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Torsion-free abelian groups are consistently a∆1
2-complete

by

Saharon Shelah (Jerusalem) and Douglas Ulrich (Irvine, CA)

Abstract. Let TFAG be the theory of torsion-free abelian groups. We show that
if there is no countable transitive model of ZFC− + “κ(ω) exists”, then TFAG is a∆1

2-
complete; in particular, this is consistent with ZFC. We define the α-ary Schröder–
Bernstein property, and show that TFAG fails the α-ary Schröder–Bernstein property
for every α < κ(ω). We leave open whether or not TFAG can have the κ(ω)-ary Schröder–
Bernstein property; if it did, then it would not be a∆1

2-complete, and hence not Borel
complete.

1. Introduction. In their seminal paper [3], Friedman and Stanley in-
troduced Borel complexity, a measure of the complexity of the class of count-
able models of a sentence Φ ∈ Lω1ω. Let Mod(Φ) be the set of all countable
models of Φ with universe N (or any other fixed countable set). Then Mod(Φ)
can be made into a standard Borel space in a natural way.

Definition 1.1. Suppose Φ, Ψ are sentences of Lω1ω. Then write Φ ≤B Ψ
(Φ is Borel reducible to Ψ) if there is a Borel-measurable function f :
Mod(Φ) → Mod(Ψ) satisfying the following: for all M1,M2 ∈ Mod(Φ),
M1
∼= M2 if and only if f(M1) ∼= f(M2).
Write Φ ∼B Ψ (Φ and Ψ are Borel bi-reducible) if Φ ≤B Ψ and Ψ ≤B Φ.

One way to think about the definition of ≤B is that f induces an injection
from Mod(Φ)/∼= to Mod(Ψ)/∼=; in other words, we are comparing the Borel
cardinality of Mod(Φ)/∼= and Mod(Ψ)/∼=.

In [3], Friedman and Stanley showed that there is a maximal class of
sentences under ≤B, namely the Borel complete sentences. For example, the
theories of graphs, groups, rings, linear orders, and trees are all Borel com-
plete. This provides a way to answer the question “Is it possible to classify
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276 S. Shelah and D. Ulrich

the countable models of Φ” negatively in a precise sense: if Φ is Borel com-
plete, then classifying the countable models of Φ is as hard as classifying
arbitrary countable structures.

In [3], Friedman and Stanley leverage the Ulm analysis [15] to show that
torsion abelian groups are far from Borel complete. They then pose the
following question:

Question. Let TFAG be the theory of torsion-free abelian groups. Is
TFAG Borel complete?

This has attracted considerable attention, but has nonetheless remained
open. The following theorem of Hjorth [7] is the best known so far, where
(Φα : α < ω1) is the Friedman–Stanley tower:

Theorem 1.2. Φα ≤B TFAG for every α < ω1.

This means that if TFAG is not Borel complete, then it represents a very
new phenomenon. In fact, in [3], Friedman and Stanley separately described
the following question as one of the basic open problems of the general theory:
if Φ is a sentence of Lω1ω and if Φα ≤B Φ for each α < ω1, must Φ be Borel
complete?

In Section 2, we give a uniform treatment of the main currently known
techniques of coding information into abelian groups. The basic idea for
these codings is old, dating at least to [7] and [2]; namely, we start with
a free abelian group, and then tag various subgroups by making the ele-
ments infinitely divisible by particular primes. However, to make the coding
more robust we adopt an idea of [5], replacing the use of primes by an alge-
braically independent sequence of p-adic integers for a fixed prime p. As a
first application, we show the following, where AG is the theory of abelian
groups:

Theorem 1.3. TFAG ∼B AG. Further, if R is any countable ring, then
R-mod, the theory of left R-modules, satisfies R-mod ≤B AG.

In Section 3, we expand on Hjorth’s proof of Theorem 1.2. To state our
results we need to introduce some more terminology.

Definition 1.4. By ZFC−, we mean ZFC without the power-set axiom,
but where we have replacement and not only collection, and we strengthen
choice to the well-ordering principle; this is as in [4].

κ(ω) is the least cardinal κ such that κ→ (ω)<ω2 . This makes sense even
in models of ZFC− (or less).

For example, if κ is a regular cardinal, then H(κ) |= ZFC−, where H(κ)
is the set of sets of hereditary cardinality at most κ; this is easily checked by
running through the list of axioms. In particular, HC |= ZFC−, where HC is
the set of hereditarily countable sets.
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Definition 1.5. Sometimes natural reductions that arise require trans-
finite recursion, and thus are not Borel. A coarser notion of reduciblity
that allows for this is absolute ∆1

2 reducibility, denoted a∆1
2. This notion

has been studied, for instance, by Hjorth [8, Chapter 9]. Namely: suppose
Φ, Ψ are sentences of Lω1ω. Then put Φ ≤a∆1

2
Ψ if there is some function

f : Mod(Φ) → Mod(Ψ) with a ∆1
2 graph such that for all M,N ∈ Mod(Φ),

M ∼= N if and only if f(M) ∼= f(N), and such that this continues to hold in
any forcing extension. Explicitly, if σ(x, y) is the Π1

2 definition of the graph
of f , and τ(x, y) is the Σ1

2-definition of the graph of f , and if V[G] is a forcing
extension, then σ(x, y) and τ(x, y) coincide on Mod(Φ)V[G]×Mod(Ψ)V[G] and
define the graph of a function fV[G] such that for all M,N ∈ Mod(Φ)V[G],
M ∼= N if and only if fV[G](M) ∼= fV[G](N).

Using the basic idea of Theorem 1.2, we are able to prove the following
theorem in Section 3:

Theorem 1.6. Suppose there is no transitive model of ZFC− + “κ(ω)
exists”. Then Graphs ≤a∆1

2
TFAG.

Corollary 1.7. It is consistent with ZFC that Graphs ≤a∆1
2
TFAG,

and hence that TFAG is a∆1
2-complete.

It is natural to ask whether the set-theoretic hypothesis is necessary. For
instance, the second author [16] can show that if κ(ω) exists, then a key part
of the proof of Theorem 1.6 fails, namely, the conclusion of Theorem 3.3
below. This failure suggests the following question: are models of TFAG
controlled by some sort of biembeddability invariants? We investigate this
question in Section 4.

The Schröder–Bernstein property is the simplest way that biembeddabil-
ity can control isomorphism. This notion was originally introduced by Nur-
magambetov [10], [11], who defined that a complete first order theory T has
the Schröder–Bernstein property in the class of all models if for allM,N |= T ,
if M and N are elementarily biembeddable, then M ∼= N . Goodrick investi-
gated this property further, including in his thesis [6] where he proves that
if T has the Schröder–Bernstein property in the class of all models, then T
is classifiable of depth 1, i.e. I(T,ℵα) ≤ |α+ ω|2ℵ0 for all α.

For our purposes, we want to tweak the definition in several ways. First
of all, elementary embedding is somewhat awkward to deal with outside the
context of complete first order theories.

Definition 1.8. Suppose M,N are L-structures. Then f : M ≤ N is
an embedding if the following holds: whenever R is a relation symbol of
L then f [RM ] ⊆ [RN ], and whenever F is a function symbol of L then
f ◦ FM = FN ◦ f . Write M ≤ N if there is an embedding f : M → N .
Also, write (M,a) ≤ (N, b) if there is an embedding f : M ≤ N with
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f(a) = b. Finally, write M ∼ N if M ≤ N ≤ M , and write (M,a) ∼ (N, b)
if (M,a) ≤ (N, b) ≤ (M,a).

In the context of groups, we will only want to consider injective embed-
dings; formally then, we add a binary predicate for {(a, b) : a 6= b}.

The following is what we mean by the Schröder–Bernstein property:

Definition 1.9. Suppose Φ is a sentence of Lω1ω. Then Φ has the
Schröder–Bernstein property if whenever M,N are countable models of Φ, if
M ∼ N then M ∼= N .

This fails for TFAG, as first proved by Goodrick [6]. Recently, Calderoni
and Thomas [1] have shown that the relation of biembeddability on models
of TFAG is Σ1

1-complete, which is as bad as possible.
However, the proof of Theorem 1.6 suggests a weaker property: perhaps

a group G |= TFAG is determined by {(G, a)/∼ : a ∈ G}. We will call
this the 1-ary Schröder Bernstein property. In Section 4, we generalize this
further to the α-ary Schröder–Bernstein property, for any ordinal α; the
0-ary Schröder–Bernstein property is the Schröder–Bernstein property.

