An Extension of M. C. R. Butler's Theorem on Endomorphism Rings

Manfred Dugas, Daniel Herden, and Saharon Shelah

Abstract We will prove the following theorem: Let *D* be the ring of algebraic integers of a finite Galois field extension *F* of \mathbb{Q} and *E* a *D*-algebra such that *E* is a locally free *D*-module of countable rank and all elements of *E* are algebraic over *F*. Then there exists a left *D*-submodule $M \supseteq E$ of $FE = E \otimes_D F$ such that the left multiplications by elements of *E* are the only *D*-linear endomorphisms of *M*.

Keywords Endomorphism rings • Butler's theorem

Mathematical Subject Classification (2010): Primary 20K20, 20K30; Secondary 16S60, 16W20

1 Introduction

The main purpose of this paper is to honor the memory of Rüdiger Göbel, a dear friend and colleague, who passed away much too early. He made significant contributions on *realizing rings as endomorphism rings of abelian groups and modules* in many different settings. Most of this work can be found in the excellent monographs [4] and [5]. When Rüdiger came to Essen University, he started a successful research seminar. Among the first batch of papers studied was A. L. S. Corner's celebrated paper [2], where he proved that each countable torsion-free reduced ring *R* is the endomorphism ring of a countable torsion-free reduced abelian

M. Dugas (⊠) • D. Herden

Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328, USA

 $e\text{-mail: Manfred_Dugas@baylor.edu; Daniel_Herden@baylor.edu}$

S. Shelah

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA e-mail: shelah@math.huji.ac.il

[©] Springer International Publishing AG 2017

M. Droste et al. (eds.), Groups, Modules, and Model Theory - Surveys and Recent Developments, DOI 10.1007/978-3-319-51718-6_13

group *G*. If the additive group of such a ring *R* has finite rank *n*, then the group *G* can be constructed such that *G* has rank $\leq 2n$. Corner also provided examples of rings *R* such that the corresponding group *G* must have rank equal to 2n. On the other hand, Zassenhaus [9] proved that for every ring *R* with identity and free additive group of finite rank, there is some abelian group *M* such that $R \subseteq M \subseteq R \otimes_{\mathbb{Z}} \mathbb{Q}$ and $R = \text{End}_{\mathbb{Z}}(M)$, i.e., *R* and *M* have the same rank.

Soon after [9] was written, Butler [1] generalized Zassenhaus's result replacing "free abelian of finite rank" by "locally free abelian of finite rank". Reid and Vinsonhaler [7] extended this result by replacing the ring of integers by certain Dedekind domains. More recently, Zassenhaus's result was generalized in [3] to rings with free additive groups of countable rank, whose elements are all algebraic over \mathbb{Q} . We will combine the results in [3] and [7] to obtain:

Theorem 1.1 Let D be the ring of algebraic integers of a finite Galois field extension F of \mathbb{Q} and E a D-algebra such that E is a locally free D-module of countable rank and all elements of E are algebraic over F. Then there exists a left D-submodule $M \supseteq E$ of $FE = E \otimes_D F$ such that the left multiplications by elements of E are the only D-linear endomorphisms of M.

After reading Corner's paper [2], it became a goal of Rüdiger's to remove the cardinality barrier in this result. Eventually, this was accomplished by utilizing powerful combinatorial tools such as the diamond principle and Shelah's Black Box.

