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Abstract We will prove the following theorem: Let D be the ring of algebraic
integers of a finite Galois field extension F of Q and E a D-algebra such that E
is a locally free D-module of countable rank and all elements of E are algebraic
over F. Then there exists a left D-submodule M � E of FE D E˝D F such that the
left multiplications by elements of E are the only D-linear endomorphisms of M.
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1 Introduction

The main purpose of this paper is to honor the memory of Rüdiger Göbel, a
dear friend and colleague, who passed away much too early. He made significant
contributions on realizing rings as endomorphism rings of abelian groups and
modules in many different settings. Most of this work can be found in the excellent
monographs [4] and [5]. When Rüdiger came to Essen University, he started a
successful research seminar. Among the first batch of papers studied was A. L.
S. Corner’s celebrated paper [2], where he proved that each countable torsion-free
reduced ring R is the endomorphism ring of a countable torsion-free reduced abelian
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group G. If the additive group of such a ring R has finite rank n, then the group G can
be constructed such that G has rank � 2n. Corner also provided examples of rings
R such that the corresponding group G must have rank equal to 2n. On the other
hand, Zassenhaus [9] proved that for every ring R with identity and free additive
group of finite rank, there is some abelian group M such that R � M � R˝Z Q and
R D EndZ.M/, i.e., R and M have the same rank.

Soon after [9] was written, Butler [1] generalized Zassenhaus’s result replacing
“free abelian of finite rank” by “locally free abelian of finite rank”. Reid and
Vinsonhaler [7] extended this result by replacing the ring of integers by certain
Dedekind domains. More recently, Zassenhaus’s result was generalized in [3] to
rings with free additive groups of countable rank, whose elements are all algebraic
over Q. We will combine the results in [3] and [7] to obtain:

Theorem 1.1 Let D be the ring of algebraic integers of a finite Galois field
extension F of Q and E a D-algebra such that E is a locally free D-module of
countable rank and all elements of E are algebraic over F. Then there exists a left
D-submodule M � E of FE D E˝D F such that the left multiplications by elements
of E are the only D-linear endomorphisms of M.

After reading Corner’s paper [2], it became a goal of Rüdiger’s to remove the
cardinality barrier in this result. Eventually, this was accomplished by utilizing
powerful combinatorial tools such as the diamond principle and Shelah’s Black Box.

2 The Results

Notation 2.1 Let D denote a countable Dedekind domain of characteristic zero and
with infinitely many prime ideals. Let F be its field of fractions. It follows that for
any prime ideal P of D, the localization DP of D at P is a PID with unique maximal
ideal pDP for some p 2 P. Let bDP denote the P-adic closure of DP. Let f .x/ 2 FŒx�.
Then f .x/ 2 DPŒx� with the leading coefficient a unit in DP for all but finitely many
prime ideals P of D. Define NP.f / to be the number of roots of f .x/ in bDP. We call
D an admissible domain if for all f .x/ 2 FŒx� the set of prime ideals P of D with
NP.f / � 1 is infinite. If E is some D-module, then we call E torsion-free if se D 0

for s 2 D and e 2 E implies s D 0 or e D 0. Moreover, E is called locally free, if
the localization EP D E˝D DP is a free DP-module for all prime ideals P of D. If R
is some ring and a 2 R, we define the map a� from R to R to be the left multiplication
by the element a, i.e., .a�/.x/ D ax for all x 2 R.

Our main result will be the following:

Theorem 2.1 Let D be an admissible domain and E a countable, torsion-free and
locally free D-algebra such that each a 2 E is algebraic over F. Then there
exists a locally free left E-submodule M of FE D E ˝D F such that E � M and
EndD.M/ D E�, the ring of left multiplications by elements of E.
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2.1 The Proof of Theorem 1.1

Before we turn to the proof of Theorem 2.1, note that Theorem 1.1 will be an
immediate consequence provided:

Proposition 2.2 Let D be the ring of algebraic integers of some finite Galois field
extension of Q. Then D is an admissible Dedekind domain.

We need to show for all f .x/ 2 FŒx� the existence of infinitely many prime ideals
P of D with NP.f / � 1. We will line up some results from algebraic number theory
to obtain this proposition. Note that for any f .x/ 2 FŒx� there exists some d 2 D
with df .x/ 2 FŒx�. Thus, we may restrict to polynomials f .x/ 2 DŒx�. Furthermore,
any polynomial is a product of irreducible ones and we may restrict to irreducible
f .x/ 2 DŒx�.

