05.

Keywords: null ideal, meager ideal, additive subgroups of the reals, Borel hulls, forcing,

Both authors acknowledge support from the United States-Israel Binational Science Foundation (Grant no. 2010405). Publication 1081 of the second author.

- (1) The Cantor space $^{\omega}2$ of all infinite sequences with values 0 and 1 is equipped with the natural product topology, the product measure λ and the group operation of coordinate-wise addition $+_2$ modulo 2.
- (2) Ordinal numbers will be denoted be the lower case initial letters of the Greek alphabet $\alpha, \beta, \gamma, \delta$. Finite ordinals (non-negative integers) will be denoted by letters i, j, k, ℓ, m, n while integers will be called L, M.
- (3) Most of our intervals will be intervals of non-negative integers, so $[m, n) = \{k \in \omega : m \le k < n\}$ etc. They will be denoted by letter J (with possible indices). However, we will also use the notation [0, 1) to denote the unit interval of reals.
- (4) The Greek letter κ will stand for an uncountable cardinal such that $\kappa^{\aleph_0} = \kappa \geq \aleph_2$.
- (5) For a forcing notion \mathbb{P} , all \mathbb{P} -names for objects in the extension via \mathbb{P} will be denoted with a tilde below (e.g., $\underline{\tau}$, \underline{X}), and $\underline{G}_{\mathbb{P}}$ will stand for the canonical \mathbb{P} -name for the generic filter in \mathbb{P} .
- (6) We fix a well ordering \prec^* of all hereditarily finite sets.
- (7) The set of all partial finite functions with domains included in ω and with values in 2 is denoted $\stackrel{\omega}{=} 2$.

2. Null non-meager

Here we will give a ZFC construction of a non-meager Lebesgue null subgroup of the reals. The main construction is done in $^{\omega}2$ and then we transfer it to \mathbb{R} using the standard binary expansion \mathbf{E} .

DEFINITION 2.1. Let $D_0^{\infty} = \{x \in {}^{\omega}2 : (\exists^{\infty}i < \omega)(x(i) = 0)\}$ and for $x \in D_0^{\infty}$ let $\mathbf{E}(x) = \sum_{i=0}^{\infty} x(i)2^{-(i+1)}$.

Proposition 2.2.

- (1) The function $\mathbf{E} \colon D_0^{\infty} \longrightarrow [0,1)$ is a continuous bijection, it preserves both the measure and the category.
- (2) Assume that
 - (a) $x, y, z \in D_0^{\infty}$, $\mathbf{E}(z) = \mathbf{E}(x) + \mathbf{E}(y)$ modulo 1, and
 - (b) $n < m < \omega$ and both $x \upharpoonright [n, m]$ and $y \upharpoonright [n, m]$ are constant. Then $z \upharpoonright [n, m-1]$ is constant.
- (3) Assume that
 - (a) $x, y \in D_0^{\infty}$, $0 < \mathbf{E}(x)$ and $\mathbf{E}(y) = 1 \mathbf{E}(x)$,
 - (b) $n < m < \omega$ and $x \upharpoonright [n, m]$ is constant.

Then y | [n, m-1] is constant.

Proof. (1) Well known, cf. Bukovský [4: §2.4].

(2), (3) Straightforward (just consider the possible constant values and analyze how the addition is performed). \Box

THEOREM 2.3.

- (1) There exists a null non-meager subgroup of $(\omega 2, +2)$.
- (2) There exists a null non-meager subgroup of $(\mathbb{R}, +)$.

Proof. (1) For $k \in \omega$ let $n_k = \frac{1}{2}k(k+1)$ and let D be a non-principal ultrafilter on ω . Define

$$H_D = \left\{ x \in {}^{\omega}2 : \left(\exists m < \omega \right) \left(\exists j < 2 \right) \left(\left\{ k > m : x \upharpoonright [n_k, n_{k+1} - m) \equiv j \right\} \in D \right) \right\}.$$

(i) H_D is a subgroup of $({}^{\omega}2, +_2)$.

Why? Suppose that $x_0, x_1 \in H_D$ and let $m_\ell < \omega$ and $j_\ell < 2$ be such that

$$A_{\ell} \stackrel{\mathrm{def}}{=} \left\{ k > m_{\ell} : x_{\ell} \upharpoonright [n_k, n_{k+1} - m_{\ell}) \equiv j_{\ell} \right\} \in D.$$

Let $m = \max(m_0, m_1)$ and $j = j_0 -_2 j_1$. Then $A_0 \cap A_1 \in D$ and for each $k \in A_0 \cap A_1$ we have $(x_0 -_2 x_2) \upharpoonright [n_k, n_{k+1} - m) \equiv j$. Hence $x_0 -_2 x_1 \in H_D$.

(ii) $H_D \in \mathcal{N}$.

Why? For each $m < k < \omega$ and j < 2 we have

$$\lambda(\{x \in {}^{\omega}2 : x \upharpoonright [n_k, n_{k+1} - m) \equiv j\}) = 2^{m - (k+1)}$$

and therefore for each $m < \omega$ and j < 2

$$\lambda(\lbrace x \in {}^{\omega}2 : (\exists^{\infty}k)(x \upharpoonright [n_k, n_{k+1} - m) \equiv j)\rbrace) = 0.$$

Now note that $H_D \subseteq \bigcup_{m < \omega} \bigcup_{j < 2} \{ x \in {}^{\omega}2 : (\exists^{\infty}k)(x \upharpoonright [n_k, n_{k+1} - m) \equiv j) \}.$

(iii) $H_D \notin \mathcal{M}$.

Why? Suppose that W is a dense Π_2^0 subset of ω_2 . Then we may choose an increasing sequence $\langle k_i : i \in \omega \rangle$ and a function $f \in \omega_2$ such that

$$\left\{x \in {}^{\omega}2: \left(\exists^{\infty}i\right)\left(x \upharpoonright [n_{k_i}, n_{k_{i+1}}) = f \upharpoonright [n_{k_i}, n_{k_{i+1}})\right)\right\} \subseteq W.$$

Let $A = \bigcup \{ [k_{2i}, k_{2i+1}) : i \in \omega \}$ and $B = \bigcup \{ [k_{2i+1}, k_{2i+2}) : i \in \omega \}$. Then either $A \in D$ or $B \in D$. Let $x_A, x_B \in {}^{\omega}2$ be such that, for each $i \in \omega$,

$$x_A \upharpoonright [n_{k_{2i}}, n_{k_{2i+1}}) \equiv 0,$$
 $x_A \upharpoonright [n_{k_{2i+1}}, n_{k_{2i+2}}) = f \upharpoonright n_{k_{2i+1}}, n_{k_{2i+2}})$ and $x_B \upharpoonright [n_{k_{2i+1}}, n_{k_{2i+2}}) \equiv 0,$ $x_B \upharpoonright [n_{k_{2i}}, n_{k_{2i+1}}) = f \upharpoonright n_{k_{2i}}, n_{k_{2i+1}}).$

Then $x_A, x_B \in W$ and either $x_A \in H_D$ or $x_B \in H_D$. Consequently, $W \cap H_D \neq \emptyset$.

(2) Consider $H_D^* = \mathbf{E}[H_D \cap D_0^{\infty}] + \mathbb{Z}$. It follows from 2.2(1) that H_D^* is a Lebesgue null meager subset of \mathbb{R} . We will show that it is a subgroup of $(\mathbb{R}, +)$.

