An Extension of M. C. R. Butler's Theorem on Endomorphism Rings

Manfred Dugas, Daniel Herden, and Saharon Shelah

Abstract

We will prove the following theorem: Let D be the ring of algebraic integers of a finite Galois field extension F of \mathbb{Q} and E a D-algebra such that E is a locally free D-module of countable rank and all elements of E are algebraic over F. Then there exists a left D-submodule $M \supseteq E$ of $F E=E \otimes_{D} F$ such that the left multiplications by elements of E are the only D-linear endomorphisms of M.

Keywords Endomorphism rings • Butler's theorem

Mathematical Subject Classification (2010): Primary 20K20, 20K30; Secondary 16S60, 16W20

1 Introduction

The main purpose of this paper is to honor the memory of Rüdiger Göbel, a dear friend and colleague, who passed away much too early. He made significant contributions on realizing rings as endomorphism rings of abelian groups and modules in many different settings. Most of this work can be found in the excellent monographs [4] and [5]. When Rüdiger came to Essen University, he started a successful research seminar. Among the first batch of papers studied was A. L. S. Corner's celebrated paper [2], where he proved that each countable torsion-free reduced ring R is the endomorphism ring of a countable torsion-free reduced abelian

[^0]group G. If the additive group of such a ring R has finite rank n, then the group G can be constructed such that G has rank $\leq 2 n$. Corner also provided examples of rings R such that the corresponding group G must have rank equal to $2 n$. On the other hand, Zassenhaus [9] proved that for every ring R with identity and free additive group of finite rank, there is some abelian group M such that $R \subseteq M \subseteq R \otimes_{\mathbb{Z}} \mathbb{Q}$ and $R=\operatorname{End}_{\mathbb{Z}}(M)$, i.e., R and M have the same rank.

Soon after [9] was written, Butler [1] generalized Zassenhaus's result replacing "free abelian of finite rank" by "locally free abelian of finite rank". Reid and Vinsonhaler [7] extended this result by replacing the ring of integers by certain Dedekind domains. More recently, Zassenhaus's result was generalized in [3] to rings with free additive groups of countable rank, whose elements are all algebraic over \mathbb{Q}. We will combine the results in [3] and [7] to obtain:
Theorem 1.1 Let D be the ring of algebraic integers of a finite Galois field extension F of \mathbb{Q} and E a D-algebra such that E is a locally free D-module of countable rank and all elements of E are algebraic over F. Then there exists a left D-submodule $M \supseteq E$ of $F E=E \otimes_{D} F$ such that the left multiplications by elements of E are the only D-linear endomorphisms of M.

After reading Corner's paper [2], it became a goal of Rüdiger's to remove the cardinality barrier in this result. Eventually, this was accomplished by utilizing powerful combinatorial tools such as the diamond principle and Shelah's Black Box.

2 The Results

Notation 2.1 Let D denote a countable Dedekind domain of characteristic zero and with infinitely many prime ideals. Let F be its field of fractions. It follows that for any prime ideal P of D, the localization D_{P} of D at P is a PID with unique maximal ideal $p D_{P}$ for some $p \in P$. Let \widehat{D}_{P} denote the P-adic closure of D_{P}. Let $f(x) \in F[x]$. Then $f(x) \in D_{P}[x]$ with the leading coefficient a unit in D_{P} for all but finitely many prime ideals P of D. Define $N_{P}(f)$ to be the number of roots of $f(x)$ in \widehat{D}_{P}. We call D an admissible domain if for all $f(x) \in F[x]$ the set of prime ideals P of D with $N_{P}(f) \geq 1$ is infinite. If E is some D-module, then we call E torsion-free if se $=0$ for $s \in D$ and $e \in E$ implies $s=0$ or $e=0$. Moreover, E is called locally free, if the localization $E_{P}=E \otimes_{D} D_{P}$ is a free D_{P}-module for all prime ideals P of D. If R is some ring and $a \in R$, we define the map $a \cdot$ from R to R to be the left multiplication by the element a, i.e., $(a \cdot)(x)=$ ax for all $x \in R$.