The second author proves in [16]:

Theorem 1.10. Suppose κ(ω) exists, and suppose α is an ordinal. If Φ
is a sentence of Lω1ω with the α-ary Schröder–Bernstein property, then Φ is
not a∆1

2-complete (and hence not Borel complete).

In Section 4, we prove:

Theorem 1.11. For every α < κ(ω), TFAG fails the α-ary Schröder–
Bernstein property.

The construction breaks down at κ(ω), so the following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder–Bernstein prop-
erty?

2. Some bireducibilities with TFAG. Notation: If X is a set and G
is a group we let

⊕
X G denote the group of functions from X to G with

finite support; so we consider
⊕

X G ≤ GX .
For p a prime, Z[1/p] is the subring of Q generated by 1/p; and similarly

for sets of primes. Z(p) (read: Z localized at the ideal (p)) is Z[1/q : q 6= p].
Let Zp be the p-adic integers, i.e. the completion of Z(p) under the p-adic
metric. Let Qp be the field completion of Zp.

Given groups G ≤ H, say that G is a pure subgroup of H if for every
n < ω, nH ∩G = nG. If p is a prime, say that G is a p-pure subgroup of H
if for every n < ω, pnH ∩G = pnG.

The following is a generalization of Hjorth’s notion of “eplag.”
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Definition 2.1. Suppose I and J are countable index sets. Then let
LI,J be the language extending the language of abelian groups, with a unary
predicate symbol Gi for each i ∈ I, and a unary function symbol φj for each
j ∈ J (we will allow φj to be a partial function).

Let ΩI,J be the infinitary LF -sentence such that (G,+, Gi, φj : i ∈ I,
j ∈ J) |= ΩI,J if and only if the following all hold:

• (G,+) ≡∞ω
⊕

ω Z;
• each Gi is a subgroup of G;
• each dom(φj) is either equal to all of G, or else to some Gi;
• each φj : dom(φj)→ G is a homomorphism.

Let Ωp
I,J assert additionally that each Gi is a pure subgroup of G.

Some important examples: the countable models of Ω{0},0 are of the form
(G,H) where G is free abelian of infinite rank (i.e., isomorphic to

⊕
ω Z) and

H is a subgroup of G. The countable models of Ω0,{0} are of the form (G,φ)
where G is free abelian of infinite rank and φ : G→ G is a homomorphism.
The countable models of Ωω,0 are of the form (G,Gn : n < ω), where G is
free abelian of infinite rank and each Gn is a subgroup of G.

We will sometimes denote a model (G,Gi, φj : i ∈ I, j ∈ J ) |= ΩI,J
as G.

We aim to prove the following. Let AG denote the theory of abelian
groups.

Theorem 2.2. Suppose I,J are countable index sets, not both empty.
Then Ωp

I,J ∼B ΩI,J ∼B TFAG ∼B AG.

The proof will be via many lemmas.

Lemma 2.3. TFAG ≤B Ωp
{0},0 and AG ≤B Ω{0},0.

Proof. We describe the essential features of the construction, leaving it
to the reader to check that it is Borel when formulated as an operation on
Polish spaces. Suppose G is an (infinite) countable abelian group. Define
φ :

⊕
G Z → G to be the augmentation map, that is given a ∈

⊕
G Z, let

φ(a) =
∑

b∈G a(b)b (this is really a finite sum). Let K be the kernel of φ.
Thus G 7→ (

⊕
G Z,K) works, with the use of G ∼=

⊕
G Z/K. This shows

AG ≤B Ω{0},0; but note that if G is torsion-free, then K will be pure, so we
also get TFAG ≤B Ωp

{0},0.

Lemma 2.4. Ω{0},0 ≤B Ω0,{0}. Hence, whenever I,J are not both empty,
Ω{0},0 ≤B ΩI,J and Ωp

{0},0 ≤B Ωp
I,J .

Proof. Suppose (G,H) |= Ω{0},0 is a given countable model; so G is free
abelian of infinite rank and H is a subgroup of G. Write G′ = G×H ′, where
H ′ ∼= H; note that H ′ and hence G′ is free abelian, since subgroups of free
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abelian groups are free. Define φ : G′ → G′ via φ�G = 0 and φ�H′ : H ′ ∼= H.
Then (G,H) 7→ (G′, φ) works, where we use G = ker(φ) and H = im(φ).

The second claim follows trivially (note Ωp
0,{0} = Ω0,{0}).

Lemma 2.5. For any countable index sets I,J , we have ΩI,J ≤B Ωω,0
and Ωp

I,J ≤B Ωp
ω,0.

Proof. Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union).
We show that ΩI,J ≤B ΩI′,0 and Ωp

I,J ≤B Ωp
I′,0.

Suppose (G,Gi : i ∈ I, φj : j ∈ J ) |= ΩI,J . Define G′ = G×G; for each
i ∈ I, define G′i to be the copy of Gi in the first factor of G′; for each j ∈ J ,
define G′j to be the graph of φj ; define G′∗0 = G×0; and finally let G′∗1 be the
graph of the identify function idG : G → G. Then (G′, G′i : i ∈ I ′) |= ΩI′,0
works. Also note that if each Gi is pure, then so is each G′i′ ; this is because
the graph of a partial homomorphism is pure if and only if its domain is
pure.

Lemma 2.6. Ωω,0 ≤B Ωp
ω,0.

Proof. By the preceding lemma, it suffices to find index sets I,J such
that Ωω,0 ≤B Ωp

I,J . Set I = ω ∪ {∗} and J = ω.
Suppose (G,Gn : n < ω) |= Ωω,0. We define G′ = G ×

⊕
n<ω(

⊕
Gn
Z).

For each n < ω let G′n =
⊕

Gn
Z; let G′∗ = G. Finally, define φn : G′n → G′

to be the augmentation map
⊕

Gn
Z→ Gn. Then clearly (G′, G′i : i ∈ I, φj :

j ∈ J ) works (G = G′∗ and Gn = Im(φn) for all n).

Note that to finish the proof of Theorem 2.2, it suffices to show that
Ωp
ω,0 ≤B TFAG. Indeed, we would then know that for any countable index

sets I,J not both empty, TFAG ≤B Ωp
{0},0 ≤B Ωp

I,J ≤B Ωp
ω,0 ≤B TFAG,

and thus these are all equivalent; and similarly AG ≤B ΩI,J ≤B Ωω,0 ≤B

Ωp
ω,0 ≤B AG, and so these are also all equivalent.
This remaining reduction is more involved than the others; the basic idea

for it is due to Goodrick [5]. To begin, we need the following lemma. The
point is that if G is a p-pure subgroup of

⊕
ω Zp, then the isomorphism type

of (ZpG,G) depends only on the isomorphism type of G, where ZpG is the
Zp-submodule of

⊕
ω Zp generated by G.

Lemma 2.7. Suppose G is a p-pure subgroup of
⊕

ω Zp. Then there is a
Zp-module isomorphism φ : (Zp ⊗ G)/(p∞(Zp ⊗ G)) → ZpG, where Zp ⊗ G
is the tensor product (over Z). Further, φ(1⊗ g+ p∞(Zp ⊗G)) = g for each
g ∈ G.

Proof. Define ψ(γ, a) = γa, going from Zp×G to ZpG. As ψ is clearly a
Z-bilinear map, it induces a group homomorphism φ0 : Zp ⊗ G → ZpG.
Clearly φ0 is 0 on p∞(Zp ⊗G) so induces a map φ : (Zp ⊗G)/(p∞(Zp ⊗G))
→ ZpG. We check this works. Clearly φ is surjective and φ(1⊗g+p∞(Zp⊗G))
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= ψ(1, g) = g, and φ preserves the Zp-action. So it suffices to check that the
kernel of φ0 is p∞(Zp ⊗G).

Given γ ∈ Zp and n < ω, let γ�n ∈ {0, . . . , pn−1} be the unique element
with γ − γ�n ∈ pnZp (recall that Zp is the completion of Z in the p-adic
metric; so choose (km : m < ω) a sequence from Z converging to γ and note
that km mod pn must eventually be constant).