2 The Results

Notation 2.1 Let *D* denote a countable Dedekind domain of characteristic zero and with infinitely many prime ideals. Let *F* be its field of fractions. It follows that for any prime ideal *P* of *D*, the localization D_P of *D* at *P* is a PID with unique maximal ideal pD_P for some $p \in P$. Let \hat{D}_P denote the *P*-adic closure of D_P . Let $f(x) \in F[x]$. Then $f(x) \in D_P[x]$ with the leading coefficient a unit in D_P for all but finitely many prime ideals *P* of *D*. Define $N_P(f)$ to be the number of roots of f(x) in \hat{D}_P . We call *D* an **admissible domain** if for all $f(x) \in F[x]$ the set of prime ideals *P* of *D* with $N_P(f) \ge 1$ is infinite. If *E* is some *D*-module, then we call *E* **torsion-free** if se = 0for $s \in D$ and $e \in E$ implies s = 0 or e = 0. Moreover, *E* is called **locally free**, if the localization $E_P = E \otimes_D D_P$ is a free D_P -module for all prime ideals *P* of *D*. If *R* is some ring and $a \in R$, we define the map $a \cdot$ from *R* to *R* to be the left multiplication by the element a, i.e., $(a \cdot)(x) = ax$ for all $x \in R$.

Our main result will be the following:

Theorem 2.1 Let *D* be an admissible domain and *E* a countable, torsion-free and locally free *D*-algebra such that each $a \in E$ is algebraic over *F*. Then there exists a locally free left *E*-submodule *M* of $FE = E \otimes_D F$ such that $E \subseteq M$ and $End_D(M) = E$, the ring of left multiplications by elements of *E*.

Butler's Theorem

2.1 The Proof of Theorem 1.1

Before we turn to the proof of Theorem 2.1, note that Theorem 1.1 will be an immediate consequence provided:

Proposition 2.2 Let *D* be the ring of algebraic integers of some finite Galois field extension of \mathbb{Q} . Then *D* is an admissible Dedekind domain.

We need to show for all $f(x) \in F[x]$ the existence of infinitely many prime ideals P of D with $N_P(f) \ge 1$. We will line up some results from algebraic number theory to obtain this proposition. Note that for any $f(x) \in F[x]$ there exists some $d \in D$ with $df(x) \in F[x]$. Thus, we may restrict to polynomials $f(x) \in D[x]$. Furthermore, any polynomial is a product of irreducible ones and we may restrict to irreducible $f(x) \in D[x]$.

We recall the following, well-known version of Hensel's Lemma [6, Proposition 2, p. 43]:

Lemma 2.3 Let $1 \in S$ be a commutative ring and m an ideal of S such that S is complete in the m-adic topology. Let $f(x) \in S[x]$ and $a \in S$ be such that $f(a) \in f'(a)^2m$. Then there exists some $b \in S$ such that f(b) = 0 and $b - a \in f'(a)^2m$.

Applying this to our situation:

Remark 2.4 Let *P* be a prime ideal of *D* and let $f(x) \in D[x]$ be irreducible of degree *n* over *F*. Then f(x) has only simple roots and thus has non-zero discriminant $\Delta(f)$. Let *P* be a prime ideal of *D* such that $\Delta(f) \notin P$. Then $f(x) \mod P$ has no multiple roots. Assume that $a \in \widehat{D}_P$ is such that $f(a) \in p\widehat{D}_P$. Then $f'(a) \notin p\widehat{D}_P$ and we may apply Lemma 2.3 to obtain $b \in \widehat{D}_P$ with f(b) = 0 and $b - a \in p\widehat{D}_P$. Thus, for irreducible $f(x) \in D[x], f(a) \in p\widehat{D}_P$ implies $N_P(f) \ge 1$.

By the above it is sufficient to show that for any irreducible $f(x) \in D[x]$, there are infinitely many prime ideals *P* of *D* such that $f(x) \mod P$ has a root in D/P. Hensel's Lemma will then provide a root of f(x) in \widehat{D}_P .

First we recall some well-known definitions that are in [6] and many other sources.

