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Abstract. In this paper we give an additional characterizations of the first

order complete superstable theories, in terms of an external property called
representation. In the sense of the representation property, the mentioned

class of first-order theories can be regarded as “not very complicated”. This

was done for ”stable” and for ”ℵ0-stable.” Here we give a complete answer for
”superstable”.
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2 SAHARON SHELAH

§ 0. Introduction

Our motivation to investigate the properties under consideration in this paper
comes from the following

Thesis: It is very interesting to find dividing lines and it is a fruitful approach
in investigating quite general classes of models. A “natural” dividing prop-
erty “should” have equivalent internal, syntactical, and external properties.
(see [Shea] and lately [Shear], [Bal88] for more)

Of course, we expect the natural dividing lines will have many equivalent defi-
nitions by internal and external properties.

The class of stable (complete first order theories) T is well known (see [She90]),
it has many equivalent definitions by “internal, syntactical” properties, such as the
order property. As for external properties, one may say “for every λ ≥ |T | for some
model M of T we have S(M) has cardinality > λ” is such a property (characterizing
instability). Anyhow, the property “not having many κ-resplendent models (or
equivalently, having at most one in each cardinality)” is certainly such an external
property (see [Sheb]).

Here we deal with another external property, representability. This notion was a
try to formalize the intuition that ”the class of models of a stable first order theory
is not much more complicated than the class of models M = (A, . . . , Et, . . . )s∈I
where EMt is an equivalence relation on A refining EMs for s < t ; and I is a
linear order of cardinality ≤ |T | . It was first defined in Cohen-Shelah [CS16],
where it was shown that one may characterize stability and ℵ0-stability by means
of representability. In this paper we give a complete answer also for the superstable
case. If T is uncountable we may consider other values of κ(T ). That is, recall
that for a stable (complete first order) theory T , κ(T ) can be any cardinal in the
interval [ℵ0, |T |+). So if T is countable there are two possible values- ℵ0,ℵ1, the
second is dealt with in [CS16] and the first in Theorem 2.1. But if T is uncountable,
the result above gives a representation in a class which depends just on |T |, so it is
natural to suspect that if κ(T ) < |T |+ we can restrict this class further. We hope
to consider this later.

The results are phrased below, and the full definition appears in Definition 1.2,
but first consider a simplified version. We say that a a model M is k-representable
for a class k when there exists a structure I ∈ k with the universe extending M
such that for any n and two sequences of length n from M , if they realize the same
quantifier free type in I then they realize the same (first order) type in M . Of
course, T is k-representable if every model of T is k-representable. We prove, e.g.
that T is superstable iff for some κ, it is representable in the class of locally finite
structures with exactly κ unary functions (and nothing else), see Definition 1.7.

This raises various further questions

Problem:
(1) Can we characterize, by representability “T is strongly dependent ”,

similarly for the various relatives (see [Sh:863])
(2) For a natural number n , what is the class of T representable by knκ of

structures with just κ n-place functions (or relations)
(3) What about strong representability (meaning we demand in addition

that
(∗) if a, b ∈ I realise the same qf-type in I then a ∈M ↔ b ∈M .
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Concerning the last demand, even for general stable T this fail for I =
Mµ,κ(I′) for I′ ∈ keq, but a relative called ‘medium” we can but this is
delayed

The main result presented in this paper is:

Characterization of superstable theories (Theorem 2.1):

In the attempt to extend the framework of representation it seemed natural,
initially, to conjecture that if we consider representation over linear orders rather
than over sets, we could find an analogous characterizations for dependent theories.
However, such characterizations would imply strong theorems on existence of indis-
cernible sequences. In [KS14], some dependent theories were discovered for which
it is provably “quite hard to find indiscernible subsequences”, implying that this
conjecture would fail in its original formulation. However in [She14] it was proved
that such results hold for strongly dependent T .

The reader that would like to avoid the reference [CS16] can restrict Th 2.1 to
the equivalence of clauses (1), (2), (5) there; why? (1) ⇒ (2) holds by Th 2.4 by
the definitions, (2)⇒ (5) is immediate, and lastly (5)⇒ (1) holds by Th 2.3(2). A
related work of Halevi, Kaplan and the author on Taylor problem for stable graphs.

The author thanks Yatir Halevi for doing much to improve the presentation and
the referees for good advice.