We recall the following, well-known version of Hensel’s Lemma [6, Proposi-
tion 2, p. 43]:

Lemma 2.3 Let 1 2 S be a commutative ring and m an ideal of S such that S is
complete in the m-adic topology. Let f .x/ 2 SŒx� and a 2 S be such that f .a/ 2
f 0.a/2m. Then there exists some b 2 S such that f .b/ D 0 and b � a 2 f 0.a/2m.

Applying this to our situation:

Remark 2.4 Let P be a prime ideal of D and let f .x/ 2 DŒx� be irreducible of degree
n over F. Then f .x/ has only simple roots and thus has non-zero discriminant �.f /.
Let P be a prime ideal of D such that �.f / … P. Then f .x/mod P has no multiple
roots. Assume that a 2 bDP is such that f .a/ 2 pbDP. Then f 0.a/ … pbDP and we may
apply Lemma 2.3 to obtain b 2 bDP with f .b/ D 0 and b � a 2 pbDP. Thus, for
irreducible f .x/ 2 DŒx�, f .a/ 2 pbDP implies NP.f / � 1.

By the above it is sufficient to show that for any irreducible f .x/ 2 DŒx�, there are
infinitely many prime ideals P of D such that f .x/mod P has a root in D=P. Hensel’s
Lemma will then provide a root of f .x/ in bDP.

First we recall some well-known definitions that are in [6] and many other
sources.

Let k be an algebraic number field and K a Galois extension of k with Galois
group G. Let Ok (OK) denote the ring of algebraic integers in k (K). Let p be a prime
(ideal) of Ok and P a prime of OK lying over p. Then OK /P is a finite extension
of the finite field Ok=p and thus a finite field of order nP with cyclic Galois group
G D h�i over Ok=p where �.x/ D xnP modP. Let GP D fg 2 G W gP D Pg

denote the decomposition group of P and TP D fg 2 G W g D idOK=Pg the
inertia group of P. Then there exists some coset �TP 2 GP=TP which induces � .
Any element of that coset is called a Frobenius automorphism which we denote by
�.P;K=k/. Now we need a celebrated theorem due to Chebotarev [6, Theorem 10,
page 169]:
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Theorem 2.5 (Chebotarev) Let K be a Galois extension of k with Galois group
G. Let ; ¤ C � G be some set invariant under conjugations with jCj D c and
ŒK W k� D n. Let

M D fprimes p of k j p is unramified in K and there is some

prime P of K lying over p such that �.P;K=k/ 2 Cg:

Then the set M has a density and this density is c
n . Moreover, 0 < c

n < 1 for all
C   G.

The definition of density in this context can be found in [6, page 167]. All we
need to know is that only infinite sets have a positive density.

Now we need a result from [8]. We maintain our current notations.

Theorem 2.6 ([8, Theorem 1]) Let f .x/ 2 OkŒx� have degree n � 2 and be
irreducible over k. Let Np.f / be the number of roots of f .x/.mod Ok=p/ in Ok=p.
Let

P0.f / D fp prime in Ok j Np.f / D 0g:

Then P0.f / has density c
n . Moreover, 0 < c

n < 1.

This shows that the set of all primes p not in P0.f / has positive density and thus
is infinite, completing the proof of Proposition 2.2.

Here is an outline of Serre’s argument [8, page 432]: First, disregard all (finitely
many) primes p of Ok that are ramified or contain non-zero coefficients of f .x/. Let
K be the splitting field of f .x/ over k with Galois group G and � D �.P;K=k/.
Moreover, let X be the set of the n distinct roots of f .x/ in K. It turns out that Np.f /
is the number of fixed points of � � X. Now put

G0 D fg 2 G j g � X has no fixed pointg

and note that G0 is invariant under conjugation, with G0   G since idK … G0. Now
apply Theorem 2.5 with C D G0.

2.2 The Proof of Theorem 2.1

We start with an easy observation.