Let *k* be an algebraic number field and *K* a Galois extension of *k* with Galois group *G*. Let $\mathcal{O}_k(\mathcal{O}_K)$ denote the ring of algebraic integers in *k*(*K*). Let \mathfrak{p} be a prime (ideal) of \mathcal{O}_k and \mathfrak{P} a prime of \mathcal{O}_K lying over \mathfrak{p} . Then $\mathcal{O}_K/\mathfrak{P}$ is a finite extension of the finite field $\mathcal{O}_k/\mathfrak{p}$ and thus a finite field of order $n_{\mathfrak{P}}$ with cyclic Galois group $G = \langle \overline{\sigma} \rangle$ over $\mathcal{O}_k/\mathfrak{p}$ where $\overline{\sigma}(x) = x^{n_{\mathfrak{P}}} \mod \mathfrak{P}$. Let $G_{\mathfrak{P}} = \{g \in G : g\mathfrak{P} = \mathfrak{P}\}$ denote the *decomposition group* of \mathfrak{P} and $T_{\mathfrak{P}} = \{g \in G : \overline{g} = \mathrm{id}_{\mathcal{O}_K/\mathfrak{P}}\}$ the *inertia group* of \mathfrak{P} . Then there exists some coset $\sigma T_{\mathfrak{P}} \in G_{\mathfrak{P}}/T_{\mathfrak{P}}$ which induces $\overline{\sigma}$. Any element of that coset is called a *Frobenius automorphism* which we denote by $\sigma(\mathfrak{P}, K/k)$. Now we need a celebrated theorem due to Chebotarev [6, Theorem 10, page 169]:

280

Theorem 2.5 (Chebotarev) Let K be a Galois extension of k with Galois group G. Let $\emptyset \neq C \subseteq G$ be some set invariant under conjugations with |C| = c and [K : k] = n. Let

 $M = \{ primes p \text{ of } k \mid p \text{ is unramified in } K \text{ and there is some } \}$

prime \mathfrak{P} of K lying over \mathfrak{p} such that $\sigma(\mathfrak{P}, K/k) \in C$.

Then the set M has a density and this density is $\frac{c}{n}$. Moreover, $0 < \frac{c}{n} < 1$ for all $C \subsetneq G$.

The definition of density in this context can be found in [6, page 167]. All we need to know is that only infinite sets have a positive density.

Now we need a result from [8]. We maintain our current notations.

Theorem 2.6 ([8, Theorem 1]) Let $f(x) \in \mathcal{O}_k[x]$ have degree $n \geq 2$ and be irreducible over k. Let $N_{\mathfrak{p}}(f)$ be the number of roots of $f(x) \pmod{\mathcal{O}_k/\mathfrak{p}}$ in $\mathcal{O}_k/\mathfrak{p}$. Let

$$P_0(f) = \{ \mathfrak{p} \text{ prime in } \mathcal{O}_k \mid N_{\mathfrak{p}}(f) = 0 \}.$$

Then $P_0(f)$ has density $\frac{c}{n}$. Moreover, $0 < \frac{c}{n} < 1$.

This shows that the set of all primes p **not** in $P_0(f)$ has positive density and thus is infinite, completing the proof of Proposition 2.2.

Here is an outline of Serre's argument [8, page 432]: First, disregard all (finitely many) primes \mathfrak{p} of \mathcal{O}_k that are ramified or contain non-zero coefficients of f(x). Let K be the splitting field of f(x) over k with Galois group G and $\sigma = \sigma(\mathfrak{P}, K/k)$. Moreover, let X be the set of the n distinct roots of f(x) in K. It turns out that $N_{\mathfrak{p}}(f)$ is the number of fixed points of $\sigma \upharpoonright X$. Now put

 $G_0 = \{g \in G \mid g \upharpoonright X \text{ has no fixed point}\}$

and note that G_0 is invariant under conjugation, with $G_0 \subsetneq G$ since $id_K \notin G_0$. Now apply Theorem 2.5 with $C = G_0$.

2.2 The Proof of Theorem 2.1

We start with an easy observation.

