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LARGE CONTINUUM, ORACLES
SH895

SAHARON SHELAH

ABSTRACT. Our main theorem is about iterated forcing for making the contin-
uum larger than RNy. We present a generalization of [She06] which dealt with
oracles for random, (also for other cases and generalities), by replacing N1, Ro
by A, AT (starting with A = A<* > X;). Well, we demand absolute c.c.c. So
we get, e.g. the continuum is AT but we can get cov(meagre) = \ and we
give some applications. As in “non-Cohen oracles”, [She06], it is a “partial”
countable support iteration but it is c.c.c.

§ 0. INTRODUCTION

Starting, e.g. with V = G.C.H. and A = A<* > Xy, we construct a forcing notion
PP of cardinality A*, by a partial CS iteration but the result is a c.c.c. forcing.

The general iteration theorems (treated in §1) seem generally suitable for con-
structing universes with MA_ + 2% = A\t and taking more care, we should be
able to get universes without MA ., see 0.4 below.

Our method is to imitate [She06]; concerning the differences, some are inessential:
using games not using diamonds in the framework itself, (inessential means that we
could have in [She06] imitate the choice here and vice versa).

An essential difference is that we deal here with large continuum - A\™; we con-
centrate on the case where we shall (in VF) have MA_ but e.g. non(null) = A and
b= A" (or b=)).

It seems to us that generally:

Thesis 0.1. The iteration theorem here is enough to get results parallel to known
results with 2% = R, replacing N1, Xy by A, AT,

To test this thesis we have asked Bartoszynski to suggest test problems for this
method and he suggests:

Problem 0.2. Prove the consistency of each of the

(A) Ny < X < 2% and the A-Borel conjecture, i.e. A C “2 is of strong measure
zero iff |A] < A
(B) ®; < non(null) < 2%, see 5.1
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(C) Xy < b = )\ < 2% the dual A-Borel conjecture (i.e. A C “2 is strongly
meagre iff [A| < \)

(D) Ry < b=\ < 2%+ the dual 2%°-Borel conjecture

(E) combine (A) and (C) and/or combine (A) and (D).

Parallely Steprans suggests:

Problem 0.3. 1) Is there a set A C “2 of cardinality N of p-Hausdorff measure
> 0, but for every set of size Ny is null (for the Lebesgue measure)?
2) The (basic product) I think b = 0V d = 2% gives an answer, what about
cov(meagre) = \ < 2%0?

We shall deal with the iteration in §1, give an application to a problem from
[She09] in §2 (and §3,84).

Lastly, in §5 we deal with Bartoszyniski’s test problem (B), in fact, we get quite
general such results.

It is natural to ask

Discussion 0.4. 1) In §1, we may wonder if we can give a “reasonable” sufficient
condition for b =N; or b = < A? The answer is yes. It is natural to assume that
we have in V a < jpa-increasing sequence f = (fa : & < k) of functions from “w
with no <%,4-upper bound and we would like to preserve this property of f,ie. in
81 we

a) restrict ourselves to p € K+ such that IFp_ “f as above”.
A P

More formally redefine K3 such that

(b) replace “P is absolute c.c.c.” by “P is c.c.c., preserve f as above and if Q
satisfies those two conditions then also the product P x Q satisfies those
two conditions”.

This has similar closure properties, that is, the proofs do not really change.
2) More generally consider K, a property of forcing notions such that:

(a) Pe K =Pisc.c.c.

(0)

(¢) K is closed under composition

(d) we replace in §1 “p € K}” by “p € K has cardinality < \”

(e) we replace in §1, “P is absolutely c.c.c.” by ‘Pe K and Re K =P xR €
K.

K is closed under <-increasing continuous unions

e

3) What about using #(n)-amalgamation of forcing notions? (See [She| in model
theoretic version).) If we fix n this seems a natural way to get non-equality for
many n-tuples of cardinal invariants; hopefully we shall return to this sometime.
4) What about forcing by the set of approximations k? See 1.16.

5) You may wonder why here “absolute c.c.c.” play a major role but is not used in
[She06]. The answer is that the “absolute c.c.c.” is demanded on forcing notions of
cardinality < A which in [She06] means countable.
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Definition 0.5. 1) We say a forcing notion P is absolutely c.c.c. when for every
c.c.c. forcing notion Q we have I-g “P is c.c.c.”

2) We say P, is absolutely c.c.c. over P; when (P; <Py and) Py/P; is absolutely
c.c.c.

3) Let P; Cic Py mean that P; C Py (as quasi orders) and if p,q € P; are incom-
patible in P; then they are incompatible in Py (the inverse follows by P; C Ps).

The following tries to describe the iteration theorem, this may be more useful to
the reader after having a first reading of §1.

We treat A as the vertical direction and AT as the horizontal direction, the
meaning will be clarified in §2; our forcing is the increasing union of (PXe : ¢ < A1)
where k. € Ky (so k. gives an iteration (Pylk:] : @ < A), i.e. a <-increasing
continuous sequence of c.c.c. forcing notions) and for each such k. each iterand
Py, [x.] 18 of cardinality < A and for each ¢ < At the forcing notion PXe is the
union of the increasing continuous sequence (Pp, [k} : @ < A). So we can say that
PX< is the limit of an FS iteration of length ), each iterand of cardinality < A and
for ¢ € (g,A"), k¢ gives a “fatter” iteration, which for “most” 6 € S(C \), is a
reasonable extension.

Question 0.6. Can we get something interesting for the continuum > A" and/or get
cov(meagre) < A7 This certainly involves some losses! We intend to try elsewhere.

Definition 0.7. 1) For a set « let otrcl(x), the transitive closure over the ordinals
of =, be the minimal set y such that x Cy A (Vt € y)(t ¢ Ord —t Cy).

2) For a set u of ordinals let S, (u) be the set of x such that otrcl(z) N Ord is a
subset of u of cardinality < k.

Remark 0.8. 0) We use % (u) (in Definition 1.3) just for bookkeeping convenience.
1) It is natural to have Ord, the class of ordinals, a class of urelements.

2) If wy C u for Sy, (u) it makes no difference, but if wy ¢ v and g = min(wy\w)
then S is a countable subset of u but ¢ %y, (u). Also we use iy, (u) where
w C u, so there are no problems.
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§ 1. THE ITERATION THEOREM

If we use the construction for A = Xy, the version we get is closer to, but not the
same as [She06]; in this case it may be more convenient to have the forcing locally
Cohen.

We now list “atomic” forcings used below coming from three sources:

(a) the forcing given by the winning strategies ss (see below), i.e. the quotient
Pq. /Pp., see Definition 1.12

(b) forcing notions intended to generate MA .
[see 1.25; we are given k; € K]%, an approximation of size A, see Definition
1.16, and a Py,-name Q of a c.c.c. forcing and sequence (&; : i < i(x))
of < X dense subsets of Q. We would like to find ko € K, satisfying
ki < K3 ko such that IFp, “there is a directed G C Q not disjoint to any
(i < i(x))”. We do not use composition, only Py, x,] = Pp, [k,] * Q for
some « € Eyx, N Ey,]]

(c) given k; € Kf, and Q which is a Px,-name of a suitable c.c.c. forcing
notion of cardinality X can we find ko such that k; <p2 ko and in V we

have IFp,) “there is a subset of Q generic over V|G, Plko] NPy, ]”.

Let us describe the roles of some of the definitions. We shall construct (in the
main case) a forcing notion of cardinality A* by approximations k € K J% of size (=
cardinality) A, see Definition 1.16, which are constructed by an increasing sequence
of approximations p € K; of cardinality < A, see Definition 1.3.

Now p € K is essentially a forcing notion of cardinality < A, i.e. Pp = (Pp, <p),
and we add the set u = up to help the bookkeeping, so (in the main case) up €
[A*]<*. For the bookkeeping we let P, C Sy, (up), see 0.7(2).