Suppose that $x_0, x_1 \in H_D \cap D_0^{\infty}$ and $L_0, L_1 \in \mathbb{Z}$ and we will argue that $(\mathbf{E}(x_0) + L_0) + (\mathbf{E}(x_1) + L_1) \in H_D^*$. Let $m_{\ell} < \omega$ be such that

$$A_{\ell} \stackrel{\text{def}}{=} \left\{ k > m_{\ell} : x_{\ell} \upharpoonright [n_k, n_{k+1} - m_{\ell}) \text{ is constant } \right\} \in D$$

and let $m = \max(m_0, m_1) + 1$. Choose $y \in D_0^{\infty}$ and $M \in \{0, 1\}$ such that $\mathbf{E}(x_0) + \mathbf{E}(x_1) = \mathbf{E}(y) + M$. It follows from 2.2(2) that for every $k \in A_0 \cap A_1$, k > m, we have that $y \upharpoonright [n_k, n_{k+1} - m)$ is constant and since $A_0 \cap A_1 \in D$ we conclude $y \in H_D$. Consequently, $(\mathbf{E}(x_0) + L_0) + (\mathbf{E}(x_1) + L_1) = \mathbf{E}(y) + (M + L_0 + L_1) \in H_D^*$.

Now assume that $x \in H_D \cap D_0^{\infty}$, $L \in \mathbb{Z}$ and we will argue that $-(\mathbf{E}(x) + L) \in H_D^*$. If $\mathbf{E}(x) = 0$ then the assertion is clear, so assume also $\mathbf{E}(x) > 0$. Let $m < \omega$ be such that

$$A \stackrel{\text{def}}{=} \{k > m : x \upharpoonright [n_k, n_{k+1} - m) \text{ is constant } \} \in D.$$

Choose $y \in D_0^{\infty}$ such that $1 - \mathbf{E}(x) = \mathbf{E}(y)$. It follows from 2.2(3) that for every $k \in A$, k > m + 1, we have that $y \upharpoonright [n_k, n_{k+1} - (m+1))$ is constant. Consequently, $y \in H_D$ and $-(\mathbf{E}(x) + L) = \mathbf{E}(y) - 1 - L \in H_D^*$.

Remark 2.4. A somewhat simpler non-meager null subgroup of $({}^{\omega}2, +_2)$ is

$$H_D^- = \left\{ x \in {}^{\omega}2 : \left\{ k \in \omega : x \upharpoonright [n_k, n_{k+1}) \equiv 0 \right\} \in D \right\}.$$

The group H_D , however, was necessary for our construction of $H_D^* < \mathbb{R}$.

Corollary 2.5. There exists no translation invariant Borel hull for the null ideal on "2 and/or on \mathbb{R} .

3. Some technicalities

Here we prepare the ground for our consistency results.

3.1. Moving from \mathbb{R} to $^{\omega}2$

First, let us remind connections between the addition in \mathbb{R} and that of ${}^{\omega}2$ (via the binary expansion \mathbf{E} , see 2.1).

DEFINITION 3.1. Let J = [m, n) be a non-empty interval of integers and $c \in \{0, 1\}$. For sequences $\rho, \sigma \in {}^{J}2$ we define $\rho \circledast_{c} \sigma$ as the unique $\eta \in {}^{J}2$ such that

$$\left(\sum_{i=m}^{n-1}\rho(i)2^{-(i+1)} + \sum_{i=m}^{n-1}\sigma(i)2^{-(i+1)} + c \cdot 2^{-n}\right) - \sum_{i=m}^{n-1}\eta(i)2^{-(i+1)} \in \{0, 2^{-m}\}.$$

For notational convenience we also set $\rho \circledast_2 \sigma = \rho +_2 \sigma$ (coordinate-wise addition modulo 2).

The operation \circledast_c is defined on the set J2 , so it does depend on J. We may, however, abuse notation and use that same symbol \circledast_c for various J.

Observation 3.2. Let m, ℓ, n be integers such that $m < \ell < n$ and let J = [m, n).

- (1) For each $c \in \{0, 2\}$, $(^J2, \circledast_c)$ is an Abelian group.
- (2) If $\rho, \sigma \in {}^{J}2$ and $\rho(\ell) = \sigma(\ell)$, then $(\rho \circledast_0 \sigma) \upharpoonright [m, \ell) = (\rho \circledast_1 \sigma) \upharpoonright [m, \ell)$.
- (3) If $\rho, \sigma \in {}^{J}2$ and $(\rho \circledast_0 \sigma)(\ell) = 0$, then $(\rho \circledast_0 \sigma) \upharpoonright [m, \ell) = (\rho \circledast_1 \sigma) \upharpoonright [m, \ell)$.
- (4) Suppose that $r, s \in [0, 1), \rho, \sigma, \eta \in D_0^{\infty}, \mathbf{E}(\rho) = r, \mathbf{E}(\sigma) = s$ and $\mathbf{E}(\eta) = r + s$ modulo 1.

 - $$\begin{split} \bullet & \text{ if } \sum_{i \geq n} \left((\rho(i) + \sigma(i))/2^{i+1} \right) \geq 2^{-n}, \text{ then } \eta \restriction J = (\rho \restriction J) \circledast_1 (\sigma \restriction J); \\ \bullet & \text{ if } \sum_{i \geq n} \left((\rho(i) + \sigma(i))/2^{i+1} \right) < 2^{-n}, \text{ then } \eta \restriction J = (\rho \restriction J) \circledast_0 (\sigma \restriction J). \end{split}$$

3.2. The combinatorial heart of our forcing arguments

For this subsection we fix a strictly increasing sequence $\bar{n} = \langle n_j : j < \omega \rangle \subseteq \omega$.

DEFINITION 3.3. We define $\bar{m}[\bar{n}] = \langle m_i : i < \omega \rangle$, $\bar{N}[\bar{n}] = \langle N(i) : i < \omega \rangle$, $\bar{J}[\bar{n}] = \langle J_i : i < \omega \rangle$, $\overline{H}[\bar{n}] = \langle H_i : i < \omega \rangle, \ \pi[\bar{n}] = \langle \pi_i : i < \omega \rangle \text{ and } \mathbf{F}[\bar{n}] \text{ as follows.}$

We set $m_0 = 0$ and then inductively for $i < \omega$ we let

$$(*)_1 \ m_{i+1} = 2^{n_{m_i} + 1081}.$$

Next, for $i < \omega$,

$$(*)_2 N(i) = n_{m_i}, J_i = [N(2^i), N(2^{i+1})], \text{ and}$$

$$(*)_3 H_i = \{a \subseteq J_i 2 : (1 - 2^{-N(2^i)}) \cdot 2^{|J_i|} \le |a| \}.$$

We also set $\pi_i: |H_i| \longrightarrow H_i$ to be the \prec^* -first bijection from $|H_i|$ onto H_i . Finally, for $\eta \in \prod_{m < \omega} (m+1)$ we let

 $(*)_4$

$$\mathbf{F}_{0}[\bar{n}](\eta) = \left\{ x \in {}^{\omega}2 : \left(\forall i < \omega \right) \left(x \upharpoonright J_{i} \in \pi_{i}(\eta(|H_{i}|-1)) \right) \right\} \quad \text{and} \quad \mathbf{F}[\bar{n}](\eta) = \left\{ x \in {}^{\omega}2 : \left(\forall^{\infty}i < \omega \right) \left(x \upharpoonright J_{i} \in \pi_{i}(\eta(|H_{i}|-1)) \right) \right\}.$$

Clearly, the set $\{|H_i| - 1 : i < \omega\}$ is infinite and co-infinite. Moreover $|H_i| < |H_j| - 1$ for i < j and, as a matter of fact, these values grow fast.