Our main result will be the following:
Theorem 2.1 Let D be an admissible domain and E a countable, torsion-free and locally free D-algebra such that each $a \in E$ is algebraic over F. Then there exists a locally free left E-submodule M of $F E=E \otimes_{D} F$ such that $E \subseteq M$ and $\operatorname{End}_{D}(M)=E$, the ring of left multiplications by elements of E.

2.1 The Proof of Theorem 1.1

Before we turn to the proof of Theorem 2.1, note that Theorem 1.1 will be an immediate consequence provided:

Proposition 2.2 Let D be the ring of algebraic integers of some finite Galois field extension of \mathbb{Q}. Then D is an admissible Dedekind domain.

We need to show for all $f(x) \in F[x]$ the existence of infinitely many prime ideals P of D with $N_{P}(f) \geq 1$. We will line up some results from algebraic number theory to obtain this proposition. Note that for any $f(x) \in F[x]$ there exists some $d \in D$ with $d f(x) \in F[x]$. Thus, we may restrict to polynomials $f(x) \in D[x]$. Furthermore, any polynomial is a product of irreducible ones and we may restrict to irreducible $f(x) \in D[x]$.

We recall the following, well-known version of Hensel's Lemma [6, Proposition 2, p. 43]:

Lemma 2.3 Let $1 \in S$ be a commutative ring and \mathfrak{m} an ideal of S such that S is complete in the \mathfrak{m}-adic topology. Let $f(x) \in S[x]$ and $a \in S$ be such that $f(a) \in$ $f^{\prime}(a)^{2} \mathfrak{m}$. Then there exists some $b \in S$ such that $f(b)=0$ and $b-a \in f^{\prime}(a)^{2} \mathfrak{m}$.

Applying this to our situation:
Remark 2.4 Let P be a prime ideal of D and let $f(x) \in D[x]$ be irreducible of degree n over F. Then $f(x)$ has only simple roots and thus has non-zero discriminant $\Delta(f)$. Let P be a prime ideal of D such that $\Delta(f) \notin P$. Then $f(x) \bmod P$ has no multiple roots. Assume that $a \in \widehat{D}_{P}$ is such that $f(a) \in p \widehat{D}_{P}$. Then $f^{\prime}(a) \notin p \widehat{D}_{P}$ and we may apply Lemma 2.3 to obtain $b \in \widehat{D}_{P}$ with $f(b)=0$ and $b-a \in p \widehat{D}_{P}$. Thus, for irreducible $f(x) \in D[x], f(a) \in p \widehat{D}_{P}$ implies $N_{P}(f) \geq 1$.

By the above it is sufficient to show that for any irreducible $f(x) \in D[x]$, there are infinitely many prime ideals P of D such that $f(x) \bmod P$ has a root in D / P. Hensel's Lemma will then provide a root of $f(x)$ in \widehat{D}_{P}.

First we recall some well-known definitions that are in [6] and many other sources.

Let k be an algebraic number field and K a Galois extension of k with Galois group G. Let $\mathscr{O}_{k}\left(\mathscr{O}_{K}\right)$ denote the ring of algebraic integers in $k(K)$. Let \mathfrak{p} be a prime (ideal) of \mathscr{O}_{k} and \mathfrak{P} a prime of \mathscr{O}_{K} lying over \mathfrak{p}. Then $\mathscr{O}_{K} / \mathfrak{P}$ is a finite extension of the finite field $\mathscr{O}_{k} / \mathfrak{p}$ and thus a finite field of order $n_{\mathfrak{P}}$ with cyclic Galois group $G=\langle\bar{\sigma}\rangle$ over $\mathscr{O}_{k} / \mathfrak{p}$ where $\bar{\sigma}(x)=x^{n \mathfrak{P}} \bmod \mathfrak{P}$. Let $G_{\mathfrak{P}}=\{g \in G: g \mathfrak{P}=\mathfrak{P}\}$ denote the decomposition group of \mathfrak{P} and $T_{\mathfrak{F}}=\left\{g \in G: \bar{g}=\mathrm{id}_{\mathscr{O}_{K} / \mathfrak{P}}\right\}$ the inertia group of \mathfrak{P}. Then there exists some coset $\sigma T_{\mathfrak{P}} \in G_{\mathfrak{P}} / T_{\mathfrak{P}}$ which induces $\bar{\sigma}$. Any element of that coset is called a Frobenius automorphism which we denote by $\sigma(\mathfrak{P}, K / k)$. Now we need a celebrated theorem due to Chebotarev [6, Theorem 10, page 169]:

Theorem 2.5 (Chebotarev) Let K be a Galois extension of k with Galois group G. Let $\emptyset \neq C \subseteq G$ be some set invariant under conjugations with $|C|=c$ and $[K: k]=n$. Let
$M=\{$ primes \mathfrak{p} of $k \mid \mathfrak{p}$ is unramified in K and there is some
prime \mathfrak{P} of K lying over \mathfrak{p} such that $\sigma(\mathfrak{P}, K / k) \in C\}$.
Then the set M has a density and this density is $\frac{c}{n}$. Moreover, $0<\frac{c}{n}<1$ for all $C \nsubseteq G$.

The definition of density in this context can be found in [6, page 167]. All we need to know is that only infinite sets have a positive density.

Now we need a result from [8]. We maintain our current notations.
Theorem 2.6 ([8, Theorem 1]) Let $f(x) \in \mathscr{O}_{k}[x]$ have degree $n \geq 2$ and be irreducible over k. Let $N_{\mathfrak{p}}(f)$ be the number of roots of $f(x)\left(\bmod \mathscr{O}_{k} / \mathfrak{p}\right)$ in $\mathscr{O}_{k} / \mathfrak{p}$. Let

$$
P_{0}(f)=\left\{\mathfrak{p} \text { prime in } \mathscr{O}_{k} \mid N_{\mathfrak{p}}(f)=0\right\} .
$$

Then $P_{0}(f)$ has density $\frac{c}{n}$. Moreover, $0<\frac{c}{n}<1$.
This shows that the set of all primes \mathfrak{p} not in $P_{0}(f)$ has positive density and thus is infinite, completing the proof of Proposition 2.2.

Here is an outline of Serre's argument [8, page 432]: First, disregard all (finitely many) primes \mathfrak{p} of \mathscr{O}_{k} that are ramified or contain non-zero coefficients of $f(x)$. Let K be the splitting field of $f(x)$ over k with Galois group G and $\sigma=\sigma(\mathfrak{P}, K / k)$. Moreover, let X be the set of the n distinct roots of $f(x)$ in K. It turns out that $N_{\mathfrak{p}}(f)$ is the number of fixed points of $\sigma \upharpoonright X$. Now put

$$
G_{0}=\{g \in G \mid g \upharpoonright X \text { has no fixed point }\}
$$

and note that G_{0} is invariant under conjugation, with $G_{0} \varsubsetneqq G$ since $\mathrm{id}_{K} \notin G_{0}$. Now apply Theorem 2.5 with $C=G_{0}$.

2.2 The Proof of Theorem 2.1

We start with an easy observation.
Proposition 2.7 Let $1 \in S$ be a commutative ring, A some S-algebra, and $\tau \in A$. $\operatorname{Let} f(x)=\sum_{i=0}^{m} f_{i} x^{i} \in S[x]$, the polynomial ring over S. Then

$$
f(x)=f(\tau)+(x-\tau)\left(f_{m} \tau^{m-1}+g(\tau, x)\right)
$$

where $g(\tau, x) \in \operatorname{span}_{\mathbb{Z}\left[x, f_{0}, \ldots, f_{m}\right]}\left\{\tau^{j}: 0 \leq j \leq m-2\right\}$.