More specifically k (from Definition 1.16) is mainly a <-increasing continuous
sequence p = (P, : @ € Ex) = (pa]K| : @ € Ex), where Ey is a club of A\. Hence
k represents the forcing notion Px = U{(Pp,,<p,) : @ < A}; the union of a <-
increasing continuous sequence of forcing notions P, = Plps] = (Pp,, <p,), SO
we can look at Py as a FS-iteration. But then we would like to construct say an
“immediate successor” kT of k, so in particular Py < Py+, e.g. taking care of (b)
above so Q is a Px-name and even a Py, (g, -name of a c.c.c. forcing notion. Toward

this we choose plg = po k™| by induction on a € F. So it makes sense to demand
Po <k, Polk’], which naturally implies that u[p,] C u[pf],l[”pa <Py k+)- So
as palkt] for a € Fy is <g,-increasing continuous, the main case is when § =
min(Ex\(a + 1), can we choose pg[k*]?

Let us try to draw the picture:

Ppopg - 7
t )
Ppa k] < 5— ]P)pa [k+]

So we have three forcing notions, Py, k], Ppsk]s Pp., [k+], Where the second and third
are <-extensions of the first. The main problem is the c.c.c. As in the main case
we like to have MA ), there is no restriction on Ppa[k+]/Ppa[k]u so it is natural
to demand “Pp 1 /Pp,, [k is absolutely c.c.c. for a < 8 from Ex” (recall p,[k] is

demanded to be <}1—increasing with ).

See https://shelah.logic.at/papers/895/ for possible updates.
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How do we amalgamate? There are two natural ways which say that “we leave
P, /Pp, i as it is”.

First way: We decide that Ppﬁ [k+] is Ppa[k] * ((Ppa[kﬂ/ﬂppa[k]) X (Ppﬁ[k] /]Ppa [k]))

[This is the “do nothing” case, the lazy man strategy, which in glorified fashion
we may say: do nothing when in doubt. Note that Ppa[kﬂ/Ppa[k] and Py i /Po. ]
are P, -names of forcing notions.|

Second way: Py 1/ Pp,. [k is defined in some way, e.g. is a random real forcing in
the universe V[P (] and we decide that Py pe+)/Pp, i+ is defined in the same
way: the random real forcing in the universe V[Ppa[kﬂ]; this is expressed by the
strategy sq.

[That is: retain the same definition of the forcing in the a-th place, so in some
sense we again do nothing novel.]

Context 1.1. Let A = cf(\) > Ry or just’ A = cf(A\) > Ry.

Remark 1.2. We may replace AT by p > AT, if so we need stronger condition;
mainly the C¢-s can be of arbitrary cardinality. but not do not do it here.

Below, S}_ﬁ is used in defining k € KJ% as consisting also of §}}1—increasing
continuous sequence (P, : @ € E C A) (so increasing vertically).

Definition 1.3. 1) Let K be the class of p such that:

(a) p=(u, P,<) = (up, Pp, <p) = (up,Pp)
(b) w CuCOrdand A >Ny = w; Cw,
(¢) Pisaset C Ay, (u),

(d) < is a quasi-order on P,

satisfying
(e) the pair (P, <) which we denote also by P = Pj, is a c.c.c. forcing notion.

1A) We may write u[p], P[p], P[p]-

2) <k, is the following two-place relation on K1 : p <g, qiff up C uq and P, <Pgq
and Pq N2y, (up) = Pp; moreover, just for transparency ¢ <pjq) p € Pp = ¢q € Pp,.
3) S—;ﬁ is the following two-place relation on K; : p g}l q iff p <k, q and Py/Pp
is absolutely c.c.c., see Definition 0.5(1).

4) K} is the family of p € K such that up C AT and |up| < A

5) We say p is the exact limit or the union of (p, : @ € v),v C Ord, in symbols
p = U{pa : @ € v} when up = U{up, @ o« € v},Pp, = U{Pp, : @ € v} and
o €V = ps <k, P; hence p € K;.

6) We say p is just a limit of (p, : @ € v) when up is U{up, : @ € v},Pp D U{Pp,, :
acevtand a € v=py <k, P.

7) We say p = (pa : @ < a¥) is <, -increasing continuous [strictly <y, -increasing
continuous] when it is <g,-increasing and for every limit o < o*, p,, is a limit of
p | « [is the exact limit of p [ «], respectively.

8) In part (7) we say (= ()-strictly (<g,)-increasing continuous when it is (<,
)increasing continuous and if o = ¢ then p,, is the exact limit of p[¢

Lif A = Ry, we may change the definitions of k € Ko, instead (Po[Kk] : @ < A) is <-increasing,
we carry with us large enough family of dense subsets, e.g. coming from some countable N.
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Observation 1.4. 1) <k, is a partial order on Kj.

2) S;IQSKl is a partial order on K.

3)If p = (pa : @ < 6) is a <k, -increasing sequence and U{Pp,, : o < 0} satisfies the
c.c.c. and § < A then some p € K is the union U{p, : @ < 0} of p, i.e. Up € K;
Py — U{Ppy : @ < ¢} and o < § = p, <k, p; this determines p uniquely and p is
the exact limit of p.

) I p = (pa: a<9)is <g, -increasing and cf(6) = ¥y implies {a < § : po the
exact limit of p [ a or just |J Pp, <Py, } is a stationary subset of § then Up € K}

B<a
is a <g,-upper bound of p and is the exact limit of p.

5) If in part (4), p is also gzl—increasing then a < § = p, S;I p.
6) If p <k, q and IFp_«pyan, 7 (less suffice) then

P<g+d

Proof. Should be clear, e.g. in part (5) recall that c.c.c. forcing preserve stationarity
of subsets of 4. Oy 4

We now define the partial order <% ; it will be used in describing k; <k, ko, i.e.
demanding (pX!, pk?) <k, (PI;H, pl;il) for many o < A.

Definition 1.5. 1) Let <k, be the following two-place relation on the family of
pairs {(p,q) : p <k, a}. Welet (p1,a1) <%, (P2, qz) iff

(d) up, Nuq, = Up,

2) Let <, be the following two-place relation on the family {(p,q) : p <k, q} of
pairs. We let (p1,q1) <%, (P2, qz) iff clauses (a),(b),(d) from part (1) above and

(¢) if p1 € Pp,,q1 € Pg, and py IFp,  “q1 € Pg,/Gp, " then py IFp, “q1 €
PO&/GPPQ”'

3) Assume p; € K for £ =0,1,2 and pg <g, p1 and po <k, p2 and up, Nup, =
Up,- We define the amalgamation p = p3 = p1 Xp, P2 Or P3 = P1 X P2/Po as the
triple (up, Pp <p) as follows?:

(a) up = up, Uup,

(b) Pp = Pp, U Py, U{(p1,p2) : p1 € Pp,\Ppy,p2 € Pp,\Pp, and for some
p € Pp, we have p IFpp “pe € Pp, /Pp,” for £ =1,2}

(C) gp is deﬁned Haturauy as Spl U sz U{((p17p2)7 (qla CI2)) : (plva)v (qla CI2) S
Py and p; <p, q1 and py <p, g2} U{(p), (P1.p2)) : D) € Pp,, (P1,p02) € Py
and pj) <p, pe and ¢ € {1,2}}.

Remark 1.6. Why not use u instead #%y, (u)? Not a real difference but, e.g. there
may not be enough elements in a union of two.

2If in clause (b) of 1.5(3) we would like to avoid “py € Pp,\Pp,” we may replace (p1,p2) by
(P1,p2,up; Uup,) when p1 # p1 A po # P2 equivalently po # p1 A po # Pz2.
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Observation 1.7. 1) <% , <l are partial orders on their domains.
2) (p1,q1) <k, (P1,q1) implies (p1,q1) <%, (P2,q2)-

For the “successor case vertically and horizontally” we shall use

Claim 1.8. Assume that p; §}1 p2 and p1 <k, di and up, Nuq, = Up, then
q2 € Ky and (p1,q1) <k, (P2,q2) when we define qa = q1 Xp, P2 as in 1.5(3).

Proof. Straightforward. Uis

The following claim will be applied to a pair of vertically increasing continuous
sequences, one standing horizontally to the right of the other.

Claim 1.9. Assume e(x) < X is a limit ordinal and
(a) (pt:e <e(*)) is (= e(x))-strictly §}§1-increa5mg continuous for £ = 1,2
(b) (pt.p?) <%, (Pt p2) fore < ¢ <e(*).