Lemma 3.4. For every $\eta \in \prod_{m < \omega} (m+1)$, $\mathbf{F}_0[\bar{n}](\eta) \subseteq {}^{\omega}2$ is a closed set of positive Lebesgue measure, and $\mathbf{F}[\bar{n}](\eta)$ is a Σ_2^0 set of Lebesgue measure 1.

Proof. Note that
$$J_i \cap J_j = \emptyset$$
 and $\sum_{i=0}^{\infty} 2^{-N(2^i)} < 1$.

LEMMA 3.5. Let $i < \omega$, $c \in \{0,2\}$ and let $\eta \in J_i$ (remember $J_i = [n_{m_{2^i}}, n_{m_{2^{i+1}}})$). Suppose that for each $\ell < 2^i$ and x < 2 we are given a function $\mathcal{Z}_\ell^x : H_i \longrightarrow J^i 2$ such that $\mathcal{Z}_\ell^x(a) \in a$ for each $a \in H_i$. Then there are $a^0, a^1 \in H_i$ such that for every $\ell < 2^i$ there is $k \in [m_{2^i+\ell}, m_{2^i+\ell+1})$ satisfying

$$\left(\mathcal{Z}^0_\ell(a^0) \upharpoonright [n_k,n_{k+1})\right) \circledast^k_c \left(\mathcal{Z}^1_\ell(a^1) \upharpoonright [n_k,n_{k+1})\right) = \eta \upharpoonright [n_k,n_{k+1}),$$

where \circledast_c^k denotes the operation \circledast_c on $[n_k, n_{k+1})$ 2.

Proof. We start the proof with the following Claim.

Claim 3.5.1. If $A \subseteq H_i$, $|A| \le 2^{|J_i| - N(2^i) - i}$ and x < 2, then there is $b \in H_i$ such that $\mathcal{Z}_{\ell}^x(b) \notin \{\mathcal{Z}_{\ell}^x(a) : a \in A\}$ for each $\ell < 2^i$.

Proof of the Claim. Note that $|\{\mathcal{Z}_{\ell}^x(a): \ell < 2^i \& a \in \mathcal{A}\}| \leq 2^i \cdot 2^{|J_i|-N(2^i)-i} = 2^{|J_i|-N(2^i)}$, so letting $b = J_i 2 \setminus \{\mathcal{Z}_{\ell}^x(a): \ell < 2^i \& a \in \mathcal{A}\}$ we have $b \in H_i$. Since $\mathcal{Z}_{\ell}^x(b) \in b$ we see that b is as required in the claim.

It follows from Claim 3.5.1 that we may pick sequences $\langle a_j^0: j < j^* \rangle \subseteq H_i$ and $\langle a_j^1: j < j^* \rangle \subseteq H_i$ with $\mathcal{Z}_\ell^x(a_{j_1}^x) \neq \mathcal{Z}_\ell^x(a_{j_2}^x)$ for $j_1 < j_2 < j^*$, $\ell < 2^i$, x < 2 and such that $j^* > 2^{|J_i| - N(2^i) - i}$. Now, by induction on $\ell < 2^i$, we choose sets $X_\ell, Y_\ell \subseteq j^*$ and integers $k_\ell \in [m_{2^i + \ell}, m_{2^i + \ell + 1})$ such that the following demands are satisfied.

- (i) $X_{\ell+1} \subseteq X_{\ell} \subseteq j^*, Y_{\ell+1} \subseteq Y_{\ell} \subseteq j^*,$
- (ii) if $j_0 \in X_\ell$ and $j_1 \in Y_\ell$ then

$$\left(\mathcal{Z}_\ell^0(a_{j_0}^0) {\restriction} [n_{k_\ell}, n_{k_\ell+1})\right) \circledast_c^{k_\ell} \left(\mathcal{Z}_\ell^1(a_{j_1}^1) {\restriction} [n_{k_\ell}, n_{k_\ell+1})\right) = \eta {\restriction} [n_{k_\ell}, n_{k_\ell+1}),$$

(iii) $\min(|X_{\ell}|, |Y_{\ell}|) \ge j^* \cdot 2^{N(2^i) - N(2^i + \ell + 1) - \ell - 1}$.

We stipulate $X_{-1} = Y_{-1} = j^*$ and we assume that $X_{\ell-1}, Y_{\ell-1}$ have been already determined (and $\min\left(|X_{\ell-1}|, |Y_{\ell-1}|\right) \geq j^* \cdot 2^{N(2^i)-N(2^i+\ell)-\ell}$ if $\ell > 0$). Let

$$\begin{split} X^* &= \Big\{ j \in X_{\ell-1} : |X_{\ell-1}| \cdot 2^{N(2^i+\ell)-N(2^i+\ell+1)-1} \leq \big| \{j' \in X_{\ell-1} : \mathcal{Z}^0_\ell(a^0_{j'}) \upharpoonright [N(2^i+\ell), N(2^i+\ell+1)) \} \big| \Big\}, \\ &= \mathcal{Z}^0_\ell(a^0_j) \upharpoonright [N(2^i+\ell), N(2^i+\ell+1)) \} \big| \Big\}, \\ Y^* &= \Big\{ j \in Y_{\ell-1} : |Y_{\ell-1}| \cdot 2^{N(2^i+\ell)-N(2^i+\ell+1)-1} \leq \big| \{j' \in Y_{\ell-1} : \mathcal{Z}^1_\ell(a^1_{j'}) \upharpoonright [N(2^i+\ell), N(2^i+\ell+1)) \} \big| \Big\}. \end{split}$$

$$= \mathcal{Z}^1_\ell(a^1_j) \upharpoonright [N(2^i+\ell), N(2^i+\ell+1)) \} \big| \Big\}.$$

CLAIM 3.5.2. $|X^*| \ge \frac{1}{2}|X_{\ell-1}|$ and $|Y^*| \ge \frac{1}{2}|Y_{\ell-1}|$.

Proof of the Claim. Assume towards contradiction that $|X^*| < \frac{1}{2}|X_{\ell-1}|$. Then for some $\nu_0 \in [N(2^i+\ell),N(2^i+\ell+1))$ we have

$$\left| \left\{ j \in X_{\ell-1} \setminus X^* : \nu_0 \subseteq \mathcal{Z}_{\ell}^0(a_j^0) \right\} \right| \ge |X_{\ell-1} \setminus X^*| \cdot 2^{N(2^i + \ell) - N(2^i + \ell + 1)}$$

$$> \frac{1}{2} |X_{\ell-1}| \cdot 2^{N(2^i + \ell) - N(2^i + \ell + 1)}.$$

Let $j \in X_{\ell-1} \setminus X^*$ be such that $\nu_0 \subseteq \mathcal{Z}^0_{\ell}(a_j^0)$. Then $j \in X^*$, a contradiction. Similarly for Y^* .

