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Abstract. Our main theorem is about iterated forcing for making the contin-

uum larger than ℵ2. We present a generalization of [She06] which dealt with
oracles for random, (also for other cases and generalities), by replacing ℵ1,ℵ2
by λ, λ+ (starting with λ = λ<λ > ℵ1). Well, we demand absolute c.c.c. So

we get, e.g. the continuum is λ+ but we can get cov(meagre) = λ and we
give some applications. As in “non-Cohen oracles”, [She06], it is a “partial”

countable support iteration but it is c.c.c.

§ 0. Introduction

Starting, e.g. with V |= G.C.H. and λ = λ<λ > ℵ1, we construct a forcing notion
P of cardinality λ+, by a partial CS iteration but the result is a c.c.c. forcing.

The general iteration theorems (treated in §1) seem generally suitable for con-
structing universes with MA<λ + 2ℵ0 = λ+, and taking more care, we should be
able to get universes without MA<λ, see 0.4 below.

Our method is to imitate [She06]; concerning the differences, some are inessential:
using games not using diamonds in the framework itself, (inessential means that we
could have in [She06] imitate the choice here and vice versa).

An essential difference is that we deal here with large continuum - λ+; we con-
centrate on the case where we shall (in VP) have MA<λ but e.g. non(null) = λ and
b = λ+ (or b = λ).

It seems to us that generally:

Thesis 0.1. The iteration theorem here is enough to get results parallel to known
results with 2ℵ0 = ℵ2 replacing ℵ1,ℵ2 by λ, λ+.

To test this thesis we have asked Bartoszyński to suggest test problems for this
method and he suggests:

Problem 0.2. Prove the consistency of each of the

(A) ℵ1 < λ < 2ℵ0 and the λ-Borel conjecture, i.e. A ⊆ ω2 is of strong measure
zero iff |A| < λ

(B) ℵ1 < non(null) < 2ℵ0 , see 5.1
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2 SAHARON SHELAH

(C) ℵ1 < b = λ < 2ℵ0 the dual λ-Borel conjecture (i.e. A ⊆ ω2 is strongly
meagre iff |A| < λ)

(D) ℵ1 < b = λ < 2ℵ0+ the dual 2ℵ0-Borel conjecture

(E) combine (A) and (C) and/or combine (A) and (D).

Parallely Steprans suggests:

Problem 0.3. 1) Is there a set A ⊆ ω2 of cardinality ℵ2 of p-Hausdorff measure
> 0, but for every set of size ℵ2 is null (for the Lebesgue measure)?
2) The (basic product) I think b = d ∨ d = 2ℵ0 gives an answer, what about
cov(meagre) = λ < 2ℵ0?

We shall deal with the iteration in §1, give an application to a problem from
[She09] in §2 (and §3,§4).

Lastly, in §5 we deal with Bartoszyński’s test problem (B), in fact, we get quite
general such results.

It is natural to ask

Discussion 0.4. 1) In §1, we may wonder if we can give a “reasonable” sufficient
condition for b = ℵ1 or b = κ < λ? The answer is yes. It is natural to assume that
we have in V a <Jbd

ω
-increasing sequence f̄ = 〈fα : α < κ〉 of functions from ωω

with no <∗Jbd
ω

-upper bound and we would like to preserve this property of f̄ , i.e. in

§1 we

(a) restrict ourselves to p ∈ K1
λ such that Pp “f̄ as above”.

More formally redefine K1
λ such that

(b) replace “P is absolute c.c.c.” by “P is c.c.c., preserve f̄ as above and if Q
satisfies those two conditions then also the product P × Q satisfies those
two conditions”.

This has similar closure properties, that is, the proofs do not really change.
2) More generally consider K, a property of forcing notions such that:

(a) P ∈ K ⇒ P is c.c.c.

(b) K is closed under l-increasing continuous unions

(c) K is closed under composition

(d) we replace in §1 “p ∈ K1
λ” by “p ∈ K has cardinality < λ”

(e) we replace in §1, “P is absolutely c.c.c.” by “P ∈ K and R ∈ K ⇒ P×R ∈
K”.

3) What about using P(n)-amalgamation of forcing notions? (See [She] in model
theoretic version).) If we fix n this seems a natural way to get non-equality for
many n-tuples of cardinal invariants; hopefully we shall return to this sometime.
4) What about forcing by the set of approximations k? See 1.16.
5) You may wonder why here “absolute c.c.c.” play a major role but is not used in
[She06]. The answer is that the “absolute c.c.c.” is demanded on forcing notions of
cardinality < λ which in [She06] means countable.
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LARGE CONTINUUM, ORACLES SH895 3

Definition 0.5. 1) We say a forcing notion P is absolutely c.c.c. when for every
c.c.c. forcing notion Q we have Q “P is c.c.c.”
2) We say P2 is absolutely c.c.c. over P1 when (P1 l P2 and) P2/P1 is absolutely
c.c.c.
3) Let P1 ⊆ic P2 mean that P1 ⊆ P2 (as quasi orders) and if p, q ∈ P1 are incom-
patible in P1 then they are incompatible in P2 (the inverse follows by P1 ⊆ P2).

The following tries to describe the iteration theorem, this may be more useful to
the reader after having a first reading of §1.

We treat λ as the vertical direction and λ+ as the horizontal direction, the
meaning will be clarified in §2; our forcing is the increasing union of 〈Pkε : ε < λ+〉
where kε ∈ K2 (so kε gives an iteration 〈Pα[kε] : α < λ〉, i.e. a l-increasing
continuous sequence of c.c.c. forcing notions) and for each such kε each iterand
Ppα[kε] is of cardinality < λ and for each ε < λ+ the forcing notion Pkε is the
union of the increasing continuous sequence 〈Ppα[kε] : α < λ〉. So we can say that

Pkε is the limit of an FS iteration of length λ, each iterand of cardinality < λ and
for ζ ∈ (ε, λ+),kζ gives a “fatter” iteration, which for “most” δ ∈ S(⊆ λ), is a
reasonable extension.

Question 0.6. Can we get something interesting for the continuum > λ+ and/or get
cov(meagre) < λ? This certainly involves some losses! We intend to try elsewhere.

Definition 0.7. 1) For a set x let otrcl(x), the transitive closure over the ordinals
of x, be the minimal set y such that x ⊆ y ∧ (∀t ∈ y)(t /∈ Ord → t ⊆ y).
2) For a set u of ordinals let H<κ(u) be the set of x such that otrcl(x) ∩ Ord is a
subset of u of cardinality < κ.

Remark 0.8. 0) We use H<κ(u) (in Definition 1.3) just for bookkeeping convenience.
1) It is natural to have Ord, the class of ordinals, a class of urelements.
2) If ω1 ⊆ u for H<ℵ1(u) it makes no difference, but if ω1 * u and β = min(ω1\u)
then β is a countable subset of u but /∈ H<ℵ1(u). Also we use H<ℵ0(u) where
ω ⊆ u, so there are no problems.
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4 SAHARON SHELAH

§ 1. The iteration theorem

If we use the construction for λ = ℵ1, the version we get is closer to, but not the
same as [She06]; in this case it may be more convenient to have the forcing locally
Cohen.

We now list “atomic” forcings used below coming from three sources:

(a) the forcing given by the winning strategies sδ (see below), i.e. the quotient
Pqε/Ppε , see Definition 1.12

(b) forcing notions intended to generate MA<λ

[see 1.25; we are given k1 ∈ K2
f , an approximation of size λ, see Definition

1.16, and a Pk1
-name Q

˜
of a c.c.c. forcing and sequence 〈I

˜
i : i < i(∗)〉

of < λ dense subsets of Q. We would like to find k2 ∈ K2 satisfying
k1 ≤K2

f
k2 such that Pk2

“there is a directed G ⊆ Q
˜

not disjoint to any

I
˜
i(i < i(∗))”. We do not use composition, only Ppα[k2] = Ppα[k1] ∗ Q

˜
for

some α ∈ Ek1
∩ Ek2

]]

(c) given k1 ∈ K2
f , and Q

˜
which is a Pk1-name of a suitable c.c.c. forcing

notion of cardinality λ can we find k2 such that k1 ≤K2
f

k2 and in V we

have P[k2] “there is a subset of Q
˜

generic over V[G
˜
,P[k2] ∩ Pk1 ]”.

Let us describe the roles of some of the definitions. We shall construct (in the
main case) a forcing notion of cardinality λ+ by approximations k ∈ K2

f of size (=

cardinality) λ, see Definition 1.16, which are constructed by an increasing sequence
of approximations p ∈ K1 of cardinality < λ, see Definition 1.3.

Now p ∈ K1 is essentially a forcing notion of cardinality < λ, i.e. Pp = (Pp,≤p),
and we add the set u = up to help the bookkeeping, so (in the main case) up ∈
[λ+]<λ. For the bookkeeping we let Pp ⊆H<ℵ1

(up), see 0.7(2).
More specifically k (from Definition 1.16) is mainly a l-increasing continuous

sequence p̄ = 〈pα : α ∈ Ek〉 = 〈pα[k] : α ∈ Ek〉, where Ek is a club of λ. Hence
k represents the forcing notion Pk = ∪{(Ppα ,≤pα) : α < λ}; the union of a l-
increasing continuous sequence of forcing notions Ppα = P[pα] = (Ppα ,≤pα), so
we can look at Pk as a FS-iteration. But then we would like to construct say an
“immediate successor” k+ of k, so in particular Pk l Pk+ , e.g. taking care of (b)
above soQ

˜
is a Pk-name and even a Pmin(Ek)-name of a c.c.c. forcing notion. Toward

this we choose pk+

α = pα[k+] by induction on α ∈ Ek. So it makes sense to demand

pα ≤K1 pα[k+], which naturally implies that u[pα] ⊆ u[pk+

α ],Ppα l Ppα[k+]. So

as pα[k+] for α ∈ Ek is ≤K1 -increasing continuous, the main case is when β =
min(Ek\(α+ 1), can we choose pβ [k+]?

Let us try to draw the picture:

Ppβ [k] 99K ?