Then

(a) pi(*) <k, p?(*)
(B) fore < (< e(x) we have (pl, pZ) <k, (P PY)-

Proof. Easy. The main point is to prove IP’;(*) < ]P’g(*), so let g € ]P’i(*), By clause
(a) for £ = 2, for a = (x) for some £ < £(x) we have ¢ € P2. Recalling P! there
is p € P!, and it suffice to prove that for every p; € ]P’;(*) abov e p, the conditions
p1,q are compatible in P?)e(x). Fixing p1, let ¢ € (¢,£(x) be such that p; € Pf,
again by clause (a) but this time for £ = 1. By clause (b) and the definition of
S’KI we get that pi, ¢ are compatible in Pg that is having a common upper bound
and it serve to prove p1,q are compatible in Pg(*). This prove clause («), and the
argument prove also clause (8). Uig
For the “successor case horizontally, limit case vertically when the relevant game,
i.e. the relevant winning strategy is not active” we shall use

Claim 1.10. Assume e(x) < A is a limit ordinal and

(a) (pe : e < e(x) and (qc : & < e(x)) are (= &(x))-strictly <y -increasing
continuous

(b) P <k, Qe fore < e(x)

(¢) ife < ¢ <e(x) then (Pe,qe) SIKI (Pe,ac)-

Then we can choose q.(x) such that
(@) Pe(x) <K, Ge(x)

(B) (Pe,q:) <k, (Pe(x)s Ge(x)) for every e < e(x)
(7) {qe : e <e(x)) is (= e(x))-strictly < -increasing continuous.

Remark 1.11. We can replace <% by <} in (c) and (8) of 1.10 and (b), (5) of 1.9.
Proof. But 1.9 should be clear. 410

The game defined below is the non-FS ingredient; (in the main application below,
~v = A), it is for the horizontal direction; it lasts v < A steps but will be used in
SK?-increasing subsequences of (k; : i < A1),
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Definition 1.12. For § < A and v < A let 05 4 be the following game between the
player INC (incomplete) and COM (complete).

A play last v moves. In the S-th move a pair (pg,qg) is chosen such that
ps <k, 9z and B(1) < B = (pPs1),Ps) <k, (as1),9s) and up, N A = § and
Ugs TA=Ug, NA D6+ 1.

In the B-th move first INC chooses (pg, ug) such that pg satisfies the require-
ments and ug satisfies the requirements on uq, (i.e. U{uq, : @ < B} Uup, Cug €
[AT]<* and ug N = ug, NA) and say ug\up,\U{uq, : v < B} has cardinality > ||
(if X\ is weakly inaccessible we may be interested in asking more).

Second, COM chooses qg as required such® that ug C ulqg].

A player which has no legal moves loses the play, and arriving to the v-th move,

COM wins.

Remark 1.13. 1) It is not problematic for COM to have a winning strategy. But
having “interesting” winning strategies is the crux of the matter. More specifically,
any application of this section is by choosing such strategies.

2) Here it is not natural to demand strict continuity for (p, : o < ) as this fail in
non-trivial cases. Still we may consider requiring more

3) Such examples are the

(a) lazy man strategy: preserve Pg, = Pq, Xpy, Pp, recalling Claim 1.8

(b) it is never too late to become lazy, i.e. arriving to (pg(«),qs(x)) the COM
player may decide that 8 > B(x) = Pq, =Py, ,, XBo, ) Ppo,

(c) definable forcing strategy, i.e. preserve “Pq, /Py, is a definable c.c.c. forcing
(in VZIPal)>.
Definition 1.14. We say f is A-appropriate if

(a) ferA+1)

() a <AA fla) <A= (3p)f(a) =B +1]

(c) if e < AT, (uq : @ < A) is an increasing continuous sequence of subsets
of € of cardinality < A with union ¢ then {§ < A: otp(us) < f(d)} is a
stationary subset of A.

Convention 1.15. Below f is A-appropriate function.

We arrive to defining the set of approximations of size A (in the main application
f« is constantly \); we shall later connect it to the oracle version (also see the
introduction).

Definition 1.16. For f, a A-appropriate function let KJ% be the family of k such
that:

)k:<E7f)7S7§7g7f>

) E is a club of A

) P=(Pa:a€E)

d) pa € K3

) Pa <k, pg for a < g from E
)

3we could ask for equality usually
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) S C \is a stationary set of limit ordinals
) if § € SN E (hence a limit ordinal) then § +1 € E
(i) s={(ss: 0 € ENS)
) ss is a winning strategy for the player COM in sy, (5), see 1.17(1)
)E=(gs:0€SNE)
) ® gs is an initial segment of a play of D5 ¢, (5) in which the COM player
uses the strategy s;
e if its length is < f,.(d) then gs has a last move
e (ps,Ps+1) is the pair chosen in the last move, call it mv(gs)
e let Sp={6€SNE:gshaslength < f.(§)} and S = SN E\Sy

(m) if @ < § are from F then p, 3}1 pg, so in particular Pg/P, is absolutely
c.c.c. that is if P<P’ and I’ is c.c.c. then IP'sp_ Py is c.c.c.; this strengthens
clause (e)

(n) fe*x
(0) if 6 € SN E then f(d) + 1 is the length of gs
(p) for every 6 € E, if f.(d) < A then f(§) < otp(up,).

Remark 1.17. 1) Concerning clause (j), recall (using the notation of Definition 1.12)
that during a play the player INC chooses p. and COM chooses q.,e < f(4) and
recalling clause (o) we see that (pg(s), dy(s)) there stands for (ps, ps+1) here. You
may wonder from where does the (pe,qc) for € < f(§) comes from; the answer is
that you should think of k as a stage in an increasing sequence of approximations
of length f(4) and (pe,qe) comes from the §-place in the e-approximation. This is
cheating a bit - the sequence of approximations has length < AT, but as on a club
of A this reflects to length < A, all is O.K.

2) Below we define the partial order <k, (or < K?*) on the set KJ%*, recall our goal

is to choose an <,-increasing sequence (k. : ¢ < A™) and our final forcing will be
U{[P)k5 e < )\+}

3) Why clause (d) in Definition 1.18(2) below? It is used in the proof of the limit
existence claim 1.24. This is because the club Ex may decrease (when increasing
k).

Note that we use Sj(} “economically”. We cannot in general demand (in 1.18(2)
below) that for a < f from FEy,\a(x) we have (pgl,p]ﬁ‘l) <k, (pg%plﬁ‘z) as the
strategies ss; may defeat this. How will it still help? Assume (k. : ¢ < (%)) is
increasing, £(x) < A for simplicity and v € N{Ex, : ¢ < e(x*)} N[ {%. : € <
e(¥) P\ U{a(ks, ke) e < ¢ <e(x)} and 7. = Min(Ex_\(y+ 1)) for e < e(x). We
shall have (7. : € < e(x)) is increasing; there may be § € (7.,Ye+1) where s5 was
active between k. and k.1, so it contributes to ]P’lv(jill /IP’,‘;EE
4) If we omit the restriction u € [A\*]<* and allow f : A — §* + 1, replace the club
E by an end segment, we can deal with sequences of length §* < AT,

In the direct order in 1.18(3) we have a(x) = 0. Using e.g. a stationary non-
reflecting S C S we can often allow a(x) # 0.

5) Is the “ss a winning strategy” in addition for telling us what to do, crucial? The
point is preservation of c.c.c. in limit of cofinality N;.
6) If we use f. € *(\+ 1) constantly A, we do not need fi so we can omit clauses
(n),(0),(p) of 1.16 and (c), and part of (e) in 1.18(2).
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6A) Alternatively we can omit clause (0) in 1.16 but demand “ [] f(«)/2 is AT-
a<
directed”, fixing a normal filter 2 on A\ (and demand Sk € 27).

7) The “omitting type” argument here comes from using the strategies.
8) We may add in clause 1.16(n) that for some v < AT and sequence @ = (u, : @ <
A) as in 1.15(c) the set {a < A : f(a) < otp(uq)} contains a club of A.

Definition 1.18. 1) In Definition 1.16, let E = Ey, p = Pk, Pa = PX = Pu K], Po =
PX = Py, S = Sk for £ = 0,1, etc. and we let Px = U{PX : o € Fx} and
ux = ulk] = U{upk : o € Ex}.

