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ABSTRACT

In [6], given a metrizable profinite group G, a cardinal invariant of the con-

tinuum fm(G) was introduced, and a positive solution to the Haar Measure

Problem for G was given under the assumption that non(N ) � fm(G). We

prove here that it is consistent with ZFC that there is a metrizable profi-

nite group G∗ such that non(N ) > fm(G∗), thus demonstrating that the

strategy of [6] does not suffice for a general solution to the Haar Measure

Problem.
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1. Introduction

It is well-known that every compact group admits a unique translation-invariant

probability measure, its Haar measure. A long-standing1 open problem asks:

Problem (Haar Measure Problem): Does every infinite compact group have a

non-Haar-measurable subgroup?

In [3] the problem was settled in the positive under the assumption that the

compact group is not an infinite metrizable profinite group. Furtheremore, in [1]

it was proved that it is consistent with ZFC that every infinite compact group

has a non-Haar-measurable subgroup. Very recently, progress has been made

toward a solution to the Haar Measure Problem for infinite metrizable profinite

groups. In fact, in [6] the authors introduced a certain cardinal invariant of

the continuum fm(G), depending on a metrizable profinite group G, and proved

(see Section 2 for definitions):

Fact ([6]): Let G be an infinite metrizable profinite group. If non(N ) � fm(G),

then G has a non-Haar-measurable subgroup.

Also in [6], the authors conjectured:

Conjecture ([6]): Let G be an infinite metrizable profinite group. Then

non(N ) � fm(G).

In this work we refute the conjecture above, thus demonstrating that the strat-

egy of [6] does not suffice for a general solution to the Haar Measure Problem.

Main Theorem: It is consistent with ZFC that there exists an infinite metriz-

able profinite group G∗ such that:

non(N ) > fm(G∗).

Notice that in the aforementioned work from [1], the exibithed models of ZFC

witnessing that the Haar Measure Problem has consistently a positive answer

do not satisfy CH, while, despite the failure of the main conjecture in [6] proved

in this paper, the work of [6] shows the remarkable result that in all the models

of ZFC satisfying CH the Haar Measure Problem has a positive answer.

1 The problem dates back at least to 1963, when in [4, Section 16.13(d)] the problem was

posed and settled in the positive in the abelian case.
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2. Preliminaries

Convention 1: (1) We denote by ω the set of natural numbers.

(2) Given n < ω, we identify n with the set {0, . . . , n− 1} = [0, n).

(3) Given a set X we denote by P(X) the set of subsets of X .

(4) Given a set X and n < ω, we denote by [X ]n the set of subsets of X of

power n.

Definition 2: A metrizable profinite group G is a profinite group of the

form lim←−
ϕ̄

i<ω
Gi, for ϕ̄ = (ϕi : i < ω) and ϕi ∈ Hom(Gi+1, Gi), i.e., G is an

inverse ϕ̄-limit of an (ω,<)-inverse system of finite groups. When the homor-

phisms ϕi are clear from the context, we might forget to mention ϕ̄ and simply

write lim←−i<ω
Gi.

Notation 3: Given a metrizable profinite group we denote by μ its Haar measure,

i.e., the unique translation-invariant probability measure defined on G.

Notation 4: Let 1 < n < ω, A ⊆ Gn and g ∈ G. We let

Ag = {(h1, . . . , hn−1) ∈ Gn−1 : (h1, . . . , hn−1, g) ∈ A}.
Definition 5: Let G be a metrizable profinite group.

(1) We say that X ⊆ Gn is an elementary algebraic set if there is a

group word w(x̄, z̄), with |x̄| = n, and a sequence of parameters c̄ ∈ G|z̄|

such that:

X = {ā ∈ G|x̄| : G |= w(ā, c̄) = e}.
(2) We say that X ⊆ Gn is an elementary algebraic null set if X is an

elementary algebraic set which is null with respect to μ (cf. Notation 3).