Proposition 2.7 Let $1 \in S$ be a commutative ring, A some S-algebra, and $\tau \in A$. Let $f(x) = \sum_{i=0}^{m} f_i x^i \in S[x]$, the polynomial ring over S. Then

$$f(x) = f(\tau) + (x - \tau)(f_m \tau^{m-1} + g(\tau, x))$$

where $g(\tau, x) \in \text{span}_{\mathbb{Z}[x, f_0, \dots, f_m]} \{ \tau^j : 0 \le j \le m - 2 \}.$

Butler's Theorem

Proof We evaluate

$$f(x) = f((x - \tau) + \tau) = \sum_{i=0}^{m} f_i [(x - \tau) + \tau]^i = \sum_{i=0}^{m} f_i \left[\sum_{j=0}^{i} {i \choose j} (x - \tau)^j \tau^{i-j} \right]$$
$$= \sum_{i=0}^{m} f_i \left[\tau^i + \sum_{j=1}^{i} {i \choose j} (x - \tau)^j \tau^{i-j} \right]$$
$$= f(\tau) + \sum_{i=0}^{m} f_i (x - \tau) \sum_{j=1}^{i} {i \choose j} (x - \tau)^{j-1} \tau^{i-j}$$
$$= f(\tau) + (x - \tau) \left[\sum_{i=0}^{m} f_i \sum_{j=1}^{i} {i \choose j} (x - \tau)^{j-1} \tau^{i-j} \right].$$

The highest power of τ that might occur in $\sum_{j=1}^{i} {i \choose j} (x-\tau)^{j-1} \tau^{i-j}$ is τ^{i-1} . Note that

$$\sum_{j=1}^{m} \binom{m}{j} (x-\tau)^{j-1} \tau^{m-j} = \sum_{j=1}^{m} \binom{m}{j} \left[\sum_{k=0}^{j-1} \binom{j-1}{k} x^{k} (-\tau)^{j-1-k} \right] \tau^{m-j}$$
$$= \sum_{j=1}^{m} \binom{m}{j} \left[\sum_{k=0}^{j-1} \binom{j-1}{k} x^{k} \tau^{m-1-k} (-1)^{j-1-k} \right].$$

Thus τ^{m-1} only occurs for k = 0 and with coefficient $\sum_{j=1}^{m} {m \choose j} (-1)^{j-1}$. Recall that $\sum_{j=0}^{m} {m \choose j} (-1)^{j} = 0 \text{ and thus } 1 = {m \choose 0} = -\sum_{j=1}^{m} {m \choose j} (-1)^{j} = \sum_{j=1}^{m} {m \choose j} (-1)^{j-1}.$ This shows that $f(x) = f(\tau) + (x - \tau) \left[f_m \tau^{m-1} + g(\tau, x) \right]$ where $g(\tau, x) \in$

 $\operatorname{span}_{\mathbb{Z}[x,f_0,\ldots,f_m]}\{\tau^j: 0 \le j \le m-2\}.$ п

Corollary 2.8 Same notation as in the proposition. Let S be an integral domain with Q its field of fractions and $c \in S$ such that $f(c) \neq 0 = f(\tau)$. Then

$$(c-\tau)^{-1} = \frac{1}{f(c)}(f_m\tau^{m-1} + g(\tau, x)) \in QA.$$

We also want to list:

Proposition 2.9 Let F be a field and V some vector space over F. If $\tau \in \text{End}_F(V)$ is algebraic over F, then τ has only finitely many eigenvalues.

Proof There exists some monic polynomial $f(x) \in F[x]$ such that $f(\tau) = 0$. Let $0 \neq v \in V$ be an eigenvector of τ with eigenvalue λ . Then $I = \{g(x) \in F[x] :$ $g(\tau \upharpoonright_{vF}) = 0$ = $(x - \lambda)F[x]$ is an ideal of F[x] and $f(x) \in I$. This shows that λ is a root of f(x), of which there are only finitely many. 282

Lemma 2.10 Let $\tau \in \text{End}_D(E^+)$ such that τ is algebraic over F. Let $0 \neq e \in E$ and Π a finite number of prime ideals of D. Then there exists a prime ideal $P \notin \Pi$ of D and $c \in D$ such that $c - \tau$ is an automorphism of FE^+ and $e \notin E_P(c - \tau)$. Moreover, $E_P(c - \tau)^{-1} \subseteq p^{-k}E_P$ for some natural number k where $PD_P = pD_P$.