2) We define a two-place relation SK? on K}% : ky SK? ks iff (both are from KJ%
and) for some a(x) < A (and a(k, ko) is the first such a(x) € Ex,) we have:

(a) Ex,\Ek, is bounded in A, moreover C «(x)

(b) for a € Ex,\a(*) we have pXt <y pke

() if a € Ei\a(x) then fi, () < fies(0)

(d> if Yo <7 <7< )\,70 € Ekz\(a(*) U Sk1)a71 = min(Ekl\(’}/o + 1)) and
Y2 = min(Ey,\(y0 + 1)), then (pX!, pX2) <f (pl;;,pgs), see Definition
1.5(2) really follows from clause (h) below

(e) if § € Sk, NEx,\a(*) then § € Sk, NEy, \a(x); but note that if fi, (§) > f(9)
we put J into Sk, just for notational convenience as “the game is over”

(f) it 6 € Sk, N Ex,\a(*) then sg‘z = sgl and gfs‘l is an initial segment of g?z

if k1 7é kz then U[kl] 75 U[kQ]

if & < 3 are from By, \o(*) then (pk',pk?) <}, (p1§17p§2), see Definition

1.5(2), ie. if p € Pp, )4 € Ppojio) and ple, ) “0 € Ppo i) /Gy,

then plre, ., “q € Pp, i,/ Gr 7

pglki]

e
SRS
— —

3) We define a two-place relation §‘Ii<ir? on KJ% as follows: k; §‘;(i’% ko iff

(a) kq SK? ko
(b) Ex, C Ex,; no real harm here if we add ky # ko = Fx, C acc(FEx,)
(¢) a(ky, ko) = Min(Ey,).
4) We write Ki, SK?’ S‘;{i% or just Ko, <g,, <‘}<i; for KJ%, SK?, §‘Ii(i% when f is con-

stantly A.

Remark 1.19. 1) In [She06] we may increase S as well as here but we may replace
clause (e) of Definition 1.18(2) by

(e)' § € S, N B, \a(x) iff fi,(8) < f(5) AS € Sk, N Ei, \ax().

If we do this, is it a great loss? No! This can still be done here by choosing ss such
that as long as INC chooses ug of certain form (e.g. ug\uP? = {d}) the player COM
chooses qg = pg. We can allow in Definition 1.18(2) to extend S but a priori start
with (S : e < AT) such that S. C X and S.\S¢ is bounded in A when e < ¢ < A
and demand Sk, = S..

2) We can weaken clause (e) of 1.18(2) to

(€)" if 6 € Sk, N Bi,\a(*) and fie, (5) < f(5) then § € Si,.
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But then we have to change accordingly, e.g. 1.18(c),(f), 1.21(c).
3) We can define k; <k3 ko demanding (Sk,,8k,) = (Sk,,Sk,) but replace ev-
erywhere “6 € Sk N Ex” by “§ € Sk N Ex A fx(d) < f(8)” so omit clause (e) of
1.18.
Observation 1.20. 1) <K2 is a partial order on K]%.
2) <9 C<K2 is a partial order on K7.
) If k1 SKJQC ko then Py, < Py,.
4)If (ko e < A1) is <kz-increasing and P = U{Px_ : € < A"} then

(a) Pis a c.c.c. forcing notion of cardinality < A
(b) Py, <P fore < AT.
Definition 1.21. 1) Assume k = (k. : ¢ < g(x)) is < z-increasing with e(x) a limit

ordinal < \. We say k is a limit of k when k € K]% and € < (%) = k. <k3 ke KJ%
and for some (%)

(a) a(x) =U{alk:, ke) e < <e(x)}

() Ei\a(x) C N{Ex\a(x) s e <e(x)}

(©) S = (U{Sk. : €<€( )N (N{Ek, s e <e(x )})\a( )

(d) if § € Sk then g55 is an initial segment of gk for every e < e(x)
(e) /i

e) fk(d) =U{fk.(0):e <e(x)}+1 for § € Sk.

2) Assume k = (k. : £ < \) is < K2-increasing continuous, see part (3) below (no
viscious circle). We say k is a limit of kwhen e< A= k. <ke KJ% and for some
a
(a) &= (a. :e < \) is increasing continuous, A > a. € N{Eyx, : ¢ <1+¢e}\U
{alke  ke,) 1 G <G <1+¢}
(b) Bx ={a. :e <A}U{ac+1:e < Xand ¢ € S} and pX_ = pk:,pk | =
P§§+1
(c) Sk ={ac : a. € Sk, for every ( < ¢ large enough}
(d) if § = a. € k. then gf = g?f
(e) ifa<dand ¢ = Min{e: a < acq1} then fi(a) = fi (a).

3) We say that (k. : e < e(x)) is <j-increasing continuous when :

(a) ke <k: ke for e < ¢ < e(x)

(b) k. is a limit of (ke(¢) : ¢ < cf(e)) for some increasing continuous sequence
(€(¢) : ¢ < cf(e)) of ordinals with limit €, for every limit € < e(x), by part
(1) or part (2).

Definition 1.22. 1) In part (1) of 1.21, we say “a direct limit” when in addition
(@) the sequences are <4t -1ncreasmg

(8) in clause (b) we have equality

7) pﬁlin(Ek) is the exact union of (pX Prin(Ey,) ' € < e(*))
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(0) if v € Bx,& < e(*),7 ¢ S, and (7 : e € [§,e(x)]) is defined by 7¢ =
v, % = min(Fx_ \(y+1)) when £ <& <e(*), 50 (7. : € € [£,e(%)]) is an <-
increasing continuous sequence of ordinals, then pljs(*) / pIW‘ = U{p%‘; / pl;s
e € [£,e(x))} with the obvious meaning.

2) In part (2) of Definition 1.21 we say a “direct limit” when in addition
() the sequence is <dlr
(8) «. is minimal under the restrictions.

3) We say that k = (k. : € < g(x)) is g‘;(ir?-increasing continuous or directly increas-
ing continuous when :
(a) ke <dlr ke for e < (¢ <e(x)
(b) ife < 5(*) is a limit ordinal then for som e club C of ¢ k is C-continuous
which means that k. is a (really the) direct limit of k [ C
4) For 5( ) < AT we say C is an g(*)-square when

(1) €'=(C::e <e(x)

) C

(2) C.isa closed subset of €

(3) if € is a limit ordinal then C, is unboundednin e
)

(4) if e € C)¢ then C. =Cc Ne
5) We say that k = (k. : € < g(x)) is <9% —1ncreasmg C-continuous or directly

increasing C-continuous when
(1) k is as in part (3) above
(2) C is an e(x)-square
(3) for evey limit ¢ < e(x) k is C-continuous

Claim 1.23. Ifk; SK? ko then for some ki, we have
(0) Ky <85 K
(b) ko k2 kj <k: ko

(c) ka,ky are almost equal - the only differences being Ey;, = E, \min(Ey,), Sy
Sk, , etc.

N

Claim 1.24. The limit existence claim 1) If e(x) < X is a limit ordinal and k =
(k. : € < &(%)) is a directly increasing continuous then k has a direct limit.

2) Similarly for e(x) = A, i.e. if (ke 1€ < A) is directly increasing continuous then
there is k such that:

(a) e<A=k. <k
(b) for each e < X, if klél is like k omitting Fy Ne then k.legi k).

Proof. It is enough to prove the direct version.
1) We define k = k., as in the definition, we have no freedom left.
The main points concern the c.c.c. and the absolute c.c.c., <%.,, <k, demands.
1

We prove the relevant demands by induction on § € Fy
Case 1: = min(FE,,,)-

e(x) "
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. = . . . . . . 1
First note that (pmin( B €S g(*)) is increasing continuous (in K) more-
over <]P’[p1;fin( B )] : e < g(x)) is increasing continuous, see clause () of Definition
€

1.22(1). As each P[pumin(s,_,] is c.c.c. if € < (x), we know that this holds for
g = g(x), too.
Case 2: 3 =0+ 1,6 € Si N Ex.