(3) We say that X ⊆ G is Fubini–Markov if either of the following hap-

pens:

(a) X is an elementary algebraic null set;

(b) there is 1 < n < ω and an elementary algebraic null set A ⊆ Gn

such that

X = {g ∈ G : μ(Ag) > 0}.
Definition 6: Let G be a metrizable profinite group. The cardinal invariant

fm(G) is the smallest size of a collection of Fubini–Markov sets whose union has

measure 1.
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Fact 7: Let G = lim←−
ϕ̄

i<ω
Gi be a metrizable profinite group and let πi be the

canonical projection of G onto Gi, for i < ω. Let U ⊆ G be a closed set of the

form

U =
⋂
i<ω

π−1
i (Bi),

with Bi ⊆ Gi and ϕi(Bi+1) = Bi, for i < ω. Then

μ(U) = lim
i→∞

|Bi|
|Gi| .

Proof. Notice that:

μ(U) =μ

( ⋂
i<ω

π−1
i (Bi)

)

= lim
i→∞

μ(π−1(Bi)) (by [2, Chapter 18, item 2f, p. 363])

= lim
i→∞

|Bi|
|Gi| (by [2, Chapter 18, Example 18.2.3]).

Definition 8: We denote by N the ideal of null sets in the Cantor space 2ω, and

by non(N ) the minimal cardinality of a non-null subset of 2ω.

3. Building appropriate finite groups

Notation 9: Let G be a group and ḡ = (gi : i < n), for n < ω, a finite sequence

of elements of G. Given I ⊆ n we let gI =
∏

i∈I gi ∈ G (if I = ∅, then gI = e).

Definition 10: For 2 � 4m � n < ω such that 2
2m + 1

n2 < 1
m , let CR(n,m) be

the class of triples (G, ȳ, z̄) such that:

(a) G is a finite group;

(b) ȳ = (yi : i < n) is a sequence of pairwise commuting elements of G each

of order 2 and such that 〈ȳ〉G is a subgroup of order 2n;

(c) z̄ = (zI : I ∈ [n]m) and zI ∈ G;

(d) for every I ⊆ n and J ∈ [n]m, [yI , zJ ] = e iff I ∈ {J, ∅} (cf. Notation 9);

(e) if s ∈ G− {e}, then |{t ∈ G : [s, t] = e}| < |G|/n2.

Lemma 11: For n,m < ω as in Definition 10,

CR(n,m) �= ∅
(cf. Definition 10).
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Proof. Let G0 be the Abelian group
⊕{Z2yi : i < 2n} (where Z2yi is the group

with two elements with generator yi), and, for I ⊆ n, let yI =
∑{yi : i ∈ I}

(i.e., we are using Notation 9 in additive notation). For I ⊆ n, let πI ∈ Aut(G0)

be such that for every J ⊆ n with J /∈ {∅, I} we have that

πI(yJ) �= yJ and πI(yI) = yI .

[Why must such πI ’s exist? Let (yI� : � < 2n) be a basis of G0 such that yI0 = yI ,

if I �= ∅, and any x ∈ G0−{e} otherwise (it is well known that every x ∈ G0−{e}
can be extended to a basis of G0). Let π′

I be such that π′
I(y

I
� ) = yn+� , for

� ∈ (0, n), and π′
I(y

I
0) = yI0 . Then any extension of π′

I to a πI ∈ Aut(G0) is as

wanted.]

Let G1 be the group generated by G0 ∪ {zI : I ∈ [n]m} freely except for:

(i) the equations of G0;

(ii) if I ⊆ n and x ∈ G0, then z−1
I xzI = πI(x).

Let G be Sym(G1) (the group of permutations of the set G1), interpreting G1

as a subgroup of G, and let n = |G1|. Then clearly n > n2 (which will be

used at the end of the proof). Now, we claim that (G, ȳ, z̄) ∈ CR(n,m), for

ȳ = (yi : i < n) and z̄ = (zI : I ∈ [n]m). Clearly, clauses (a)–(d) of Definition

10 hold. Finally, concerning condition (e), notice that if s ∈ G− {e}, then

|{t ∈ G : [s, t] = e}| � n!