↑ ↑
Ppα[k]

l→−→ Ppα[k+]

So we have three forcing notions, Ppα[k],Ppβ [k],Ppα[k+], where the second and third
are l-extensions of the first. The main problem is the c.c.c. As in the main case
we like to have MA<λ, there is no restriction on Ppα[k+]/Ppα[k], so it is natural
to demand “Ppβ [k]/Ppα[k] is absolutely c.c.c. for α < β from Ek” (recall pα[k] is

demanded to be <+
K1

-increasing with α).
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How do we amalgamate? There are two natural ways which say that “we leave
Ppβ [k]/Ppα[k] as it is”.

First way: We decide that Ppβ [k+] is Ppα[k] ∗
(
(Ppα[k+]/Ppα[k])× (Ppβ [k]/Ppα[k])

)
.

[This is the “do nothing” case, the lazy man strategy, which in glorified fashion
we may say: do nothing when in doubt. Note that Ppα[k+]/Ppα[k] and Ppβ [k]/Ppα[k]

are Ppα[k]-names of forcing notions.]

Second way: Ppβ [k]/Ppα[k] is defined in some way, e.g. is a random real forcing in
the universe V[Ppα[k]] and we decide that Ppβ [k+]/Ppα[k+] is defined in the same
way: the random real forcing in the universe V[Ppα[k+]]; this is expressed by the
strategy sα.

[That is: retain the same definition of the forcing in the α-th place, so in some
sense we again do nothing novel.]

Context 1.1. Let λ = cf(λ) > ℵ1 or just1 λ = cf(λ) ≥ ℵ1.

Remark 1.2. We may replace λ+ by µ ≥ λ+, if so we need stronger condition;
mainly the Cε-s can be of arbitrary cardinality. but not do not do it here.

Below, ≤+
K1

is used in defining k ∈ K2
f as consisting also of ≤+

K1
-increasing

continuous sequence 〈pα : α ∈ E ⊆ λ〉 (so increasing vertically).

Definition 1.3. 1) Let K1 be the class of p such that:

(a) p = (u, P,≤) = (up, Pp,≤p) = (up,Pp)

(b) ω ⊆ u ⊆ Ord and λ > ℵ1 ⇒ ω1 ⊆ w,

(c) P is a set ⊆H<ℵ1
(u),

(d) ≤ is a quasi-order on P ,

satisfying

(e) the pair (P,≤) which we denote also by P = Pp is a c.c.c. forcing notion.

1A) We may write u[p], P [p],P[p].
2) ≤K1

is the following two-place relation on K1 : p ≤K1
q iff up ⊆ uq and PplPq

and Pq∩H<ℵ1(up) = Pp; moreover, just for transparency q ≤P[q] p ∈ Pp ⇒ q ∈ Pp.

3) ≤+
K1

is the following two-place relation on K1 : p ≤+
K1

q iff p ≤K1
q and Pq/Pp

is absolutely c.c.c., see Definition 0.5(1).
4) K1

λ is the family of p ∈ K1 such that up ⊆ λ+ and |up| < λ.
5) We say p is the exact limit or the union of 〈pα : α ∈ v〉, v ⊆ Ord, in symbols
p = ∪{pα : α ∈ v} when up = ∪{upα : α ∈ v},Pp = ∪{Ppα : α ∈ v} and
α ∈ v ⇒ pα ≤K1

p; hence p ∈ K1.
6) We say p is just a limit of 〈pα : α ∈ v〉 when up is ∪{upα : α ∈ v},Pp ⊇ ∪{Ppα :
α ∈ v} and α ∈ v ⇒ pα ≤K1 p.
7) We say p̄ = 〈pα : α < α∗〉 is ≤K1

-increasing continuous [strictly ≤K1
-increasing

continuous] when it is ≤K1
-increasing and for every limit α < α∗,pα is a limit of

p̄ � α [is the exact limit of p̄ � α], respectively.
8) In part (7) we say (= ζ)-strictly (≤K1

)-increasing continuous when it is (≤K1

)increasing continuous and if α = ζ then pα is the exact limit of p̄�ζ

1if λ = ℵ1, we may change the definitions of k ∈ K2, instead 〈Pα[k] : α < λ〉 is l-increasing,
we carry with us large enough family of dense subsets, e.g. coming from some countable N .
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6 SAHARON SHELAH

Observation 1.4. 1) ≤K1
is a partial order on K1.

2) ≤+
K1
⊆≤K1

is a partial order on K1.
3) If p̄ = 〈pα : α < δ〉 is a ≤K1-increasing sequence and ∪{Ppα : α < δ} satisfies the
c.c.c. and δ < λ then some p ∈ K1 is the union ∪{pα : α < δ} of p̄, i.e. ∪p̄ ∈ K1

Pp −∪{Ppα : α < δ} and α < δ ⇒ pα ≤K1
p; this determines p uniquely and p is

the exact limit of p̄.
4) If p̄ = 〈pα : α < δ〉 is ≤K1

-increasing and cf(δ) = ℵ1 implies {α < δ : pα the
exact limit of p̄ � α or just

⋃
β<α

Ppβ lPpα} is a stationary subset of δ then ∪p̄ ∈ K1

is a ≤K1-upper bound of p̄ and is the exact limit of p̄.
5) If in part (4), p̄ is also ≤+

K1
-increasing then α < δ ⇒ pα ≤+

K1
p.

6) If p ≤K1 q and Pp‘‘MAℵ1 ” (less suffice) then

p ≤K+
1

q

Proof. Should be clear, e.g. in part (5) recall that c.c.c. forcing preserve stationarity
of subsets of δ. �1.4

We now define the partial order ≤∗K1
; it will be used in describing k1 <K2

k2, i.e.

demanding (pk1
α ,p

k2
α ) ≤∗K1

(pk1
α+1,p

k2
α+1) for many α < λ.

Definition 1.5. 1) Let ≤∗K1
be the following two-place relation on the family of

pairs {(p,q) : p ≤K1
q}. We let (p1,q1) ≤∗K1

(p2,q2) iff

(a) p1 ≤+
K1

p2

(b) q1 ≤+
K1

q2

(c) P[p2] “Pq1/(G
˜

P[p2] ∩ Pp1)l Pq2/G
˜

P[p2]”

(d) up2 ∩ uq1 = up1

2) Let ≤′K1
be the following two-place relation on the family {(p,q) : p ≤K1 q} of

pairs. We let (p1,q1) ≤′K1
(p2,q2) iff clauses (a),(b),(d) from part (1) above and

(c)′ if p1 ∈ Pp1
, q1 ∈ Pq1

and p1 Pp1
“q1 ∈ Pq1

/G
˜

Pp1
” then p1 Pp2

“q1 ∈
Pq2

/G
˜

Pp2
”.

3) Assume p` ∈ K1 for ` = 0, 1, 2 and p0 ≤K1
p1 and p0 ≤K1

p2 and up1
∩ up2

=
up0

. We define the amalgamation p = p3 = p1 ×p0
p2 or p3 = p1 × p2/p0 as the

triple (up, Pp ≤p) as follows2:

(a) up = up1 ∪ up2

(b) Pp = Pp1 ∪ Pp2 ∪ {(p1, p2) : p1 ∈ Pp1\Pp0 , p2 ∈ Pp2\Pp0 and for some
p ∈ Pp0 we have p P[p0] “p` ∈ Pp`/Pp0” for ` = 1, 2}

(c) ≤p is defined naturally as≤p1
∪ ≤p2

∪{((p1, p2), (q1, q2)) : (p1, p2), (q1, q2) ∈
Pp and p1 ≤p1

q1 and p2 ≤p2
q2} ∪ {(p′`, (p1, p2)) : p′` ∈ Pp` , (p1, p2) ∈ Pp

and p′` ≤p1
p` and ` ∈ {1, 2}}.

Remark 1.6. Why not use u instead H<ℵ1
(u)? Not a real difference but, e.g. there

may not be enough elements in a union of two.

2If in clause (b) of 1.5(3) we would like to avoid “p` ∈ Pp`\Pp0” we may replace (p1, p2) by

(p1, p2, up1 ∪ up2 ) when p1 6= p1 ∧ p0 6= p2 equivalently p0 6= p1 ∧ p0 6= p2.
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Observation 1.7. 1) ≤∗K1
,≤′K1

are partial orders on their domains.
2) (p1,q1) ≤∗K1

(p1,q1) implies (p1,q1) ≤′K1
(p2,q2).

For the “successor case vertically and horizontally” we shall use

Claim 1.8. Assume that p1 ≤+
K1

p2 and p1 ≤K1
q1 and up2

∩ uq1
= up1

then
q2 ∈ K1 and (p1,q1) ≤∗K1

(p2,q2) when we define q2 = q1 ×p1 p2 as in 1.5(3).

Proof. Straightforward. �1.8

The following claim will be applied to a pair of vertically increasing continuous
sequences, one standing horizontally to the right of the other.

Claim 1.9. Assume ε(∗) < λ is a limit ordinal and

(a) 〈p`ε : ε ≤ ε(∗)〉 is (= ε(∗))-strictly ≤+
K1

-increasing continuous for ` = 1, 2

(b) (p1
ε,p

2
ε) ≤′K1

(p1
ζ ,p

2
ζ) for ε < ζ < ε(∗).

Then

(α) p1
ε(∗) ≤K1

p2
ε(∗)

(β) for ε < ζ ≤ ε(∗) we have (p1
ε,p

2
ε) ≤′K1

(p1
ζ ,p

2
ζ).

Proof. Easy. The main point is to prove P1
ε(∗) l P

2
ε(∗), so let q ∈ P2

ε(∗), By clause

(a) for ` = 2, for α = ε(∗) for some ε < ε(∗) we have q ∈ P2
ε. Recalling P1

ε there
is p ∈ P1

ε, and it suffice to prove that for every p1 ∈ P1
ε(∗) abov e p, the conditions

p1, q are compatible in P2)ε(∗). Fixing p1, let ζ ∈ (ε, ε(∗) be such that p1 ∈ P1
ζ ,

again by clause (a) but this time for ` = 1. By clause (b) and the definition of
≤′K1

we get that p1, q are compatible in P2
ζ that is having a common upper bound

and it serve to prove p1, q are compatible in P2
ε(∗). This prove clause (α), and the

argument prove also clause (β). �1.9

For the “successor case horizontally, limit case vertically when the relevant game,
i.e. the relevant winning strategy is not active” we shall use

Claim 1.10. Assume ε(∗) < λ is a limit ordinal and

(a) 〈pε : ε ≤ ε(∗)〉 and 〈qε : ε < ε(∗)〉 are (= ε(∗))-strictly ≤+
K1

-increasing
continuous

(b) pε ≤K1 qε for ε < ε(∗)
(c) if ε < ζ < ε(∗) then (pε,qε) ≤′K1

(pζ ,qζ).