§ 1. Structure Classes and Representations

We recall some needed definitions and properties from [CS16].

Convention 1.1. (1) The vocabulary is a set of individual constants, (partial) func-
tion symbols and relation symbols (=predicates), each with the number of places
(=arity) being finite except in the models Mµ,κ, so for a model M , the occurance
number, oc(M) is ℵ0. Individual constants may be considered as 0-place function
symbols.

Let arityτ (P ) be the arity of the predicate P in the vocabulary τ , similarly for
function symbols. The occurrence number of the vocabulary τ that is oc(τ), is the
minimal cardinal θ such that every symbol P from τ has arity < θ. We shall allow
function symbols F to be interpreted in a model M as partial functions but then
demand that dom(FM ) is PMF for some predicate PF ∈ τ .

(2) A structure I = 〈τ, I, |=〉 is a triple of vocabulary, universe (=domain) and
the interpretation relation for the vocabulary: let |I| = I, ‖I‖ the cardinality of I
and τI = τ ; I is called a τ -structure.

(3) k denotes a class of structures in a given vocabulary τk, so I ∈ k ⇒
I is a τk-structure.

(4) L(τ) is first order logic for the vocanulary τ , Lτ = L(τ) is f.o. logic in the
vocabulary τ ; Lτqf denotes all the quantifier-free formulas with terms from τk. That

is, finite Boolean combinations of atomic formulas, where atomic formulas (for τ)
have the form P (σ0, . . . , σn−1) or σ0 = σ1 for some n-ary predicate P ∈ τ , σ0 . . .
are terms, i.e. they are in the closure of the set of variables by function (and partial
function) symbols.

(5) If I a τ -structure, ā = 〈ai : i < α〉 ∈α|I|, then

tpqf (ā, B, I) =
{
ϕ(x̄, b̄) : ϕ(x̄, ȳ) ∈ Lτqf : I |= ϕ(ā, b̄), b̄ ∈ g̀(ȳ)B

}
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4 SAHARON SHELAH

§ 1(A). Defining representations. We recall the definition of a representation.

Definition 1.2. Consider a model M .

(1) For a structure J and a function f : M → |J| is called a representation of
M in J if

tpqf(f(a), ∅,J) = tpqf(f(b), ∅,J) ⇒ tp(a, ∅,M) = tp(b, ∅,M)

for any two sequences a, b ∈<ωM
(2) We say that M is represented in a class of models k if there exists a J ∈ k

such that M is represented in J.
(3) For two classes of structures k0, k we say that k0 is represented in k if every

I ∈ k0 is represented in k.
(4) We say that a first-order theory T is represented in k if the elementary class

EC(T ) of models of T is represented in k.

Definition 1.3. keq denotes the class of structures of the vocabulary {=}, where eq
stands for equality.

§ 1(B). The free algebras Mµ,κ.

Definition 1.4. Let µ ≥ κ = cf(κ). For a given structure I, we define the structure
M =Mµ,κ(I) as the structure whose vocabulary is τI∪{Fα,β : α < µ, β < κ}, with
a β-ary function symbol Fα,β for all α < µ, β < κ. (the vocabulary of I includes a
unary relation symbol I for the structure’s universe, and we will assume Fα,β /∈ τI)
and we have Pζ ∈ τ(I) is a predicate with arity ζ and PM

ζ = ζI when ζ is the arity

of some P ∈ τζ or ζ = 1. The universe for this structure is1:

Mµ,κ(I) =
⋃

γ∈Ord

Mµ,κ,γ(I)

Where Mζ =Mµ,κ,ζ(I) is defined as follows:

• M0(I) := |I|
• For limit ζ: Mζ(I) =

⋃
ξ<ζMξ(I)

• For ζ = γ + 1

Mζ =Mγ ∪
{
Fα,β(b) : b ∈βMγ , α < µ, β < κ

}
Where Fα,β(b) is treated as a formal object. The symbols in τI have the same
interpretation as in I. In particular, α-ary functions may be interpreted as (α +
1)− ary relations. The β-ary function Fα,β(x) is interpreted as the mapping a 7→
Fα,β(a) for all a ∈ β |Mµ,κ(I)|, where Fα,β(a) on the right side of the mapping is
the formal object. If µ = κ = ℵ0 we may omit them.

Remark 1.1. It is shown in [CS16] thatMµ,κ(S) is a set (though defined as a class).

§ 1(C). Extensions of classes of structures.