Suppose
∑

i<n γiai = 0; we want to show
∑

i<n γi ⊗ ai ∈ p∞(Zp ⊗ G).
Note that for each m,

∑
i<n γiai ∈ pm(

⊕
ω Zp). Hence, for each m,

bm :=
∑
i<n

γi�mai ∈ pmG

(we use the fact that G is p-pure). Note that in Zp ⊗ G,
∑

i<n γi�m ⊗ ai =
1⊗ bm, since we can move all the γi�m’s to the right-hand side; and 1⊗ bm ∈
pm(Zp ⊗ G). Also, 1 ⊗ bm −

∑
i<n γi ⊗ ai ∈ (pmZp) ⊗ G, as it is equal to∑

i<n(γi�m−γi)⊗ai. Thus
∑

i<n γi⊗ai ∈ pm(Zp⊗G) for all m, as desired.

Finally, we have:

Lemma 2.8. Ωp
ω,0 ≤B TFAG.

Proof. Let p be a prime. Let (γn : 1 ≤ n < ω) be a sequence of alge-
braically independent elements of Zp over Q such that each γn is a unit of Zp
(in particular is not divisible by p). Write γ0 = 1. Note that (γn : n < ω) is
then linearly independent over Q.

Let (
⊕

ω Z, Gn : n < ω) |= Ωp
ω,0; we can suppose G0 = G1 =

⊕
ω Z. Let

G be the p-pure subgroup of
⊕

ω Zp generated by
⋃
n<ω γnGn (that is, close

off under addition, inverses, and division by p within
⊕

ω Zp). We want to
check that the map G 7→ G works.

First, suppose (
⊕

ω Z, Gn : n < ω) ∼= (
⊕

ω Z, G′n : n < ω); we want
to verify that the corresponding groups G,G′ are isomorphic. Let φ be the
isomorphism. Then φ lifts canonically to an isomorphism φ∗ :

⊕
ω Zp ∼=⊕

ω Zp (let (ei : i < ω) be the standard basis of
⊕

ω Z, define φ∗(
∑

i γiei) =∑
i γiφ(ei), where (ei : i < ω) is the standard basis of

⊕
ω Z; more abstractly,

φ∗ = 1 ⊗ φ where we view
⊕

ω Zp = Zp ⊗
⊕

ω Z). Then clearly φ∗�G is an
isomorphism onto G′.

For the reverse it suffices, by Lemma 2.7, to show we can canonically
recover each Gn from (ZpG,G).

Note that every a ∈ G can be written as
∑

n<ω γnp
k(n)bn, where k(n) ∈ Z,

bn ∈ Gn with all but finitely many bn = 0, and k(n) = 0 whenever bn = 0.
(Not all such sums are in G; G contains such sums which are additionally in⊕

ω Zp.) We call this a representation of a if each p - bn. Then representations
are unique: For suppose

∑
n<ω γnp

k(n)bn =
∑

n<ω γnp
k′(n)b′n. Let i ∈ ω; then

we have
∑

n<ω(pk(n)bn(i) − pk
′(n)b′n(i))γn = 0. By linear independence of

(γn : n < ω) this implies pk(n)bn(i) = pk
′(n)b′n(i) for all i and n. Hence
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pk(n)bn = pk
′(n)b′n for all n. Then by divisibility assumptions we deduce that

bn = b′n and so k(n) = k′(n) for all n.
Suppose f ∈ ZpG and let 1 ≤ m < ω. It suffices to show that a ∈ Gm if

and only if a ∈ G and γma ∈ G: Left to right follows from our assumption
that γ0 = 1. For right to left: let

∑
n<ω γnp

k(n)bn be the representation
of a, and let

∑
n<ω γnp

k′(n)b′n be the representation of γma. Let i ∈ ω.
Then

∑
n<ω γmγnp

k(n)bn(i) =
∑

n<ω γnp
k′(n)b′n(i). Note that the only time

γmγn = γk is when n = 0 and k = m. Thus by linear independence of
(γn : n < ω)_ (γmγn : 1 ≤ n < ω) we find that bn = 0 for all n 6= 0, and
b′n = 0 for all n 6= m. In particular, a = pkb for some b ∈ Gm. Since

⊕
ω Z is

p-pure in
⊕

ω Zp and since Gm is p-pure in
⊕

ω Z, we see that a ∈ Gm.

Remark 2.9. It is easy to add to the list in Theorem 2.2. For instance,
we can additionally insist that each φj is a pure embedding, i.e. preserves
the divisibility relations.

A much stronger condition is the following: let Ω∗I,J be ΩI,J together
with the second-order assertion saying, given (G,Gi : i ∈ I, φj : j ∈ J), that
there is a basis B of G (as a Z-module) such that each Gi is spanned by basis
elements of B and each φj takes basis elements to basis elements. All of the
known complexity of TFAG is also present in Ω∗ω,{0}; see the next section.

Finally, we aim to show that whenever R is a countable ring, then R-mod
(the theory of left R-modules) is Borel reducible to AG. This will not be used
in the remainder of the paper.

Definition 2.10. Suppose I,J are countable index sets. Let Ω−I,J be
the LI,J -theory such that (G,+, Gi, φj : i ∈ I, j ∈ J ) |= Ω−I,J if and only
if:

• (G,+) is an abelian group;
• each Gi is a subgroup of G;
• each dom(φj) is either all of G or else some Gi;
• each φj : dom(φj)→ G is a homomorphism.

So the only difference with ΩI,J is that we are no longer requiring G ≡∞ω⊕
ω Z.

Theorem 2.11. For all countable index sets I,J , we have Ω−I,J ∼B AG.

Proof. Clearly AG ≤B Ω−I,J . (Given G |= AG, let each Gi = G and let
each φj be the identity of G.) Also, by exactly the same argument as before,
Ω−I,J ≤B Ω−ω,0. So it suffices to show that Ω−ω,0 ≤B Ωω∪{∗},0.

Given (G,Gn : n < ω) |= Ω−ω,0 (that is, G is an abelian group and each
Gn is a subgroup of G), write G′ =

⊕
G Z; let G′∗ be the kernel of the

augmentation map G′ → G; and finally define G′n = G′∗ +
⊕

Gn
Z. Then
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(G′, G′n : n < ω,G′∗) works; we use G ∼= G′/G∗ via an isomorphism that
takes each Gn to G′n/G∗.

Corollary 2.12. Suppose R is a countable ring. Then R-mod ≤B AG.

Proof. An R-module (M,+, ·r : r ∈ R) can be viewed as a model of Ω−0,R,
and this gives a reduction R-mod ≤B Ω−0,R.

3. Embedding graphs into TFAG. In this section, we prove Theo-
rem 1.6: if there is no transitive model of ZFC−+ “κ(ω) exists”, then Graphs
≤a∆1

2
TFAG. To begin, we introduce some terminology for colored trees.

Definition 3.1. A colored tree is a structure (T,≤, 0, c) where (T,≤)
is a tree (of height at most ω) with root 0, and c : T → ω. We view these
as model-theoretic structures; formally we can replace c with a sequence of
unary predicates. Let CT be the sentence of Lω1ω describing colored trees.

As notation, whenever we say T ,S, etc. is a colored tree, we will have
T = (T,<T , 0T , cT ), S = (S,<S , 0S , cS), etc., unless stated otherwise.

Suppose T and T ′ are two colored trees. Then say that f : T ≤ T ′ is an
embedding of trees if:

• f(0T ) = 0S ;
• f preserves height;
• for all s ∈ T , cT ′(f(s)) = cT (s);
• for all s, t ∈ T , if s ≤T t then f(s) ≤T ′ f(t).

We do not require that f be injective.
Say that T and T ′ are tree-biembeddable (T ∼ T ′) if T ≤ T ′ and T ′ ≤ T .

These definitions agree with the definitions from the introduction, provided
we add predicates for the elements of height n.

If T and t ∈ T then ht(t) denotes its height in T (if there is ambiguity
we will write htT (t)). Let T≥t denote the subtree of all elements of T bigger
than or equal to t, with the induced coloring.

We will now split the proof of Theorem 1.6 into two main subtheorems.

Theorem 3.2. There is a Borel map f : Mod(CT)→ Mod(TFAG) such
that for all T , T ′ |= CT, if T ∼= T ′ then f(T ) ∼= f(T ′), and if f(T ) ∼= f(T ′)
then T ∼ T ′. (In fact, for every t ∈ T , there is t′ ∈ T ′ of the same height
with T≥t ∼ T ′≥t′, and conversely.)

Theorem 3.3. Suppose there is no transitive model of ZFC−+ “κ(ω) ex-
ists”. Then there is an absolute ∆1

2-reduction g : Mod(Graphs)→ Mod(CT)
such that whenever G,G′ ∈ Mod(Graphs), if G � G′ then g(G) � g(G′).