Then we can choose qε(∗) such that

(α) pε(∗) ≤K1 qε(∗)
(β) (pε,qε) ≤′K1

(pε(∗),qε(∗)) for every ε < ε(∗)
(γ) 〈qε : ε ≤ ε(∗)〉 is (= ε(∗))-strictly ≤K+

1
-increasing continuous.

Remark 1.11. We can replace ≤′K1
by ≤∗K1

in (c) and (β) of 1.10 and (b), (β) of 1.9.

Proof. But 1.9 should be clear. �1.10

The game defined below is the non-FS ingredient; (in the main application below,
γ = λ), it is for the horizontal direction; it lasts γ ≤ λ steps but will be used in
≤K2

f
-increasing subsequences of 〈ki : i < λ+〉.
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8 SAHARON SHELAH

Definition 1.12. For δ < λ and γ ≤ λ let aδ,γ be the following game between the
player INC (incomplete) and COM (complete).

A play last γ moves. In the β-th move a pair (pβ ,qβ) is chosen such that
pβ ≤+

K1
qβ and β(1) < β ⇒ (pβ(1),pβ) ≤′K1

(qβ(1),qβ) and upβ ∩ λ = δ and
uqβ ∩ λ = uq0 ∩ λ ⊇ δ + 1.

In the β-th move first INC chooses (pβ , uβ) such that pβ satisfies the require-
ments and uβ satisfies the requirements on uqβ (i.e. ∪{uqα : α < β} ∪ upβ ⊆ uβ ∈
[λ+]<λ and uβ ∩λ = uq0 ∩λ) and say uβ\upβ\∪{uqγ : γ < β} has cardinality ≥ |δ|
(if λ is weakly inaccessible we may be interested in asking more).
Second, COM chooses qβ as required such3 that uβ ⊆ u[qβ ].

A player which has no legal moves loses the play, and arriving to the γ-th move,
COM wins.

Remark 1.13. 1) It is not problematic for COM to have a winning strategy. But
having “interesting” winning strategies is the crux of the matter. More specifically,
any application of this section is by choosing such strategies.
2) Here it is not natural to demand strict continuity for 〈pα : σ ≤ β〉 as this fail in
non-trivial cases. Still we may consider requiring more
3) Such examples are the

(a) lazy man strategy: preserve Pqβ = Pq0
×Pp0

Ppβ recalling Claim 1.8

(b) it is never too late to become lazy, i.e. arriving to (pβ(∗),qβ(∗)) the COM
player may decide that β ≥ β(∗)⇒ Pqβ = Pqβ(∗) ×Ppβ(∗)

Ppβ
(c) definable forcing strategy, i.e. preserve “Pqβ/Ppβ is a definable c.c.c. forcing

(in VP[pβ ])”.

Definition 1.14. We say f is λ-appropriate if

(a) f ∈ λ(λ+ 1)

(b) α < λ ∧ f(α) < λ⇒ (∃β)[f(α) = β + 1]

(c) if ε < λ+, 〈uα : α < λ〉 is an increasing continuous sequence of subsets
of ε of cardinality < λ with union ε then {δ < λ: otp(uδ) < f(δ)} is a
stationary subset of λ.

Convention 1.15. Below f is λ-appropriate function.

We arrive to defining the set of approximations of size λ (in the main application
f∗ is constantly λ); we shall later connect it to the oracle version (also see the
introduction).

Definition 1.16. For f∗ a λ-appropriate function let K2
f∗

be the family of k such
that:

(a) k = 〈E, p̄, S, s̄, ḡ, f〉
(b) E is a club of λ

(c) p̄ = 〈pα : α ∈ E〉
(d) pα ∈ K1

λ

(e) pα ≤K1
pβ for α < β from E

(f) if δ ∈ acc(E) then pδ = ∪{pα : α ∈ E ∩ δ}

3we could ask for equality usually
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(g) S ⊆ λ is a stationary set of limit ordinals

(h) if δ ∈ S ∩ E (hence a limit ordinal) then δ + 1 ∈ E
(i) s̄ = 〈sδ : δ ∈ E ∩ S〉
(j) sδ is a winning strategy for the player COM in aδ,f∗(δ), see 1.17(1)

(k) ḡ = 〈gδ : δ ∈ S ∩ E〉
(l) • gδ is an initial segment of a play of aδ,f∗(δ) in which the COM player

uses the strategy sδ

• if its length is < f∗(δ) then gδ has a last move

• (pδ,pδ+1) is the pair chosen in the last move, call it mv(gδ)

• let S0 = {δ ∈ S ∩ E : gδ has length < f∗(δ)} and S1 = S ∩ E\S0

(m) if α < β are from E then pα ≤+
K1

pβ , so in particular Pβ/Pα is absolutely
c.c.c. that is if PlP′ and P′ is c.c.c. then P′∗Pα Pβ is c.c.c.; this strengthens
clause (e)

(n) f ∈ λλ

(o) if δ ∈ S ∩ E then f(δ) + 1 is the length of gδ

(p) for every δ ∈ E, if f∗(δ) < λ then f(δ) ≤ otp(upδ).

Remark 1.17. 1) Concerning clause (j), recall (using the notation of Definition 1.12)
that during a play the player INC chooses pε and COM chooses qε, ε ≤ f(δ) and
recalling clause (o) we see that (pf(δ),qf(δ)) there stands for (pδ,pδ+1) here. You
may wonder from where does the (pε,qε) for ε < f(δ) comes from; the answer is
that you should think of k as a stage in an increasing sequence of approximations
of length f(δ) and (pε,qε) comes from the δ-place in the ε-approximation. This is
cheating a bit - the sequence of approximations has length < λ+, but as on a club
of λ this reflects to length < λ, all is O.K.
2) Below we define the partial order ≤K2

(or ≤K2
f∗

) on the set K2
f∗

, recall our goal

is to choose an ≤K2-increasing sequence 〈kε : ε < λ+〉 and our final forcing will be
∪{Pkε : ε < λ+}.
3) Why clause (d) in Definition 1.18(2) below? It is used in the proof of the limit
existence claim 1.24. This is because the club Ek may decrease (when increasing
k).

Note that we use ≤∗
K1
f

“economically”. We cannot in general demand (in 1.18(2)

below) that for α < β from Ek2
\α(∗) we have (pk1

α ,p
k1

β ) ≤∗K1
(pk2
α ,p

k2

β ) as the

strategies sδ may defeat this. How will it still help? Assume 〈kε : ε < ε(∗)〉 is
increasing, ε(∗) < λ for simplicity and γ ∈ ∩{Ekε : ε < ε(∗)} ∩

⋂
{Skε : ε <

ε(∗)}\ ∪ {α(kε,kζ) : ε < ζ < ε(∗)} and γε = Min(Ekε\(γ + 1)) for ε < ε(∗). We
shall have 〈γε : ε < ε(∗)〉 is increasing; there may be δ ∈ (γε, γε+1) where sδ was

active between kε and kε+1, so it contributes to Pkε+1
γε+1 /Pkεγε .

4) If we omit the restriction u ∈ [λ+]<λ and allow f : λ→ δ∗ + 1, replace the club
E by an end segment, we can deal with sequences of length δ∗ < λ+.

In the direct order in 1.18(3) we have α(∗) = 0. Using e.g. a stationary non-
reflecting S ⊆ Sδ∗λ we can often allow α(∗) 6= 0.
5) Is the “sδ a winning strategy” in addition for telling us what to do, crucial? The
point is preservation of c.c.c. in limit of cofinality ℵ1.
6) If we use f∗ ∈ λ(λ+ 1) constantly λ, we do not need fk so we can omit clauses
(n),(o),(p) of 1.16 and (c), and part of (e) in 1.18(2).
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6A) Alternatively we can omit clause (o) in 1.16 but demand “
∏
α<λ

f(α)/D is λ+-

directed”, fixing a normal filter D on λ (and demand Sk ∈ D+).
7) The “omitting type” argument here comes from using the strategies.
8) We may add in clause 1.16(n) that for some γ < λ+ and sequence ū = 〈uα : α <
λ〉 as in 1.15(c) the set {α < λ : f(α) ≤ otp(uα)} contains a club of λ.

Definition 1.18. 1) In Definition 1.16, let E = Ek, p̄ = p̄k,pα = pk
α = pα[k],Pα =

Pkα = Ppα[k], S = Sk for ` = 0, 1, etc. and we let Pk = ∪{Pkα : α ∈ Ek} and
uk = u[k] = ∪{upk

α
: α ∈ Ek}.

2) We define a two-place relation ≤K2
f

on K2
f : k1 ≤K2

f
k2 iff (both are from K2

f

and) for some α(∗) < λ (and α(k1,k2) is the first such α(∗) ∈ Ek2
) we have:

(a) Ek2\Ek1 is bounded in λ, moreover ⊆ α(∗)
(b) for α ∈ Ek2

\α(∗) we have pk1
α ≤K1

pk2
α

(c) if α ∈ Ek2
\α(∗) then fk1

(α) ≤ fk2
(α)

(d) if γ0 < γ1 ≤ γ2 < λ, γ0 ∈ Ek2
\(α(∗) ∪ Sk1

), γ1 = min(Ek1
\(γ0 + 1)) and

γ2 = min(Ek2
\(γ0 + 1)), then (pk1

γ0
,pk2

γ0
) ≤′K1

(pk1
γ1
,pk2

γ2
), see Definition

1.5(2) really follows from clause (h) below

(e) if δ ∈ Sk1
∩Ek2

\α(∗) then δ ∈ Sk2
∩Ek2

\α(∗); but note that if fk1
(δ) ≥ f(δ)

we put δ into Sk2 just for notational convenience as “the game is over”

(f) if δ ∈ Sk1
∩ Ek2

\α(∗) then sk2

δ = sk1

δ and gk1

δ is an initial segment of gk2

δ

(g) if k1 6= k2 then u[k1] 6= u[k2]

(h) if α < β are from Ek2
\α(∗) then (pk1

α ,p
k2
α ) ≤′K1

(pk1

β ,p
k2

β ), see Definition

1.5(2), i.e. if p ∈ Ppα[k1], q ∈ Ppα[k2] and p Ppα[k1]
“q ∈ Ppα[k2]/G

˜
Ppα[k1]

”

then p Ppβ [k1]
“q ∈ Ppβ [k2]/G

˜
Ppβ [k1]

”.