Discussion 1.5. For a class of structures k, we define several classes of structures
that are based on k.

1This defines a set and not a proper class by remark 1.1.
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Definition 1.6. Letting µ ≥ κ, Ex0
µ,κ(k) is the class of structures I+ which, for

some I ∈ k satisfy |I+| = |I|;τI+ = τI ∪ {Pα : α < µ} ∪ {Fβ : β < κ} for new unary
relation symbols Pα and new unary function symbols Fβ ; such that if µ > 0 then〈
P I+

α : α < µ
〉

is a partition of |I|, and
〈
F I+

β : β < κ
〉

are partial unary functions.

Definition 1.7. Ex0,lf
µ,κ(k) is the class of structures in Ex0

µ,κ(k) for which the closure
of every element under the new functions is finite; (lf stands for “locally finite”).

Definition 1.8. Ex1
µ,κ(k) is the class of structures in Ex0

µ,κ(k) for which Fβ(Pα) ⊆
P<α :=

⋃
γ<α Pγ holds for every α < µ, β < κ.

Definition 1.9. 1) Ex1.5
µ,κ (k) is the class of structures of the form I+ =Mµ,κ(I), for

some I ∈ k (cf. Definition 1.4 ).

2) Let Ex2
µ,κ(k) is the class 2 of structures M + = M +

µ,κ(I)whichmeansthat I ∈ k

and the model M + is M = Mµ,κ(I) expanded by FM+

α,β,i for α < µ, β < κ, i < β
where
FM+

α,i (a) is: bi if Mµ,κ(I) |= “a = Fα,β,i(b̄)” for some sequence b̄ = 〈bj : j < β〉 ;

and if there is no such sequence then FM+

(a) = a.

3) Ex2.5
µ,κ(k) is defined as in part (2) omitting the functions Fα,β so consisting of

M 2.5
µ,κ(I) for I ∈ k.

Fact 1.10. 1) If I ∈ keq has cardinality ≥ κ for transparency, M = Mµ,κ(I) and

M + ∈ Ex2
µ,κ(keq) as above so expanding M and c̄, d̄ realize the same qf-type in

M + then there is a permutation π of I such that the automorphism π̌ of M + which
it induce maps c̄ to d̄; recall κ = cf(κ) ≤ µ.

2) Above, any automorphism of Mµ,κ(I) is also an automorphism of M +
µ,κ(I)

3) If M + = M +
µ,κ(I) and N + ∈ Ex2.5

µ,κ is the reduct of M + from 1.9(3) then

M +,N + have the same automorphisms

Proof. Easy. �1.10

Convention 1.11. Exµ,κ will denote one of the above classes.

§ 2. Superstable theories

The main theorem is

Theorem 2.1. For a first-order, complete theory T the following are equivalent:

(1) T is superstable.

(2) T is representable in Ex2
2|T |,ℵ0(teq)

(3) T is representable in Ex1
2|T |,2(teq) so using unary functions only

(4) T is representable in Ex0,lf
2|T |,2

(teq)

(5) T is representable in Ex2
µ,ℵ0(keq) for some cardinal µ

(6) T is representable in Ex0,lf
µ,κ(keq) for some cardinals µ, κ.

2Probably should be use also in [CS16]; also we may omit the Fα,β,-s.
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6 SAHARON SHELAH

Proof. 2⇒ 5, 4⇒ 6 are immediate.
2⇒ 3 is direct from [CS16, 1.30]
3⇒ 4 direct from [CS16, 1.24]
5⇒ 6
This follows since Ex2

µ,ℵ0(keq) is qf-representable in Ex1
µ,2(keq) by [CS16, 1.30]

and Ex1
µ,2(keq) ⊆ Ex0,lf

µ,2(keq) by [CS16, 1.24] with 2 here standing for κ there.
The rest follows from Theorem 2.4 below giving 1 ⇒ 2 and Theorem 2.3 below

giving 6⇒ 1. Together we are done proving 2.1. �2.1

Remark 2.2. It may be notationaly better to use k= instead keq but the later was
used in [CS16].

Theorem 2.3. 1) If T is representable in Ex0,lf
µ,κ(keq) for some cardinals µ, κ then

T is superstable; moreover stable in every cardinal λ ≥ µ, recalling µ ≥ κ.
2) If T is representable in Ex2

µ,κ(keq) and κ = ℵ0 then T is superstable; moreover
is stable in every cardinal λ which satisfies λ ≥ µ.