In Theorem 3.3, recall that as part of the definition of absolute ∆1
2-

reduction, we know that if G ∼= G′ then g(G) ∼= g(G′). We are essentially
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following Hjorth’s proof of [7, Theorem 1.2], although Theorem 2.2 will make
our life easier. The second author shows in [16] that if κ(ω) exists, then the
conclusion of Theorem 3.3 fails.

Before proceeding, note that it suffices to establish Theorem 3.2 and
Theorem 3.3. Indeed, let h = f ◦ g : Mod(Graphs) → Mod(TFAG). Clearly
f ◦ g has a ∆1

2 graph, and preserves isomorphism; we need to check this
remains true in forcing extensions. Suppose V[G] is a forcing extension. By
the definition of absolute ∆1

2-reduction, gV[G] still makes sense, and is a
reduction from Graphs to CT. The remaining properties of f, g are preserved
by Shoenfield’s absoluteness theorem.

Proof of Theorem 3.2. Suppose T = (T,<T , cT ) |= CT. We define a
model T ⊗ Z of Ωω×ω,{0} (f will be the function T 7→ T ⊗ Z). Let the
underlying group of T ⊗ Z be

⊕
T Z; define the group homomorphism πT :⊕

T Z →
⊕

T Z by πT (a)(t) =
∑

s∈succT (t) a(s), where succT (t) denotes the
set of all immediate successors of s in T . Viewing T ⊆

⊕
T Z, note that

πT (0T ) = 0, and for all s 6= 0T , πT (s) is the immediate predecessor of s. For
each n, i < ω write GT ,n,i =

⊕
t Z, where the sum is over all t ∈ T of height n

and with cT (t) = i. Let T ⊗Z be the structure (
⊕

T Z, GT ,n,i, πT : n, i < ω).
Let CT⊗Z be the Σ1

1-sentence describing the closure under isomorphism
of {T ⊗ Z : T |= CT}.

Note that it is obvious that if T1
∼= T2 then T1 ⊗ Z ∼= T2 ⊗ Z.

Fix some countable T |= CT. We perform some analysis on T ⊗Z; write
G =

⊕
T Z.

For each i = (im : m < n + 1) ∈ ωn+1, let GT ,i be the subgroup of all
a ∈ G such that πmT (a) ∈ GT ,n−m,in−m for each m ≤ n. Also let GT ,∅ = 0.
Note that πT takes GT ,i to GT ,i�n , also G is the direct sum of the various
GT ,i’s. Further, GT ,i is spanned by {t ∈ T : ht(t) = n, cT (t) = i}, where
cT (t) = (cT (t�0), cT (t�1), . . . , cT (t)).

For each nonzero a ∈ GT ,i, let T ∗a denote the set of all b such that for
some i ⊆ j (i.e. i is an initial segment of j), b ∈ GT ,j and π

lg(j)−lg(i)
T (b) = a.

If we define c∗a(b) = j(lg(j) − 1), and if we let b ≤a b′ if and only if some
πm(b′) is b, then (T ∗a ,≤a, c∗a) = T ∗a is a colored tree.

We need to characterize the colored trees T ∗a up to biembeddability. This
will be done in terms of products of trees:

Definition 3.4. If (Sk : k < k∗) are colored trees, then by the product∏
k<k∗

Sk, we mean the colored tree whose elements are all sequences (sk :
k < k∗), where for some n < ω, each sk has height n, and for some (im :
m ≤ n) ∈ ωn+1, we have cSk(sk�m) = im for all m ≤ n. Then we define the
color of (sk : k < k∗) to be in.
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Clearly,
∏
k<k∗

Sk ≤ Sk′ for each k′ < k∗, via projection onto the k′-
factor. In fact, T ≤

∏
k<k∗

Sk if and only if T ≤ Sk for each k < k∗. This
is because if T ≤

∏
k<k∗

Sk, then we can compose with the projection maps
to get T ≤ Sk for each k; and if fk : T ≤ Sk for each k < k∗, we can define
f : T ≤

∏
k<k∗

Sk via f(t) = (fk(t) : k < k∗).

Claim 1. Suppose a∈GT ,i is nonzero; enumerate supp(a)={tk : k<k∗}.
(Here, we are viewing a ∈

⊕
T Z as a function from T to Z of finite support

supp(a).) Then T ∗a ∼
∏
k<k∗

T≥tk .
Proof. First we will define an embedding f : T ∗a ≤

∏
k<k∗

T≥tk . We will
define f(b) inductively on the height of b ∈ T ∗a ; our inductive hypothesis will
be that f(b) = (tk : k < k∗) is a sequence from supp(b), and if we let i be
such that b ∈ GT ,i, then cT (tk) = i.

So we are given b and f(b) = (tk : k < k∗). Suppose i < ω and c ∈ GT ,ii
satisfies πT (c) = b. Then πT [supp(c)] ⊇ supp(b), so for each k < k∗ we can
find sk ∈ supp(c) with πT (sk) = tk. Clearly we can then define f(c) = (sk :
k < k∗), and continue.

For the reverse embedding
∏
k<k∗

T≥tk ≤ T ∗a , write a =
∑

k<k∗
λktk, and

send (sk : k < k∗) ∈
∏
k<k∗

T≥tk to
∑

k<k∗
λksk ∈ T ∗a .

Given an ω-labeled tree S, let GT ,i,S be the set of all a ∈ GT ,i such that
S ≤ T ∗a , along with a = 0. From the preceding claim it is clear that GT ,i,S
is a subgroup of GT ,i. Also, let GT ,i,>S be the sum of all GT ,i,S′ for S < S ′
(by this we mean that S ≤ S ′ and S ′ 6≤ S).

Note that if a ∈ GT ,i, then always a ∈ GT ,i,T ∗a , but sometimes also a ∈
GT ,i,>T ∗a . Say that a is good if this is not the case, i.e. a ∈ GT ,i,T ∗a \GT ,i,>T ∗a .

Claim 2. Suppose a ∈ GT ,i. Then a is good if and only if a is nonzero,
and there is some t ∈ supp(a) such that T ∗a ∼ T≥t.

Proof. Enumerate supp(a) = {tk : k < k∗}, and write a =
∑

k<k∗
λktk.

Then by Claim 1, T ∗a ≤
∏
k<k∗

T≥tk , so T ∗a ≤ T≥tk for each k < k∗.
If a is good, then we cannot have T ∗a < T≥tk for each k, so T≥tk ∼ T ∗a for

some k as desired. For the converse, suppose t ∈ supp(a) satisfies T ∗a ∼ T≥t.
Write a =

∑
i<i∗

bi. Then t ∈ supp(bi) for some i < i∗. By Claim 1, T ∗bi ≤ T≥t,
and thus T ∗bi 6> T≥t ∼ T

∗
a .

In particular, if a ∈ GT ,i is good then T ∗a ∼ T≥t for some t ∈ T , and so
we can recover {T≥t/∼ : t ∈ T, ht(t) = n} from the isomorphism class of
T ⊗ Z, for each n. This concludes the proof of Theorem 3.2.

Before turning to the proof of Theorem 3.3, we need some set-theoretic
observations.

First, we note that various familiar facts about κ(ω) continue to hold
when the ambient set theory is just ZFC− (less suffices as well). Recall that
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a cardinal κ (in a model of ZFC) is totally indescribable if for every n, for
every sentence φ in the language of set theory with an extra relation symbol,
and for every R ⊆ Vκ with (Vκ+n,∈, R) |= φ, there is an α < κ such that
(Vα+n,∈, R ∩ Vα) |= φ. This is a large cardinal notion; it implies that κ is
weakly compact. In fact, weak compactness is equivalent to this condition
when restricted to n = 1 (see [9, Theorem 6.4], due to Hanf and Scott).

Lemma 3.5. Work in ZFC−.

(A) Suppose κ→ (ω)<ω2 and N is a transitive model of ZFC− containing κ
(possibly a proper class). Then (κ→ (ω)<ω2 )N .

(B) If V = L (we really just need global choice), and if κ(ω) exists, then κ(ω)
is inaccessible (i.e., κ(ω) is a regular cardinal, and for all α < κ(ω),
P(α) exists and has cardinality less than κ(ω)). Thus, Lκ(ω) = Vκ(ω) is
a set model of ZFC.

(C) If V = L and if κ(ω) exists, then Vκ(ω) |= “There exist totally inde-
scribable cardinals.”