(n− 1)!
= n � (n− 1)! = |G|/n < |G|/n2.

Definition 12: Let CR be the set of tuples p such that

p =(kp,mp, np, (G(p,1), ȳ
1, z̄1), G(p,2))

=(k,m, n, (G1, ȳ
1, z̄1), G2),

and:

(∗)0 (a) 0 < k < m < n < ω;

(b) 2 � 4m � n;

(c) 2km = n and k << n;

(d) 2
2m + 1

n2 < 1
m .

(∗)1 (G1, ȳ
1, z̄1) ∈ CR(n,m) (cf. Definition 10).

(∗)2 (a) We let cp = c : n× n→ G1 be such that for i0, i1 < n we have:

(α) c(i0, i1) = e, if i0 �= i1;

(β) c(i0, i1) := y1i , if i0 = i1 = i;
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(b) G2 is the group generated freely by

G1 ∪ {y�i = y(�,i) : � ∈ {2, 3}, i < n}
except for:

(α) the equations of G1;

(β) y�i has order 2, for every � ∈ {2, 3} and i < n;

(γ) y�i and y�j commute, for every � ∈ {2, 3} and i, j < n;

(δ) for every � ∈ {2, 3}, i < n and g ∈ G1, y
�
i commutes with g;

(ε) [y2i , y
3
j ] = c(i, j), for every i, j < n.

Notation 13: For uniformity of notation, given the context of Definition 12, and

in particular k, m and n as there, we will let n = n2 = n3.

Lemma 14: Let p ∈ CR (cf. Definition 12). Then:

(1) G2 = G(p,2) is finite, G1 is a normal subgroup of G2 and G2/G1 is

Abelian.

(2) for every x ∈ G2, there are unique U� = U(�) = U�(x) = U(�, x) ⊆ [0, n�)

(cf. Notation 13), for � ∈ {2, 3}, and y(1,x) ∈ G1, such that

x = y(3,U(3))y(2,U(2))y(1,x),

where, for � ∈ {2, 3}, we let

y(�,U(�)) =
∏

i∈U(�)

y�i .

Proof. Clear.

Lemma 15: Let p ∈ CR (cf. Definition 12), G2 = G(p,2), and k = kp. If

x0, . . . , xk−1 ∈ G2, then for some I∗ ⊆ [0, n2) (cf. Notation 13) we have:

(a) |I∗| = n2/2
k (recall that n2/2

k = n/2k = 2km/2k = m);

(b) if � < k, then U2(x�) ∩ I∗ ∈ {I∗, ∅} (cf. Lemma 14(2)).

Proof. For η ∈ 2k, let

Iη = {i < n2 : if � < k, then i ∈ U2(x�)⇔ η(�) = 1}.
So (Iη : η ∈ 2k) is a partition of [0, n2) into 2k parts, hence for some η ∈ 2k we

have that |Iη| � n2/2
k (recall that 2k | n2 and k << n2). Now, let I∗ ⊆ Iη be

such that it satisfies clause (a) of the statement of the lemma. Then I∗ is as

wanted.
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Lemma 16: Let p ∈ CR (cf. Definition 12). If x� ∈ G2 = G(p,2), for � < k = kp,

then for some I∗ ⊆ n and c, c∗ ∈ G2 we have:

(a) c = y3I∗ and c∗ = z1I∗ ;

(b) G2 |= [[x�, c], c∗] = e;

(c) |I∗| = n2/2
k;

(d) (BI : I ⊆ I∗) is a partition of G2 into sets of equal size such that

G |= [[x, c], c∗] = e iff x ∈ B∅ ∪BI∗ ,

where, for I ⊆ I∗, we let

BI = {a ∈ G2 : [a, c] = y1I};

(e) |{(x, y) ∈ G2 ×G2 : G2 |= [[[x, c], c∗], y] = e}| � |G2 ×G2|
m

.