Since s¥ is a winning strategy in the game Js, 7. (5) We have pgs(” S}l pgs(”.
But what if the play is over? Recall that in Definition 1.14, f.(6) = X or f.(d) is
successor and (fi_(9) : € < e(x)) is (strictly) increasing, so this never happens; it
may happen when we try to choose k’ such that k < K2 k', see 1.25.

We also have to show: if a € 5N Ex then P[plﬁ‘]/IE”[p};] is absolutely c.c.c. First,
if &« = ¢ this holds by Definition 1.3(3) of §}§1 and the demand pg g};l qg in
Definition 1.12 (and clause () of Definition 1.16). Second, if a < ¢, it is enough to
show that P[pj]/P[pk] and P[p§]/P[pk] are absolutely c.c.c., but the first holds by
the previous sentence, the second by the induction hypothesis. In particular, when
e <e(x) = Pl <Pk
Case 3: For some v,y = max(Ex N B3),v ¢ Si.

As v ¢ Sk there is £ < () such that v ¢ 5’11% let 7¢ = v and for e € (&, e(x)]

we define 7. =: min(Fy_\(8 + 1)). Now as k is directly increasing continuous we
have
® (a) (7 :¢€ €[ e(x)]) is increasing continuous
b) =1
(€) Ve =8

(d) (pXe :e € [¢,e(x)]) is increasing continuous.

So by claim 1.10 we are done, the main point is that clause (d) there holds by clause
(d) of the definition of <Kz in 1.18(2).

Case 4: 8 = sup(Ex N P).

It follows by the induction hypothesis and 1.4(3) as (plv‘ :y € ExNp)is §J[<l—
increasing continuous with union plé; of course we use clause (h) of Definition 1.18,
so Definition 1.5(2),(5) applies.

2) Similarly. O 24

The following is an atomic step toward having MA ..
Claim 1.25. Assume

(a) k, € KJQC

(b) a(x) € Ex,

(c) Qisa ]P’[plg%*)]—name of a c.c.c. forcing (hencelrp, “Q s ac.c.c. forcing”)
(d) ue € AT is disjoint to ulki] = U{up, k) : @ € Ex} and of cardinality < X
but > |Q).
Then we can find ko such that
() kg §‘}(ir? ks € KJ%
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) Ex, = Ex, \a(x)

) ukz = vkt U, for a € By, N Sk,

) Ppa(*)[kg] is isomorphic to ]P)pa(*)[kl] * Q over Ppa(*)[kl]
) Sk, = Sk, \a(*) and Sk, = Sk, [ Sk,

) fio = fig +1

) if H-ppa(*)[kl]*@ “pe“2butp ¢ V[Gppa(*)[kl]]” then Irp,, “p € “2 but

p ¢ VI[Gp,,] provided that the strategies preserve this which they do in the
cases used here.

Proof. We choose pX2 by induction on a € E, \a(*), keeping all relevant demands
(in particular up, ;) Nulki] = up, 1,])-

Case 1: a = a(x).
As only the isomorphism type of @ is important, without loss of generality

ok ; “every member of Q belongs to u.”.
P[pa(*)} ~

So we can interpret the set of elements of Pp_ 1, * Q such that it is C
Hx, (upa(*)[kﬂ U ).

Now Ppa<*>[k1] < Ppa(*)[kg] by the classical claims on composition of forcing no-
tions.

Case 2: a =6+ 1,0 € Sk, N Ex, \a(x).
The case split to two subcases.

Subcase 2A: The play ggl is not over, i.e. f(d) is larger than the length of the play
so far.
In this case do as in case 2 in the proof of 1.24, just use s;.

Subcase 2B: The play g?l is over.

o+1 7P
Ups., 1 [ks] aPPropriately). Now possible and (p?l,p;‘?) <k, (pg‘jrl,p?il) by 1.8.

In this case let }P’lgil =P« iy IF’};Q, in fact, pgil = pf;_lH ¥k plgz (and choose

Case 3: For some v,y = max(Fx N B) > a(x) and v ¢ Sk.
Act as in Subcase 2B of the proof of 1.24

Case 4: § = sup(Ex N ).
As in Case 4 in the proof of 1.24. U125
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§ 2. p =1t DOES NOT DECIDE THE EXISTENCE OF A PECULIAR CUT

We deal here with a problem raised in [She09], toward this we quote from there.
Recall (Definition [She09, 1.10]).

Definition 2.1. Let k1, k2 be infinite regular cardinals. A (k1, k2)-peculiar cut in
Ywis a pair ((f; 11 < k1), (f* : @ < K2)) of sequences of functions in “w such that:

)

) (Vo < B < ko) (f* <ypa f7),
(7) (Vi < r1) (Ve < w2)(f* <ypa [i),

) if f 1w — wis such that (Vi < x1)(f <jpa fi), then f <jpa f for some
a < kg,
() if f:w — wissuch that (Va < k2)(f* <jpa f), then f; <jva f for some
1< Kip.

The motivation of looking at (k1, k2)-peculiar cuts is understanding the case p > t,
(see [She09]). Also p = N; = t = p by the classical theorem of Rothberger and
1\/LAN1 +p= No = t=2Ny by [She09, 23]

Recall (from [She09]) that

Claim 2.2. 1) If p < t then there is a (K1, ke)-peculiar type for some (regular)
K1, Ko satisfying K1 < kg = P.

1A) If there is a (k1, ka)-peculiar cut then p < max{ri,rKa}.

2) There is a (K1, ke)-peculiar cut iff there is a (K2, k1)-peculiar cut.

Proof. 1), 1A) See [She09, 1.12].
2) Trivial. |:|2_2

Observation 2.3. If (7", 79") is a peculiar (Kup, £an)-cut and if A C w is infinite,
1N € “w then:

(a) n <ga naP for every o < kyp iff n < ng“ for every large enough 8 < Kqn

(0) ~(na? <gya m) for every a < kyp iff —(ng" <gua 1) for every large enough
8 < Kdn-
Proof. Clause (a): The implication < is trivial as 8 < kan A @ < Kyp = ng“ <Jba
naP. So assume the leftside.

We define ' € “w by: 7/(n) is n(n) if n € A and is 0 if n € w\A. Clearly
n <gpa P for every a < kyp hence by clause (6) of 2.1 we have n < Jba 772“ for
some v < kqy hence n=17" | A <ba 77%3_1 <ba ng“ for every 8 € (7, Kdn)-

Clause (b): Again the direction < is obvious. For the other direction define 7’ € “w
by 1’ (n) is n(n) if n € Aandis " (n)if n € w\A. So clearly a < kyp = —(15P <ba
n') hence a < kyp = —(niP <jpa 1) hence by clause (g) of 2.1 for some 8 < kan
we have =(ng" <jva 1/). As n§" <jva 1", necessarily —(13" <gwa 1) but v €
[B, Kan) = n§" <gua g™ hence v € [B, kan) = (0™ <gpa 1) = (15" < gua 1), as
required. Uas

We need the following from [She09, 2.1]:
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Claim 2.4. Assume that k1 < Ko are infinite reqular cardinals, and there exists a
(K1, ka)-peculiar cut in “w.

Then for some o-centered forcing notion Q of cardinality k1 and a sequence
(Fo + a < Ka) of open dense subsets of Q, there is no directed G C Q such that
(Va < ko) (GN 1, #0). Hence MA,, fails.

Theorem 2.5. Assume A\ = cf(\) = A<* > Vg, A > k& = cf(k) > Ny and 2 = A+
and (Y < A)(u™0 < N).

For some forcing P* of cardinality \* not adding new members to "V and P-
name Q" of a c.c.c. forcing we have |Fp+iq= “Ro = A\t and p = X\ and MA_, and
there is a pair (7", n9) which is a peculiar (k, \)-cut”.

Remark 2.6. 1) The proof of 2.5 is done in §4 and broken into a series of Definitions
and Claims, in particular we specify some of the free choices in the general iteration
theorem.

2) In 4.1(1), is cf(6) > R necessary?

3) What if A\ = Ry? The problem is 3.2(2). To eliminate this we may, instead
quoting 3.2(2), start by forcing 7 = (7, : @ < wi) in Py, and change some points.

Complementary to 2.5 is

Observation 2.7. Assume A = cf(\) > ®; and p = cf(u) = p=* > X then for
some c.c.c. forcing notion P of cardinality u we have:

IFp “2% = p,p = X and for no regular k < X is there a peculiar (x, \)-cut so
t=\".