Proof. Similar to the proof of Propositions [CS16, Th.2.4,2.5] but we shall elaborate
on part (2).

Choose λ such that λ ≥ µ and let M be a model of T of cardinality χ > λ,
e.g. χ = λ+ and A ⊆ M be a set of cardinality λ . We shall prove that the set
{tp(c, A,M) : c ∈M} is of cardinality at most λ; this suffice.

By our assumption,

(∗)1 there are a structure M • and representation f : M →M • where

(a) for part (1), M • ∈ Ex1,lf
µ,κ(I) where I ∈ keq

(b) for part (2), M • ∈ Ex2
µ,κ(keq) so M • is the expansion M +

µ,κ(I) of Mµ,κ(I)
described in 1.9(2) above where I ∈ keq

For a ∈M let Ja be the closure of {f(a)} in I so is a finite set in both cases and
let 〈sa,` : ` < na = n(a)〉 list Ja with no repetitions. and so we can choose a term
σ = σa such that σ = σ((x0, . . . , xn(a)−1) belongs to L(τ(M •) and M • |= f(a) =
σ(as(a,0) . . . , as(a,n(a)−1)).

Next let J = ∪{Jc : c ∈ A} so J is a subset of I of cardinality at most λ,
We now define an equivalence relation E on M as follows:

(∗)2 cEd iff the following hold:

(a) c, d ∈M ,
(b) nc = nd
(c) for ` < nc we have sc,` ∈ J iff sd,` ∈ J and if they holds then sc,` = sd,`
(d) the sequences 〈sc,` : ` < nc〉 and 〈sd,` : ` < nc〉 realize the same qf-free type

in I•

Note that clause (d) actually follows from the earlier clauses because 〈sb,` : ` <
nb〉 is with no repetitions for every b ∈M . Clearly:

(∗)3 we have

(a) indeed E is an equivalence relation on M
(b) the equivalence relation E has at most λ equivalence classes.

[Why? For the first clause, just read the definition of E. For the second clause,
i.e. clause (b) first there are at most µ+ ℵ0 = µ triples of the form (na, σa, ua) for
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a ∈ M where ua = {` < na : sa,` ∈ J}. Second there are at most λ sequences of
the form 〈sa,` : ` ∈ ua〉 for a ∈M .

Lastly

(∗)4 if c, d ∈M are E-equivalence then there is a automorphism of M • mapping
f(c) to f(d) and being the identity on {f(a)a ∈M}.

[Why? Let π0 be the function with domain J ∪ {sc,` : ` < na} which is the
identity on J and maps sc,` to sd,` for ` < nc. By our present assumptions it is
one to one, with domain and range included in I and of cardinality ≤ λ < |I|. As
J has cardinality ≤ λ < |I|, we can extend f0 to a permutation π of I. and let π̌
be the automorphism of M • which π induce. Clearly it maps f(c) to f(d), so we
are done proving clause (b)]

(∗)5 If cEd then
(a) the qf-types tpqf(f(c), J,M •) and tpqf(f(d), J,M •) are equal.
(b) the types tp(c, A,M) and tp(d,A,M) are equal.

[Why? For clause (a), the elements f(c), f(d) realize the same qf-free type over
J in I• by (∗)4.

Then clause (b) follows by the assumption on f , being a representation, see (∗)1

and Def 1.2 ]
So clearly we are done proving part (2).]

�2.3

Theorem 2.4. Every superstable T is representable in Ex2
2|T |,ℵ0(keq).

Proof. Let T be superstable and λ = 2|T |. Let M ≺ CT . We shall choose
Bn, 〈as, us : s ∈ Sn〉 by induction on n < ω such that:

~0 (a) Sn ∩ Sk = ∅ (for k < n )

(b) {as : s ∈ Sn} ⊆M
(c) Bn = {as : s ∈ S<n} ⊆M , where S<n := ∪{Sk : k < n}, as usual

(d) 〈as : s ∈ Sn〉 is without repetitions, disjoint from {as : s ∈ S<n} and
independent over Bn,

(e) for all s ∈ S, us ⊆ S<n is finite such that t ∈ us ⇒ ut ⊆ us and
tp(as, Bn) does not fork over {at : t ∈ us}

(f) 〈as : s ∈ Sn〉 is maximal under conditions 1-5.