Proof. Let x� ∈ G2, for � < k, and let I∗ ⊆ [0, n2) be as in Lemma 15 with

respect to (x0, . . . , xk−1). Let c =
∏{y3i : i ∈ I∗} = y(3,I∗) and c∗ = z1I∗

(cf. Definitions 10 and 12). We have to show that (I∗, c, c∗) are as wanted. To

this extent, let a ∈ G2 and let

a = y(3,U(3))y(2,U(2))y(1,a)

be as in Lemma 14(2), for U(�) = U(�, a) ⊆ [0, n�), and � ∈ {2, 3}. Notice

that for � ∈ {2, 3} and I� ⊆ [0, n�) we have that (y�I�)
−1 = y�I� (cf. Notation 9),

since each element of the product has order 2 and they all commute with each

other. Then for any a ∈ G2 we have that (recalling Lemma 14 and letting

y(�,U(�)) = y(�,U(�,a))):

[a, c] =a−1c−1ac

=(y(1,a))
−1y(2,U(2))y(3,U(3))y(3,I∗)y(3,U(3))y(2,U(2))y(1,a)y(3,I∗)

=y(2,U(2))y(3,U(3))y(3,I∗)y(3,U(3))y(2,U(2))y(3,I∗)

=y(2,U(2))y(3,I∗)y(2,U(2))ŷ(3,I∗) [by 12(∗)2(b)(β)–(γ)]
=y(2,U(2)∩I∗)y(3,I∗)y(2,U(2)∩I∗)y(3,I∗) [by 12(∗)2(a)(β)+(b)(ε)]

=y(2,U(2)∩I∗)y(3,U(2)∩I∗)y(2,U(2)∩I∗)y(3,U(2)∩I∗) [by 12(∗)2(a)(β)+(b)(ε)]

=
∏

i∈U(2)∩I∗

c2(i, i) [by 12(∗)2(b)(ε)]

=y1U(2)∩I∗ [by 12(∗)2(a)(β)]
=y1U(2,a)∩I∗ .
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Hence, recapitulating, we have

(�) [a, c] = y1U(2,a)∩I∗ .

Concerning clause (b), by Equation (�) for a = x�, Lemma 15 and the fact that

the triple (G(p,1), ȳ
1, z̄1) ∈ CR(n,m) we have that [x�, c] = e or [x�, c] = y1I∗ , and

in both cases [x�, c] commutes with z1I∗ = c∗ (cf. Definition 10(d)). Clause (c)

holds by Lemma 15, since by choice |I∗| = n2/2
k. As for clause (d), clearly, the

(BI : I ⊆ I∗) are pairwise disjoint, since a ∈ BI1 ∩BI2 implies y1I1 = [a, c] = y1I2 ,

and for I1 �= I2 we have that y1I1 �= y1I2 (cf. Definition 10(b)); moreover, by

Equation (�), if a ∈ G2, then [a, c] = y1U(2,a)∩I∗ ∈ {y1I : I ⊆ I∗}, and for I ⊆ I∗
we have that [y1I , y

1
I∗ ] = e if and only if I ∈ {∅, I∗} (cf. Definition 10(d)); and

finally the pieces of the partition are of equal size since, given a finite set X , a

subset Y of X and two subsets c1 and c2 of Y we have that

|{Z ⊆ X : Z ∩ Y = c1}| = |{Z ⊆ X : Z ∩ Y = c2}|.
Concerning clause (e), let:

(a) X = {(x, y) ∈ G2 ×G2 : [[[x, c], c∗], y] = e};
(b) X1 = {(x, y) ∈ G2 ×G2 : [x, c] ∈ {y1I∗ , e}};
(c) X2 = {(x, y) ∈ X : [x, c] ∈ {y1I : I ⊆ I∗, I /∈ {I∗, ∅}}}.

Clearly X = X1 ∪X2 and X1 ∩X2 = ∅. Now, on one hand, we have

(1) |X1| � |G2 ×G2| · |{∅, I∗}|
2|I∗|

= |G2 ×G2| · 2

2|I∗|
,

while, on the other hand, we have

(2) |X2| � |G2 ×G2|
n2

.