CLAIM 3.5.3. For some $k \in [m_{2^i+\ell}, m_{2^i+\ell+1})$ we have that both $|\{\mathcal{Z}^0_{\ell}(a^0_j) | [n_k, n_{k+1}) : j \in X^*\}| > 2^{n_{k+1}-n_k-1}$ and $|\{\mathcal{Z}^1_{\ell}(a^1_j) | [n_k, n_{k+1}) : j \in Y^*\}| > 2^{n_{k+1}-n_k-1}$.

Proof of the Claim. Let

$$K^X = \left\{k \in [m_{2^i + \ell}, m_{2^i + \ell + 1}) : |\{\mathcal{Z}^0_{\ell}(a^0_i) \upharpoonright [n_k, n_{k+1}) : j \in X^*\}| \leq 2^{n_{k+1} - n_k - 1}\right\}$$

and

$$K^Y = \big\{k \in [m_{2^i+\ell}, m_{2^i+\ell+1}) : |\{\mathcal{Z}^1_\ell(a^1_j) \upharpoonright [n_k, n_{k+1}) : j \in Y^*\}| \leq 2^{n_{k+1}-n_k-1}\big\}.$$

Assume towards contradiction that $|K^X| \ge \frac{1}{2}(m_{2^i+\ell+1}-m_{2^i+\ell})$. Then

$$|X^*| = |\{\mathcal{Z}^0_{\ell}(a^0_j): j \in X^*\}| \leq 2^{-1/2(m_{2^i+\ell+1}-m_{2^i+\ell})} \cdot 2^{|J_i|} < 2^{|J_i|} \cdot 2^{-4N(2^i+\ell)}.$$

(Remember 3.3(*)₁.) Hence $|X_{\ell-1}| \leq 2^{|J_i|-4N(2^i+\ell)+1}$. If $\ell=0$ then we get $2^{|J_i|-2N(2^i)} < j^* \leq 2^{|J_i|-4N(2^i)+1}$, which is impossible. If $\ell>0$, then by the inductive hypothesis (iii) we know that $|X_{\ell-1}| \geq j^* \cdot 2^{N(2^i)-N(2^i+\ell)-\ell} > 2^{|J_i|-i-N(2^i+\ell)-\ell}$, so $3N(2^i+\ell)-1 < i+\ell$, a clear contradiction. Consequently $|K^X| < \frac{1}{2}(m_{2^i+\ell+1}-m_{2^i+\ell})$, and similarly $|K^Y| < \frac{1}{2}(m_{2^i+\ell+1}-m_{2^i+\ell})$. Pick $k \in [m_{2^i+\ell}, m_{2^i+\ell+1})$ such that $k \notin K^X \cup K^Y$.

Now, let $k_{\ell} \in [m_{2^i+\ell}, m_{2^i+\ell+1})$ be as given by Claim 3.5.3. Necessarily the sets $\left\{\rho \in [n_{k_{\ell}}, n_{k_{\ell}+1}) : (\exists j \in X^*)((\mathcal{Z}^0_{\ell}(a^0_j) \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1})) \circledast_c^{k_{\ell}} \rho = \eta \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1}))\right\}$ and $\left\{\mathcal{Z}^1_{\ell}(a^1_j) \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1}) : j \in Y^*\right\}$ have non-empty intersection. Therefore, we may find $j_X \in X^*$ and $j_Y \in Y^*$ such that

$$\left(\mathcal{Z}_{\ell}^0(a_{j_X}^0) {\restriction} [n_{k_\ell},n_{k_\ell+1})\right) \circledast_c^{k_\ell} \left(\mathcal{Z}_{\ell}^1(a_{j_Y}^1) {\restriction} [n_{k_\ell},n_{k_\ell+1})\right) = \eta {\restriction} [n_{k_\ell},n_{k_\ell+1}).$$

Set

$$X_{\ell} = \big\{ j \in X_{\ell-1} : \mathcal{Z}_{\ell}^{0}(a_{j}^{0}) \upharpoonright [N(2^{i} + \ell), N(2^{i} + \ell + 1)) = \mathcal{Z}_{\ell}^{0}(a_{j_{X}}^{0}) \upharpoonright [N(2^{i} + \ell), N(2^{i} + \ell + 1)) \big\},$$

and

$$Y_{\ell} = \big\{ j \in Y_{\ell-1} : \mathcal{Z}^1_{\ell}(a^1_j) \upharpoonright [N(2^i + \ell), N(2^i + \ell + 1)) = \mathcal{Z}^1_{\ell}(a^1_{j_Y}) \upharpoonright [N(2^i + \ell), N(2^i + \ell + 1)) \big\}.$$

By the definition of X^*, Y^* and by the inductive hypothesis (iii) we have

$$|X_{\ell}| > |X_{\ell-1}| \cdot 2^{N(2^i + \ell) - N(2^i + \ell + 1) - 1} > j^* \cdot 2^{N(2^i) - \ell - N(2^i + \ell + 1) - 1}$$

and similarly for Y_{ℓ} . Consequently, X_{ℓ}, Y_{ℓ} and k_{ℓ} satisfy the inductive demands (i)–(iii).

After the above construction is completed fix any $j_0 \in X_{2^i-1}$, $j_1 \in Y_{2^i-1}$ and consider $a^0 = a_{j_0}$ and $a^1 = a_{j_1}$. For each $\ell < 2^i$ we have $j_0 \in X_{\ell}$, $j_1 \in Y_{\ell}$ so

$$\left(\mathcal{Z}_{\ell}^{0}(a^{0}) \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1}) \right) \otimes_{c}^{k_{\ell}} \left(\mathcal{Z}_{\ell}^{1}(a^{1}) \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1}) \right) = \eta \upharpoonright [n_{k_{\ell}}, n_{k_{\ell}+1}).$$

Hence $a^1, a^2 \in H_i$ are as required.

3.3. The *-Silver forcing notion

The consistency result of the next section will be obtained using CS product of the following forcing notion \mathbb{S}_* .

DEFINITION 3.6.

(1) We define the *-Silver forcing notion S_* as follows.

A condition in \mathbb{S}_* is a partial function $p : \text{dom}(p) \longrightarrow \omega$ such that $\text{dom}(p) \subseteq \omega$ is coinfinite and $p(m) \leq m$ for each $m \in \text{dom}(p)$.

The order $\leq = \leq_{\mathbb{S}_*}$ of \mathbb{S}_* is the inclusion, i.e., $p \leq q$ if and only if $p \subseteq q$.

(2) For $p \in \mathbb{S}_*$ and $1 \leq n < \omega$ we let u(n,p) be the set of the first n elements of $\omega \setminus \text{dom}(p)$ (in the natural increasing order). Then for $p, q \in \mathbb{S}_*$ we let $p \leq_n q$ if and only if $p \leq q$ and u(n,q) = u(n,p).

We also define $p \leq_0 q$ as equivalent to $p \leq q$.