Here we make a convention that u, v, w vary on I defined below:

~1 Since T is superstable, it is possible to carry the induction.

~2 (a) let I = {u : u ⊆ S, u finite}, where S =
⋃
n
Sn

(b) for v ∈ I let cl(v) be the minimal u ⊇ v such that ut ⊆ u holds
for all t ∈ u;

(c) we define I cl = {u ∈ I : u = cl(u)};
(d) for s ∈ S let u+

s = cl(us) ∪ {s}.
~3 (a) if u ∈ I then u ⊆ cl(u) ∈ I

(b) v ⊆ u⇒ cl(v) ⊆ cl(u);

(c) cl(u1 ∪ u2) = cl(u1) ∪ cl(u2);

(d) cl({s}) = u+
s = us ∪ {s} = ∪{cl({t}) : t ∈ us} ∪ {s};
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(e) cl(cl(u)) = cl(u);

(f) cl(u) =
⋃
{u+

s : s ∈ u} = ∪{cl({t} : t ∈ us for some s ∈ u}
(g) us = cl(us), u

+
s = cl(u+

s )

[Why? e.g. clause (g) by ~0(e)]

~4 |M | = {as : s ∈ S}
[Why? Otherwise, there exists a ∈ |M |\{as : s ∈ S}, now we can choose (since
T is superstable) a finite v ⊆ S such that tp(a, {as : s ∈ S}) does not fork over
{as : s ∈ v}. Let u = cl(v), so u ∈ I cl and let n be such that u ⊆ Sn and we get a
contradiction to the maximality of {as : s ∈ Sn}.]
~5 Let 〈vα : α < α(∗)〉 enumerate I (without repetition) such that:

(a) vα ⊆ vβ ⇒ α ≤ β;

(b) α < β ∧ vβ ⊆ S<n ⇒ vα ⊆ S<n.

We choose a model Mvα and set Avα ⊆Mvα by induction on α such that:

~6 (a) Mvα ≺ CT has cardinality λ;

(b) vβ ⊆ vα implies that β ≤ α and Mvβ ≺Mvα ;

(c) Avα =
⋃
{Mvβ : β < α ∧ vβ ⊆ vα} ⊆Mvα ;

(d) if s ∈ vα and us ⊆ vα then as ∈Mvα ;

(e) tp(Mvα ,∪{Mvβ : β < α} ∪M) does not fork over Bvα := ∪{Mvβ :
vβ ⊆ vα, β < α} ∪ {as : cl({s}) ⊆ vα}
(f) (Mvα , c)c∈Avα is saturated, hence Avα (Mvα .

[Why can we carry the induction? Arriving to the ordinal β, first, as an approx-
imation choose a model M ′vβ satisfying clauses (a),(b),(c),(d). Second we choose

M ′′vy ≺ CT of cardinality λ extending M ′vα such that the model (M ′′vα , c)c∈Avα )
is saturated, possible because T is stable in λ. Third and lastly choose a CT -
elementary mapping fvα with domain M ′′vα which is the identity on Bvya and
tp(fvα(M ′′vα),

⋃
{Mvβ : β < α} ∪ M) does not fork over Bvα . Clearly Mvα =

fvα(M ′′vα) is as required.]

~7 (a) α < β ⇒Mvα 6= Mvβ .
(b) v ( u⇒Mv (Mu

(c) M ⊆
⋃
{Mu : u ∈ I }

(d) the set Mu \Au has cardinality λ

[Why? e.g. clause (a) holds by ~6(c),(f)]

A major point is

~8 tp(Mvα ,∪{Mvβ : β < α}) does not fork over Avα := ∪{Mvβ : vβ ( vα}.
[Why? If vα = ∅ this is trivial so assume vα 6= ∅.

