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Ultrafilter extensions do not preserve elementary equivalence
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We show that there are models M1 and M2 such that M1 elementarily embeds into M2 but their ultrafilter
extensions ββ(M1) and ββ(M2) are not elementarily equivalent.
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1 Introduction

The ultrafilter extension of a first-order model is a model in the same vocabulary, the universe of which consists
of all ultrafilters on the universe of the original model, and which extends the latter in a canonical way. This
construction was introduced in [4]. The article [5] is an expanded version of [4]; it contains a list of problems,
one of which is solved here.

The main precursor of the general construction was the ultrafilter extension of semigroups, called often the
Čech-Stone compactification of semigroups. This particular case was discovered in 1970s and became since
then an important tool for getting various Ramsey-theoretic results in combinatorics, algebra, and dynamics; the
textbook [3] is a comprehensive treatise of this area. For theory of ultrafilters and for model theory we refer the
reader to the standard textbooks [2] and [1], respectively.

Recall the construction of ultrafilter extensions and related basic facts.

Definition 1.1 For a set M , an ultrafilter D on M , and a formula ϕ(x, . . .) with parameters x, . . ., we let

∀D x(ϕ(x, . . .)) if and only if {a ∈ M : ϕ(a, . . .)} ∈ D.

It is easy to see that the ultrafilter quantifier is self-dual: it coincides with ∃Dx , defined as ¬∀D x¬, since D
is ultra. Note also that if D is the principal ultrafilter given by some a ∈ M , then ∀D x(ϕ(x, . . .)) is reduced to
ϕ(a, . . .), and that if, e.g., D1, D2 are two ultrafilters on M then ∀D1 x1∀D2 x2(ϕ(x1, x2, . . .)) means {a1 ∈ M :
{a2 ∈ M : ϕ(a1, a2, . . .)} ∈ D2} ∈ D1.

Definition 1.2 Let M be a model in a vocabulary τ with the universe M . Define the model ββ(M) and the
function jM as follows:

(a) the universe of ββ(M) is ββ(M), the set of ultrafilters on M ,
(b) jM : M → ββ(M) is such that for all a ∈ M , jM(a) is the principal ultrafilter on M given by a, i.e.,

jM(a) = {A ⊆ M : a ∈ A},
(c) if P ∈ τ is an n-ary predicate symbol (other than the equality symbol), let

Pββ(M) = {(D1, . . . , Dn) : ∀D1 x1 . . . ∀Dn xn(PM(x1, . . . , xn))},
(d) if F ∈ τ is an n-ary function symbol, let Fββ(M)(D1, . . . , Dn) = D if and only if

∀A ⊆ M(A ∈ D ⇔ ∀D1 x1 . . . ∀Dn xn(FM(x1, . . . , xn) ∈ A)).
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The model ββ(M) is the ultrafilter extension of the model M, and jM is the natural embedding of M into
ββ(M). The use of words “extension” and “embedding” is easily justified:

Proposition 1.3 If M is a model in a vocabulary τ , then ββ(M) is also a model in τ and jM isomorphically
embeds M into ββ(M).

P r o o f . Cf. [4, 5]. �

The following result, called the First Extension Theorem in [5], shows that the ultrafilter extension lifts certain
relationships between models.

Theorem 1.4 Let M1 and M2 be two models in the same vocabulary with the universes M1 and M2,
respectively, and let h be a mapping of M1 into M2 and h̃ its (unique) continuous extension of ββ(M1) into ββ(M2):

If h is a homomorphism (epimorphism, isomorphic embedding) of M1 into M2, then h̃ is a homomorphism
(epimorphism, isomorphic embedding) of ββ(M1) into ββ(M2).

P r o o f . Cf. [4, 5]. �

Actually, Theorem 1.4 is a special case of a stronger result, called the Second Extension Theorem in [5].
Here we omit its precise formulation, which involves topological concepts, and note only that it generalizes
the standard topological fact stating that the Čech-Stone compactification is the largest one, to the case when
the underlying discrete space M carries an arbitrary first-order structure. This confirms that the construction of
ultrafilter extensions given in Definition 1.2 is canonical in a certain sense.