- (3) Let $p \in \mathbb{S}_*$. We let S(n,p) be the set of all functions $s: u(n,p) \longrightarrow \omega$ with the property that $s(m) \leq m$ for all $m \in u(n,p)$.
- (4) We let η to be the canonical \mathbb{S}_* -name such that

$$\Vdash \eta = \bigcup \{p : p \in \mathcal{G}_{\mathbb{S}_*}\}.$$

Remark 3.7. The forcing notion \mathbb{S}_* may be represented as a forcing of the type $\mathbb{Q}^*_{w\infty}(K,\Sigma)$ for some finitary creating pair (K,Σ) which captures singletons, see Rosłanowski and Shelah [8: Definition 2.1.10]. It is a close relative of the Silver forcing notion and, in a sense, it lies right above all \mathbb{S}_n 's studied for instance in Rosłanowski [7] and Rosłanowski and Steprāns [9].

LEMMA 3.8.

- (1) $(\mathbb{S}_*, \leq_{\mathbb{S}_*})$ is a partial order of size \mathfrak{c} . If $p \in \mathbb{S}_*$ and $s \in S(n, p)$ then $p \cup s \in \mathbb{S}_*$ is a condition stronger than p.
- (2) $\Vdash_{\mathbb{S}_*} \underline{\eta} \in \prod_{m \leq \omega} (m+1)$ and $p \Vdash_{\mathbb{S}_*} p \subseteq \underline{\eta}$ (for $p \in \mathbb{S}_*$).
- (3) If $p \in \mathbb{S}_*$ and $1 \le n < \omega$, then the family $\{p \cup s : s \in S(n,p)\}$ is an antichain pre-dense above p.
- (4) The relations \leq_n are partial orders on \mathbb{S}_* , $p \leq_{n+1} q$ implies $p \leq_n q$.
- (5) Assume that τ is an \mathbb{S}_* -name for an ordinal, $p \in \mathbb{S}_*$, $1 \leq n, m < \omega$. Then there is a condition $q \in \mathbb{S}_*$ such that $p \leq_n q$, $\max (u(n+1,q)) > m$ and for all $s \in S(n,q)$ the condition $q \cup s$ decides the value of τ .
- (6) The forcing notion \mathbb{S}_* satisfies Axiom A of Baumgartner [2: §7] as witnessed by the orders \leq_n , it is ${}^{\omega}\omega$ -bounding and, moreover, every meager subset of ${}^{\omega}2$ in an extension by \mathbb{S}_* is included in a Σ_2^0 meager set coded in the ground model.

Proof. Straightforward – the same as for the Silver forcing notion.

DEFINITION 3.9. Assume $\kappa^{\aleph_0} = \kappa \geq \aleph_2$.

- (1) $\mathbb{S}_{*}(\kappa)$ is the CS product of κ many copies of \mathbb{S}_{*} . Thus
 - a condition p in $\mathbb{S}_*(\kappa)$ is a function with a countable domain $\mathrm{dom}(p) \subseteq \kappa$ and with values in \mathbb{S}_* , and

the order \leq of $\mathbb{S}_*(\kappa)$ is such that $p \leq q$ if and only if $dom(p) \subseteq dom(q)$ and $(\forall \alpha \in dom(p))(p(\alpha) \leq_{\mathbb{S}_*} q(\alpha))$.

(2) Suppose that $p \in \mathbb{S}_*(\kappa)$ and $F \subseteq \text{dom}(p)$ is a finite non-empty set and $\mu : F \longrightarrow \omega \setminus \{0\}$. Let $v(F, \mu, p) = \prod_{F} u(\mu(\alpha), p(\alpha))$ and $T(F, \mu, p) = \prod_{F} S(\mu(\alpha), p(\alpha))$.

If $\sigma \in T(F, \mu, p)$ then let $p | \sigma$ be the condition $q \in \mathbb{S}_*(\kappa)$ such that dom(q) = dom(p) and $q(\alpha) = p(\alpha) \cup \sigma(\alpha)$ for $\alpha \in F$ and $q(\alpha) = p(\alpha)$ for $\alpha \in dom(q) \setminus F$.

We let $p \leq_{F,\mu} q$ if and only if $p \leq q$ and $v(F,\mu,p) = v(F,\mu,q)$.

If μ is constantly n then we may write n instead of μ .

- (3) Suppose that $p \in \mathbb{S}_*(\kappa)$ and $\bar{\tau} = \langle \bar{\tau}_n : n < \omega \rangle$ is a sequence of names for ordinals. We say that p determines $\bar{\tau}$ relative to \bar{F} if
 - $\bar{F} = \langle F_n : n < \omega \rangle$ is a sequence of finite subsets of dom(p), and
 - p forces a value to τ_0 and for $1 \le n < \omega$ and $\sigma \in T(F_n, n, p)$ the condition $p|\sigma$ decides the value of τ_n .

LEMMA 3.10.

- (1) The forcing notion $\mathbb{S}_*(\kappa)$ satisfies \mathfrak{c}^+ -chain condition.
- (2) Suppose that $p \in \mathbb{S}_*(\kappa)$, $F \subseteq \text{dom}(p)$ is finite non-empty, $\mu \colon F \longrightarrow \omega \setminus \{0\}$ and $\underline{\tau}$ is a name for an ordinal. Then there is a condition $q \in \mathbb{S}_*(\kappa)$ such that $p \leq_{F,\mu} q$ and for every $\sigma \in T(F,\mu,q)$ the condition $q|\sigma$ decides the value of $\underline{\tau}$.
- (3) Suppose that $p \in \mathbb{S}_*(\kappa)$ and $\bar{\tau} = \langle \tau_n : n < \omega \rangle$ is a sequence of $\mathbb{S}_*(\kappa)$ -names for objects from the ground model \mathbf{V} . Then there is a condition $q \geq p$ and a \subseteq -increasing sequence $\bar{F} = \langle F_n : n < \omega \rangle$ of finite subsets of dom(q) such that q determines $\bar{\tau}$ relative to \bar{F} .
- (4) Assume $p, \bar{\tau}$ are as in (3) above and $p \Vdash \text{``$\bar{\tau}$}$ is a sequence of elements of $\cong 2$ with disjoint domains". Then there are a condition $q \geq p$ and an increasing sequence \bar{F} of finite subsets of dom(q) and a function $f = (f_0, f_1) : \bigcup_{1 \leq n < \omega} T(F_n, n, q) \longrightarrow \omega \times \cong 2$ such that $q \mid \sigma \mid \vdash T_{f_0(\sigma)} = f_1(\sigma)$ (for all $\sigma \in \text{dom}(f)$) and the elements of $\langle \text{dom}(f_1(\sigma)) : \sigma \in \bigcup_{n < \omega} T(F_n, n, q) \rangle$ are pairwise disjoint.

Proof. The same as for the CS product of Silver or Sacks forcing notions, see e.g. Baumgartner [3: $\S1$].

COROLLARY 3.11. Assume $\kappa = \kappa^{\aleph_0} \geq \aleph_2$. The forcing notion $\mathbb{S}_*(\kappa)$ is proper and every meager subset of ω^2 in an extension by $\mathbb{S}_*(\kappa)$ is included in a Σ_2^0 meager set coded in the ground model. If CH holds, then $\mathbb{S}_*(\kappa)$ preserves all cardinals and cofinalities and $\Vdash_{\mathbb{S}_*(\kappa)} 2^{\aleph_0} = \kappa$.

4. Meager non-null

The goal of this section is to present a model of ZFC in which every meager subgroup of \mathbb{R} or $^{\omega}2$ is also Lebesgue null.