Proof We evaluate

$$
\begin{aligned}
f(x) & =f((x-\tau)+\tau)=\sum_{i=0}^{m} f_{i}[(x-\tau)+\tau]^{i}=\sum_{i=0}^{m} f_{i}\left[\sum_{j=0}^{i}\binom{i}{j}(x-\tau)^{j} \tau^{i-j}\right] \\
& =\sum_{i=0}^{m} f_{i}\left[\tau^{i}+\sum_{j=1}^{i}\binom{i}{j}(x-\tau)^{j} \tau^{i-j}\right] \\
& =f(\tau)+\sum_{i=0}^{m} f_{i}(x-\tau) \sum_{j=1}^{i}\binom{i}{j}(x-\tau)^{j-1} \tau^{i-j} \\
& =f(\tau)+(x-\tau)\left[\sum_{i=0}^{m} f_{i} \sum_{j=1}^{i}\binom{i}{j}(x-\tau)^{j-1} \tau^{i-j}\right] .
\end{aligned}
$$

The highest power of τ that might occur in $\sum_{j=1}^{i}\binom{i}{j}(x-\tau)^{j-1} \tau^{i-j}$ is τ^{i-1}. Note that

$$
\begin{aligned}
\sum_{j=1}^{m}\binom{m}{j}(x-\tau)^{j-1} \tau^{m-j} & =\sum_{j=1}^{m}\binom{m}{j}\left[\sum_{k=0}^{j-1}\binom{j-1}{k} x^{k}(-\tau)^{j-1-k}\right] \tau^{m-j} \\
& =\sum_{j=1}^{m}\binom{m}{j}\left[\sum_{k=0}^{j-1}\binom{j-1}{k} x^{k} \tau^{m-1-k}(-1)^{j-1-k}\right] .
\end{aligned}
$$

Thus τ^{m-1} only occurs for $k=0$ and with coefficient $\sum_{j=1}^{m}\binom{m}{j}(-1)^{j-1}$. Recall that $\sum_{j=0}^{m}\binom{m}{j}(-1)^{j}=0$ and thus $1=\binom{m}{0}=-\sum_{j=1}^{m}\binom{m}{j}(-1)^{j}=\sum_{j=1}^{m}\binom{m}{j}(-1)^{j-1}$.

This shows that $f(x)=f(\tau)+(x-\tau)\left[f_{m} \tau^{m-1}+g(\tau, x)\right]$ where $g(\tau, x) \in$ $\operatorname{span}_{\mathbb{Z}\left[x, f_{0}, \ldots, f_{m}\right]}\left\{\tau^{j}: 0 \leq j \leq m-2\right\}$.

Corollary 2.8 Same notation as in the proposition. Let S be an integral domain with Q its field of fractions and $c \in S$ such that $f(c) \neq 0=f(\tau)$. Then

$$
(c-\tau)^{-1}=\frac{1}{f(c)}\left(f_{m} \tau^{m-1}+g(\tau, x)\right) \in Q A .
$$

We also want to list:
Proposition 2.9 Let F be a field and V some vector space over F. If $\tau \in \operatorname{End}_{F}(V)$ is algebraic over F, then τ has only finitely many eigenvalues.

Proof There exists some monic polynomial $f(x) \in F[x]$ such that $f(\tau)=0$. Let $0 \neq v \in V$ be an eigenvector of τ with eigenvalue λ. Then $I=\{g(x) \in F[x]$: $\left.g\left(\tau \upharpoonright_{v F}\right)=0\right\}=(x-\lambda) F[x]$ is an ideal of $F[x]$ and $f(x) \in I$. This shows that λ is a root of $f(x)$, of which there are only finitely many.

Lemma 2.10 Let $\tau \in \operatorname{End}_{D}\left(E^{+}\right)$such that τ is algebraic over F. Let $0 \neq e \in E$ and Π a finite number of prime ideals of D. Then there exists a prime ideal $P \notin \Pi$ of D and $c \in D$ such that $c-\tau$ is an automorphism of $F E^{+}$and $e \notin E_{P}(c-\tau)$. Moreover, $E_{P}(c-\tau)^{-1} \subseteq p^{-k} E_{P}$ for some natural number k where $P D_{P}=p D_{P}$.