Theorem 1.4 holds also for certain other relationships between models (e.g., for so-called homotopies and
isotopies, cf. [4, 5]). A natural task is a characterization of such relationships. In particular, one can ask whether
elementary embeddings or elementary equivalence lift under ultrafilter extensions. This task was posed in [5] (cf.
Problem 5.1 there and comments before it).

In this note, we answer this particular question in the negative. In fact, we establish a slightly stronger result:

Theorem 1.5 (Main Theorem) There exist models M1 and M2 in the same vocabulary such that M1

elementarily embeds into M2 but their ultrafilter extensions ββ(M1) and ββ(M2) are not elementarily equivalent:

Of course, it follows that neither elementary embeddings nor elementary equivalence are preserved under
ultrafilter extensions. The construction of such models M1 and M2 will be provided in the next section.

We conclude this section with the following natural questions on possible general results in this direction.

Problem 1.6 Characterize (or at least, provide interesting necessary or sufficient conditions on) theories T
such that M1 ≡ M2 implies ββ(M1) ≡ ββ(M2) for all M1,M2 � T .

Problem 1.7 Characterize those theories for which the implication from Problem 1.6 holds with elementary
embeddings instead of elementary equivalence.
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2 Proof of the Main Theorem

First we define a vocabulary τ and construct two specific models M1 and M2 in τ . Then we shall show that these
models are as required. Let τ be the vocabulary consisting of two unary predicate symbols P1 and P2, two binary
predicate symbols R1 and R2, and one binary function symbol F .

Definition 2.1 Let M1 be a model in τ having the universe M1 and defined as follows:

(a) M1 = N � ℘(N), the disjoint sum of N and ℘(N) (which we shall identify with their disjoint copies),
(b) PM1

1 = N,
(c) PM1

2 = ℘(N),
(d) RM1

1 = {(n, a) : n ∈ N ∧ a ∈ ℘(N) ∧ n ∈ a}, i.e., the intersection of the membership relation with N ×
℘(N),

(e) RM1
2 is a relation such that

(α) RM1
2 ∩ (N × N) is the usual order on N,

(β) RM1
2 ∩ (℘(N) × ℘(N)) is a linear order on ℘(N) with no endpoints,

(γ ) if a ∈ N ⇔ b /∈ N then RM1
2 (a, b) is defined arbitrarily (really this case will not be used), and

(f) FM1 is an unordered pairing function mapping N into N and ℘(N) into ℘(N), i.e., satisfying the following
conditions:
(α) if either a1, b1, a2, b2 ∈ N or a1, b1, a2, b2 ∈ ℘(N), then

FM1(a1, b1) = FM1(a2, b2) ⇔ {a1, b1} = {a2, b2},
(β) if a, b ∈ N then FM1(a, b) ∈ N,
(γ ) if a, b ∈ ℘(N) then FM1(a, b) ∈ ℘(N),
(δ) if a ∈ N ⇔ b /∈ N then FM1(a, b) is defined arbitrarily (really this case will not be used).

Proposition 2.2 Assume λ ≥ 2ℵ0 . Then there exists a model M2 in τ such that M1 ≺ M2 and |PM2
1 | =

|PM2
2 | = λ.

P r o o f . Let M3 be λ-saturated and M1 ≺ M3. By the λ-saturatedness, for each i ∈ {1, 2} we have
|PM3

i | ≥ λ, so we can pick Ai ⊆ PM3
i with |Ai | = λ. By the downward Löwenheim-Skolem Theorem, there

exists a model M2 with the universe M2 such that M2 ≺ M3, M1 ∪ A1 ∪ A2 ⊆ M2, and |M2| = λ, whence it
follows that M2 is a required model.

Alternatively, we can use a version of the upward Löwenheim-Skolem Theorem by picking two sets of constants,
C1 and C2, with |C1| = |C2| = λ and adding to the elementary diagram of M1 the formulas Pi (ci ) for all ci ∈ Ci ,
i ∈ {1, 2}. The obtained theory is consistent (by compactness), so extract its submodel of cardinality λ (by the
downward Löwenheim-Skolem Theorem) and reduce it to the required model M2 in the original vocabulary
τ . �

Clearly, this observation is of a general character; a similar argument allows to obtain, for every model, its
elementary extension in which all predicate symbols are interpreted by relations of the same cardinality.