(D) If V = L, then κ(ω) is the least cardinal κ such that whenever f :
[κ]<ω → 2, there is an increasing sequence (αn : n < ω) from κ such
that f(α0, . . . , αn−1) = f(α1, . . . , αn) for all n.

(E) If V = L, then κ(ω) is the least cardinal κ such that there is no antichain
(Tα : α < κ(ω)) of ω-colored trees; by an antichain we mean that for all
α < β < κ(ω), Tα 6≤ Tβ and Tβ 6≤ Tα. (If κ(ω) does not exist then we
just mean that for every cardinal κ, there is an antichain of length κ.)

Note that Corollary 1.7 follows from Theorem 1.6 and (B). Moreover,
(C) provides a strengthening: it is consistent with ZFC+ “There is a totally
indescribable cardinal” that Graphs ≤a∆1

2
TFAG.

Proof of Lemma 3.5. All of these are routine modifications of the case
where the ambient set theory is ZFC. In the context of ZFC, (A) and (D)
are due to Silver [13]; (B) is also due to Silver [14], or see Corollary 7.6
of Kanamori [9]; (C) is due to Silver and Reinhardt, see [9, Exercise 9.18];
and (E) is due to Shelah [12]—we provide a sketch of the proof.

First suppose κ < κ(ω). Choose some f : [κ]<ω → 2 failing (D). For
each α < κ, we define a colored tree Tα as follows. Let Tα be all finite
increasing sequences of ordinals from κ whose first term is α; let <Tα be
initial segment. Let cTα(s) = f(s). Let Sα be Tα together with the tree of
descending sequences from α, with the new elements all colored 2.

Note that for all α0 < α1 < κ, Tα0 6≤ Tα1 , as given an embedding
ρ : Tα ≤ Tβ , we can inductively find (αn : n < ω) such that for all n,
ρ(αi : i < n) = (αi : 1 ≤ i ≤ n + 1); but this clearly contradicts the
hypothesized property of f . From this it follows that (Sα : α < κ) is the
desired antichain.
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In the other direction, suppose (Tα : α < κ(ω)) is a sequence of colored
trees. Write κ = κ(ω); choose an elementary substructure H ≤ (Vκ, . . .)
(using <L) such that H is the Skolem hull of an infinite set {αn : n < ω} of
indiscernible ordinals. Then it is easy to check that Tα0 ≤ Tα1 .

We can now finish.

Proof of Theorem 3.3. Suppose A is a hereditarily countable set. We
describe a colored tree TA = (TA, <A, cA), and then show that TA � TA′ for
all A 6= A′. Moreover, the operation A 7→ TA will be absolute for transitive
models of ZFC−.

Before proceeding, we indicate how we finish. Given G ∈ Mod(Graphs),
let g(G) be the <L[G]-least element of Mod(CT) which is isomorphic to
Tcss(G), where css(G) is the canonical Scott sentence ofG. (Note that Tcss(G) ∈
(HC)L[G] since (HC)L[G] |= ZFC−, so Tcss(G) does have models with uni-
verse ω in L[G].) Clearly, for any G,G′ |= CT, if G ∼= G′ then css(G) =
css(G′) so g(G) = g(G′), and if G � G′ then css(G) 6= css(G′) and so
g(G) � g(G′). To finish, note that g is computed correctly in any countable
transitive model of ZFC−. Hence g has a ∆1

2-graph: g(G) = T if and only if
for some or any well-founded V ∈ Mod(ZFC−) containing codes for G and T ,
V believes g(G) = T . Moreover, by Shoenfield’s absoluteness theorem (or
just repeating the proof), this continues to hold in every forcing extension,
and hence g is an absolute ∆1

2-reduction.
So we define A 7→ TA. Let A be given, and let α = rnk(A), where rnk

is foundation rank. Let (Sβ : β ≤ α) be the <L-least antichain of colored
trees indexed by α + 1. This is computed correctly in any transitive model
of ZFC−, since if M is any transitive model of ZFC− with α ∈M , then LM
does not believe that κ(ω) exists, and so LM can find a <LM -least sequence
(Sβ : β ≤ α) such that LM |= (Sβ : β ≤ α) is an antichain. But the property
of being an antichain of colored trees of length α+1 is absolute to models of
ZFC−; thus (Sβ : β ≤ α) is the <L-least antichain of colored trees indexed
by α+ 1.

We define a preliminary colored tree T0,A = (T0,A, <0,A, c0,A). First,
let (T0,A, <0,A) be the tree of all nonempty finite sequences (a0, . . . , an)
from tcl(A ∪ {A}) such that a0 = A and rnk(a0) > rnk(a1) > · · · >
rnk(an). Given (a0, . . . , an) ∈ T0,A, let c0,A(a0, . . . , an) = 0 if an−1 ∈ an,
and c0,A(a0, . . . , an) = 1 otherwise. Let TA be obtained from T0,A as fol-
lows: above each (a0, . . . , an) ∈ T0,A, put a copy of (Sβ, <Sβ ) where β is the
foundation rank of an; given t ∈ Sβ , let the color of the copy of t above
(a0, . . . , an) be cSβ (t) + 2.

Suppose TA ∼ TA′ . Let α = rnk(A) and α′ = rnk(A′). Let f : TA ≤ TA′
and f ′ : TA′ ≤ TA witness that TA ∼ TA′ . Note that f�TA,0 and f ′�TA′,0
witness that TA,0 and TA′,0 are biembeddable; since TA,0 is well-founded
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of rank α, and TA′,0 is well-founded of rank α′, this implies α = α′. Let
(Sβ : β ≤ α) be as above.

Now, consider the embedding

h := f ′ ◦ f : TA ≤ TA.
We claim that h�T0,A must be the identity. This suffices, since it implies
T0,A

∼= T0,A′ and hence A = A′.
Suppose that (a0, . . . , an) ∈ T0,A; write β = rnk(an) and h(a0, . . . , an) =

(b0, . . . , bn). We show by induction on β that an = bn; this suffices. Note
that Sβ ≤ Srnk(bn), and hence rnk(bn) = β also (this is the key point!).

If β = 0, then an = bn = ∅. Suppose we have verified the claim for
all γ < β. We show that for every a ∈ tcl(A ∪ {A}) with rnk(a) < β,
we have a ∈ an if and only if a ∈ bn. Indeed, suppose a is given. Write
h(a0, . . . , an, a) = (b0, . . . , bn, b). By construction of the coloring, we have
a ∈ an if and only if b ∈ bn; but by the inductive hypothesis, we have a = b.

4. Schröder–Bernstein properties for TFAG. We repeat a bit from
the introduction.

Definition 4.1. Suppose M,N are L-structures. Then f : M ≤ N is
an embedding if whenever R is a relation symbol of L then f [RM ] ⊆ [RN ],
and whenever F is a function symbol of L then f ◦ FM = FN ◦ f . Write
M ≤ N if there is an embedding f : M → N . Also, write (M,a) ≤ (N, b) if
there is an embedding f : M ≤ N with f(a) = b. Finally, write M ∼ N if
M ≤ N ≤M and write (M,a) ∼ (N, b) if (M,a) ≤ (N, b) ≤ (M,a).

In the context of groups, we will only want to consider injective embed-
dings; formally, we then add a unary predicate for {(a, b) : a 6= b}.

Definition 4.2. Suppose Φ is a sentence of Lω1ω. Then Φ has the
Schröder–Bernstein property if whenever M,N are countable models of Φ, if
M ∼ N then M ∼= N .

This fails for TFAG, as first proved by Goodrick [6] and in a strong
form by Calderoni and Thomas [1]. Nonetheless, the statement of Theo-
rem 3.2 suggests a weaker property: is a group G |= TFAG determined by
{(G, a)/∼ : a ∈ G}? We will call this the 1-ary Schröder–Bernstein property.
We generalize further:

Definition 4.3. SupposeM,N are L-structures, and a, b ∈M are tuples
of the same length. By induction on the ordinal α we define what it means
to have (M,a) ∼α (N, b).

• (M,a) ∼0 (N, b) if and only if (M,a) ∼ (N, b).
• For δ limit, (M,a) ∼δ (N, b) if and only if (M,a) ∼α (N, b) for all α < δ.
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• (M,a) ∼α+1 (N, b) if and only if for all a ∈ M there is b ∈ M with
(M,aa) ∼α (N, bb), and conversely.

Write M ∼α N if (M, ∅) ∼α (N, ∅).
Note the similarity between these clauses and those defining ≡αω; the

only change is in the base case.