THEOREM 4.1. Assume CH. Let $\kappa = \kappa^{\aleph_0} \geq \aleph_2$. Then

- (1) $\Vdash_{\mathbb{S}_*(\kappa)}$ " $2^{\aleph_0} = \kappa$ and each meager subgroup of $(^{\omega}2, +_2)$ is Lebesgue null."
- (2) $\Vdash_{\mathbb{S}_*(\kappa)}$ "every meager subgroup of $(\mathbb{R}, +)$ is Lebesgue null."

Proof. For $\alpha < \kappa$ let $\tilde{\eta}_{\alpha}$ be the canonical name for the \mathbb{S}_* -generic function in $\prod_{m < \omega} (m+1)$ added on the α^{th} coordinate of $\mathbb{S}_*(\kappa)$.

(1) Suppose towards contradiction that for some $p_0 \in \mathbb{S}_*(\kappa)$ and a $\mathbb{S}_*(\kappa)$ -name H we have $p_0 \Vdash_{\mathbb{S}_*(\kappa)}$ "H is a meager non-null subgroup of $(^{\omega}2, +_2)$."

By Corollary 3.11 (or, actually, Lemma 3.10(4)) we may pick a condition $p_1 \geq p_0$, a strictly increasing sequence $\bar{n} = \langle n_j : j < \omega \rangle \subseteq \omega$ and a function $f \in {}^{\omega}2$ such that

$$(*)_0 \ p_1 \Vdash_{\mathbb{S}_*(\kappa)} \text{``} \mathcal{H} \subseteq \left\{ x \in {}^{\omega}2 : \left(\forall^{\infty} j < \omega \right) \left(x \upharpoonright [n_j, n_{j+1}) \neq f \upharpoonright [n_j, n_{j+1}) \right) \right\}.$$

Let $\bar{m} = \bar{m}[\bar{n}]$, $\bar{N} = \bar{N}[\bar{n}]$, $\bar{J} = \bar{J}[\bar{n}]$, $\bar{H} = \bar{H}[\bar{n}]$, $\pi = \pi[\bar{n}]$ and $\mathbf{F} = \mathbf{F}[\bar{n}]$ be as defined in Definition 3.3 for the sequence \bar{n} . Also let $A = \{|H_i| - 1 : i < \omega\}$ and $r^+ \in \mathbb{S}_*$ be such that $\operatorname{dom}(r^+) = \omega \setminus A$ and $r^+(k) = 0$ for $k \in \operatorname{dom}(r^+)$.

Since, by Lemma 3.4, we have \Vdash " $\mathbf{F}(\tilde{\eta}_{\alpha}) \subseteq {}^{\omega}2$ is a measure one set", we know that $p_1 \Vdash_{\mathbb{S}_*(\kappa)}$ " $(\forall \alpha < \kappa)(\mathbf{F}(\tilde{\eta}_{\alpha}) \cap \tilde{H} \neq \emptyset)$ ". Consequently, for each $\alpha < \kappa$, we may choose a $\mathbb{S}_*(\kappa)$ -name $\tilde{\rho}_{\alpha}$ for an element of $\tilde{}^{\omega}2$ such that

$$p_1 \Vdash_{\mathbb{S}_*(\kappa)} "\rho_\alpha \in \mathcal{H} \& \rho_\alpha \in \mathbf{F}(\eta_\alpha)".$$

Let us fix $\alpha \in \kappa \setminus \text{dom}(p_1)$ for a moment. Let $p_1^{\alpha} \in \mathbb{S}_*(\kappa)$ be a condition such that $\text{dom}(p_1^{\alpha}) = \text{dom}(p_1) \cup \{\alpha\}$, $p_1^{\alpha}(\alpha) = r^+$ and $p_1 \subseteq p_1^{\alpha}$. Using the standard fusion based argument (like the one applied in the classical proof of Lemma 3.10(3) with 3.10(2) used repeatedly), we may find a condition $q^{\alpha} \in \mathbb{S}_*(\kappa)$, a sequence $\bar{F} = \langle F_n^{\alpha} : n < \omega \rangle$ of finite sets, a sequence $\langle \mu_n^{\alpha} : n < \omega \rangle$ and an integer $i^{\alpha} < \omega$ such that the following demands $(*)_1 - (*)_6$ are satisfied.

- $(*)_1\ q^\alpha \geq p_1^\alpha, \, \mathrm{dom}(q^\alpha) = \bigcup_{n < \omega} F_n^\alpha, \, F_n^\alpha \subseteq F_{n+1}^\alpha \text{ and } F_0^\alpha = \{\alpha\}.$
- $(*)_2 \ \mu_n^\alpha \colon F_n^\alpha \longrightarrow \omega, \ \mu_n^\alpha(\alpha) = n+1, \ \mu_n^\alpha(\beta) = n \text{ for } \beta \in F_n^\alpha \smallsetminus \{\alpha\}.$
- (*)₃ min $\left(\omega \setminus \operatorname{dom}(q^{\alpha}(\alpha))\right) > |H_{i^{\alpha}}|$ and if max $\left(u(n+1, q^{\alpha}(\alpha))\right) = |H_i| 1$ and $n \geq 1$, then $|T(F_n, n, q^{\alpha})|^2 < 2^i$,
- $(*)_4 q^{\alpha} \Vdash (\forall i \geq i^{\alpha}) (\rho_{\alpha} \upharpoonright J_i \in \pi_i(\eta_{\alpha}(|H_i|-1))), \text{ and}$
- $(*)_5 q^{\alpha}$ determines ρ_{α} relative to \bar{F} , moreover
- (*)₆ if $\sigma \in T(F_n^{\alpha}, \mu_n^{\alpha}, q^{\alpha})$ and $\max (u(n+1, q^{\alpha}(\alpha))) = |H_i| 1$, then $q^{\alpha}|\sigma$ decides the value of $\rho_{\alpha} \upharpoonright J_i$.

Unfixing α and using a standard Δ -system argument with CH we may find distinct $\gamma, \delta \in \kappa \setminus \text{dom}(p_1)$ such that $\text{otp}(\text{dom}(q^{\gamma})) = \text{otp}(\text{dom}(q^{\delta}))$ and if $g: \text{dom}(q^{\gamma}) \longrightarrow \text{dom}(q^{\delta})$ is the order preserving bijection, then the following demands $(*)_7 - (*)_9$ hold true.

- $(*)_7 i^{\gamma} = i^{\delta}, g \upharpoonright (\operatorname{dom}(q^{\gamma}) \cap \operatorname{dom}(q^{\delta}))$ is the identity, $g(\gamma) = \delta$,
- $(*)_8 \ q^{\gamma}(\beta) = q^{\delta}(g(\beta)) \text{ for each } \beta \in \text{dom}(q^{\gamma}), \text{ and } g[F_n^{\gamma}] = F_n^{\delta},$
- $(*)_9$ if $F \subseteq \text{dom}(q^{\delta})$ is finite, $\mu: F \longrightarrow \omega \setminus \{0\}, i < \omega, \sigma \in T(F, \mu, q^{\delta})$, then

$$q^{\delta}|\sigma \Vdash \varrho_{\delta}{\restriction} J_i = z \quad \text{ if and only if } \quad q^{\gamma}|(\sigma \circ g) \Vdash \varrho_{\gamma}{\restriction} J_i = z.$$

Clearly $q^* \stackrel{\text{def}}{=} q^{\gamma} \cup q^{\delta}$ is a condition stronger than both q^{γ} and q^{δ} . Let $F_n^* = F_n^{\gamma} \cup F_n^{\delta}$ for $n < \omega$.