Proof Let $g(x)=\sum_{i=0}^{n} g_{i} x^{i} \in F[x]$ be the minimal polynomial of τ over F with $g_{n}=1$. Let $V=e F[\tau]$, a finite dimensional τ-invariant F-subspace of $F E$. Put $\theta=\tau \upharpoonright_{V}$, the restriction of τ to V, and $f(x)=\sum_{i=0}^{m} f_{i} x^{i} \in F[x]$ the monic minimal polynomial of θ. Then $f(x)$ is a divisor of $g(x)$ and the set of all prime ideals Q of D for which $h(x) \notin D_{Q}[x]$ for any monic divisor $h(x)$ of $g(x)$ is finite. We may enlarge Π to contain the finitely many exceptions. By Proposition 2.7, we have, for any $s \in D$, that $g(s)=(s-\tau)\left(\tau^{n-1}+\sum_{i=0}^{n-2} s_{i} \tau^{i}\right)$ where $s_{i} \in D_{Q}$ for all prime ideals $Q \notin \Pi$. We infer that $s-\tau$ is an automorphism of $F E^{+}$whenever $g(s) \neq 0$. In this case, we have that $E_{Q}(s-\tau)^{-1} \subseteq \frac{1}{g(s)} E_{Q}$. A similar statement holds for $s-\theta$.

Since D is admissible, there is an infinite set of prime ideals Q of D such that $f(x)$ has a root γ in the Q-adic completion of the discrete valuation domain D_{Q}. We choose such a prime ideal $P \notin \Pi$. Let $P=D \cap p D_{P}$ for some $p \in P$.

Let $V=e F[\tau]=e \cdot \operatorname{span}_{F}\left\{1, \tau, \tau^{2}, \ldots, \tau^{m-1}\right\}$ be the τ-invariant subspace of $F E$ generated by e. Note that $\left\{e, e \theta, e \theta^{2}, \ldots, e \theta^{m-1}\right\}$ is a basis of V over F.

Let $V_{P}=V \cap E_{P}$, which is a free D_{P}-module of rank m. Let $W_{P}=$ $e \cdot \operatorname{span}_{D_{P}}\left\{1, \theta, \theta^{2}, \ldots, \theta^{m-1}\right\}$, a free D_{P}-module of rank m. Since D_{P} is a PID, the Stacked Basis Theorem for finite rank free modules holds and we infer that $p^{h} V_{P} \subseteq W_{P}$ for some natural number h.

Let $\gamma_{0} \in D$ be such that $\gamma \equiv \gamma_{0} \bmod p^{h+1} D_{P}$. Then $f\left(\gamma_{0}+p^{h+j}\right) \equiv 0 \bmod p^{h+1} D_{P}$ for all natural numbers $j \geq 1$. We infer the existence of some $c \in D$ such that
(1) $g(c) \neq 0$
(2) $f(c) \equiv 0 \bmod p^{h+1} D_{P}$.

Note that this implies $f(c) \neq 0$ and $g(c) \equiv 0 \bmod p^{h+1} D_{P}$ as well.
It follows from the above that $c-\tau \in \operatorname{End}_{F}\left(F E^{+}\right)$is bijective with $E_{P}(c-\tau)^{-1} \subseteq$ $\frac{1}{g(c)} E_{P}$. Moreover, $c-\theta \in \operatorname{End}_{F}(V)$ is bijective as well.

Assume that $e(c-\theta)^{-1} \in E_{P}$.
Since $e(c-\theta)^{-1} \in e F[\theta]=V$ as well, we infer that $e(c-\theta)^{-1} \in V_{P}$ and thus $p^{h} e(c-\theta)^{-1}=\frac{p^{h}}{f(c)}\left[e \theta^{m-1}+e \psi\right] \in W_{P}$ for some $\psi \in \operatorname{span}_{D_{P}}\left\{1, \theta, \theta^{2}, \ldots, \theta^{m-2}\right\}$. This is a contradiction since $\frac{1}{p} e \theta^{m-1} \notin W_{P}$.

Corollary 2.11 Let Π be a finite set of prime ideals of D and $0 \neq \psi \in \operatorname{End}_{F}\left(F E^{+}\right)$ such that $1 \psi=0$. Let $t \in E$ be such that $0 \neq t \psi$. Then there is a prime ideal $P \notin \Pi$ of D and a free D_{P}-submodule M_{P} of $F E^{+}$such that
(1) $E_{P} \subseteq M_{P}$,
(2) $M_{P} \psi \nsubseteq M_{P}$ and
(3) For each $x \in F E$ we have $x M_{P} \subseteq M_{P}$ if and only if $x \in E_{P}$.