Proof Let $g(x) = \sum_{i=0}^{n} g_i x^i \in F[x]$ be the minimal polynomial of τ over F with $g_n = 1$. Let $V = eF[\tau]$, a finite dimensional τ -invariant F-subspace of FE. Put $\theta = \tau \upharpoonright_V$, the restriction of τ to V, and $f(x) = \sum_{i=0}^{m} f_i x^i \in F[x]$ the monic minimal polynomial of θ . Then f(x) is a divisor of g(x) and the set of all prime ideals Q of D for which $h(x) \notin D_Q[x]$ for any monic divisor h(x) of g(x) is finite. We may enlarge Π to contain the finitely many exceptions. By Proposition 2.7, we have, for any $s \in D$, that $g(s) = (s - \tau)(\tau^{n-1} + \sum_{i=0}^{n-2} s_i \tau^i)$ where $s_i \in D_Q$ for all prime ideals $Q \notin \Pi$. We infer that $s - \tau$ is an automorphism of FE^+ whenever $g(s) \neq 0$. In this case, we have that $E_Q(s - \tau)^{-1} \subseteq \frac{1}{g(s)} E_Q$. A similar statement holds for $s - \theta$.

Since *D* is admissible, there is an infinite set of prime ideals *Q* of *D* such that f(x) has a root γ in the *Q*-adic completion of the discrete valuation domain D_Q . We choose such a prime ideal $P \notin \Pi$. Let $P = D \cap pD_P$ for some $p \in P$.

Let $V = eF[\tau] = e \cdot \operatorname{span}_F\{1, \tau, \tau^2, \dots, \tau^{m-1}\}$ be the τ -invariant subspace of *FE* generated by *e*. Note that $\{e, e\theta, e\theta^2, \dots, e\theta^{m-1}\}$ is a basis of *V* over *F*.

Let $V_P = V \cap E_P$, which is a free D_P -module of rank m. Let $W_P = e \cdot \operatorname{span}_{D_P} \{1, \theta, \theta^2, \dots, \theta^{m-1}\}$, a free D_P -module of rank m. Since D_P is a PID, the Stacked Basis Theorem for finite rank free modules holds and we infer that $p^h V_P \subseteq W_P$ for some natural number h.

Let $\gamma_0 \in D$ be such that $\gamma \equiv \gamma_0 \mod p^{h+1}D_P$. Then $f(\gamma_0 + p^{h+j}) \equiv 0 \mod p^{h+1}D_P$ for all natural numbers $j \ge 1$. We infer the existence of some $c \in D$ such that

(1) $g(c) \neq 0$ (2) $f(c) \equiv 0 \mod p^{h+1}D_P$.

Note that this implies $f(c) \neq 0$ and $g(c) \equiv 0 \mod p^{h+1}D_P$ as well.

It follows from the above that $c-\tau \in \text{End}_F(FE^+)$ is bijective with $E_P(c-\tau)^{-1} \subseteq \frac{1}{q(c)}E_P$. Moreover, $c-\theta \in \text{End}_F(V)$ is bijective as well.

Assume that $e(c - \theta)^{-1} \in E_P$.

Since $e(c-\theta)^{-1} \in eF[\theta] = V$ as well, we infer that $e(c-\theta)^{-1} \in V_P$ and thus $p^h e(c-\theta)^{-1} = \frac{p^h}{f(c)} \left[e^{\theta^{m-1}} + e\psi \right] \in W_P$ for some $\psi \in \operatorname{span}_{D_P} \{1, \theta, \theta^2, \dots, \theta^{m-2}\}$. This is a contradiction since $\frac{1}{p} e^{\theta^{m-1}} \notin W_P$.