Proof. We choose Q = (P,,, Qs:a<pu,B< w) such that:

B (a) Qs an FS-iteration
(b) Qg is a o-centered forcing notion of cardinality < A

() ifa<p,QisalP,-name of a o-centered forcing notion of cardinality
< A then for some f € [a, u) we have Q3 = Q

(d) Qp is adding A Cohens, (r. :e < \) say 1. € “w.

Clearly in VP* we have 2% = )\, also every o-centered forcing notion of cardinality
< p, is from VFe for some a < 1, so as y is regular we have

(*) MA for o-centered forcing notions of cardinality < A and < u dense sets.

Hence by 2.4 there is no peculiar (K1, ke)-cut when Ny < k; < kg = A (even
K1 < Ko < k1 < A< ).
Lastly,

® for a < p, in VFi+e for every n € “w for every € < A large enough we have

Te fJBd n.
[Why? We prove this by induction on o < p. For o = 0 this holds by H(d). For
a limit of uncountable cofinality recall (“w)VPel = U{(“w)VIFsl . 8 < a}. For a

limit of cofinality Xy use “Q is a FS-iteration”. Lastly, for & = 4 1 use the “of
cardinality < \” of clause (c) of H.] Oa 7
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§ 3. SOME SPECIFIC FORCING

Definition 3.1. Let 7 =: (o : @ < o) be a sequence of members of “w which is
< spa-increasing or just < jva-directed. We define the set .%; and the forcing notion
Q = Qp and a generic real v for Q = Qy as follows:

(a) Fy={v €“(w+1): ifa < Lg(n) then gy <jua v}, here 7 is not* necessarily
< pa-increasing
(b) Q has the set of elements consisting of all triples p = (p, o, g) = (p?, P, g¥)
(and a(p) = aP) such that
(a) pe“uw,
(B) a < tg(n),
(v) g € #5, and
(0) if n € [lg(p),w) then n4(n) < g(n);
c) <g is defined by: p <gp g1 oth are elements o an
@'dﬁdb g ¢ iff (both 1 f Q and

(@) p? D p,
(B) a? < af and® ner < Jbd Tas
(v) g7 <g?
§) if n € [lg(p?),w) then Nap) () < Na(q) (n);

(
(€) if n € [lg(pP), Lg(p?)) then no(p)(n) < p?(n) < g”(n).

(d) For # C Z; which is downward directed (by <jva) we define Q; & as
1 {peQq: 9P € F}

(e) v=vo=vg, =U{p" :p € Gq,}

Claim 3.2. 1) If 7 € "(Yw) then 5 is downward directed, in fact if g1,92 € F5

then g = min{gi, g2} € F5, i.e., g(n) = min{gi(n),g2(n)} for n < w. Also
“f € 57 is absolute.

[But possibly for every v € “(w+ 1) we have: v € F5 < (Vn)v(n) = w]/.

2) If i € °(*w) is < jpa-increasing and cf(6) > Ny then Qy is c.c.c.

3) Moreover any set of Xy members of Q5 is included in the union of countably
many directed subsets of Qy.

4) Assume (P, : € < () is a <-increasing sequence of c.c.c. forcing notions, 7j =
(Na + a < 0) is a Po-name of a < va-increasing sequence of members of “w and
c~f(§) >Ny, Fore < ( let @5 be the P.-name of the forcing notion Qy as defined in
VP, Then IFp, “Qe is C-increasing and <w—mcreasing for e < ¢ and it is c.c.c.
andcf(()>N0:>Q<—U{Q5 e < (}is ce.c.

5) Let 7 € 9(“w) be as in part (2).

(a) If F C F5 is downward directed (by < jva) then Qg g is absolutely c.c.c.
(b) If 71 C Fo C F5 are downward directed then Qp z, Cic Qy,2,.
6)
(a) Ik, “v € “w and V[G] = VI)
(0) plrg, “p" 4w andn € [lg(p),w) = Na(p)(n) < v(n) < g°(n)”

4the central case is 7 is No-directed by < jba
w

550 if 7] is < jpa-increasing this can be omitted and is equivalent to o < o
w
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(¢) kg, “p € G iff p* av A (Vn)(lg(p”) <n <w = na(n) <v(n) < g(n))”
(d) kg, “v € Fy, e v(n) e FVQal
(e) kg, “for every f € (“w)V we have f € Fy iff f € 3‘?’ iff v <go f".

Proof. 1) Trivial.
2) Assume p, € Qj for € < wy. So {a(p:) : € < wi} is a set of <Ny ordinals < 4.
But cf(d) > Ry hence there is a(*) < § such that € < w; = a(p:) < a(*). For each
e let n. = Min{n: for every k € [n,w) we have 1n,,.)(k) < o) (k) < gP<(k)}.
It is well defined because 7 (p.) <jna Na(x) <jua gPe recalling a(p:) < a(x) and
ng € yﬁ

So clearly for some x = (p*,n*, n*,v*) the following set is uncountable

U = U ={c <wi: pPs=p"and n. =n"* and 19, [ n* =n*
and gP= | n* =v*}.
Let

Q=0Q={peQy: Lg(p?) = Lg(p*),p" I Lg(p*) = p* and pP [ [Lg(p*),L9(p")) € Ta(s)
and a(p) < a(*), and 14 [ 2" =n" and g [ n* = v*
and n € [n*,w) = Nap)(n) < Mo (n) < gP(n)}.
Clearly

®1 {peiecUr CQ
®y Q' C Qj is directed.

So we are done.

3) The proof of part (2) proves this as the set X = {(p*,n*,n*,v*) : n* <
w, {p*,n*,v*} C“>w} is countable and wy = U{% : x € X}.

4),5) First we can check clause (b) of part (5) by the definitions of Q5 4, Q7. Second,
concerning “Qz & is absolutely c.c.c.” (i.e. clause (a) of part (5)) note that if P is

c.c.c., G C P is generic over V then Q%g = Q;ﬁg] and QXVJ; <ic @%’ <ic QnY[G]
by clause (b) and the last one is c.c.c. (as V]G] = “cf(£g(77)) > R1”). Hence (@}{)g
is c.c.c. even in V[G] as required. Turning to part (4), letting .Z. = (%)Y,
clearly IFp_, “Qe, = Qp,2., 7 for €1 < ez < (. Now about the c.c.c., as P, is c.c.c.,
it preserves “cf(d) > 8;”, so the proof of part (1) works.

6) Easy, too. Os.o

Definition 3.3. Assume A = (A4, : a < a*) is a C*-decreasing sequence of mem-
bers of [w]®°. We define the forcing notion Q4 and the generic real w by:

(A) pe Qg iff
(a) p=(w,n,As) = (Wp,np, Aa(p)),
(b) w C w is finite,
(¢) a<a* and n < w,
(B) p<q, qiff
(a) wp Cwg S wp U (Aagp)\np)
(b) np < nq
(©) Aap)\1p 2 Aa(q)\ng
(C) w=U{wp:pe GQA}'
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Claim 3.4. Let A be as in Definition 3.3.

1) Qz is a c.c.c. and even a o-centered forcing notion.

2) kg, “w € [w]¥ is C* A, for each o < a*” and V[G] = V|w].
8) Moreover, for every p € Qi we have I+ “p € G iff wy Cw C (Agp)\np) Uw,”.

Proof. Easy. Os.4

Claim 3.5. Assume 7j € °(“w) is < jua-increasing.

1) If 7 C F5 is downward cofinal in (Fi, <jm), i.e. (Vv € Fy5)(Ip € F)(p < g V)
and % C § is unbounded then Qmer 7 = {p € Qs : &P € % and g? € F} is (not
only C Q5 but also is) a dense subset of Qy.

2) If ¢f(6) > Vo and R is Cohen forcing then Ik “QY is dense in QﬁV[G]”.

Remark 3.6. 1) We can replace “nq, <jva p’ by “p belongs to the F,-set B,”,
where B, denotes a Borel set from the ground model, i.e. its definition.
2) Used in 4.4.