Note that (2) holds for any $\varphi \in \operatorname{End}_{F}\left(F E^{+}\right)$in place of ψ such that $1 \varphi=0$ and $t \psi=t \varphi$.

Proof Let $0 \neq e=t \psi$. We may assume that $e \in E$. Define $\tau \in \operatorname{End}_{F}\left(F E^{+}\right)$by $\tau(x)=x t$ for all $x \in F E$. Then $\tau E \subseteq E$ since E is a ring. Since t is algebraic over F, so is τ and we can apply Lemma 2.10 and find a prime ideal $P \notin \Pi$ and $c \in D$ such that $\sigma=c-\tau \in \operatorname{End}_{F}\left(F E^{+}\right)$is bijective, $e \notin E_{P} \sigma$ and $E_{P} \sigma \subseteq E_{P}$. Moreover, $E_{P} \sigma^{-1} \subseteq p^{-k} E_{P}$ for some natural number k. We infer $p^{k} E_{P} \subseteq E_{P} \sigma \subseteq E_{P}$.

Let $M_{P}=p^{-k} E_{P} \sigma$. Since σ is injective, M_{P} is a free D_{P}-module.
Then $E \subseteq E_{P} \subseteq p^{-k} E_{P} \sigma=M_{P}$ and (1) holds. Moreover, $E_{P} \cdot M_{P} \subseteq M_{P}$ since the multiplication in $F E$ is associative.

Since $1 \psi=0$, we have $-1 \sigma \psi=-(c 1-\tau) \psi=t \psi=e$ and $p^{-k} e \in M_{P} \psi$ but $p^{-k} e \notin p^{-k} E_{P} \sigma=M_{P}$. This shows that $M_{P} \psi \nsubseteq M_{P}$ and we have (2).

Let $x \in F E$. Then $x\left(p^{-k} E_{P} \sigma\right)=p^{-k}\left(x E_{P}\right) \sigma$ is contained in $p^{-k} E_{P} \sigma$ if and only if $x E_{P} \subseteq E_{P}$ by the injectivity of σ. Since $1 \in E_{P}$, this holds if and only if $x \in E_{P}$, and (3) follows.

Let $\operatorname{End}^{0}\left(F E^{+}\right)=\left\{\varphi \in \operatorname{End}_{F}\left(F E^{+}\right): 1 \varphi=0\right\}$ be the set of all linear transformations of $F E^{+}$that map the identity element of E to zero. Then $\operatorname{End}_{F}\left(F E^{+}\right)=\operatorname{End}^{0}\left(F E^{+}\right) \oplus\left(\left(F E^{+}\right) \cdot\right)$. There exists a countable subset $1 \notin B$ of E such that $F E=\operatorname{span}_{F}(B \cup\{1\})$. Note that if $0 \neq \varphi \in \operatorname{End}^{0}\left(F E^{+}\right)$, then there exists some $b \in B$ such that $b \varphi \neq 0$. Moreover, $b \varphi$ is an element of the countable (E is countable, cf. Notation 2.1 and Theorem 2.1) set $F E$. This shows that there exists a countable list $\left\{\varphi_{n}: n \in \mathbb{N}\right\}$ of elements of $\operatorname{End}^{0}\left(F E^{+}\right)$such that for all $\tau \in \operatorname{End}^{0}\left(F E^{+}\right)$there exists some $n \in \mathbb{N}$ and $b \in B$ such that $\tau(b)=\varphi_{n}(b) \neq 0$. We apply Corollary 2.11 repeatedly to find a sequence of distinct prime ideals P_{n} of D and free $D_{P_{n}}$-modules $M_{P_{n}}$ with properties
$\left(1_{n}\right) \quad E_{P_{n}} \subseteq M_{P_{n}}$
(2n) $\quad M_{P_{n}} \varphi_{n} \nsubseteq M_{P_{n}}$ and
$\left(3_{n}\right) \quad$ If $x \in F E$, then $x M_{P_{n}} \subseteq M_{P_{n}}$ if and only if $x \in E_{P_{n}}$.
If Q is a prime ideal not in the list $\left\{P_{n}: n \in \mathbb{N}\right\}$, we put $M_{Q}=E_{Q}$. Then we have
(1) $E_{P} \subseteq M_{P}$ for all prime ideals P of D and also
(3) For each $x \in F E$, we have $x M_{P} \subseteq M_{P}$ if and only if $x \in E_{P}$.