3) We define a two-place relation ≤dir
K2
f

on K2
f as follows: k1 ≤dir

K2
f

k2 iff

(a) k1 ≤K2
f

k2

(b) Ek2 ⊆ Ek1 ; no real harm here if we add k1 6= k2 ⇒ Ek2 ⊆ acc(Ek1)

(c) α(k1,k2) = Min(Ek2
).

4) We write K2
λ,≤K2

λ
,≤dir

K2
λ

or just K2,≤K2 , <
dir
K2

for K2
f ,≤K2

f
,≤dir

K2
f

when f is con-

stantly λ.

Remark 1.19. 1) In [She06] we may increase S as well as here but we may replace
clause (e) of Definition 1.18(2) by

(e)′ δ ∈ Sk1
∩ Ek2

\α(∗) iff fk2
(δ) < f(δ) ∧ δ ∈ Sk2

∩ Ek2
\α(∗).

If we do this, is it a great loss? No! This can still be done here by choosing sδ such
that as long as INC chooses uβ of certain form (e.g. uβ\upβ = {δ}) the player COM
chooses qβ = pβ . We can allow in Definition 1.18(2) to extend S but a priori start
with 〈Sε : ε < λ+〉 such that Sε ⊆ λ and Sε\Sζ is bounded in λ when ε < ζ < λ
and demand Skε = Sε.
2) We can weaken clause (e) of 1.18(2) to

(e)′′ if δ ∈ Sk1
∩ Ek2

\α(∗) and fk2
(δ) < f(δ) then δ ∈ Sk2

.
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But then we have to change accordingly, e.g. 1.18(c),(f), 1.21(c).
3) We can define k1 ≤K2

f
k2 demanding (Sk1 , s̄k1) = (Sk2 , s̄k2) but replace ev-

erywhere “δ ∈ Sk ∩ Ek” by “δ ∈ Sk ∩ Ek ∧ fk(δ) ≤ f(δ)” so omit clause (e) of
1.18.

Observation 1.20. 1) ≤K2
f

is a partial order on K2
f .

2) ≤dir
K2
f
⊆≤K2

f
is a partial order on K2

f .

3) If k1 ≤K2
f

k2 then Pk1
l Pk2

.

4) If (kε : ε < λ+〉 is <K2
f
-increasing and P = ∪{Pkε : ε < λ+} then

(a) P is a c.c.c. forcing notion of cardinality ≤ λ+

(b) Pkε l P for ε < λ+.

Definition 1.21. 1) Assume k̄ = 〈kε : ε < ε(∗)〉 is ≤K2
f
-increasing with ε(∗) a limit

ordinal < λ. We say k is a limit of k̄ when k ∈ K2
f and ε < ε(∗)⇒ kε ≤K2

f
k ∈ K2

f

and for some α(∗)

(a) α(∗) = ∪{α(kε,kζ) : ε < ζ < ε(∗)}
(b) Ek\α(∗) ⊆ ∩{Ekε\α(∗) : ε < ε(∗)}
(c) Sk = (∪{Skε : ε < ε(∗)}) ∩ (∩{Ekε : ε < ε(∗)})\α(∗)
(d) if δ ∈ Sk then gkε

δ is an initial segment of gk
δ for every ε < ε(∗)

(e) fk(δ) = ∪{fkε(δ) : ε < ε(∗)}+ 1 for δ ∈ Sk.

2) Assume k̄ = 〈kε : ε < λ〉 is ≤K2
f
-increasing continuous, see part (3) below (no

viscious circle). We say k is a limit of k̄ when ε < λ⇒ kε ≤ k ∈ K2
f and for some

ᾱ

(a) ᾱ = 〈αε : ε < λ〉 is increasing continuous, λ > αε ∈ ∩{Ekζ : ζ < 1 + ε}\ ∪
{α(kζ1 ,kζ2) : ζ1 < ζ2 < 1 + ε}

(b) Ek = {αε : ε < λ} ∪ {αε + 1 : ε < λ and ε ∈ S} and pk
αε = pkεαε ,p

k
αε+1 =

pkε
αε+1

(c) Sk = {αε : αε ∈ Skζ for every ζ < ε large enough}
(d) if δ = αε ∈ Skε then gk

δ = gkε
δ

(e) if α < δ and ζ = Min{ε : α ≤ αε+1} then fk(α) = fkζ (α).

3) We say that 〈kε : ε < ε(∗)〉 is ≤K2
f
-increasing continuous when :

(a) kε ≤K2
f

kζ for ε < ζ < ε(∗)
(b) kε is a limit of 〈kξ(ζ) : ζ < cf(ε)〉 for some increasing continuous sequence
〈ξ(ζ) : ζ < cf(ε)〉 of ordinals with limit ε, for every limit ε < ε(∗), by part
(1) or part (2).

Definition 1.22. 1) In part (1) of 1.21, we say “a direct limit” when in addition

(α) the sequences are ≤dir
K2
f
-increasing

(β) in clause (b) we have equality

(γ) pk
min(Ek) is the exact union of 〈pk

min(Ekε ) : ε < ε(∗)〉
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(δ) if γ ∈ Ek, ξ < ε(∗), γ /∈ S0
kξ

and 〈γε : ε ∈ [ξ, ε(∗)]〉 is defined by γξ =

γ, γε = min(Ekε\(γ + 1)) when ξ < ε ≤ ε(∗), so 〈γε : ε ∈ [ξ, ε(∗)]〉 is an ≤-
increasing continuous sequence of ordinals, then pk

γε(∗)
/pk

γ = ∪{pkε
γε /p

kε
γ :

ε ∈ [ξ, ε(∗))} with the obvious meaning.

2) In part (2) of Definition 1.21 we say a “direct limit” when in addition

(α) the sequence is ≤dir
K2
f

(β) αε is minimal under the restrictions.

3) We say that k̄ = 〈kε : ε < ε(∗)〉 is ≤dir
K2
f
-increasing continuous or directly increas-

ing continuous when :

(a) kε ≤dir
K2
f

kζ for ε ≤ ζ < ε(∗)

(b) if ε < ε(∗) is a limit ordinal then for som e club C of ε k̄ is C-continuous
which means that kε is a (really the) direct limit of k̄ � C

4) For ε(∗) < λ+ we say C̄ is an ε(∗)-square when

(1) C̄ = 〈Cε : ε < ε(∗)〉
(2) Cε is a closed subset of ε
(3) if ε is a limit ordinal then Cε is unboundednin ε
(4) if ε ∈ C)ζ then Cε = Cζ ∩ ε

5) We say that k̄ = 〈kε : ε < ε(∗)〉 is ≤dir
K2
f
-increasing C̄-continuous or directly

increasing C̄-continuous when

(1) k̄ is as in part (3) above
(2) C̄ is an ε(∗)-square
(3) for evey limit ε < ε(∗) k is Cε-continuous

Claim 1.23. If k1 ≤K2
f

k2 then for some k′2 we have

(a) k1 ≤dir
K2
f

k′2

(b) k2 ≤K2
f

k′2 ≤K2
f

k2

(c) k2,k
′
2 are almost equal - the only differences being Ek′2

= Ek2
\min(Ek′2

), Sk′2
⊆

Sk2 , etc.

Claim 1.24. The limit existence claim 1) If ε(∗) < λ is a limit ordinal and k̄ =
〈kε : ε < ε(∗)〉 is a directly increasing continuous then k̄ has a direct limit.
2) Similarly for ε(∗) = λ, i.e. if 〈kε : ε < λ〉 is directly increasing continuous then
there is k such that:

(a) ε < λ⇒ kε ≤ k

(b) for each ε < λ, if k[ε] is like k omitting Ek ∩ ε then kεledirk
[ε].

Proof. It is enough to prove the direct version.
1) We define k = kε(∗) as in the definition, we have no freedom left.

The main points concern the c.c.c. and the absolute c.c.c., ≤′
K0

1
,≤K1

demands.

We prove the relevant demands by induction on β ∈ Ekε(∗) .

Case 1: β = min(Ekε(∗)).
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First note that 〈pεmin(Ekε ) : ε ≤ ε(∗)〉 is increasing continuous (in K1
λ) more-

over 〈P[pkε
min(Ekε )] : ε ≤ ε(∗)〉 is increasing continuous, see clause (γ) of Definition

1.22(1). As each P[pmin(Ekε)
] is c.c.c. if ε < ε(∗), we know that this holds for

ε = ε(∗), too.

Case 2: β = δ + 1, δ ∈ S1
k ∩ Ek.

Since skδ is a winning strategy in the game aδ,f∗(δ) we have p
kε(∗)
δ ≤+

K1
p
kε(∗)
β .

But what if the play is over? Recall that in Definition 1.14, f∗(δ) = λ or f∗(δ) is
successor and 〈fkε(δ) : ε < ε(∗)〉 is (strictly) increasing, so this never happens; it
may happen when we try to choose k′ such that k <K2

f
k′, see 1.25.

We also have to show: if α ∈ β ∩Ek then P[pk
β ]/P[pk

α] is absolutely c.c.c. First,

if α = δ this holds by Definition 1.3(3) of ≤+
K1

and the demand pβ ≤+
K1

qβ in
Definition 1.12 (and clause (`) of Definition 1.16). Second, if α < δ, it is enough to
show that P[pk

β ]/P[pk
δ ] and P[pk

δ ]/P[pk
α] are absolutely c.c.c., but the first holds by

the previous sentence, the second by the induction hypothesis. In particular, when
ε < ε(∗)⇒ Pkεβ l Pkβ .

Case 3: For some γ, γ = max(Ek ∩ β), γ /∈ S1
k.

As γ /∈ Sk there is ξ < ε(∗) such that γ /∈ S1
kξ

let γξ = γ and for ε ∈ (ξ, ε(∗)]
we define γε =: min(Ekε\(β + 1)). Now as k̄ is directly increasing continuous we
have

~ (a) 〈γε : ε ∈ [ξ, ε(∗)]〉 is increasing continuous

(b) γξ = γ

(c) γε(∗) = β

(d) 〈pkε
γε : ε ∈ [ξ, ε(∗)]〉 is increasing continuous.