To simplify reading, we introduce the following shorthand notation for the ultrafilter extensions of the models
M1 and M2. For 
 ∈ {1, 2}, let N
 = ββ(M
), N
 = ββ(M
), j
 = jM


. It is easy to observe that PN


1 consists of
all ultrafilters D on M
 such that PM


1 ∈ D (so for 
 = 1 this means N ∈ D), and PN


1 \{ j
(n) : n ∈ PM


1 } consists
of all such non-principal ultrafilters and that PN


2 consists of all ultrafilters D on M
 such that PM


2 ∈ D (so for

 = 1 this means ℘(N) ∈ D), and PN


2 \{ j
(A) : A ∈ PM


2 } consists of all such non-principal ultrafilters.
Now we are going to construct a specific sentence ψ which will be satisfied in N1 but not in N2. First we

define two auxiliary formulas ϕ1 and ϕ2: For i ∈ {1, 2}, let ϕi (x) be the formula Pi (x) ∧ ∀y (Pi (y) → F(x, y) =
F(y, x)). Thus ϕi (x) means that x is in the center in a sense. Actually, only ϕ2 will be used to construct ψ .

Proposition 2.3 Assume i, 
 ∈ {1, 2}. For every D ∈ N
, N
 � ϕi (D) if and only if D ∈ { j
(a) : a ∈ PM


i }.
P r o o f . This follows from the four lemmas below.

Lemma 2.4 If D /∈ PN


i then N
 � ¬ϕi (D).
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P r o o f . By the first conjunct in ϕi . �
Lemma 2.5 If D1 ∈ PN


i and D2 = j
(a) for some a ∈ PM


i , then N
 � F(D1, D2) = F(D2, D1).

P r o o f . We must check that FN
(D1, D2) = FN
(D2, D1). It suffices to show that, for any A ⊆ PM


i ,
A ∈ FN
(D1, D2) if and only if A ∈ FN
(D2, D1). By Definition 1.2, we have A ∈ FN
(D1, D2) if and only
if ∀D1 x1∀D2 x2(FM
(x1, x2) ∈ A). But D2 = j
(a) for an a ∈ PM


i , i.e., D2 is a principal ultrafilter given by a.
Hence ∀D2 x2 is reduced by replacing the bounded occurrence of the variable x2 with a (as we have noted after
Definition 1.1), whence we have that A ∈ FN
(D1, D2) if and only if ∀D1 x1(FM
(x1, a) ∈ A). Similarly, we get
that A ∈ FN
(D2, D1) if and only if ∀D1 x1(FM
(a, x1) ∈ A). Since a ∈ PM


i , we have FM
(a, b) = FM
(b, a)
for all b ∈ PM


i by Definition 2.1(f)(α). And as PM


i ∈ D1, the required equivalence follows. �

Lemma 2.6 If D1 ∈ PN1
1 \{ j1(n) : n ∈ PM1

1 }, then there exists D2 ∈ PN1
1 such that FN1(D1, D2) �=

FN1(D2, D1).

P r o o f . Actually, we shall prove a slightly stronger assertion: if D1, D2 ∈ PN1
1 \{ j1(n) : n ∈ PM1

1 } are such
that D1 �= D2, then FN1(D1, D2) �= FN1(D2, D1). So assume that D1, D2 are distinct non-principal ultrafilters
on M1 such that N ∈ D1 ∩ D2. By D1 �= D2, there is A1 ∈ ℘(N) such that A1 ∈ D1 and A2 = N\A1 ∈ D2. Let

B1 = {FM1(n1, n2) : n1 ∈ A1 ∧ n2 ∈ A2 ∧ (n1, n2) ∈ RM1
2 } and

B2 = {FM1(n1, n2) : n1 ∈ A1 ∧ n2 ∈ A2 ∧ (n2, n1) ∈ RM1
2 }.

Recall that RM1
2 ∩ (N × N) is the usual order < on N, so the last conjuncts in the definition of B1 and B2 mean

just n1 < n2 and n2 < n1, respectively. Now our stronger assertion clearly follows from claims (a) to (c) below:

(a) B1 ∩ B2 = ∅,
(b) B1 ∈ FN1(D1, D2),
(c) B2 ∈ FN1(D2, D1).