Proposition 2.7 Let 1 2 S be a commutative ring, A some S-algebra, and � 2 A.
Let f .x/ D

Pm
iD0 fixi 2 SŒx�, the polynomial ring over S. Then

f .x/ D f .�/C .x � �/.fm�
m�1 C g.�; x//

where g.�; x/ 2 span
ZŒx;f0;:::;fm�f�

j W 0 � j � m � 2g.
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Proof We evaluate
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Pm

jD1

�m
j

	

.�1/j�1. Recall that
Pm

jD0

�m
j

	

.�1/j D 0 and thus 1 D
�m
0

	

D �
Pm

jD1

�m
j

	

.�1/j D
Pm

jD1

�m
j

	

.�1/j�1.

This shows that f .x/ D f .�/ C .x � �/
�

fm�m�1 C g.�; x/
�

where g.�; x/ 2
span

ZŒx;f0;:::;fm�f�
j W 0 � j � m � 2g. ut

Corollary 2.8 Same notation as in the proposition. Let S be an integral domain
with Q its field of fractions and c 2 S such that f .c/ ¤ 0 D f .�/. Then

.c � �/�1 D
1

f .c/
.fm�

m�1 C g.�; x// 2 QA:

We also want to list:

Proposition 2.9 Let F be a field and V some vector space over F. If � 2 EndF.V/
is algebraic over F, then � has only finitely many eigenvalues.

Proof There exists some monic polynomial f .x/ 2 FŒx� such that f .�/ D 0. Let
0 ¤ v 2 V be an eigenvector of � with eigenvalue �. Then I D fg.x/ 2 FŒx� W
g.� �vF/ D 0g D .x� �/FŒx� is an ideal of FŒx� and f .x/ 2 I. This shows that � is a
root of f .x/, of which there are only finitely many. ut
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Lemma 2.10 Let � 2 EndD.EC/ such that � is algebraic over F. Let 0 ¤ e 2 E
and ˘ a finite number of prime ideals of D. Then there exists a prime ideal P … ˘
of D and c 2 D such that c � � is an automorphism of FEC and e … EP.c � �/.
Moreover, EP.c � �/�1 � p�kEP for some natural number k where PDP D pDP.

Proof Let g.x/ D
Pn

iD0 gixi 2 FŒx� be the minimal polynomial of � over F with
gn D 1. Let V D eFŒ� �, a finite dimensional � -invariant F-subspace of FE. Put
� D � �V , the restriction of � to V , and f .x/ D

Pm
iD0 fixi 2 FŒx� the monic minimal

polynomial of � . Then f .x/ is a divisor of g.x/ and the set of all prime ideals Q
of D for which h.x/ … DQŒx� for any monic divisor h.x/ of g.x/ is finite. We may
enlarge ˘ to contain the finitely many exceptions. By Proposition 2.7, we have, for
any s 2 D, that g.s/ D .s� �/.�n�1C

Pn�2
iD0 si�

i/ where si 2 DQ for all prime ideals
Q … ˘ . We infer that s � � is an automorphism of FEC whenever g.s/ ¤ 0. In this
case, we have that EQ.s � �/�1 �

1
g.s/EQ. A similar statement holds for s � � .

Since D is admissible, there is an infinite set of prime ideals Q of D such that
f .x/ has a root 	 in the Q-adic completion of the discrete valuation domain DQ. We
choose such a prime ideal P … ˘ . Let P D D \ pDP for some p 2 P.

Let V D eFŒ� � D e � spanFf1; �; �
2; : : : ; �m�1g be the � -invariant subspace of FE

generated by e. Note that fe; e�; e�2; : : : ; e�m�1g is a basis of V over F.
Let VP D V \ EP, which is a free DP-module of rank m. Let WP D

e � spanDP
f1; �; �2; : : : ; �m�1g, a free DP-module of rank m. Since DP is a PID,

the Stacked Basis Theorem for finite rank free modules holds and we infer that
phVP � WP for some natural number h.

Let 	0 2 D be such that 	 � 	0 mod phC1DP. Then f .	0CphCj/ � 0mod phC1DP

for all natural numbers j � 1. We infer the existence of some c 2 D such that

(1) g.c/ ¤ 0
(2) f .c/ � 0mod phC1DP.

Note that this implies f .c/ ¤ 0 and g.c/ � 0mod phC1DP as well.
It follows from the above that c�� 2 EndF.FEC/ is bijective with EP.c � �/�1 �

1
g.c/EP. Moreover, c � � 2 EndF.V/ is bijective as well.