[Why does (2) hold? First of all notice that:

⊕1 if x ∈ BI , U(2, x) ∩ I∗ = I ⊆ I∗, I /∈ {I∗, ∅}, then:
(a) [[x, c], c∗] �= e (by clause (d) of the current lemma);

(b) [[x, c], c∗] ∈ G1 (because by (�) [x, c] = y1U(2,x)∩I∗ ∈ G1, and

c∗ = z1I∗ ∈ G1).

Secondly, notice that:

⊕2 (a) if t = G1 − {e}, then
Zt :={x ∈ G2 : [t, x] = e}

={x ∈ G2 : x = y(3,U(3))y(2,U(2))y(1,x) and [y(1,x), t] = e} (cf. Lemma 14);
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(b) and so for t = G1 − {e} we have

|Zt| �2n3 · 2n2 · |{y1 ∈ G1 : [y1, t] = e}|

�|G2| · 1

|G1| · max
t∈G1−{e}

|{y1 ∈ G1 : [y1, t] = e}|;

(c) and thus, by (b) and Definition 10(e), we have

t ∈ G1 − {e} ⇒ |Zt| � |G2| · 1

n2
.

Hence, we have

|X2| �|G2| · max
x∈G2

U(2,x)∩I∗ /∈{∅,I∗}
|{y ∈ G2 : [[[x, c], c∗], y] = e}|

�|G2| · max
t∈G1−{e}

|{y ∈ G2 : [y, t] = e}| [by ⊕1]

� |G2 ×G2|
n2

[by ⊕2(c)].

That is, Equation (2) holds as promised. This closes the “Why (2)?” above.]

Hence, putting together (1) and (2) we have

|{(x, y) ∈ G2 ×G2 : G2 |= [[[x, c], c∗], y] = e}| �|G2 ×G2| ·
( 2

2|I∗|
+

1

n2

)

� |G2 ×G2|
m

,

by the choice of m and n, in fact by (c) of this lemma we have that |I∗| = n2/2
k

and, by Definition (12)(∗)0(d) and Notation 13,

n2/2
k = n/2k = 2km/2k = m.

Conclusion 17: Assume that p ∈ CR (cf. Definition 12). If x� ∈ G2 = G(p,2),

for � < k = kp, then for some c1, c2 ∈ G2 we have:

(a) G2 |= [[x�, c1], c2] = e;

(b) {y ∈ G2 : G2 |= [[[x�, c1], c2], y] = e} = G2;

(c) |{(x, y) ∈ G2 ×G2 : G2 |= [[[x, c1], c2], y] = e}| � |G2 ×G2|/m.

Proof. This is clear from Lemma 16 letting c1 = c and c2 = c∗, for c, c∗ as

there.
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4. The solution

Notation 18: (Recall the notation of Definition 12.) We choose (f1, g1) and

(f2, g2) such that:

(a) f1, g1, f2, g2 are strictly increasing functions from ωω;

(b) f�(n) > g�(n), for � ∈ {1, 2} and n < ω;

(c) (f1, g1) and (f2, g2) are sufficiently different (as in [5]), e.g., for every

i < ω we have 22
f1(i)

< g2(i) and 22
f2(i)

< g2(i + 1);

(d) for every i < ω, there is pi ∈ CR (cf. Definition 12) such that:

(i) f1(i) = |G(pi,2)|;
(ii) g2(i) = kpi ;

(e)
∑

i<ω
g2(i)
f2(i)

<∞;

(f) for i < ω, let (m∗
i ,m

∗∗
i ) = (g2(i), f2(i));

(g) for i < ω, let kpi = ki, mpi = mi, npi = ni and G∗
i = G(pi,2);

(h) let G∗ =
∏

i<ω G∗
i .

Observation 19: (1) For every i < ω, G∗
i is a finite group.

(2) G∗ is a metrizable profinite group (cf. Definition 2).

Proof. Item (1) is by Lemma 14. Item (2) is by definition.