It remains to verify these claims. For (a), note that if there is some c ∈ B1 ∩ B2, then

(α) since c ∈ B1, we can find n1 < n2 such that FM1(n1, n2) = c, n1 ∈ A1, n2 ∈ A2, and
(β) since c ∈ B2, we can find m2 < m1 such that FM1(m1, m2) = c, m1 ∈ A1, m2 ∈ A2.

So, since by Definition 2.1(f)(α), FM1 is an unordered pairing function, we conclude {n1, n2} = {m1, m2}.
However, then n1 < n2 and m2 < m1 imply n1 = m2 and n2 = m1, which contradicts to n1 ∈ A1, m2 ∈ A2.

For (b), note that {n2 ∈ A2 : n2 > n1} ∈ D2 because of A2 ∈ D2 and D2 is non-principal. It follows
∀D2 n2(F(n1, n2) ∈ B1). But A1 ∈ D1, so we get ∀D1 n1∀D2 n2(F(n1, n2) ∈ B1). By Definition 1.2(d), this gives
claim (b).

For (c), argue similarly. �
The fourth lemma (and its proof) generalizes the previous one.

Lemma 2.7 If i, 
 ∈ {1, 2} and D1 ∈ PN


i \{ j
(a) : a ∈ PM


i }, then there exists D2 ∈ PN


i such that
FN
(D1, D2) �= FN
(D2, D1).

P r o o f . Let D1 be a non-principal ultrafilter on PM


i . It follows from Definition 2.1(e) and M1 ≺ M2 that
RM


2 is a linear order on PM


i . One of the two following possibilities occurs:

Case 1: there is an initial segment I of the linearly ordered set (PM


i , RM


2 ) such that I ∈ D1 but if I1 ⊂ I is
another initial segment of the set then I1 /∈ D1 (this I necessarily has no last element).

Case 2: there is a final segment J of the linearly ordered set (PM


i , RM


2 ) such that J ∈ D1 but if J1 ⊂ J is
another final segment of the set then J1 /∈ D1 (this J necessarily has no first element).

To see this, we observe the following general facts: If (X,<) is a linearly ordered set, for any ultrafilter D on
X define the initial segment ID and the final segment JD of (X,<) as follows:

ID =
⋂

{I ∈ D : I is an initial segment of (X,<)} and
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JD =
⋂

{J ∈ D : J is a final segment of (X,<)}.
It is easy to see, that if D is principal, then ID ∩ JD = {x} for {x} ∈ D; and if D is non-principal then (ID, JD) is
a cut and either ID or JD , but not both, is in D. Furthermore, if ID is in D, then so are all final segments of ID ,
S ∩ ID is cofinal in ID for all S ∈ D, and ID does not have a greatest element whenever D is non-principal; and
symmetrically for JD in D. (More details related to ultrafilter extensions of linearly ordered sets can be found in
[6].)

In our situation, D1 is non-principal, so we have either ID1 ∈ D1, in which case we get Case 1 with I = ID1 ,
or JD1 ∈ D1, in which case we get Case 2 with J = JD1 .

In Case 1, choose an ultrafilter D2 on PM


i such that I ∈ D2, if I1 ⊂ I is an initial segment of (PM


i , RM


2 ) then
I1 /∈ D2, D2 �= D1. Now we can repeat the proof of Lemma 2.6 mutatis mutandis, i.e., we can find A1 ∈ D1\D2

such that A1 ⊆ I and A2 = I\A1 ∈ D2, then define

B1 = {FM
(a1, a2) : a1 ∈ A1 ∧ a2 ∈ A2 ∧ (a1, a2) ∈ RM


2 } and

B2 = {FM
(a1, a2) : a1 ∈ A1 ∧ a2 ∈ A2 ∧ (a2, a1) ∈ RM


2 },
etc.

In Case 2, the proof is symmetric: we only replace I with J , initial segments with final ones, and x RM


2 y with
y RM


2 x . �

These four lemmas complete the proof of Proposition 2.3. �
Now everything is ready in order to provide a sentence ψ having the required property.

Definition 2.8 Let ψ be the following sentence in τ :

∀x1∀x2((P1(x1) ∧ P1(x2) ∧ x1 �= x2) → ∃y(ϕ2(y) ∧ R1(x1, y) ∧ ¬ R1(x2, y))).