Let $\langle k_\ell : \ell < \omega \rangle$ be the increasing enumeration of $\omega \setminus \text{dom}(q^{\gamma}(\gamma)) = \omega \setminus \text{dom}(q^{\delta}(\delta))$. Note that by the choice of r^+ and p_1^{γ} , we have $\omega \setminus \text{dom}(q^{\gamma}(\gamma)) \subseteq A$, so each k_ℓ is of the form $|H_i| - 1$ for some i. Now we will choose conditions $r_{\delta}, r_{\gamma} \in \mathbb{S}_*$ so that

$$dom(r_{\delta}) = dom(r_{\gamma}) = dom(q^{\delta}(\delta)) \cup \{k_{2\ell} : \ell < \omega\},$$

 $q^{\delta}(\delta) \leq r_{\delta}, \, q^{\gamma}(\gamma) \leq r_{\gamma}$ and the values of $r_{\delta}(k_{2\ell}), r_{\gamma}(k_{2\ell})$ are picked as follows.

Let i be such that $k_{2\ell} = |H_i| - 1$. If $x \in \{\gamma, \delta\}$ and $\sigma \in T(F_{2\ell}^x, \mu_{2\ell}^x, q^x)$ then $q^x | \sigma$ decides the value of $\rho_x \upharpoonright J_i$ (by $(*)_6$) and this value belongs to $\pi_i(\sigma(x)(k_{2\ell}))$ (by $(*)_4 + (*)_3$). Consequently, for $x \in \{\gamma, \delta\}$ and $\tau \in T(F_{2\ell}^*, 2\ell, q^*)$ we may define a function $\mathcal{Z}_{\tau}^x : H_i \longrightarrow J_i 2$ so that

 $(*)_{10} \text{ if } a \in H(i), \ \mu : F_{2\ell}^* \longrightarrow \omega \text{ is such that } \mu(x) = 2\ell + 1 \text{ and } \mu(\alpha) = 2\ell \text{ for } \alpha \neq x, \text{ and } \tau_a \in T(F_{2\ell}^*, \mu, q^*) \text{ is such that } \tau_a(\alpha) = \tau(\alpha) \text{ for } \alpha \in F_{2\ell}^* \setminus \{x\} \text{ and } \tau_a(x) = \tau(x) \cup \{(k_{2\ell}, a)\}, \text{then } q^* | \tau_a \Vdash_{\mathbb{S}_*(\kappa)} \rho_x \upharpoonright J_i = \mathcal{Z}_\tau^x(a) \text{ and } \mathcal{Z}_\tau^x(a) \in a.$

Since $|T(F_{2\ell}^*, 2\ell, q^*)| \leq |T(F_{2\ell}^{\gamma}, 2\ell, q^{\gamma})|^2 < 2^i$ (remember $(*)_3$), we may use Lemma 3.5 to find $r_{\delta}(k_{2\ell}), r_{\gamma}(k_{2\ell}) \leq k_{2\ell}$ such that

 $(*)_{11}$ for every $\tau \in T(F_{2\ell}^*, 2\ell, q^*)$ there is $k \in [m_{2i}, m_{2i+1})$ satisfying

$$\left(\mathcal{Z}^{\gamma}_{\tau}(\pi_i(r_{\gamma}(k_{2\ell})))\upharpoonright[n_k,n_{k+1})\right) +_2\left(\mathcal{Z}^{\delta}_{\tau}(\pi_i(r_{\delta}(k_{2\ell})))\upharpoonright[n_k,n_{k+1})\right) = f\upharpoonright[n_k,n_{k+1}).$$

(Remember, f was chosen in $(*)_0$.)

This completes the definition of r_{γ} and r_{δ} . Let $q^+ \in \mathbb{S}_*(\kappa)$ be such that $\operatorname{dom}(q^+) = \operatorname{dom}(q^*) = \operatorname{dom}(q^{\gamma}) \cup \operatorname{dom}(q^{\delta})$ and $q^+(\alpha) = q^*(\alpha)$ for $\alpha \in \operatorname{dom}(q^+) \setminus \{\gamma, \delta\}$ and $q^+(\gamma) = r_{\gamma}$ and $q^+(\delta) = r_{\delta}$. Then q^+ is a (well defined) condition stronger than both q^{γ} and q^{δ} and such that

$$(\clubsuit) \ q^+ \Vdash \Big(\exists^{\infty} k < \omega\Big) \Big(\Big(\varrho_{\gamma} \upharpoonright [n_k, n_{k+1}) \Big) +_2 \Big(\varrho_{\delta} \upharpoonright [n_k, n_{k+1}) \Big) = f \upharpoonright [n_k, n_{k+1}) \Big)$$

(by $(*)_{10} + (*)_{11}$). Consequently, by $(*)_0$,

- (\heartsuit) $q^+ \Vdash "\rho_{\gamma}, \rho_{\delta} \in \mathcal{H}$ and $\rho_{\gamma} + 2\rho_{\delta} \notin \mathcal{H}$ and $(\mathcal{H}, +2)$ is a group", a contradiction.
- (2) The proof is a small modification of that for the first part, so we describe the new points only. Assume towards contradiction that for some $p_0 \in \mathbb{S}_*(\kappa)$ and a $\mathbb{S}_*(\kappa)$ -name H^* we have

$$p_0 \Vdash_{\mathbb{S}_*(\kappa)} "H^*$$
 is a meager non-null subgroup of $(\mathbb{R}, +)$ ".

Let H_0, H_1 be \mathbb{S}_* -names for subsets of D_0^{∞} such that

$$p_0 \Vdash_{\mathbb{S}_*(\kappa)} "H_0 = \mathbf{E}^{-1}[H^* \cap [0, 1/2)] \text{ and } H_1 = \mathbf{E}^{-1}[H^* \cap [0, 1)]".$$

Necessarily $p_0 \Vdash "H^* \cap [0, 1/2)$ is not null", so it follows from 2.2(1) that

$$p_0 \Vdash_{\mathbb{S}_{-}(\kappa)}$$
 " $H_0 \notin \mathcal{N}$ and $H_1 \in \mathcal{M}$ and $H_0 \subseteq H_1$ ".