Corollary 2.11 Let Π be a finite set of prime ideals of D and $0 \neq \psi \in \text{End}_F(FE^+)$ such that $1\psi = 0$. Let $t \in E$ be such that $0 \neq t\psi$. Then there is a prime ideal $P \notin \Pi$ of D and a free D_P -submodule M_P of FE^+ such that

(1) $E_P \subseteq M_P$,

- (2) $M_P \psi \not\subseteq M_P$ and
- (3) For each $x \in FE$ we have $xM_P \subseteq M_P$ if and only if $x \in E_P$.

Note that (2) holds for any $\varphi \in \text{End}_F(FE^+)$ in place of ψ such that $1\varphi = 0$ and $t\psi = t\varphi$.

Butler's Theorem

Proof Let $0 \neq e = t\psi$. We may assume that $e \in E$. Define $\tau \in \text{End}_F(FE^+)$ by $\tau(x) = xt$ for all $x \in FE$. Then $\tau E \subseteq E$ since *E* is a ring. Since *t* is algebraic over *F*, so is τ and we can apply Lemma 2.10 and find a prime ideal $P \notin \Pi$ and $c \in D$ such that $\sigma = c - \tau \in \text{End}_F(FE^+)$ is bijective, $e \notin E_P \sigma$ and $E_P \sigma \subseteq E_P$. Moreover, $E_P \sigma^{-1} \subseteq p^{-k} E_P$ for some natural number *k*. We infer $p^k E_P \subseteq E_P \sigma \subseteq E_P$.

Let $M_P = p^{-k} E_P \sigma$. Since σ is injective, M_P is a free D_P -module.

Then $E \subseteq E_P \subseteq p^{-k}E_P\sigma = M_P$ and (1) holds. Moreover, $E_P \cdot M_P \subseteq M_P$ since the multiplication in *FE* is associative.

Since $1\psi = 0$, we have $-1\sigma\psi = -(c1-\tau)\psi = t\psi = e$ and $p^{-k}e \in M_P\psi$ but $p^{-k}e \notin p^{-k}E_P\sigma = M_P$. This shows that $M_P\psi \nsubseteq M_P$ and we have (2).

Let $x \in FE$. Then $x(p^{-k}E_P\sigma) = p^{-k}(xE_P)\sigma$ is contained in $p^{-k}E_P\sigma$ if and only if $xE_P \subseteq E_P$ by the injectivity of σ . Since $1 \in E_P$, this holds if and only if $x \in E_P$, and (3) follows.

Let $\operatorname{End}^0(FE^+) = \{\varphi \in \operatorname{End}_F(FE^+) : 1\varphi = 0\}$ be the set of all linear transformations of FE^+ that map the identity element of E to zero. Then $\operatorname{End}_F(FE^+) = \operatorname{End}^0(FE^+) \oplus ((FE^+)\cdot)$. There exists a countable subset $1 \notin B$ of E such that $FE = \operatorname{span}_F(B \cup \{1\})$. Note that if $0 \neq \varphi \in \operatorname{End}^0(FE^+)$, then there exists some $b \in B$ such that $b\varphi \neq 0$. Moreover, $b\varphi$ is an element of the *countable* (E is countable, cf. Notation 2.1 and Theorem 2.1) set FE. This shows that there exists a countable list $\{\varphi_n : n \in \mathbb{N}\}$ of elements of $\operatorname{End}^0(FE^+)$ such that for all $\tau \in \operatorname{End}^0(FE^+)$ there exists some $n \in \mathbb{N}$ and $b \in B$ such that $\tau(b) = \varphi_n(b) \neq 0$. We apply Corollary 2.11 repeatedly to find a sequence of distinct prime ideals P_n of D and free D_{P_n} -modules M_{P_n} with properties

$$(1_n) \quad E_{P_n} \subseteq M_{P_n}$$

$$(2_n)$$
 $M_{P_n}\varphi_n \not\subseteq M_{P_n}$ and

(3_{*n*}) If $x \in FE$, then $xM_{P_n} \subseteq M_{P_n}$ if and only if $x \in E_{P_n}$.