Definition 4.4. Suppose α < ω1. Then Φ has the α-ary Schröder–
Bernstein property if for all countable models M,N |= Φ, if M ∼α N then
M ∼= N .

This notion can be extended to α ≥ ω1, with some care:

Definition 4.5. Suppose Φ is a sentence of Lω1ω. A pinned name for a
model of Φ is a pair (P, Ṁ), where P is a forcing notion, P 
 Ṁ ∈ Mod(Φ̌),
and P × P 
 Ṁ0

∼= Ṁ1, where Ṁ0 is the copy of Ṁ in the first factor of
P × P , and Ṁ1 is the copy of Ṁ in the second factor of P × P .

Suppose (P, Ṁ) and (Q, Ṅ) are pinned names for models Φ, and α is an
ordinal. Then write (P, Ṁ) ∼α (Q, Ṅ) if P ×Q×R 
 Ṁ ∼α Ṅ , where R is
some or any forcing notion which makes α, P,Q, Ṁ, Ṅ all countable. Write
(P, Ṁ) ∼= (Q, Ṅ) if P ×Q 
 Ṁ ∼= Ṅ .

Φ has the α-ary Schröder–Bernstein property if for all pinned names
(P, Ṁ), (Q, Ṅ) for models of Φ, if (P, Ṁ) ∼α (Q, Ṅ) then (P, Ṁ) ∼= (Q, Ṅ).

This does not conflict with the previous definition, by a downward Löwen-
heim–Skolem argument (see [16]). (In [16], canonical Scott sentences are used
in place of pins, but this is equivalent.)

The following will serve as the only interface we need with the machinery
of pins:

Lemma 4.6. Suppose Φ is a sentence of Lω1ω, and α is an ordinal. Sup-
pose there are M,N |= Φ such that M ∼α N but M 6≡∞ω N . Then Φ fails
the α-ary Schröder–Bernstein property.

Proof. Let PM be the set of all finite partial functions from ω to M ,
and let ḟM be the PM -name for the generic surjection from ω onto M̌
added by PM . Let PN , ḟN be defined similarly. Then (PM , ḟ

−1
M (M̌)) and

(PN , ḟ
−1
N (Ň)) are pinned names for models of Φ, and it is easy to check that

(PM , ḟ
−1
M (M̌)) ∼α (PN , ḟ

−1
N (Ň)) but (PM , ḟ

−1
M (M̌)) � (PN , ḟ

−1
N (Ň)).

Looking at the statement of Theorem 3.2, it is reasonable to ask if TFAG
has the 1-ary Schröder–Bernstein property. This would have consequences
for the complexity of TFAG, as the following theorem of [16] shows:

Theorem 4.7. Suppose κ(ω) exists, and α is an ordinal. If Φ is a sen-
tence of Lω1ω with the α-ary Schröder–Bernstein property, then Φ is not
a∆1

2-complete (and hence not Borel complete).
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In this section, we prove Theorem 4, namely: for every α < κ(ω), TFAG
fails the α-ary Schröder–Bernstein property. The construction breaks down
at κ(ω), so the following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder–Bernstein prop-
erty?

In the remainder of this section, we prove the following:

Theorem 4.8. Suppose κ(ω) does not exist. Then for every ordinal α,
TFAG fails the α-ary Schröder–Bernstein property.

Note that Theorem 4.7 follows: for every α < κ(ω), TFAG fails the
α-ary Schröder–Bernstein property. This is because we can always apply
Theorem 4.8 in Vκ(ω) = H(κ(ω)).

So, in the remainder of this section, suppose κ(ω) does not exist; equiva-
lently, for every cardinal λ, there is an antichain of colored trees of length λ.

First of all, we note the following lemma:

Lemma 4.9. Suppose I,J are countable index sets, not both empty; let
F : Ωp

I,J ≤B TFAG be the Borel reduction from the proof of Theorem 2.2
(that is, the composition of the reductions from Lemmas 2.5 and 2.8). Suppose
G

0
, G

1 ∈ Mod(ΩI,J ) and α < ω1. If G
0 ∼2·(ω·α) G

1, then F (G
0
) ∼α F (G

1
).

Hence, if Ωp
I,J fails the α-ary Schröder–Bernstein property for every ordi-

nal α, then so does TFAG.

Proof. The final claim follows, since the first part continues to hold in
forcing extensions.

Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union).
Let F0 : Ωp

I,J ≤B Ωp
I′,0 be as in Lemma 2.5 and let F1 : Ωp

ω,0 ≤B TFAG
be as in Lemma 2.8.

First we look at F0. We recap the definition of F0, for the reader’s conve-
nience. Suppose G = (G,Gi : i ∈ I, φj : j ∈ J ) |= Ωp

I,J is countable. Define
G′ = G×G; for each i ∈ I, define G′i to be the copy of Gi in the first factor
of G′; for each j ∈ J , define G′j to be the graph of φj ; define G′∗0 = G× 0;
and finally let G′∗1 be the graph of the identity function idG : G→ G. Then
F (G,Gi, φj : i ∈ I, j ∈ J) is G′ = (G′, G′i′ : i′ ∈ I ′) (suppressing the coding
that arranges everything to have universe ω).

Suppose G0, G1 |= Ωp
I,J are countable, and define G′0, G

′
1 as above. Then

it is easy to check that for all ((a0
i , a

1
i ) : i < i∗) fromG

′
0 and all (b0i , b

1
i ) : i < i∗)

from G
′
1, if f : (G0, (a

j
i : i < i∗, j < 2)) ≤ (G1, (b

j
i : i < i∗, j < 2), then

f × f : (G
′
0, ((a

0
i , a

1
i ) : i < i∗)) ≤ (G

′
1, ((b

0
i , b

1
i ) : i < i∗)). From this it follows

by an easy inductive argument that for all β < ω1, if (G0, (a
j
i : i < i∗,
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j < 2)) ∼2·β (G1, (b
j
i : i < i∗, j < 2), then (G

′
0, ((a

0
i , a

1
i ) : i < i∗)) ∼β

(G
′
1, ((b

0
i , b

1
i ) : i < i∗)).

Next we look at F1. Let (γn : 1 ≤ n < ω) be as in Lemma 2.8, i.e.
a sequence of algebraically independent units of Qp; and let γ0 = 1. Let
G = (

⊕
ω Z, Gn : n < ω) be a countable model of Ωp

ω,0; we only consider the
case where G0 = G1 =

⊕
ω Z, without loss of generality. Then recall F1(G)

is (isomorphic to) G, where G is the p-pure subgroup of
⊕

ω Zp generated by⋃
n γnGn. Recall that every a ∈ G can be written as a sum

∑
n<ω γnp

k(n)bn,
where k(n) ∈ Z and bn ∈ Gn for all n, and all but finitely many k(n), bn
are 0. Say that this is a weak representation of a (it may not be a full
representation: we do not require that p - bn in Gn.)

SupposeGj = (
⊕

ω Z, G
j
n : n < ω) are countable models ofΩp

ω,0 for j < 2;

let G0, G1 be defined from G
0
, G

1 as above. Suppose f : G
0 ≤ G

1. Define
f∗ :

⊕
ω Zp →

⊕
ω Zp via f∗(

∑
n γnen) =

∑
n γnf(en), where (en : n < ω) is

the standard basis. Moreover, f∗�G0 : G0 ≤ G1, since f∗ preserves the action
of Zp.

Suppose (ai : i < i∗) is a sequence from
⊕

ω Z, and suppose (a′i : i < i∗)

is a sequence from
⊕

ω Z. Suppose for each i < i∗, ai =
∑

n∈Γi γnp
ki(n)bi,n is

a weak representation with respect to G0, and a′i =
∑

n∈Γi γnp
ki(n)b′i,n is a

weak representation with respect to G1, for finite sets Γi ⊂ ω. Suppose finally
that f : (G

0
, (bi,n : n ∈ Γi, i < i∗)) ≤ (G

1
, (b′i,n : n ∈ Γi, i < i∗)). Then note

that each f∗(pki(n)bi,n) equals pki(n)b′i,n, hence each f∗(ai) equals a′i, hence
f∗ : (G0, (ai : i < i∗)) ≤ (G1, (a′i : i < i∗)).

From this, an easy inductive argument shows that if (G
0
, (bi,n : n ∈ Γi,

i < i∗)) ∼ω·α (G
1
, (b′i,n : n ∈ Γi, i < i∗)), then (G0, (ai : i < i∗)) ∼α

(G1, (a′i : i < i∗)).