Let n be such that vα ⊆ S≤n, vα * S<n and

~8.1 let 〈t` : ` < k〉 = 〈tα` : ` < kα〉 list {s ∈ vα : s /∈ S<n and cl({s}) ⊆ vα}.
First, assume k = 0. So if s ∈ vα and cl({s}) ⊆ vα then s ∈ vα ∩ S<n, this

implies that us ∪ {s} = cl({s}) ⊆ S<n, hence by ~6(d), as ∈ Mvα∩S<n ⊆ Avα
because vα (. This implies that Bvα ⊆ Avα (in fact equal - see their definitions in
~6(e),~8 resp,). Now ~6(e) says that tp(Mvα ,∪{Mvβ : β < α}) does not fork over
Bvα , so by monotonicity of non-forking and the last sentence, it does not fork over
Avα as desired.
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Second, assume k = 1 and (∀β < α) (cl({t0}) * vβ). Hence necessarily vα =
cl({t0}) so Bvα = Avα∪{at0} hence by~0 the type tp(at0 , {as : s ∈ S≤n\{t0}}) does
not fork over {as : s ∈ ut0}. Next note that for β ≤ α the type tp(at0 , {as : s ∈ S≤n\
{t0}}∪

⋃
{Mγ : γ < β}) does not fork over {as : s ∈ ut0}, this is proved by induction

on β. But clearly {as : s ∈ ut0} ⊆ Avα hence clearly tp(at0 ,∪{Mvβ : β < α}) does
not fork over Avα , together with ~6(e) we get that tp(Mvα ,∪{Mvβ : β < α}) does
not fork over Avα , as desired in ~8.

Third, assume k = 1, β < α and cl({t0}) ⊆ vβ . Without loss of generality β is
minimal with these properties, so necessarily vβ = cl({t0}) and so again, Bvα = Avα
and we continue as in “First” above.

Fourth, assume k ≥ 2. In this case, for each ` < k, cl({t`}) is vβ(`) for some
unique β(`) < α, so at` ∈ Mvβ(`) ⊆ Avα , hence, Bvα ⊆ Avα (in fact equal) and

again ~6(e) gives the desired conclusion. ]
Together we have finished proving ⊕8.

Now define

~9 (a) the sequence 〈Mv : v ∈ I 〉 is a stable system, of models (defined in
[She90, Ch.XII, 2.1]holds by ,[She90, Ch.XII, 2.3(1)] and ~7(c) +~8)
(b) let M• =

⋃
{Mu : u ∈ I }, so M• ≺ CT and it suffice to prove that this

model has a representation as promised.

A major point is (but we need only clause (a) for which the saturation is not
necessary)
�1 for every v ∈ I and finite sequence b̄ ∈ ω>(Mv \ Av)) we can find a finite

sequence c̄b̄ ∈ ω>(Av) such that:

(a) tp(b̄, Av) has a unique extension to a complete types over
⋃
{Mu : v (

u, u ∈ I } which does not fork over Av
(b) tp(b̄, Av) is stationary over c̄b̄ which means that: tp(b̄, Av) does not fork

over c̄b̄
(c) tp(b̄, Av) is the unique extension of tp(b̄, c̄b̄) in S g̀(b̄(Av) which do not fork

over c̄b̄
(d) moreover tp(b̄,

⋃
{Mu : u ∈ I }) is stationary over c̄b̄ that is: is the unique

extension of tp(b̄, c̄b̄) in S g̀(b̄)(
⋃
{Mu : u ∈ I , v ( u}) which does not fork

over c̄b̄.

[Why? For clause (a) it follows from clauses (b),(c),(d); (alternatively it suffice to
recall that for every sequence d̄ from

⋃
{Mu : v ( v, v ∈ I } the types tp(d̄,Mv) is

finitely satisfiable in Av, see [She90, Ch.XII, 2.5]). Clauses (b),(c) hold by [She90,
Ch.XII,3.5,pag.608] recalling 〈Mu : u ∈ I 〉 is a stable system, κ(T ) = ℵ0 and
each Mu is saturated. Clause (d) follows by the properties of stable systems of
ℵε-saturated models, see [She90, Ch.XII, 2.12].]

We let

�2 (a) <S be a linear order of S
(b) F = {f : f is a finite order preserving function from S to S}

Now �3 by induction on n we choose 〈b̄u : u ∈ [S]n〉 and 〈πf : f ∈ F 〉 such that:

(a) b̄u = 〈bu,α : α < λ〉 list Mυ \Au without repetitions for u ∈ I
(b) πf is a CT -elementary mapping for f ∈ F
(c) dom(πf ) =

⋃
{Mu : u ⊆ dom(f)} = {bu,α : u ⊆ Dom(f), α < λ}

(d) if f ∈ F , v1 ⊆ dom(f), v2 = f”(v1) and α < λ then f maps bv1,α to bv2,α
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(e) (follows) if f ∈ F and u ⊆ dom(f) then πf�u ⊆ πu
(f) (follows) if g = f−1 ∈ F then πg = (πf )−1

[Why? by �0, (alternatively by uniqueness claims on stable systems in [She90,
Ch.XII, 2.5 ]).]