So by claim 1.10 we are done, the main point is that clause (d) there holds by clause
(d) of the definition of ≤K2

f
in 1.18(2).

Case 4: β = sup(Ek ∩ β).
It follows by the induction hypothesis and 1.4(3) as 〈pk

γ : γ ∈ Ek ∩ β〉 is ≤+
K1

-

increasing continuous with union pk
β ; of course we use clause (h) of Definition 1.18,

so Definition 1.5(2),(5) applies.
2) Similarly. �1.24

The following is an atomic step toward having MA<λ.

Claim 1.25. Assume

(a) k1 ∈ K2
f

(b) α(∗) ∈ Ek1

(c) Q
˜

is a P[pk1

α(∗)]-name of a c.c.c. forcing (hence Pk1
“Q

˜
is a c.c.c. forcing”)

(d) u∗ ⊆ λ+ is disjoint to u[k1] = ∪{upα[k1] : α ∈ Ek} and of cardinality < λ
but ≥ |Q

˜
|.

Then we can find k2 such that

(α) k1 ≤dir
K2
f

k2 ∈ K2
f
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(β) Ek2
= Ek1

\α(∗)
(γ) uk2

α = uk1
α ∪ u∗ for α ∈ Ek2 ∩ S1

k1

(δ) Ppα(∗)[k2] is isomorphic to Ppα(∗)[k1] ∗Q
˜

over Ppα(∗)[k1]

(ε) Sk2
= Sk1

\α(∗) and s̄k2
= s̄k1

�Sk2

(ζ) fk2 = fk1 + 1

(η) if Ppα(∗)[k1]∗Q
˜

“ρ
˜
∈ ω2 but ρ

˜
/∈ V[G

˜
Ppα(∗)[k1]

]” then Pk2
“ρ
˜
∈ ω2 but

ρ
˜
/∈ V[G

˜
Pk1

] provided that the strategies preserve this which they do in the
cases used here.

Proof. We choose pk2
α by induction on α ∈ Ek1

\α(∗), keeping all relevant demands
(in particular upα[k2] ∩ u[k1] = upα[k1]).

Case 1: α = α(∗).
As only the isomorphism type of Q

˜
is important, without loss of generality

P[p
k1
α(∗)]

“every member of Q
˜

belongs to u∗”.

So we can interpret the set of elements of Ppα(∗)[k1] ∗ Q
˜

such that it is ⊆
H<ℵ1

(upα(∗)[k1] ∪ u∗).
Now Ppα(∗)[k1] l Ppα(∗)[k2] by the classical claims on composition of forcing no-

tions.

Case 2: α = δ + 1, δ ∈ Sk1
∩ Ek1

\α(∗).
The case split to two subcases.

Subcase 2A: The play gk1

δ is not over, i.e. f(δ) is larger than the length of the play
so far.

In this case do as in case 2 in the proof of 1.24, just use sδ.

Subcase 2B: The play gk1

δ is over.

In this case let Pk2

δ+1 = Pk1

δ+1 ∗Pk1
δ

Pk2

δ , in fact, pk2

δ+1 = pk1

δ+1 ∗pk1
δ

pk2

δ (and choose

upδ+1[k2] appropriately). Now possible and (pk1

δ ,p
k2

δ ) <′K1
(pk1

δ+1,p
k2

δ+1) by 1.8.

Case 3: For some γ, γ = max(Ek ∩ β) ≥ α(∗) and γ /∈ Sk.
Act as in Subcase 2B of the proof of 1.24

Case 4: β = sup(Ek ∩ β).
As in Case 4 in the proof of 1.24. �1.25
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§ 2. p = t does not decide the existence of a peculiar cut

We deal here with a problem raised in [She09], toward this we quote from there.
Recall (Definition [She09, 1.10]).

Definition 2.1. Let κ1, κ2 be infinite regular cardinals. A (κ1, κ2)-peculiar cut in
ωω is a pair (〈fi : i < κ1〉, 〈fα : α < κ2〉) of sequences of functions in ωω such that:

(α) (∀i < j < κ1)(fj <Jbd
ω
fi),

(β) (∀α < β < κ2)(fα <Jbd
ω
fβ),

(γ) (∀i < κ1)(∀α < κ2)(fα <Jbd
ω
fi),

(δ) if f : ω → ω is such that (∀i < κ1)(f ≤Jbd
ω
fi), then f ≤Jbd

ω
fα for some

α < κ2,

(ε) if f : ω → ω is such that (∀α < κ2)(fα ≤Jbd
ω
f), then fi ≤Jbd

ω
f for some

i < κ1.

The motivation of looking at (κ1, κ2)-peculiar cuts is understanding the case p > t,
(see [She09]). Also p = ℵ1 ⇒ t = p by the classical theorem of Rothberger and
MAℵ1

+ p = ℵ2 ⇒ t = ℵ2 by [She09, 2.3].

Recall (from [She09]) that

Claim 2.2. 1) If p < t then there is a (κ1, κ2)-peculiar type for some (regular)
κ1, κ2 satisfying κ1 < κ2 = p.
1A) If there is a (κ1, κ2)-peculiar cut then p ≤ max{κ1, κ2}.
2) There is a (κ1, κ2)-peculiar cut iff there is a (κ2, κ1)-peculiar cut.

Proof. 1), 1A) See [She09, 1.12].
2) Trivial. �2.2

Observation 2.3. If (η̄up, η̄dn) is a peculiar (κup, κdn)-cut and if A ⊆ ω is infinite,
η ∈ ωω then :

(a) η <Jbd
A
ηup
α for every α < κup iff η <Jbd

A
ηdn
β for every large enough β < κdn

(b) ¬(ηup
α <Jbd

A
η) for every α < κup iff ¬(ηdn

β <Jbd
A
η) for every large enough

β < κdn.

Proof. Clause (a): The implication ⇐ is trivial as β < κdn ∧ α < κup ⇒ ηdn
β <Jbd

ω

ηup
α . So assume the leftside.

We define η′ ∈ ωω by: η′(n) is η(n) if n ∈ A and is 0 if n ∈ ω\A. Clearly
η′ <Jbd

ω
ηup
α for every α < κup hence by clause (δ) of 2.1 we have η′ ≤Jbd

ω
ηdn
β for

some γ < κdn hence η = η′ � A ≤Jbd
A
ηdn
β+1 <Jbd

A
ηdn
β for every β ∈ (γ, κdn).

Clause (b): Again the direction⇐ is obvious. For the other direction define η′ ∈ ωω

by η′(n) is η(n) if n ∈ A and is ηup
0 (n) if n ∈ ω\A. So clearly α < κup ⇒ ¬(ηup

α <Jbd
ω

η′) hence α < κup ⇒ ¬(ηup
α ≤Jbd

ω
η) hence by clause (ε) of 2.1 for some β < κdn

we have ¬(ηdn
β <Jbd

ω
η′). As ηdn

β <Jbd
ω

ηup
0 , necessarily ¬(ηdn

β <Jbd
A

η′) but γ ∈
[β, κdn)⇒ ηdn

β ≤Jbd
A
ηdn
γ hence γ ∈ [β, κdn)⇒ ¬(ηdn

γ <Jbd
A
η′)⇒ ¬(ηdn

γ <Jbd
A
η), as

required. �2.3

We need the following from [She09, 2.1]:
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Claim 2.4. Assume that κ1 ≤ κ2 are infinite regular cardinals, and there exists a
(κ1, κ2)-peculiar cut in ωω.

Then for some σ-centered forcing notion Q of cardinality κ1 and a sequence
〈Iα : α < κ2〉 of open dense subsets of Q, there is no directed G ⊆ Q such that
(∀α < κ2)(G ∩ Iα 6= ∅). Hence MAκ2

fails.

Theorem 2.5. Assume λ = cf(λ) = λ<λ > ℵ2, λ > κ = cf(κ) ≥ ℵ1 and 2λ = λ+

and (∀µ < λ)(µℵ0 < λ).
For some forcing P∗ of cardinality λ+ not adding new members to λV and P-

name Q
˜

∗ of a c.c.c. forcing we have P∗∗Q
˜

∗ “2ℵ0 = λ+ and p = λ and MA<λ and

there is a pair (η̄up, η̄dn) which is a peculiar (κ, λ)-cut”.

Remark 2.6. 1) The proof of 2.5 is done in §4 and broken into a series of Definitions
and Claims, in particular we specify some of the free choices in the general iteration
theorem.
2) In 4.1(1), is cf(δ) > ℵ0 necessary?
3) What if λ = ℵ2? The problem is 3.2(2). To eliminate this we may, instead
quoting 3.2(2), start by forcing η̄ = 〈ηα : α < ω1〉 in Pk0

and change some points.

Complementary to 2.5 is

Observation 2.7. Assume λ = cf(λ) > ℵ1 and µ = cf(µ) = µ<λ > λ then for
some c.c.c. forcing notion P of cardinality µ we have:
P “2ℵ0 = µ, p = λ and for no regular κ < λ is there a peculiar (κ, λ)-cut so

t = λ”.

Proof. We choose Q̄ = 〈Pα,Q
˜
β : α ≤ µ, β < µ〉 such that:

� (a) Q̄ is an FS-iteration

(b) Q
˜
β is a σ-centered forcing notion of cardinality < λ

(c) if α < µ,Q
˜

is a Pα-name of a σ-centered forcing notion of cardinality
< λ then for some β ∈ [α, µ) we have Q

˜
β = Q

˜(d) Q0 is adding λ Cohens, 〈r
˜
ε : ε < λ〉 say r

˜
ε ∈ ωω.

Clearly in VPλ we have 2ℵ0 = λ, also every σ-centered forcing notion of cardinality
< µ, is from VPα for some α < µ, so as µ is regular we have

(∗) MA for σ-centered forcing notions of cardinality < λ and < µ dense sets.

Hence by 2.4 there is no peculiar (κ1, κ2)-cut when ℵ1 ≤ κ1 < κ2 = λ (even
κ1 < κ2 < µ, κ1 < λ < µ).

Lastly,

� for α ≤ µ, in VP1+α for every η ∈ ωω for every ε < λ large enough we have
rε �Jbd

ω
η.