Proof. 1) Check.
2) See next claim. Us.s

Claim 3.7. Let i) = (1, : v < §) is < ju-increasing in “w.
1) If P is a forcing notion of cardinality < cf(d) then Ip “Q){ is dense in QVI&al”,
2) A sufficient condition for the conclusion of part (1) is:

@E»f(g) for every X € [P|f0) there is Y € [P]<cf(9)
such that (Yp € X)(3geY)(p < q).

24) We can weaken the condition to: if X € [P]*®) then for some q € P, cf(5) <
{pe X :p<pq}|

3) If (A, o < 6%) is C*-decreasing sequence of infinite subsets of w and cf(6*) #
cf(8) then @8;6) holds.

Proof. 1) By part (2).
2) Let % C ¢ be unbounded of order type cf(d). Assume p € P and v satisfies
plkp “v € 97;/[@],,. So for every v € % we have p IFp “ny <joa v € “w”, hence

there is a pair (p,,n,) such that:

() (@) p<ppy
(b) ny<w
(C) pe IFp “(vn)(nv <n<w= 776(77') < y(n))

We apply the assumption to the set X = {p. : v € %} and get Y € [P|<f9) as

there. So for every v € % there is g, such that p, <p ¢, € Y. As |Y x w| =

Y]+ Ny < cf(6) = |%] there is a pair (g«,ns) € Y x w such that %’ C o

is unbounded where %’ := {y € % : ¢, = ¢« and n, = n,}. Lastly, define

Vi €“(w+1) by vi(n) is 0if n < ny is U{na(n) +1:a € %’} when n > n..
Clearly

® (a) ve€¥(w+1)
(0) YEU = nal[nw) <vil[new)
(c) if v <0 then 1y <jva vs
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(d) vieZFY
(e) P<un
(f) g« lbp “vie <07,
So we are done.
2A) Similarly.
3) If cf(0*) < cf(d) let % C 6* be unbounded of order type cf(6*) and Q' = {p €
Qj:aP € %}, it is dense in Q; and has cardinality < Rg + cf(0*) < cf(d), so we

are done.
If cf(6*) > cf(§) and X € [P]F) let a(x) = sup{a? :p € X} and Y = {p €
Q1P = (o)},

The rest should be clear. e
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§ 4. PROOF OF THEOREM 2.5

Choice 4.1. 1) S C{d < A : cf(d) > Ro} stationary.

2) 77 is as in 4.2 below, so possibly using a preliminary forcing of cardinality Ny we
have such 7.

Definition/Claim 4.2. 1) Assume k£ = cf(k) € [Ng,\) and 7 = (9, : @ < K) is
an < jpa-increasing sequence in “w and ¢ € A\wi a limit ordinal and v < A. Then
the following s = s5,, is a winning strategy of COM in the game 05 ,: COM just
preserves:

® (a) if for every ¢ < & we have () + (8) then we have (%) where
(a) Pg =Pp, xQ; where Qj is from 3.1 and in VFIPd e is a
Py, -name
(B) Pp, xQp <Pp, +Qy
(¥) Pq. =Pp. xQjz, so we have to interpret Pq_ such that its set of
elements is C .y, (u%) which is easy, i.e. it is Pp_ U {(p,1):
p € Pp, and 1 is a canonical Pp_-name of a member of Qj
(i.e. use Xy maximal antichains, etc.)}
(b) ifin (a) clause («) holds but (8) fail then
(o) the set of elements of Py_ is Py, U {(p,r): for some ¢ < ¢ and
(p',1) € Pg, we have P, = “p’ <p”}
(8)  the order is defined naturally
(¢) ifin (a), clause (@) fail, let ¢ be minimal such that it fails, and then
(a)  the set of elements of Pq_ is P, U {(p,1): for some & < ¢ and p/
we have (p',1) € Pq, and Py, |= “p’ < p”}
(8)  the order is natural.

Remark 4.3. In 4.2 we can combine clauses (b) and (c).
Proof. By 3.2 this is easy, see in particular 3.2(4). Oy
Technically it is more convenient to use the (essentially equivalent) variant.

Definition/Claim 4.4. 1) We replace Py, = Py, *Qy by Py, = Py *Qy 2, where

Fe={v: forsomee<(,ve yg’ﬂ?’[pg]] but

VFlpe]
PAGLS

forno ¢ <eand vy € do we have

141 SJBd l/}.
2) No change by 3.5(1).

Remark 4.5. In 4.2 we can use 1) = (1, : @ < k) say a Py, -name, but then for the
game O r(5) We better assume ¢ € Ey, and 7 is a P[p¥]-name.

Definition/Claim 4.6. 1) Let k., € K3 and v, (o < A) be chosen as follows:
(a) Ex, = A and u[p¥ ] = w; + a hence ulk,] = A
(b) PX- is <-increasing continuous

(¢) Pl;;l = P&« Qg and v; is the generic (for this copy) of Q; where 7 is from
4.2
(d) Sk, =S5 (a stationary subset of A), 6 € § = cf(d) > Vg
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(e) for each § € Sk, ,sk* = s,y is from 4.2 or better 4.4
) gf;‘* is ((p?*,pg‘;l)), mv(glg*) = 0, only one move was done.

2) If k. <k, k then IFp, “the pair ((vy : & < A),(n; 1 ¢ < K)) is a (A, k)-peculiar
cut”.

Proof. Clear (by 4.2). Oag
Definition 4.7. Let P* be the following forcing notion:
(A) the members are k such that
(a) k. SKz k e K/%
(b) ulk] = U{u[pX] : @ € Ey} is an ordinal < AT (but of course > \)
(¢) Sk = Sk, and s%‘ = sf;* for § € Sk
(B) the order: <.
Definition 4.8. We define the P*-name Q* as

U{PX : k € Gp-} = U{P,[pX] : @ € Fy and k € Gp-}.

Claim 4.9. 1) P* has cardinality AT .

2) P* is strategically (\ + 1)-complete hence add no new member to MV.

8) lkpe “Q* is c.c.c. of cardinality < XT7.

4) P*«Q* is a forcing notion of cardinality \* neither collapsing any cardinal nor
changing cofinalities.

5) If k € P* then klbp- “Py < Q" hence lFp- “Py, < Q*”.

Proof. 1) Trivial.

2) By claim 1.24.

3) Gp~ is (< AT)-directed.

4),5) Should be clear. Oao

Claim 4.10. Ifk € P* and G C Py is generic over V then
(a) (ValGNPk]:a <)) is <jpu-decreasing and i < k = 1; <jm VoG NPk,
(this concerns Py, only)
(b if p e (“w)VIE and i < k= <ju p then for every o < A large enough
we have Vo [G] < ju p
(¢) if pe (“w)VIS and i < k= 1 &y p then for every a < X large enough
we have vo[G] & ju p.
Proof. Should be clear. YN
Claim 4.11. 1) If k € P* and Q is a Px-name of a c.c.c. forcing of cardinality
< X and a € Eyx and Q is a P[pk]-name then for some ki we have:
(a) k SKI k, € P*
(b) IFpy, “there is a subset of Q generic over V[Gp, N P[pX]]”.
2) In (1) if bppijuq “there is p € “2 not in V[Gp,]” then Ikp, —“there is p € “2
not in V[Gp,|”.

Proof. 1) By 1.25.
2) By part (1) and clause (n) of 1.25. Oa11
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Proof. Proof of Theorem 2.5 We force by P* * Q* where P* is defined in 4.7 and
the P*-name Q* is defined in 4.8. By Claim 4.9(4) we know that no cardinal is
collapsed and no cofinality is changed. We know that IFp.g+ “2%0 < AT” because
[P*| = AT and IFp- “Q* has cardinality < A™”, so P* * Q* has cardinality A*, see
4.9(3),(4).

Also lFpryg “2%0 > A+ as by 4.9(2) it suffices to prove: for every ki € P* there
is ko € P* such that k; <k, ko and forcing by Py, /Py, adds a real, which holds
by 4.11(2).

Lastly, we have to prove that ((n; : ¢ < k), (Vs : @ < X)) is a peculiar cut. In
Definition 2.1 clauses (&), (5), (y) holds by the choice of k,. As for clauses (4), (¢)
to check this it suffices to prove that for every f € “w they hold, so it is suffice to
check it in any sub-universe to which (7, 7), f belong. Hence by 4.9(1) it suffices to
check it in VP& for any k € P*. But this holds by 4.6(2). Oy 5




Paper Sh:895, version 2020-05-17. See https://shelah.logic.at/papers/895/ for possible updates.