If Q is a prime ideal not in the list $\{P_n : n \in \mathbb{N}\}$, we put $M_Q = E_Q$. Then we have

(1) $E_P \subseteq M_P$ for all prime ideals *P* of *D* and also

(3) For each $x \in FE$, we have $xM_P \subseteq M_P$ if and only if $x \in E_P$.

Now let $M = \bigcap_P M_P$, where the intersection runs over all prime ideals P of D. Then $E \subseteq M$ by (1), and M is locally free since all M_P are free D_P -modules. Recall that $\operatorname{End}_D(M) = \bigcap_P \operatorname{End}_{D_P}(M_P)$. By (3) we get that

$$((FE)\cdot) \cap \operatorname{End}_D(M) = (E\cdot).$$

Let $0 \neq \psi \in \text{End}^0(FE^+)$. Then there exists some $n \in \mathbb{N}$ such that, for some $b \in B$, we have $b\psi = b\varphi_n \neq 0$. By (2_n) , we have that $M_{P_n}\psi \not\subseteq M_{P_n}$ which shows that $\text{End}^0(FE^+) \cap \text{End}_D(M) = \{0\}$. Let $\varphi \in \text{End}_D(M)$. Then $\varphi = \psi + (x \cdot)$ for some $x \in FE$ and $\psi \in \text{End}^0(FE^+)$. Pick $0 \neq s \in D$ with $sx \in E$. Then $s\varphi = s\psi + s(x \cdot) = s\psi + (sx \cdot)$, where $sx \in E$, and we infer

284

M. Dugas et al.

$$s\varphi - (sx \cdot) = s\psi \in \operatorname{End}^0(FE^+) \cap \operatorname{End}_D(M) = \{0\}.$$

Thus $\psi = 0$ and $\varphi = x$ for some $x \in E$ by condition (3). We conclude that $\operatorname{End}_D(M) = E$, as promised.

Acknowledgements The third author was supported by European Research Council grant 338821. This is DgHeSh1091 in the third author's list of publications.

References

- 1. M.C.R. Butler, On locally free torsion-free rings of finite rank. J. Lond. Math. Soc. 43, 297–300 (1968)
- A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring. Proc. Lond. Math. Soc. 13, 687–710 (1963)
- M. Dugas, R. Göbel, An extension of Zassenhaus' theorem on endomorphism rings. Fundam. Math. 194, 239–251 (2007)
- 4. R. Göbel, J. Trlifaj, *Approximations and Endomorphism Algebras of Modules*. Expositions in Mathematics, 1st edn., vol. 41 (W. de Gruyter, Berlin, 2006)
- 5. R. Göbel, J. Trlifaj, *Approximations and Endomorphism Algebras of Modules Vol. 1, 2.* Expositions in Mathematics, 2nd edn., vol. 41 (W. de Gruyter, Berlin, 2012)
- 6. S. Lang, *Algebraic Number Theory*. Graduate Texts in Mathematics, 2nd edn., vol. 100 (Springer, New York, 1970)
- J.D. Reid, C. Vinsonhaler, A theorem of M. C. R. Butler for Dedekind domains. J. Algebra 175, 979–989 (1995)
- 8. J.-P. Serre, On a theorem of Jordan. Bull. Am. Math. Soc. 40(4), 429-440 (2003)
- 9. H. Zassenhaus, Orders as endomorphism rings of modules of the same rank. J. Lond. Math. Soc. **42**, 180–182 (1967)