[Why? We prove this by induction on α ≤ µ. For α = 0 this holds by �(d). For
α limit of uncountable cofinality recall (ωω)V[Pα] = ∪{(ωω)V[Pβ ] : β < α}. For α
limit of cofinality ℵ0 use “Q̄ is a FS-iteration”. Lastly, for α = β + 1 use the “of
cardinality < λ” of clause (c) of �.] �2.7
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§ 3. Some specific forcing

Definition 3.1. Let η̄ =: 〈ηα : α < α∗〉 be a sequence of members of ωω which is
<Jbd

ω
-increasing or just ≤Jbd

ω
-directed. We define the set Fη̄ and the forcing notion

Q = Qη̄ and a generic real ν
˜

for Q = Qη̄ as follows:

(a) Fη̄ = {ν ∈ ω(ω+1): if α < `g(η̄) then ηα <Jbd
ω
ν}, here η̄ is not4 necessarily

<Jbd
ω

-increasing

(b) Q has the set of elements consisting of all triples p = (ρ, α, g) = (ρp, αp, gp)
(and α(p) = αp) such that
(α) ρ ∈ ω>ω,

(β) α < `g(η̄),

(γ) g ∈ Fη̄, and

(δ) if n ∈ [`g(ρ), ω) then ηα(n) ≤ g(n);
(c) ≤Q is defined by: p ≤Q q iff (both are elements of Q and)

(α) ρp E ρq,

(β) αp ≤ αq and5 ηαp ≤Jbd
ω
ηαq

(γ) gq ≤ gp,
(δ) if n ∈ [`g(ρq), ω) then ηα(p)(n) ≤ ηα(q)(n),

(ε) if n ∈ [`g(ρp), `g(ρq)) then ηα(p)(n) ≤ ρq(n) ≤ gp(n).
(d) For F ⊆ Fη̄ which is downward directed (by <Jbd

ω
) we define Qη̄,F as

Qη̄ � {p ∈ Qη̄ : gp ∈ F}
(e) ν

˜
= ν

˜
Q = ν

˜
Qη̄ = ∪{ρp : p ∈ G

˜
Qη̄}.

Claim 3.2. 1) If η̄ ∈ γ(ωω) then Fη̄ is downward directed, in fact if g1, g2 ∈ Fη̄

then g = min{g1, g2} ∈ Fη̄, i.e., g(n) = min{g1(n), g2(n)} for n < ω. Also
“f ∈ Fη̄” is absolute.
[But possibly for every ν ∈ ω(ω + 1) we have: ν ∈ Fη̄ ⇔ (∀∗n)ν(n) = ω].
2) If η̄ ∈ δ(ωω) is <Jbd

ω
-increasing and cf(δ) > ℵ1 then Qη̄ is c.c.c.

3) Moreover any set of ℵ1 members of Qη̄ is included in the union of countably
many directed subsets of Qη̄.
4) Assume 〈Pε : ε ≤ ζ〉 is a l-increasing sequence of c.c.c. forcing notions, η̄

˜
=

〈η
˜
α : α < δ〉 is a P0-name of a <Jbd

ω
-increasing sequence of members of ωω and

cf(δ) > ℵ1. For ε ≤ ζ let Q
˜
ε be the Pε-name of the forcing notion Qη̄

˜
as defined in

VPε . Then Pζ “Q
˜
ε is ⊆-increasing and ≤ic-increasing for ε ≤ ζ and it is c.c.c.

and cf(ζ) > ℵ0 ⇒ Q
˜
ζ = ∪{Q

˜
ε : ε < ζ} is c.c.c.”

5) Let η̄ ∈ δ(ωω) be as in part (2).

(a) If F ⊆ Fη̄ is downward directed (by ≤Jbd
ω

) then Qη̄,F is absolutely c.c.c.

(b) If F1 ⊆ F2 ⊆ Fη̄ are downward directed then Qη̄,F1
⊆ic Qη̄,F2

.

6)

(a) Qη̄ “ν
˜
∈ ωω and V[G

˜
] = V[ν

˜
]”

(b) p Qη̄ “ρp / ν
˜

and n ∈ [`g(ρ), ω)⇒ ηα(p)(n) ≤ ν
˜

(n) ≤ gp(n)”

4the central case is η̄ is ℵ2-directed by <Jbd
ω

5so if η̄ is <Jbd
ω

-increasing this can be omitted and is equivalent to αp ≤ αq
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(c) Qη̄ “p ∈ G iff ρp / ν
˜
∧ (∀n)(`g(ρp) ≤ n < ω ⇒ ηα(n) ≤ ν

˜
(n) ≤ gp(n))”

(d) Qη̄ “ν
˜
∈ Fη̄, i.e. ν

˜
(n) ∈ FV[Qη̄ ]”

(e) Qη̄ “for every f ∈ (ωω)V we have f ∈ Fη̄ iff f ∈ FV
η̄ iff ν

˜
≤Jbd

ω
f”.

Proof. 1) Trivial.
2) Assume pε ∈ Qη̄ for ε < ω1. So {α(pε) : ε < ω1} is a set of ≤ ℵ1 ordinals < δ.
But cf(δ) > ℵ1 hence there is α(∗) < δ such that ε < ω1 ⇒ α(pε) < α(∗). For each
ε let nε = Min{n: for every k ∈ [n, ω) we have ηα(pε)(k) ≤ ηα(∗)(k) ≤ gpε(k)}.
It is well defined because ηα(pε) <Jbd

ω
ηα(∗) <Jbd

ω
gpε recalling α(pε) < α(∗) and

gpε ∈ Fη̄.
So clearly for some x = (ρ∗, n∗, η∗, ν∗) the following set is uncountable

U = Ux = {ε < ω1 : ρpε = ρ∗ and nε = n∗ and ηα(pε) � n
∗ = η∗

and gpε � n∗ = ν∗}.
Let

Q′ = Q′x =: {p ∈ Qη̄ : `g(ρp) ≥ `g(ρ∗), ρp � `g(ρ∗) = ρ∗ and ρp � [`g(ρ∗), `g(ρp)) ⊆ ηα(∗)
and α(p) < α(∗), and ηα(p) � n∗ = η∗ and gp � n∗ = ν∗

and n ∈ [n∗, ω)⇒ ηα(p)(n) ≤ ηα(∗)(n) ≤ gp(n)}.
Clearly

~1 {pε : ε ∈ U } ⊆ Q′

~2 Q′ ⊆ Qη̄ is directed.

So we are done.
3) The proof of part (2) proves this as the set X = {(ρ∗, n∗, η∗, ν∗) : n∗ <
ω, {ρ∗, η∗, ν∗} ⊆ ω>ω} is countable and ω1 = ∪{Ux : x ∈ X}.
4),5) First we can check clause (b) of part (5) by the definitions ofQη̄,F ,Qη̄. Second,
concerning “Qη̄,F is absolutely c.c.c.” (i.e. clause (a) of part (5)) note that if P is

c.c.c., G ⊆ P is generic over V then QV
η̄,F = QV[G]

η̄,F and QV
η̄,F ≤ic QV

η̄ ≤ic QV[G]
η̄

by clause (b) and the last one is c.c.c. (as V[G] |= “cf(`g(η̄)) > ℵ1”). Hence QV
η̄,F

is c.c.c. even in V[G] as required. Turning to part (4), letting Fε = (Fη̄)V[Pε],
clearly Pε2 “Q

˜
ε1 = Q

˜
η̄,Fε1

” for ε1 < ε2 < ζ. Now about the c.c.c., as Pε is c.c.c.,

it preserves “cf(δ) > ℵ1”, so the proof of part (1) works.
6) Easy, too. �3.2

Definition 3.3. Assume Ā = 〈Aα : α < α∗〉 is a ⊆∗-decreasing sequence of mem-
bers of [ω]ℵ0 . We define the forcing notion QĀ and the generic real w

˜
by:

(A) p ∈ QĀ iff
(a) p = (w, n,Aα) = (wp, np, Aα(p)),

(b) w ⊆ ω is finite,

(c) α < α∗ and n < ω,
(B) p ≤QĀ q iff

(a) wp ⊆ wq ⊆ wp ∪ (Aα(p)\np)
(b) np ≤ nq
(c) Aα(p)\np ⊇ Aα(q)\nq

(C) w
˜

= ∪{wp : p ∈ G
˜

QĀ}.
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Claim 3.4. Let Ā be as in Definition 3.3.
1) QĀ is a c.c.c. and even a σ-centered forcing notion.
2) QĀ “w

˜
∈ [ω]ℵ0 is ⊆∗ Aα for each α < α∗” and V[G

˜
] = V[w

˜
].

3) Moreover, for every p ∈ QĀ we have  “p ∈ G
˜

iff wp ⊆ w
˜
⊆ (Aα(p)\np) ∪ wp”.

Proof. Easy. �3.4

Claim 3.5. Assume η̄ ∈ δ(ωω) is ≤Jbd
ω

-increasing.

1) If F ⊆ Fη̄ is downward cofinal in (Fη̄, <Jbd
ω

), i.e. (∀ν ∈ Fη̄)(∃ρ ∈ F )(ρ <Jbd
ω
ν)

and U ⊆ δ is unbounded then Qη̄�U ,F = {p ∈ Qη̄ : αp ∈ U and gp ∈ F} is (not
only ⊆ Qη̄ but also is) a dense subset of Qη̄.

2) If cf(δ) > ℵ0 and R is Cohen forcing then R “QV
η̄ is dense in QV[G

˜
]

η̄ ”.

Remark 3.6. 1) We can replace “ηα ≤Jbd
ω

ρ” by “ρ belongs to the Fσ-set Bα”,
where Bα denotes a Borel set from the ground model, i.e. its definition.
2) Used in 4.4.

Proof. 1) Check.
2) See next claim. �3.5

Claim 3.7. Let η̄ = 〈ηγ : γ < δ〉 is ≤Jbd
ω

-increasing in ωω.

1) If P is a forcing notion of cardinality < cf(δ) then P “QV
η̄ is dense in QV[G

˜
η̄]”.

2) A sufficient condition for the conclusion of part (1) is:

�cf(δ)
P for every X ∈ [P]cf(δ) there is Y ∈ [P]<cf(δ)

such that (∀p ∈ X)(∃q ∈ Y )(p ≤ q).