Notation 20: (1) We denote by w(x, y, z̄), for z̄ = (z1, z2), the group word

[[[x, z1], z2], y].

From now till the end of the paper the letter w will denote this specific

word.

(2) Recall Notation 3, i.e., we denote by μ the Haar measure.

Notation 21: (1) For c̄ ∈ G∗ ×G∗, let

Xc̄ = {x ∈ G∗ : μ({y ∈ G∗ : w(x, y, c̄)}) > 0}.

(2) Let C = {c̄ ∈ G∗ ×G∗ : μ({(x, y) ∈ G∗ ×G∗ : w(x, y, c̄)}) = 0}.
Lemma 22: A sufficient condition for fm(G∗) � λ (cf. Definition 6) is:

(�)1 there is F ⊆∏
i<ω[G

∗
i ]

ki of cardinality � λ such that

(A)

(
∀η ∈

∏
i<ω

G∗
i

)
(∃ν ∈ F)[η(i) ∈ ν(i)].
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Proof. For every ν ∈ F and i < ω, ν(i) ∈ [G∗
i ]

ki , hence, by Conclusion 17, there

are cνi,1, c
ν
i,2 ∈ G∗

i ×G∗
i such that letting c̄νi = (cνi,1, c

ν
i,2) we have:

(a) if x ∈ ν(i), then |{y ∈ G∗
i : w(x, y, c̄νi ) = e}| = |G∗

i |;
(b) |{(x, y) ∈ G∗

i ×G∗
i : w(x, y, c̄νi ) = e}| � |G∗

i ×G∗
i |/m.

Let now c̄ν = (c̄ν(1), c̄ν(2)) ∈ G∗×G∗, where, for � ∈ {1, 2}, c̄ν(�) = (cνi,� : i < ω).

Then we have (recalling Notation 21):

(a’) G∗ ⊆ {Xc̄ν : ν ∈ F} (by Fact 7, (A) of the statement, and (a) above);

(b’) c̄ν ∈ C (by Fact 7 and (b) above).

Hence, by (a’) and (b’), we have that {Xc̄ν:ν∈F} is a witness for fm(G∗)�λ.

Lemma 23: Recalling Notation 18(f), a sufficient condition for non(N ) > λ

(cf. Definition 8) is:

(�)2 for every Y ⊆∏
i<ω m∗∗

i of cardinality � λ there is ν such that:

(a) ν ∈∏
i<ω[m

∗∗
i ]m

∗
i ;

(b) if η ∈ Y , then, for infinitely many i < ω, we have that η(i) ∈ ν(i).

Proof. This is because denoting by μ (resp. μ∗) the Lebesgue measure (resp. the

outer Lebesgue measure) of the Polish space
∏

i<ω m∗∗
i we have that

μ∗(Y ) �μ∗({η ∈ X : ∃∞i(η(i) ∈ ν(i))}︸ ︷︷ ︸
X∞

) [by (�)2(b)]

�μ

( ⋂
n<ω

{η ∈ X :
∨
i�n

η(i) ∈ ν(i)}
︸ ︷︷ ︸

Xn

)
[X∞ ⊆ Xn, ∀n < ω]

� lim
n→∞μ({η ∈ X :

∨
i�n

η(i) ∈ ν(i)}) [Xn measurable, Xn ⊇ Xn+1]

� lim
n→∞

m∗
n

m∗∗
n

= 0 [cf. Notation 18(f) and properties of f2, g2 there].

Theorem 24: Assume that V |= CH . Then for some ℵ2-c.c. proper (in fact

even cardinal preserving) forcing P we have that in V[P] both of the conditions

below are satisfied:

(a) the statement (�)1 from Lemma 22 for λ = ℵ1;
(b) the statement (�)2 from Lemma 23 for λ = ℵ1.

Proof. This is by [5, Theorem 2] and the choice of (f1, g1), (f2, g2) in Nota-

tion 18.
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Proof of the Main Theorem. This follows from Lemmas 22 and 23, and Theo-

rem 24.
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