Assume that e.c � �/�1 2 EP.
Since e.c � �/�1 2 eFŒ� � D V as well, we infer that e.c � �/�1 2 VP and thus

phe.c� �/�1 D ph

f .c/

�

e�m�1 C e 
�

2 WP for some  2 spanDP
f1; �; �2; : : : ; �m�2g.

This is a contradiction since 1
p e�m�1 … WP. ut

Corollary 2.11 Let˘ be a finite set of prime ideals of D and 0 ¤  2 EndF.FEC/

such that 1 D 0. Let t 2 E be such that 0 ¤ t . Then there is a prime ideal P … ˘
of D and a free DP-submodule MP of FEC such that

(1) EP � MP,
(2) MP ¢ MP and
(3) For each x 2 FE we have xMP � MP if and only if x 2 EP.

Note that (2) holds for any ' 2 EndF.FEC/ in place of  such that 1' D 0 and
t D t'.
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Proof Let 0 ¤ e D t . We may assume that e 2 E. Define � 2 EndF.FEC/ by
�.x/ D xt for all x 2 FE. Then �E � E since E is a ring. Since t is algebraic over
F, so is � and we can apply Lemma 2.10 and find a prime ideal P … ˘ and c 2 D
such that � D c � � 2 EndF.FEC/ is bijective, e … EP� and EP� � EP. Moreover,
EP�

�1 � p�kEP for some natural number k. We infer pkEP � EP� � EP.
Let MP D p�kEP� . Since � is injective, MP is a free DP-module.
Then E � EP � p�kEP� D MP and (1) holds. Moreover, EP � MP � MP since

the multiplication in FE is associative.
Since 1 D 0, we have �1� D �.c1 � �/ D t D e and p�ke 2 MP but

p�ke … p�kEP� D MP. This shows that MP ¢ MP and we have (2).
Let x 2 FE. Then x.p�kEP�/ D p�k.xEP/� is contained in p�kEP� if and only if

xEP � EP by the injectivity of � . Since 1 2 EP, this holds if and only if x 2 EP, and
(3) follows. ut

Let End0.FEC/ D f' 2 EndF.FEC/ W 1' D 0g be the set of all lin-
ear transformations of FEC that map the identity element of E to zero. Then
EndF.FEC/ D End0.FEC/ ˚ ..FEC/�/. There exists a countable subset 1 … B
of E such that FE D spanF.B [ f1g/. Note that if 0 ¤ ' 2 End0.FEC/, then there
exists some b 2 B such that b' ¤ 0. Moreover, b' is an element of the countable
(E is countable, cf. Notation 2.1 and Theorem 2.1) set FE. This shows that there
exists a countable list f'n W n 2 Ng of elements of End0.FEC/ such that for all
� 2 End0.FEC/ there exists some n 2 N and b 2 B such that �.b/ D 'n.b/ ¤ 0.
We apply Corollary 2.11 repeatedly to find a sequence of distinct prime ideals Pn of
D and free DPn -modules MPn with properties

(1n) EPn � MPn

(2n) MPn'n ¢ MPn and
(3n) If x 2 FE, then xMPn � MPn if and only if x 2 EPn .

If Q is a prime ideal not in the list fPn W n 2 Ng, we put MQ D EQ. Then we
have

(1) EP � MP for all prime ideals P of D and also
(3) For each x 2 FE, we have xMP � MP if and only if x 2 EP.

Now let M D
T

P MP, where the intersection runs over all prime ideals P of D.
Then E � M by (1), and M is locally free since all MP are free DP-modules. Recall
that EndD.M/ D

T

P EndDP.MP/. By (3) we get that

..FE/�/ \ EndD.M/ D .E�/:

Let 0 ¤  2 End0.FEC/. Then there exists some n 2 N such that, for some
b 2 B, we have b D b'n ¤ 0. By (2n), we have that MPn ª MPn which
shows that End0.FEC/ \ EndD.M/ D f0g. Let ' 2 EndD.M/. Then ' D  C .x�/
for some x 2 FE and  2 End0.FEC/. Pick 0 ¤ s 2 D with sx 2 E. Then
s' D s C s.x�/ D s C .sx�/, where sx 2 E, and we infer
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s' � .sx�/ D s 2 End0.FEC/ \ EndD.M/ D f0g:

Thus  D 0 and ' D x� for some x 2 E by condition (3). We conclude that
EndD.M/ D E�, as promised. ut
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