Now let $M=\bigcap_{P} M_{P}$, where the intersection runs over all prime ideals P of D. Then $E \subseteq M$ by (1), and M is locally free since all M_{P} are free D_{P}-modules. Recall that $\operatorname{End}_{D}(M)=\bigcap_{P} \operatorname{End}_{D_{P}}\left(M_{P}\right)$. By (3) we get that

$$
((F E) \cdot) \cap \operatorname{End}_{D}(M)=(E \cdot)
$$

Let $0 \neq \psi \in \operatorname{End}^{0}\left(F E^{+}\right)$. Then there exists some $n \in \mathbb{N}$ such that, for some $b \in B$, we have $b \psi=b \varphi_{n} \neq 0$. By $\left(2_{n}\right)$, we have that $M_{P_{n}} \psi \nsubseteq M_{P_{n}}$ which shows that $\operatorname{End}^{0}\left(F E^{+}\right) \cap \operatorname{End}_{D}(M)=\{0\}$. Let $\varphi \in \operatorname{End}_{D}(M)$. Then $\varphi=\psi+(x)$ for some $x \in F E$ and $\psi \in \operatorname{End}^{0}\left(F E^{+}\right)$. Pick $0 \neq s \in D$ with $s x \in E$. Then $s \varphi=s \psi+s(x \cdot)=s \psi+(s x \cdot)$, where $s x \in E$, and we infer

$$
s \varphi-(s x \cdot)=s \psi \in \operatorname{End}^{0}\left(F E^{+}\right) \cap \operatorname{End}_{D}(M)=\{0\} .
$$

Thus $\psi=0$ and $\varphi=x$. for some $x \in E$ by condition (3). We conclude that $\operatorname{End}_{D}(M)=E \cdot$, as promised.

Acknowledgements The third author was supported by European Research Council grant 338821. This is DgHeSh1091 in the third author's list of publications.

References

1. M.C.R. Butler, On locally free torsion-free rings of finite rank. J. Lond. Math. Soc. 43, 297-300 (1968)
2. A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring. Proc. Lond. Math. Soc. 13, 687-710 (1963)
3. M. Dugas, R. Göbel, An extension of Zassenhaus' theorem on endomorphism rings. Fundam. Math. 194, 239-251 (2007)
4. R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules. Expositions in Mathematics, 1st edn., vol. 41 (W. de Gruyter, Berlin, 2006)
5. R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules - Vol. 1, 2. Expositions in Mathematics, 2nd edn., vol. 41 (W. de Gruyter, Berlin, 2012)
6. S. Lang, Algebraic Number Theory. Graduate Texts in Mathematics, 2nd edn., vol. 100 (Springer, New York, 1970)
7. J.D. Reid, C. Vinsonhaler, A theorem of M. C. R. Butler for Dedekind domains. J. Algebra 175, 979-989 (1995)
8. J.-P. Serre, On a theorem of Jordan. Bull. Am. Math. Soc. 40(4), 429-440 (2003)
9. H. Zassenhaus, Orders as endomorphism rings of modules of the same rank. J. Lond. Math. Soc. 42, 180-182 (1967)

[^0]: M. Dugas (\boxtimes) • D. Herden

 Department of Mathematics, Baylor University, One Bear Place \#97328, Waco, TX 76798-7328, USA
 e-mail: Manfred_Dugas@baylor.edu; Daniel_Herden@baylor.edu
 S. Shelah

 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

 Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
 e-mail: shelah@math.huji.ac.il