Clearly we may pick a condition $p_1 \geq p_0$, a sequence $\bar{n} = \langle n_j : j < \omega \rangle \subseteq \omega$ and a function $f \in {}^{\omega}2$ such that

- $(\oplus)_0 \ n_{j+1} > n_j + j + 1 \text{ for each } j,$
- $(\oplus)_1$ $f(n_{j+1}-1)=0$ for each j, and
- $(\oplus)_2 \quad p_1 \Vdash_{\mathbb{S}_*(\kappa)} "\check{\mathcal{H}}_1 \subseteq \left\{x \in {}^\omega 2: \left(\forall^\infty j < \omega\right) \left(x \restriction [n_j, n_{j+1} 1) \neq f \restriction [n_j, n_{j+1} 1)\right)\right\}." \\ (\text{Note: } "[n_j, n_{j+1} 1)" \text{ not } "[n_j, n_{j+1}]".)$

Like in part (1), let $\bar{m} = \bar{m}[\bar{n}]$, $\bar{N} = \bar{N}[\bar{n}]$, $\bar{J} = \bar{J}[\bar{n}]$, $\bar{H} = \bar{H}[\bar{n}]$, $\pi = \pi[\bar{n}]$ and $\mathbf{F} = \mathbf{F}[\bar{n}]$. Let $A = \{|H_i| - 1 : i < \omega\}$ and $r^+ \in \mathbb{S}_*$ be such that $\operatorname{dom}(r^+) = \omega \setminus A$ and $r^+(k) = 0$ for $k \in \operatorname{dom}(r^+)$. Then each $\alpha < \kappa$ fix a $\mathbb{S}_*(\kappa)$ -name ρ_{α} such that $p_1 \Vdash_{\mathbb{S}_*(\kappa)}$ " $\rho_{\alpha} \in \bar{\mathcal{H}}_0 \cap \mathbf{F}(\eta_{\alpha})$ ".

Now repeat the arguments of the first part (with $(*)_1-(*)_{11}$ there applied to our $\bar{n}, f, \rho_{\alpha}$ and the operation \circledast_0 here) to find $q^+ \geq p_1$ and $\gamma, \delta \in \text{dom}(q^+)$ such that

$$(\lozenge) \ q^+ \Vdash `` (\exists^{\infty} k < \omega) ((\rho_{\gamma} \upharpoonright [n_k, n_{k+1})) \circledast_0 (\rho_{\delta} \upharpoonright [n_k, n_{k+1})) = f \upharpoonright [n_k, n_{k+1})) ".$$

Let $G \subseteq \mathbb{S}_*(\kappa)$ be a generic over \mathbf{V} such that $q^+ \in G$ and let us work in $\mathbf{V}[G]$. Let $\eta \in D_0^{\infty}$ be such that $\mathbf{E}(\varrho_{\gamma}^G) + \mathbf{E}(\varrho_{\delta}^G) = \mathbf{E}(\eta)$ (remember $\mathbf{E}(\varrho_{\gamma}^G), \mathbf{E}(\varrho_{\delta}^G) < 1/2$). We know from (\lozenge) that there are infinitely many $k < \omega$ satisfying

$$(\blacklozenge) (\rho_{\gamma}^G \upharpoonright [n_k, n_{k+1})) \circledast_0 (\rho_{\delta}^G \upharpoonright [n_k, n_{k+1})) = f \upharpoonright [n_k, n_{k+1}).$$

Since $f(n_{k+1}-1)=0$ (see $(\oplus)_1$), we get from Observation 3.2(3) that for each k as in (\spadesuit) we also have

$$\begin{split} & \left(\left(\rho_{\gamma}^{G} \upharpoonright [n_{k}, n_{k+1}) \right) \circledast_{0} \left(\rho_{\delta}^{G} \upharpoonright [n_{k}, n_{k+1}) \right) \right) \upharpoonright [n_{k}, n_{k+1} - 1) \\ &= \left(\left(\rho_{\gamma}^{G} \upharpoonright [n_{k}, n_{k+1}) \right) \circledast_{1} \left(\rho_{\delta}^{G} \upharpoonright [n_{k}, n_{k+1}) \right) \right) \upharpoonright [n_{k}, n_{k+1} - 1) = f \upharpoonright [n_{k}, n_{k+1} - 1). \end{split}$$

Therefore (by Observation 3.2(4)) for each k satisfying (\spadesuit) , we have

$$\eta \upharpoonright [n_k, n_{k+1} - 1) = f \upharpoonright [n_k, n_{k+1} - 1),$$

so

$$(\exists^{\infty} k < \omega) (\eta \upharpoonright [n_k, n_{k+1} - 1) = f \upharpoonright [n_k, n_{k+1} - 1)).$$

Consequently, by $(\oplus)_2$, we have that $\eta \notin \underline{H}_1^G$, i.e., $\mathbf{E}(\eta) \notin (\underline{H}^*)^G \cap [0,1)$. This contradicts the fact that $\mathbf{E}(\varrho_\gamma^G), \mathbf{E}(\varrho_\delta^G) \in (\underline{H}^*)^G$, $\mathbf{E}(\eta) = \mathbf{E}(\varrho_\gamma^G) + \mathbf{E}(\varrho_\delta^G)$ and $(\underline{H}^*)^G$ is a subgroup of $(\mathbb{R}, +)$.

Remark 4.2. Instead of the CS product of forcing notions \mathbb{S}_* we could have used their CS iteration of length ω_2 . Of course, that would restrict the value of the continuum in the resulting model.

5. Problems

Both Theorems 2.3(1) and 4.1(1) can be repeated for other product groups. We may consider a sequence $\langle H_n : n < \omega \rangle$ of finite groups and their coordinate-wise product $H = \prod_{n < \omega} H_n$. Naturally,

H is equipped with product topology of discrete H_n 's and the product probability measure. Then there exists a null non-meager subgroup of H but it is consistent that there is no meager non-null such subgroup. It is natural to ask now:

PROBLEM 5.1.

- (1) Does every locally compact group (with complete Haar measure) admit a null non-meager subgroup?
- (2) Is it consistent that no locally compact group has a meager non-null subgroup?

In relation to Theorem 4.1, we still should ask:

PROBLEM 5.2. Is it consistent that there exists a translation invariant Borel hull for the meager ideal on $^{\omega}2$? On \mathbb{R} ?

REFERENCES

- BARTOSZYŃSKI, T.—JUDAH, H.: Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, Massachusetts, 1995.
- [2] BAUMGARTNER, J. E.: Iterated forcing. In: Surveys in Set Theory (A. Mathias, ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge, Britain, pp. 1–59.
- [3] BAUMGARTNER, J. E.: Sacks forcing and the total failure of Martin's axiom, Topology Appl. 19 (1985), 211–225.
- [4] BUKOVSKÝ, L.: The Structure of the Real Line. Monogr. Mat. 71, Birkhäuser, 2011.
- [5] FILIPCZAK, T.—ROSŁANOWSKI, A.—Shelah, S.: On Borel hull operations, Real Anal. Exchange 40 (2015), 129–140. arxiv:1308.3749.
- [6] JECH, T.: Set Theory. Springer Monogr. Math., Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- [7] ROSŁANOWSKI, A.: n-localization property, J. Symbolic Logic 71 (2006), 881-902. arxiv:math.LO/0507519.
- [8] ROSLANOWSKI, A.—SHELAH, S.: Norms on possibilities I: forcing with trees and creatures. Mem. Amer. Math. Soc. 141(671), 1999. arxiv:math.LO/9807172.

[9] ROSŁANOWSKI, A.—STEPRĀNS J.: Chasing Silver. Canad. Math. Bull. 51 (2008), 593-603. arxiv:math.LO/0509392.

Received 4. 6. 2016 Accepted 12. 10. 2016 *Department of Mathematics University of Nebraska at Omaha Omaha, NE 68182-0243 USA

E-mail: roslanow@member.ams.org

**Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem
ISRAEL

Department of Mathematics Rutgers University New Brunswick, NJ 08854 USA

 $E\text{-}mail\colon \verb|shelah@math.huji.ac.il|$

 $\mathit{URL} \colon \mathsf{http://www.math.rutgers.edu/}{\sim} \mathsf{shelah}$