24 SAHARON SHELAH

§ 5. QUITE GENERAL APPLICATIONS

Theorem 5.1. Assume A = cf(\) = A<* > Ry and 2* = At and (Vu < M) (po <
A). Then for some forcing P* of cardinality \* not adding new members to *V
and P*-name Q* of a c.c.c. forcing it is forced, i.e. IFpe s~ that 2% = AT and

(a) p=X and MA,

(b) for every regular k € (N1, \) there is a (k, A)-peculiar cut ((nf : i < k), (V5
a<\) hencep=t=A\

(¢) if Q is a (definition of a) Suslin c.c.c. forcing notion defined by @ possibly
with a real parameter from V., then we can find a sequence (Vg o @ @ < A)
which is positive for (Q,n), see [She04], e.g. non(null) = A

(d) in particular b =0 = A.

Remark 5.2. 0) In clause (c) we can let Q be a c.c.c nep forcing (see [She04]), with
2B, € of cardinality < A and 7 is a Q-name of a real (i.e. member of “2).
1) Concerning 5.1 as remarked earlier in 1.19(1), if we like to deal with Suslin

forcing defined with a real parameter from VE 2 and similarly for B, we in a
sense have to change/create new strategies. We could start with (S, : @ < AT)
such that S, C X\, a < 8= 159,\53] < A and S,41\S, is a stationary subset of A.
But we can code this in the strategies, do nothing till you know the definition of
the forcing.

2) We may like to strengthen 5.1 by demanding

(c) for some Q as in clause (c) of 5.1, MAg holds or even for a dense set of
k; € P*, see below, there is ko € P* such that k; <g, ko and Py, /Py, is
QV[Pkl].

For this we have to restrict the family of @Q’s in clause (c¢) such that those two
families are orthogonal, i.e. commute. Note, however, that for Suslin c.c.c forcing
this is rare, see [She04].

3) This solves the second Bartoszynski test problem, i.e. (B) of Problem 0.2.

4) So (,Q,v,7) in clause (c) of 5.1 satisfies

(a) vE¥2
(0)
(c)

@ = (po, ¥1, 2), X1 formulas with the real parameter v
@Q is the forcing notion defined by:
e set of elements {p € “2: o[p]}
e quasi order <g= {(p1,p2) : p1,p2 € “2 and v1(p1,p2)}
e incompatibility in Q is defined by @3
(d) nis a Q-name of a real, i.e. (p, i :k < w) a (absolute) maximal antichain
of Q,t), = (tnk : k <w),ty, atruth value.

Proof. The proof is like the proof of 2.5 so essentially broken to a series of definitions
and Claims. 0

Claim 5.3. Claim/Choice:
Without loss of generality there is a sequence (Sq : o < A\T) such that:

(a) Sa C SR, is stationary



Paper Sh:895, version 2020-05-17. See https://shelah.logic.at/papers/895/ for possible updates.

LARGE CONTINUUM, ORACLES SH895 25

(b) if a < B then S,\Sgs is bounded (in \)

(€) Osari\sa and 53 \U{Saia<rt}-
Proof. E.g. by a preliminary forcing. O
Definition 5.4. Let P* be the following forcing notion:

(A) The members are k such that
(a) k€ K3
(b) ulk] = U{u[pX] : @ € Ey} is an ordinal < AT (but of course > \)
() Sk € {Sa:a< AT}

(B) The order: <kz-

Definition 5.5. We define the P*-name Q* as

U{P% : k € Gp-} = U{P[pX] : @ € Ex and k € Gp-}.
Claim 5.6. As in 4.9:
1) P* has cardinality AT .
2) P* is strategically (A + 1)-complete hence add no new member to *V.
3) IFpe “Q* is c.c.c. of cardinality < \*7.
4) P*xQ* is a forcing notion of cardinality A\t neither collapsing any cardinal nor
changing cofinalities.
5) If k € P* then klFp« “Py < Q*” hence IFp« “Py, < Q7.

Proof. 1) Trivial.
2) By claim 1.24.
3) Gp+ is (< AT)-directed.
4),5) Should be clear. Uag
Claim 5.7. Assume
(A) (a) keP*
(b) Sk =Sa,a <A
(¢) v is a PX-name of a member of “2,e < k
(d) Q is a Py, -name of a c.c.c. Suslin forcing and n a Q-name both
definable from v.

Then there is ko such that
(B) (a) ki<ks
(0) Sk, = Sa+1
(¢) ife€ Sar1\Sq then Pls‘j_l =PX %« Q and n. is the copy of 1
(d) ife € Sat1\Se then the strategy st. is as in 4.2, using Q instead of
Qy-
Proof. Straightforward. a0
Claim 5.8. Like 4.11:

1) If k € P* and Q is a Px-name of a c.c.c. forcing of cardinality < X and o € Ey
and Q is a P[pk]-name then for some ki we have:
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((1) kSK2 k, € P*
(b) IFp,, “there is a subset of Q generic over V[Gp, NP[pk].

2) In (1) if lbpaq “there is p € “2 not in V[Gp,|” then lkp, ~ “there is p € “2 not
in V[Gr,]".

Proof. 1) By 1.25.
2) By part (1) and clause (n) of 1.25. Oa11

Claim 5.9. Assume & € [Na, A) is regular, k € P* and Sy = S, and IFp, “(175 e <
k) is increasing. Then we can find ky such that k < ky € P* and y(x) < A\, P, -
name = (V; : 1 € So+1\Sa\7(x)) such that

()1 ey, “((0e 1€ < k), (Vi 10 € Saq1\Sa\ V(%)) is a (k, A)-peculiar uct
(¥)2 moreover if kg < ko € P* this still holds.

Proof. As in the proof of 2.5. O

Proof. Proof of Theorem 5.1

We force by P* x* Q* where P* is defined in 5.4 and the P*-name Q is defined
in 5.5. By Claim 5.6(4) we know that no cardinal is collapsed and no cofinality is
changed. We know that IFp« g+« “2% < A*” because |[P*| = At and I-p- “Q* has
cardinality < A*”, so P* x Q* has cardinality AT, see 5.6(3),(4).

Also IFpeag “2%0 > A7 as by 4.9(2) it suffices to prove: for every k; € P* there
is ko € P* such that k; <k, ko and forcing by Py, /Pk, add a real, which holds
by 5.8(2). Similarly IFp.g« “MA<y for < A dense subsets” by 5.8(1) hence p > A
follows; as p < A by clause (b) we have proved clause (a) of 5.1.

Clause (b) of 5.1 is proved as in the proof of 2.5, that is by 5.9.

As for clause (c) we are given ko and Q, v, 7 such that v is a (P* x Q*)-name of
a real and @ is a Suslin c.c.c. forcing definable (say by @o) from the real v and 7
a (P* x Q*)-name of Q-name for Q of a real defined by Xy maximal antichain of Q,
absolutely of course. B -

As IFp= “@* satisfies the c.c.c.”, for some k; € P* above ko and Py, -name v’ of
a member of 22 and 7’ is a Py, -name in Qg we have ky lkp- “v =1 An=1".

As Py, satisfies the c.c.c. for some & < \, (k1,¢,v/,Qy,, 1) satisfies the assump-
tions on (k,&,1/, eta’) is as in 5.7 so there is ky and (74 : @ € Say1\Sa) as there.
So kOSkl Skg and )

(*) if ko < kg then for aclubof { <\, isa Pgs-name and n¢ is (Qg,parv’ 7])_
generic over VPelksl,

This is clearly enough, so clause (a) of 5.1 holds. For clause (d) of 5.1, first Random
real forcing is a Suslin c.c.c. forcing so non(null) < A follows from clause (c¢) and
non(nul) > A follows from clause (a).

Lastly, b > XA by MA_) and we know 0 > b. As dominating real forcing =
Hechler forcing is a c.c.c. Suslin forcing so by clause (c) we have ? < A, together
0 =1b =)\, ie. clause (d) holds. Os ¢
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