2A) We can weaken the condition to: if X ∈ [P]cf(δ) then for some q ∈ P, cf(δ) ≤
|{p ∈ X : p ≤P q}|.
3) If 〈Aα : α < δ∗〉 is ⊆∗-decreasing sequence of infinite subsets of ω and cf(δ∗) 6=
cf(δ) then �cf(δ)

QĀ holds.

Proof. 1) By part (2).
2) Let U ⊆ δ be unbounded of order type cf(δ). Assume p ∈ P and ν

˜
satisfies

p P “ν
˜
∈ F

V[G
˜

]
η̄ ”. So for every γ ∈ U we have p P “ηγ <Jbd

ω
ν
˜
∈ ωω”, hence

there is a pair (pγ , nγ) such that:

(∗) (a) p ≤P pγ

(b) nγ < ω

(c) pε P “(∀n)(nγ ≤ n < ω ⇒ ηε(n) < ν
˜

(n)).

We apply the assumption to the set X = {pε : γ ∈ U } and get Y ∈ [P]<cf(δ) as
there. So for every γ ∈ U there is qγ such that pγ ≤P qγ ∈ Y . As |Y × ω| =
|Y | + ℵ0 < cf(δ) = |U | there is a pair (q∗, n∗) ∈ Y × ω such that U ′ ⊆ δ
is unbounded where U ′ := {γ ∈ U : qγ = q∗ and nγ = n∗}. Lastly, define
ν∗ ∈ ω(ω + 1) by ν∗(n) is 0 if n < n∗ is ∪{ηα(n) + 1 : α ∈ U ′} when n ≥ n∗.

Clearly

~ (a) ν∗ ∈ ω(ω + 1)

(b) γ ∈ U ′ ⇒ ηα � [n∗, ω) < ν∗ � [n∗, ω)

(c) if γ < δ then ηα <Jbd
ω
ν∗
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(d) ν∗ ∈ FV
η̄

(e) p ≤ q∗
(f) q∗ P “ν∗ ≤ ν

˜
”.

So we are done.
2A) Similarly.
3) If cf(δ∗) < cf(δ) let U ⊆ δ∗ be unbounded of order type cf(δ∗) and Q′

Ā
= {p ∈

QĀ : αp ∈ U }, it is dense in QĀ and has cardinality ≤ ℵ0 + cf(δ∗) < cf(δ), so we
are done.

If cf(δ∗) > cf(δ) and X ∈ [P]cf(δ), let α(∗) = sup{αp : p ∈ X} and Y = {p ∈
QĀ : αp = α(∗)}.
The rest should be clear. �3.7
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§ 4. Proof of Theorem 2.5

Choice 4.1. 1) S ⊆ {δ < λ : cf(δ) > ℵ0} stationary.
2) η̄ is as in 4.2 below, so possibly using a preliminary forcing of cardinality ℵ2 we
have such η̄.

Definition/Claim 4.2. 1) Assume κ = cf(κ) ∈ [ℵ2, λ) and η̄ = 〈ηα : α < κ〉 is
an <Jbd

ω
-increasing sequence in ωω and δ ∈ λ\ω1 a limit ordinal and γ ≤ λ. Then

the following s = sδ,γ is a winning strategy of COM in the game aδ,<γ : COM just
preserves:

⊗ (a) if for every ζ < ε we have (α) + (β) then we have (∗) where
(α) Pqζ = Ppζ ∗Q

˜
η̄ where Q

˜
η̄ is from 3.1 and in VP[pζ ], i.e. is a

Ppζ -name

(β) Ppζ ∗Q
˜
η̄ l Ppε ∗Q

˜
η̄

(∗) Pqε = Ppε ∗Q
˜
η̄, so we have to interpret Pqε such that its set of

elements is ⊆H<ℵ1
(uqε) which is easy, i.e. it is Ppε ∪ {(p, r

˜
):

p ∈ Ppε and r
˜

is a canonical Ppε-name of a member of Q
˜
η̄

(i.e. use ℵ0 maximal antichains, etc.)}
(b) if in (a) clause (α) holds but (β) fail then

(α) the set of elements of Pqε is Ppε ∪ {(p, r
˜

): for some ζ < ε and
(p′, r

˜
) ∈ Pqζ we have Ppε |= “p′ ≤ p”}

(β) the order is defined naturally
(c) if in (a), clause (α) fail, let ζ be minimal such that it fails, and then

(α) the set of elements of Pqε is Ppε ∪ {(p, r
˜

): for some ξ < ζ and p′

we have (p′, r
˜

) ∈ Pqζ and Ppε |= “p′ ≤ p”}
(β) the order is natural.

Remark 4.3. In 4.2 we can combine clauses (b) and (c).

Proof. By 3.2 this is easy, see in particular 3.2(4). �4.2

Technically it is more convenient to use the (essentially equivalent) variant.

Definition/Claim 4.4. 1) We replace Pqζ = Ppζ ∗Qη̄ by Pqζ = Ppζ ∗Qη̄,Fζ
where

Fζ = {ν : for some ε ≤ ζ, ν ∈ F
V[P[pε]]
η̄ but

for no ξ < ε and ν1 ∈ F
V[P[pξ]]
η̄ do we have

ν1 ≤Jbd
ω
ν}.

2) No change by 3.5(1).

Remark 4.5. In 4.2 we can use η̄
˜

= 〈η
˜
α : α < κ〉 say a Pk0

-name, but then for the

game aδ,f(δ) we better assume δ ∈ Ek0
and η̄

˜
is a P[pk

δ ]-name.

Definition/Claim 4.6. 1) Let k∗ ∈ K2
λ and ν

˜
α (α < λ) be chosen as follows:

(a) Ek∗ = λ and u[pk∗
α ] = ω1 + α hence u[k∗] = λ

(b) Pk∗α is l-increasing continuous

(c) Pk∗α+1 = Pk∗α ∗Q
˜
η̄ and ν

˜
δ is the generic (for this copy) of Q

˜
η̄ where η̄ is from

4.2

(d) Sk∗ = S (a stationary subset of λ), δ ∈ S ⇒ cf(δ) > ℵ0
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(e) for each δ ∈ Sk∗ , s
k∗
δ = sδ,λ is from 4.2 or better 4.4

(f) gk∗
δ is 〈(pk∗

δ ,p
k∗
δ+1)〉, mv(gk∗

δ ) = 0, only one move was done.

2) If k∗ ≤K2
k then Pk

“the pair (〈ν
˜
α : α < λ〉, 〈ηi : i < κ〉) is a (λ, κ)-peculiar

cut”.

Proof. Clear (by 4.2). �4.6

Definition 4.7. Let P∗ be the following forcing notion:

(A) the members are k such that
(a) k∗ ≤K2 k ∈ K2

λ

(b) u[k] = ∪{u[pk
α] : α ∈ Ek} is an ordinal < λ+ (but of course ≥ λ)

(c) Sk = Sk∗ and skδ = sk∗δ for δ ∈ Sk

(B) the order: ≤K2
λ
.

Definition 4.8. We define the P∗-name Q
˜

∗ as

∪{Pkλ : k ∈ G
˜

P∗} = ∪{Pp[pk
α] : α ∈ Ek and k ∈ G

˜
P∗}.

Claim 4.9. 1) P∗ has cardinality λ+.
2) P∗ is strategically (λ+ 1)-complete hence add no new member to λV.
3) P∗ “Q

˜

∗ is c.c.c. of cardinality ≤ λ+”.

4) P∗ ∗Q
˜

∗ is a forcing notion of cardinality λ+ neither collapsing any cardinal nor
changing cofinalities.
5) If k ∈ P∗ then k P∗ “Pk lQ

˜

∗” hence P∗ “Pk∗ lQ
˜

∗”.

Proof. 1) Trivial.
2) By claim 1.24.
3) G

˜
P∗ is (< λ+)-directed.

4),5) Should be clear. �4.9

Claim 4.10. If k ∈ P∗ and G ⊆ Pk is generic over V then

(a) 〈ν
˜
α[G ∩ Pk∗ ] : α < λ〉 is <Jbd

ω
-decreasing and i < κ⇒ ηi <Jbd

ω
ν
˜
α[G ∩ Pk∗ ],

(this concerns Pk∗ only)

(b) if ρ ∈ (ωω)V[G] and i < κ ⇒ ηi <Jbd
ω
ρ then for every α < λ large enough

we have ν
˜
α[G] <Jbd

ω
ρ

(c) if ρ ∈ (ωω)V[G] and i < κ ⇒ ηi �Jbd
ω
ρ then for every α < λ large enough

we have ν
˜
α[G] �Jbd

ω
ρ.

Proof. Should be clear. �4.10

Claim 4.11. 1) If k ∈ P∗ and Q
˜

is a Pk-name of a c.c.c. forcing of cardinality

< λ and α ∈ Ek and Q
˜

is a P[pk
α]-name then for some k1 we have:

(a) k ≤K1
k1 ∈ P∗

(b) Pk1
“there is a subset of Q

˜
generic over V[GPk1

∩ P[pk
α]]”.

2) In (1) if P[pk
α]∗Q

˜

“there is ρ ∈ ω2 not in V[G
˜

Pk
]” then Pk1

“there is ρ ∈ ω2

not in V[G
˜

Pk
]”.

Proof. 1) By 1.25.
2) By part (1) and clause (η) of 1.25. �4.11
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Proof. Proof of Theorem 2.5 We force by P∗ ∗ Q
˜

∗ where P∗ is defined in 4.7 and
the P∗-name Q

˜

∗ is defined in 4.8. By Claim 4.9(4) we know that no cardinal is

collapsed and no cofinality is changed. We know that P∗∗Q
˜

∗ “2ℵ0 ≤ λ+” because

|P∗| = λ+ and P∗ “Q
˜

∗ has cardinality ≤ λ+”, so P∗ ∗ Q
˜

∗ has cardinality λ+, see
4.9(3),(4).