Thus it suffices to show that some Ωp
I,J fails the α-ary Schröder–Bern-

stein property for all α.
For the next lemma, we make the obvious definitions for Ωp

I,J in the case
where the index sets are possibly uncountable. Recall that we are assuming
κ(ω) does not exist; the following lemma is the only place this is used.

Lemma 4.10. Suppose I,J are index sets, and suppose G0
, G

1 |= ΩI,J .
Then we can find F(G

0
),F(G

1
) |= Ωp

ω×ω∪{0,1},{0,1} such that G0 ≡∞ω G
1 if

and only if F(G
0
) ≡∞ω F(G

1
), and for every ordinal β, if G0 ∼β G

1 then
F(G

0
) ∼β F(G

1
).

Proof. We can suppose J = ∅, by applying the construction from Lem-
ma 2.5.
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Choose λ large enough so that I, G0
, G

1 are all of size at most λ. We can
suppose I = λ.

Let (Tγ : γ < λ) be a family of pairwise-non-biembeddable colored trees.
Let T be the colored tree such that cT (0) = 0 (say), and for each γ < λ,
there are λ-many t ∈ T of height 1 such that T≥t ∼= Tγ , and for each t ∈ T
of height 1, T≥t is isomorphic to some such Tγ .

Recall the definition of T ⊗ Z = (GT , GT ,n,i, π : n, i < ω) |= Ωp
ω×ω,{0}

from Theorem 3.2. For each γ < λ, let Eγ be the set of all t ∈ T of height 1

such that T≥t ∼= Tγ . Let ĜT ,γ denote the subgroup of GT spanned by Eγ .
Note that each ĜT ,γ is L∞ω-definable, since (Tγ : γ < λ) is an antichain,
and so g ∈ ĜT ,γ if and only if g = 0 or else Tγ embeds into T ∗g .

Let F(G
`
)=(GT ⊕G`, GT ,n,i, H0, H1, π, ψ` : n, i<ω) |= Ωp

ω×ω∪{0,1},{0,1},
where H0 = T ⊗ Z, H1 = G`, and where ψ` : GT → G` satisfies:

• ψ`(t) = 0 for all t ∈ T not of height 1,
• for every γ < λ, ψ�Eγ : Eγ → G`γ is λ-to-one.

It is easy to check that this works.

Thus, to finish it suffices to verify the following.

Lemma 4.11. Suppose α∗ is an ordinal. Then for some index set I, there
are G0

∗, G
1
∗ |= Ωp

I,{0} with G
0
∗ ∼α∗ G

1
∗ yet G

0
∗ 6≡∞ω G

1
∗.

Our idea is the following: given G = (G,Gi : i ∈ I, φ) |= Ωp
I,{0}, define

XG := G\
⋃
iGi and define ≤G to be the partial order ofXG given by: a ≤G b

if and only if φn(a) = b for some n < ω satisfying further the condition
that φm(a) ∈ XG for all m < n. Then we will arrange that (XG

0
∗ ,≤G

0
∗)

is ill-founded, but (XG
1
∗ ,≤G

1
∗) is well-founded. It turns out we can make

G
0
∗ ∼α∗ G

1
∗ without upsetting this.

We will be approximating G0
∗ and G

1
∗ as a union of chains. To control the

eventual behavior of (XG
i
∗ ,≤G

i
∗), we will be defining upper bounds to the

rank function at each stage. The following are the approximations we will
be using:

Definition 4.12. Given an index set I, let ΓI denote all tuples (G,B, ρ)
where:

• G = (G,Gi, φ : i ∈ I) |= Ωp
I,{0};

• G is free abelian (this is not redundant, since Ωp
I,{0} only asserts that

G ≡∞ω
⊕

ω Z) and B is a basis of G;
• φ : G→ G;
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• ρ : XG → ON ∪ {∞} satisfies: for all a, b ∈ XG, if φ(b) = a and ρ(b) <∞
then ρ(a) < ρ(b). Hence ρ(a) ≥ rnk(a) where rnk is the rank function for
(XG,≤G);
• for all a ∈ X and all nonzero n ∈ Z, ρ(a) = ρ(na).

When we write G,G′, G`, etc., we will always have G = (G,Gi, φ : i ∈ I),
G
′
= (G′, G′i, φ

′ : i ∈ I), G
`

= (G`, G`i , φ
` : i ∈ I), etc.

Definition 4.13. Suppose I, I ′ are index sets with I ⊆ I ′. Suppose
(G,B, ρ) ∈ ΓI and (G

′
,B′, ρ′) ∈ ΓI′ . Then say that (G

′
,B′, ρ′) extends

(G,B, ρ) if:

• G ⊆ G′ and B ⊆ B′;
• for each i ∈ I, G′i ∩G = Gi;
• for each i ∈ I ′ \ I, G′i ∩G = 0;
• φ′�G = φ;
• ρ′�

XG = ρ.

The following lemma is immediate.

Lemma 4.14. Suppose δ < λ+ is a limit ordinal, (Iγ : γ < δ) is an
increasing chain of index sets, and ((G

γ
,Bγ , ργ) : γ < δ) is a sequence

satisfying each (G
γ
,Bγ , ργ) ∈ ΓIγ and for γ < γ′, (G

γ′
,Bγ′ , ργ′) extends

(G
γ
,Bγ , ργ). Then the natural union of the chain (G,B, ρ) extends each

(G
γ
,Bγ , ργ).

The final set of definitions describe the embeddings we will use to arrange
G

0
∗ ∼α∗ G

1
∗.

Definition 4.15. If (G,B, ρ) ∈ ΓI , then say that H is a basic subgroup
of G if H is spanned by H ∩ B.

Suppose (G,B, ρ), (G
′
,B′, ρ′) ∈ ΓI . Then by a partial −1-embedding from

(G,B, ρ) into (G
′
,B′, ρ′), we mean a map f whose domain is a basic subgroup

D of G satisfying the following (recall that we always write G = (G,Gi :

i ∈ I, φ) and G′ = (G′, G′i : i ∈ I, φ′)):
• D is closed under φ;
• f : D → G′ is an injective homomorphism with f [B ∩D] ⊆ B′;
• f [Gi] ⊆ G′i for each i ∈ I;
• for all a ∈ D, φ′(f(a)) = f(φ(a)).

For an ordinal α ≥ 0, say that f is a partial α-embedding if additionally
f [XG∩D] ⊆ XG

′
, and for all a ∈ XG∩D, if ρ(a) < ω·α, then ρ(a) = ρ′(f(a)).

If dom(f) = G then we drop the word “partial.”

Finally, we describe the construction of G0
∗, G

1
∗. We will build them as

a union of chains. In the outer layer, we will construct, by induction on
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n < ω, index sets In, and, for each ` < 2, (G
`,n
,B`,n, ρ`,n) ∈ ΓIn with a

privileged element en ∈ G0,n for n < ω, and for each ` < 2 a set F `,n,
satisfying various constraints. The goal is that (en : n < ω) will witness that
XG

0,n

is ill-founded, and F `,n will be a set of partial embeddings from G
`,n

to G1−`,n, which will be used to arrange that G0
∗ ∼α∗ G

1
∗. Formally, we need

the following requirements:

(1) for n < m < ω, (G
`,m
,B`,m, ρ`,m) extends (G

`,n
,B`,n, ρ`,n);

(2) e0 = 0, and for n > 0, en ∈ XG
0,n

; further, φ0,n+1(en+1) = en, so
necessarily ρ0,n(en) =∞ for n > 0 (ρ0,0(e0) does not make sense because
e0 = 0 /∈ XG

0,0

);
(3) for all a ∈ XG

1,n

, ρ1,n(a) <∞;
(4) for all n, `, (φ`,n)n = 0 (i.e. φ`,n iterated n times is 0);
(5) each F `,n is a set of tuples (α,D,R, f), where −1 ≤ α ≤ α∗, and f is

a partial α-embedding from (G
`,n
,B`,n, ρ`,n) to (G

1−`,n
,B1−`,n, ρ1−`,n)

with domain D and range R;
(6) for each n < m and each ` < 2, F `,n ⊆ F `,m;
(7) if (α,D,R, f) ∈ F `,n and α ≥ 0, then (α,R,D, f−1) ∈ F1−`,n (in par-

ticular f−1 is a partial α-embedding);
(8) if (α,D,R, f) ∈ F `,n, and either β < α or β = −1, then for every

a ∈ G`,n+1, there are some D′ ⊇ D ∪ {a}, R′ ⊇ R, and f ′ ⊇ f such that
(β,D′, R′, f ′) ∈ F `,n+1;

(9) (α∗, 0, 0, 0) ∈ F0,0.