Proposition 2.9 Let 
 ∈ {1, 2}. Then N
 � ψ if and only if 
 = 1.

P r o o f . 1. First we show that N1 � ψ . Let D1, D2 satisfy the antecedent of ψ , i.e., D1, D2 ∈ PN1
1 and

D1 �= D2. We should find b ∈ N1 such that N1 � ϕ2(b) ∧ R1(D1, b) ∧ ¬ R1(D2, b). Since D1, D2 are distinct
ultrafilters on M1 such that PM1

1 ∈ D1 ∩ D2, we can choose A1 ⊆ PM1
1 such that A1 ∈ D1 and A1 /∈ D2. Then

A1 ∈ PM1
2 clearly follows from Definition 2.1(b),(c). So b = j1(A1) ∈ PN1

2 , and hence, by the “if” part of
Proposition 2.3, N1 � ϕ2(b).

It remains to show the conjunction of (D1, b) ∈ RN1
1 and (D2, b) /∈ RN1

1 . To this end, note that for any
ultrafilter D concentrated on PM1

1 and any A ∈ PM1
2 , by Definition 1.2(c), the formula (D, j1(A)) ∈ RN1

1 means
∀Dn∀ j( A) B((n, B) ∈ RM1

1 ). Recalling that RM1
1 is the membership relation (Definition 2.1(d)) and reducing

∀ j( A) B, we see that the latter formula is equivalent to ∀Dn(n ∈ A), and so, to A ∈ D. Since we have A1 ∈ D1 and
A1 /∈ D2, this gives the required conjunction.

2. Now we show that N2 � ¬ψ . Define a function G from PN2
1 into ℘(PM2

2 ) by G(D) := {b ∈ PM2
2 :

{a ∈ PM2
1 : (a, b) ∈ RM2

1 } ∈ D}. Recall that |PM2
1 | = |PM2

1 | = λ (Proposition 2.2). Therefore, | dom (G)| =
|ββ(|PM2

1 |) = |ββ(λ)| = 22λ

> 2λ, while | ran (G)| ≤ |℘(PM2
2 )| = |℘(λ)| = 2λ, whence we conclude that G is

not one-to-one. Take S ∈ ℘(PM2
2 ) such that |G−1(S)| > 1, pick D1, D2 ∈ G−1(S) such that D1 �= D2, and

show that D1, D2 witness the failure of the sentence ψ . Note that N2 satisfies the antecedent of ψ , i.e.,
N2 � P1(D1) ∧ P1(D2) ∧ D1 �= D2, by the condition D1, D2 ∈ G−1(S) ⊆ PN2

1 . So to finish, it suffices to show
N2 � ¬∃y(ϕ2(y) ∧ R1(D1, y) ∧ ¬ R1(D2, y)). Toward a contradiction, assume that there is b ∈ N2 such
that N2 � ϕ2(b) ∧ R1(D1, b) ∧ ¬ R1(D2, b). But since N2 � ϕ2(b), by the “only if” part of Proposition 2.3,
we see that b = j2(A) for some A ∈ PM2

2 . So we obtain RN2
1 (D1, j2(A)) and ¬ RN2

1 (D2, j2(A)).
By Definition 1.2(c), RN2

1 (D1, j2(A)) means ∀D1 a∀ j2( A)b((a, b) ∈ RM2
1 ), whence reducing ∀ j2( A)b we get

∀D1 a((a, A) ∈ RM2
1 ), i.e., {a ∈ PM2

1 : (a, A) ∈ RM2
1 } ∈ D1. Similarly, RN2

1 (D2, j2(A)) is equivalent to {a ∈
PM2

1 : (a, A) ∈ RM2
1 } ∈ D2, and hence, ¬ RN2

1 (D2, j2(A)) is equivalent to {a ∈ PM2
1 : (a, A) ∈ RM2

1 } /∈ D2.
Therefore, A ∈ G(D1) and A /∈ G(D2), which, however, contradicts to the choice of D1, D2. This completes the
proof. �
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So we have constructed two modelsM1,M2 in τ withM1 ≺ M2 and a τ -sentence ψ such thatN1 = ββ(M1) �
ψ and N2 = ββ(M2) � ¬ψ , thus witnessing ββ(M1) �≡ ββ(M2). This proves the Main Theorem (Theorem 1.5).
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