Also P∗∗Q
˜

“2ℵ0 ≥ λ+” as by 4.9(2) it suffices to prove: for every k1 ∈ P∗ there

is k2 ∈ P∗ such that k1 ≤K2
k2 and forcing by Pk2

/Pk1
adds a real, which holds

by 4.11(2).
Lastly, we have to prove that (〈ηi : i < κ〉, 〈ν

˜
α : α < λ〉) is a peculiar cut. In

Definition 2.1 clauses (α), (β), (γ) holds by the choice of k∗. As for clauses (δ), (ε)
to check this it suffices to prove that for every f ∈ ωω they hold, so it is suffice to
check it in any sub-universe to which (η̄, ν̄), f belong. Hence by 4.9(1) it suffices to
check it in VPk for any k ∈ P∗. But this holds by 4.6(2). �2.5
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§ 5. Quite general applications

Theorem 5.1. Assume λ = cf(λ) = λ<λ > ℵ2 and 2λ = λ+ and (∀µ < λ)(µℵ0 <
λ). Then for some forcing P∗ of cardinality λ+ not adding new members to λV
and P∗-name Q

˜

∗ of a c.c.c. forcing it is forced, i.e. P∗∗Q
˜

∗ that 2ℵ0 = λ+ and

(a) p = λ and MA<λ

(b) for every regular κ ∈ (ℵ1, λ) there is a (κ, λ)-peculiar cut (〈ηκi : i < κ〉, 〈νκα :
α < λ〉) hence p = t = λ

(c) if Q is a (definition of a) Suslin c.c.c. forcing notion defined by ϕ̄ possibly
with a real parameter from V, then we can find a sequence 〈νQ,η

˜
,α : α < λ〉

which is positive for (Q, η
˜

), see [She04], e.g. non(null) = λ

(d) in particular b = d = λ.

Remark 5.2. 0) In clause (c) we can let Q be a c.c.c nep forcing (see [She04]), with
B,C of cardinality ≤ λ and η

˜
is a Q-name of a real (i.e. member of ω2).

1) Concerning 5.1 as remarked earlier in 1.19(1), if we like to deal with Suslin

forcing defined with a real parameter from VP∗∗Q
˜

+

and similarly for B,C we in a
sense have to change/create new strategies. We could start with 〈Sα : α < λ+〉
such that Sα ⊆ λ, α < β ⇒ |Sα\Sβ | < λ and Sα+1\Sα is a stationary subset of λ.
But we can code this in the strategies, do nothing till you know the definition of
the forcing.
2) We may like to strengthen 5.1 by demanding

(c) for some Q as in clause (c) of 5.1, MAQ holds or even for a dense set of
k1 ∈ P∗, see below, there is k2 ∈ P∗ such that k1 ≤K2

k2 and Pk2
/Pk1

is
QV[Pk1

].

For this we have to restrict the family of Q’s in clause (c) such that those two
families are orthogonal, i.e. commute. Note, however, that for Suslin c.c.c forcing
this is rare, see [She04].
3) This solves the second Bartoszynski test problem, i.e. (B) of Problem 0.2.
4) So (ϕ̄,Q, ν, η

˜
) in clause (c) of 5.1 satisfies

(a) ν ∈ ω2

(b) ϕ̄ = (ϕ0, ϕ1, ϕ2),Σ1 formulas with the real parameter ν

(c) Q is the forcing notion defined by:
• set of elements {ρ ∈ ω2 : ϕ0[ρ]}
• quasi order ≤Q= {(ρ1, ρ2) : ρ1, ρ2 ∈ ω2 and ϕ1(ρ1, ρ2)}
• incompatibility in Q is defined by ϕ3

(d) η
˜

is a Q-name of a real, i.e. 〈pn,k : k ≤ ω〉 a (absolute) maximal antichain
of Q, tk = 〈tn,k : k < ω〉, tk,n a truth value.

Proof. The proof is like the proof of 2.5 so essentially broken to a series of definitions
and Claims. �

Claim 5.3. Claim/Choice:

Without loss of generality there is a sequence 〈Sα : α < λ+〉 such that:

(a) Sα ⊆ Sλℵ0
is stationary
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(b) if α < β then Sα\Sβ is bounded (in λ)

(c) ♦Sα+1\Sα and ♦Sλℵ0
\∪{Sα:α<λ+}.

Proof. E.g. by a preliminary forcing. �

Definition 5.4. Let P∗ be the following forcing notion:

(A) The members are k such that
(a) k ∈ K2

λ

(b) u[k] = ∪{u[pk
α] : α ∈ Ek} is an ordinal < λ+ (but of course ≥ λ)

(c) Sk ∈ {Sα : α < λ+}.
(B) The order: ≤K2

λ
.

Definition 5.5. We define the P∗-name Q
˜

∗ as

∪{Pkλ : k ∈ G
˜

P∗} = ∪{P[pk
α] : α ∈ Ek and k ∈ G

˜
P∗}.

Claim 5.6. As in 4.9:
1) P∗ has cardinality λ+.
2) P∗ is strategically (λ+ 1)-complete hence add no new member to λV.
3) P∗ “Q

˜

∗ is c.c.c. of cardinality ≤ λ+”.

4) P∗ ∗Q
˜

∗ is a forcing notion of cardinality λ+ neither collapsing any cardinal nor
changing cofinalities.
5) If k ∈ P∗ then k P∗ “Pk lQ

˜

∗” hence P∗ “Pk∗ lQ
˜

∗”.

Proof. 1) Trivial.
2) By claim 1.24.
3) G

˜
P∗ is (< λ+)-directed.

4),5) Should be clear. �4.9

Claim 5.7. Assume

(A) (a) k ∈ P∗

(b) Sk = Sα, α < λ+

(c) ν
˜

is a Pkε -name of a member of ω2, ε < κ

(d) Q
˜

is a Pk1
-name of a c.c.c. Suslin forcing and η

˜
a Q

˜
-name both

definable from ν
˜

.

Then there is k2 such that

(B) (a) k1 ≤ k2

(b) Sk2
= Sα+1

(c) if ε ∈ Sα+1\Sα then Pk2
ε+1 = Pk2

ε ∗Q
˜

and η
˜
ε is the copy of η

˜
(d) if ε ∈ Sα+1\Sε then the strategy stε is as in 4.2, using Q

˜
instead of

Q
˜
η̄.

Proof. Straightforward. �4.10

Claim 5.8. Like 4.11:
1) If k ∈ P∗ and Q

˜
is a Pk-name of a c.c.c. forcing of cardinality < λ and α ∈ Ek

and Q
˜

is a P[pk
α]-name then for some k1 we have:
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(a) k ≤K2
k1 ∈ P∗

(b) Pk1
“there is a subset of Q

˜
generic over V[GPk1

∩ P[pk
α]].

2) In (1) if Pk∗Q
˜

“there is ρ ∈ ω2 not in V[G
˜

Pk
]” then Pk1

“there is ρ ∈ ω2 not

in V[G
˜

Pk
]”.

Proof. 1) By 1.25.
2) By part (1) and clause (η) of 1.25. �4.11

Claim 5.9. Assume κ ∈ [ℵ2, λ) is regular, k ∈ P∗ and Sk = Sα and Pk
“〈η

˜
ε : ε <

κ〉 is increasing. Then we can find k1 such that k ≤ k1 ∈ P∗ and γ(∗) < λ,Pk1
-

name = 〈ν
˜
i : i ∈ Sα+1\Sα\γ(∗)〉 such that

(∗)1 Pk1
“(〈η

˜
ε : ε < κ〉, 〈νi : i ∈ Sα+1\Sα\γ(∗)〉) is a (κ, λ)-peculiar uct

(∗)2 moreover if k1 ≤ k2 ∈ P∗ this still holds.

Proof. As in the proof of 2.5. �

Proof. Proof of Theorem 5.1
We force by P∗ ∗ Q

˜

∗ where P∗ is defined in 5.4 and the P∗-name Q
˜

is defined
in 5.5. By Claim 5.6(4) we know that no cardinal is collapsed and no cofinality is
changed. We know that P∗∗Q

˜

∗ “2ℵ0 ≤ λ+” because |P∗| = λ+ and P∗ “Q
˜

∗ has

cardinality ≤ λ+”, so P∗ ∗Q
˜

∗ has cardinality λ+, see 5.6(3),(4).

Also P∗∗Q
˜

“2ℵ0 ≥ λ+” as by 4.9(2) it suffices to prove: for every k1 ∈ P∗ there

is k2 ∈ P∗ such that k1 ≤K2 k2 and forcing by Pk2/Pk1 add a real, which holds
by 5.8(2). Similarly P∗Q

˜

∗ “MA<λ for < λ dense subsets” by 5.8(1) hence p ≥ λ

follows; as p ≤ λ by clause (b) we have proved clause (a) of 5.1.
Clause (b) of 5.1 is proved as in the proof of 2.5, that is by 5.9.
As for clause (c) we are given k0 and Q, ν

˜
, η
˜

such that ν
˜

is a (P∗ ∗Q
˜

∗)-name of
a real and Q

˜
is a Suslin c.c.c. forcing definable (say by ϕ̄0) from the real ν

˜
and η

˜a (P∗ ∗Q
˜

∗)-name of Q
˜

-name for Q
˜

of a real defined by ℵ0 maximal antichain of Q
˜

,
absolutely of course.

As P∗ “Q
˜

∗ satisfies the c.c.c.”, for some k1 ∈ P∗ above k0 and Pk1
-name ν

˜
′ of

a member of λ≥2 and η
˜

′ is a Pk1
-name in Q

˜
ϕ̄,ν′ we have k1 P∗ “ν

˜
= ν

˜
′ ∧ η

˜
= η

˜

′”.
As Pk1 satisfies the c.c.c. for some ε < λ, (k1, ε, ν

˜
′,Q

˜
ν
˜
′ , η

˜

′) satisfies the assump-
tions on (k, ε, ν

˜
′, e

˜
ta′) is as in 5.7 so there is k2 and 〈η

˜
α : α ∈ Sα+1\Sα〉 as there.

So k0 ≤ k1 ≤ k2 and

(∗) if k2 ≤ k3 then for a club of ζ < λ, ν
˜
′ is a Pk3

ζ -name and η
˜
ζ is (Q

˜
ϕ̄,barν′ , η

˜
)-

generic over VPζ [k3].

This is clearly enough, so clause (a) of 5.1 holds. For clause (d) of 5.1, first Random
real forcing is a Suslin c.c.c. forcing so non(null) ≤ λ follows from clause (c) and
non(nul) ≥ λ follows from clause (a).

Lastly, b ≥ λ by MA<λ and we know d ≥ b. As dominating real forcing =
Hechler forcing is a c.c.c. Suslin forcing so by clause (c) we have d ≤ λ, together
d = b = λ, i.e. clause (d) holds. �5.1
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