Having done this, let (G
`
∗,B`∗, ρ`∗) be the union of the chain ((G

`,m
,B`,m, ρ`,m) :

m < ω), as promised by Lemma 4.14. Then G0
∗ 6≡∞ω G

1
∗, since (XG

0
∗ ,≤G

0
∗) is

ill-founded (by (2)) while (XG
1
∗ ,≤G

1
∗) is well-founded (by (3)). On the other

hand, it is clear that for all n < ω, for all (α,D,R, f) ∈ F `,n with α ≥ 0, and
for all finite tuples a ∈ D, we have (G

`
∗, a) ∼α (G

1−`
∗ , f(a)) (by (8)). Thus

G
0
∗ ∼α∗ G

1
∗.

So it remains to show this construction is possible. We can letG`,0 be arbi-
trary, subject to conditions (3) and (4) above. To extend from G

`,n to G`,n+1,
we will need the following two lemmas.

Lemma 4.16. Suppose (G
`
,B`, ρ`) ∈ ΓI for each ` < 2. Suppose f is a

partial −1-embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1). Finally, suppose each

(φi)n+1 is 0. Then we can find an index set I ′ and an extension (G
2
,B2, ρ2)

of (G
1
,B1, ρ1) in ΓI′ such that XG2 = XG1, f extends to a −1-embedding h

from (G
0
,B0, ρ0) to (G

2
,B2, ρ2), and (φ2)n+1 = 0.
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Proof. Let D be the domain of f and let R be its range. Recall that we
require D and R to be basic subgroups of G, that is, B0 ∩D spans D. Let
I ′ ⊇ I be large enough.

Write A = B0 \D. Let G2 = G1 ×
⊕
A Z. Write H = 0×

⊕
A Z, and let

g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1 ∪ g[A]. Define
h : G0 → G2 via h�D = f and h�span(A) = g.

Define φ2 : G2 → G2 via φ2�G1 = φ1 and φ2�H = h ◦ φ0 ◦ g−1. For each
i ∈ I, let G2

i = G1
i .

Let (G2
i : i ∈ I ′ \I) enumerate all singly generated pure subgroups of G2

which are not contained in G1. Note that then XG
2

= XG
1

, so we must let
ρ2 = ρ1, and then clearly we are done.

Lemma 4.17. Suppose (G
`
,B`, ρ`) ∈ ΓI for each ` < 2. Suppose 0 ≤ β

< α and f is a partial α-embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1) such

that f−1 is also a partial α-embedding. Finally, suppose each (φi)n+1 is 0.
Then we can find an index set I ′ and an extension (G

2
,B2, ρ2) of (G

1
,B1, ρ1)

in ΓI′ such that:

• f extends to a β-embedding h from (G
0
,B0, ρ0) to (G

2
,B2, ρ2);

• h−1 is a partial β-embedding from (G
2
,B2, ρ2) to (G

0
,B0, ρ0);

• for all a ∈ XG
2

\XG
1

, ρ2(a) < ω · α;
• (φ2)n+1 = 0.

Proof. Let D be the domain of f and let R be its range. Let I ′ ⊇ I be
large enough.

Write B0 = (B ∩D) ∪ A. Let G2 = G1 ×
⊕
A Z. Write H = 0 ×

⊕
A Z,

and let g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1∪g[A].
Define h : G0 → G2 via h�D = f and h�span(A) = g.

Define φ2 : G2 → G2 via φ2�G1 = φ1 and φ2�H = h ◦ φ0 ◦ g−1. For each
i ∈ I, let G2

i = G1
i . It remains to define G2

i for i ∈ I ′ \ I, and then to
define ρ2.

Let (G2
i : i ∈ I ′ \I) enumerate all singly generated pure subgroups of G2

which are not contained in G1 and which are not contained in R+H. Note
that then XG

2

= XG
1

∪h[XG
0

]. We define ρ2 as follows: Suppose a ∈ XG
2

. If
a ∈ XG

1

then we must let ρ2(a) = ρ1(a). Suppose instead a ∈ h[XG
0

]\XG
1

;
write a = h(a′). If ρ0(a) < ω · β then let ρ2(a) = ρ0(a). Otherwise, let k
be largest such that there is c′ ∈ XG

0

such that (φ0)k(c′) = a′, and for all
k′ < k, (φ0)k

′
(c′) ∈ XG

0

, and finally ρ0(c′) ≥ ω · β; let ρ2(a) = ω · β + k.
Note that k ≤ n since (φ0)n+1 = 0.

Now we claim this works. First of all:

Claim. Suppose a ∈ h[XG
0

]\XG
1

; write h(a′) = a. Then ρ0(a′) ≥ ρ2(a).
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Proof. This is immediate if ρ0(a′) < ω · β, so suppose instead ρ0(a′) ≥
ω · β; let c′, k be as in the definition of ρ2(a). Then ρ0(a′) = ρ0((φ0)k(c′)) ≥
ρ0(c′) + k ≥ ω · β + k = ρ2(a).

We show (G
2
,B2, ρ2) ∈ ΓI′ . We must check that for all a, b ∈ XG

2

with
φ2(b) = a and ρ2(a) <∞, we have ρ2(b) < ρ2(a). If b ∈ XG

1

, then a ∈ XG
1

and this is clear.
Suppose b ∈ h[XG

0

]\XG
1

and a ∈ XG
1

; note that a ∈ f [XG
0

] ⊆ h[XG
0

];
write a = f(a′) and b = h(b′).

We consider two further subcases. If ρ0(a′) = ρ1(a), then ρ2(a) = ρ0(a′)
> ρ0(b′) ≥ ρ2(b), using the claim. If ρ0(a′) 6= ρ1(a), then since f, f−1 are both
α-embeddings we must have ρ0(a′), ρ1(a) ≥ ω · α. Hence ρ2(a) = ρ1(a) ≥
ω · α > ω · β + n ≥ ρ2(b).

Finally, suppose both a, b ∈ h[XG
0

]\XG
1

. Write a = h(a′) and b = h(b′).
If ρ0(a′) < ω · β then ρ2(a) = ρ0(a′) > ρ0(b′) ≥ ρ2(b). If ρ0(a′) ≥ ω · β and
ρ0(b′) < ω ·β, then ρ2(a) ≥ ω ·β > ρ0(b′) = ρ2(b). Finally, if ρ0(a′) and ρ0(b′)
are both ≥ ω·β, then let k be as in the definition of ρ2(b), i.e. ρ2(b) = ω·β+k;
clearly then ρ2(a) ≥ ω · β + (k + 1).

To finish, it is clear that for all a′ ∈ G
0, if either ρ0(a′) < ω · β or

ρ2(h(a′)) < ω ·β, then ρ0(a′) = ρ2(h(a′)); hence h is a β-embedding and h−1

is a partial β-embedding.

Now, suppose we are given (G
`,n
,B`,n, ρ`,n), F `,n, and en satisfying (1)

through (9). We explain how to get (G
`,n+1

,B`,n+1, ρ`,n+1), F `,n+1, and en+1.
Define G0 = G0,n ×Z and en+1 = (0, 1) ∈ G0. Let I ⊇ In be sufficiently

large. For each i ∈ In let G0
i = G0,n

i . Choose (G0
i : i ∈ I \ In) so as to enu-

merate the singly-generated pure subgroups of G0 which are not contained
in G0,n and which do not contain en+1. Define φ0 via φ0�G0,n = φ0,n and
φ0(en+1) = en (or if n = 0 then let φ0(e1) = 0). We have defined G

0 |=
Ωp
I,{0}, an extension of G0,n. Note that XG

0

= XG
n,0

∪ {men+1 : m ∈ Z,
m 6= 0}. Let B0 = B0,n ∪ {en+1}, and define each ρ0(men+1) to be ∞.

Define G1 = G1,n; for each i ∈ In, let G1
i = G1, and for each i ∈ I \ In,

let G1
i = 0; let φ1 = φ1,n. Finally, let F ` = F `,n for each ` < 2.

The only thing left to do is arrange for (8) to hold. For this, apply Lem-
mas 4.16 and 4.17 repeatedly, using Lemma 4.14 at limit stages.

This concludes the proof of Theorem 4.8, and hence of Theorem 4.7.
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