�4 for every u ∈ [S]n the type tp(b̄u,
⋃
{Mv : v ∈ S≤n, v 6= u}) does not fork

over Au and is the unique extension to a complete type over
⋃
{Mv : v ∈

S≤n, v 6= u} extending tp(b̄u, Au) not forking over Au.

[Why? By �1]
�5 we choose a tuple (I, I,M ,M +, f) witnessing f is a representation of M as

promised, by:

(a) I ∈ keq has universe I = S
(b) M = Mλ,ℵ0(I)
(c) f is a function with domain M• =

⋃
{Mu : u ∈ I }

(d) for n < ω, s0 <S · · · <S sn−1 listing u ∈ [S]n and α < λ we let f(bu,α) =
FM
α,n(s0, . . . , sn−1)

(e) M + is the expansion of M as in Def 1.9(2), in fact we need only the
following (well, after renaming)

(α) PM+

ζ,n = {FM
ζ,n(s0, . . . , sn−1) : s0, . . . , sn−1 ∈ S}

(β) FM+

ζ,n,i is the partial function mapping FM
ζ,n(s0, . . . , sn−1) to si for i <

n < ω, α < λ

[Why are (I, I,M ,M +, f) as required? easy to check recalling �4. Note that the
range of the function f is not preserved under automorphisms of M , but this is
permissible] �2.4

Discussion 2.5. For superstable T , we may wonder about whether “the cardinal
2|T | is optimal”. Really, λ(T ) is sufficient where

(∗)1.1 λ(T ) = min{λ : T is stable in λ}.

Recall that (see [She90])

(∗)1.2 If T is countable then λ(T ) = ℵ0 is equivalent to T is ℵ0-stable and

(∗)1.3 if T is countable and λ(T ) > ℵ0 then λ(T ) = 2ℵ0 .

Theorem 2.6. In Theorem 2.4, Ex2
λ(T ),ℵ0(keq) suffice.

Proof. We repeat the proof of Theorem 2.4 with minor changes. We just choose
λ = λ

(
T ) instead λ = 2|T |. �2.6

References

[Bal88] John Baldwin, Fundamentals of stability theory, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1988.

[CS16] Moran Cohen and Saharon Shelah, Stable theories and representation over sets, MLQ

Math. Log. Q. 62 (2016), no. 3, 140–154, arXiv: 0906.3050. MR 3509699

[KS14] Itay Kaplan and Saharon Shelah, Examples in dependent theories, J. Symb. Log. 79
(2014), no. 2, 585–619, arXiv: 1009.5420. MR 3224981

[Shea] Saharon Shelah, Introduction and Annotated Contents, arXiv: 0903.3428 introduction of
[Sh:h].

[Sheb] , On spectrum of κ-resplendent models, arXiv: 1105.3774 Ch. V of [Sh:e].

Paper Sh:1043, version 2020-03-15 3. See https://shelah.logic.at/papers/1043/ for possible updates.

https://arxiv.org/abs/0906.3050
https://arxiv.org/abs/1009.5420
https://arxiv.org/abs/0903.3428
https://arxiv.org/abs/1105.3774


SUPERSTABLE THEORIES AND REPRESENTATION 1043 11

[She90] , Classification theory and the number of nonisomorphic models, second ed., Stud-

ies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co.,

Amsterdam, 1990. MR 1083551
[She14] , Strongly dependent theories, Israel J. Math. 204 (2014), no. 1, 1–83, arXiv:

math/0504197. MR 3273451

[Shear] , Divide and Conquer: Dividing lines on universality, Theoria (to appear).

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The He-
brew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathe-

matics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110

Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
Email address: shelah@math.huji.ac.il

URL: http://shelah.logic.at

Paper Sh:1043, version 2020-03-15 3. See https://shelah.logic.at/papers/1043/ for possible updates.

https://arxiv.org/abs/math/0504197
https://arxiv.org/abs/math/0504197

	§ 0. Introduction
	§ 1. Structure Classes and Representations
	§ 1(A). Defining representations
	§ 1(B). The free algebras M,
	§ 1(C). Extensions of classes of structures

	§ 2. Superstable theories
	References

