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Abstract. We deal mainly with Klf
λ , the class of locally finite groups of car-

dinality λ, in particular Kexlf
λ , the class of existentially closed locally finite

groups. In §3 we prove that for almost every cardinal λ “every locally finite

G of cardinality λ can be extended to an existentially closed complete group
of cardinality λ which moreover is so called (λ, θ)-full; note that §3 which do

not rely on §1,§2. (in earlier results G has cardinality < λ and also λ was
restricted).

In §1 we deal with amalgamation bases, for the class of lf (= locally fi-

nite) groups, and general suitable classes, we define when it has the (λ, κ)-
amalgamation property which means that “many” models M ∈ Kk

λ are amal-

gamation bases and get more than expected. In this case, we deal with a

general frame - so called a.e.c., abstract elementary class. In §2 we deal with
weak definability of a ∈ N\M over M , for = existentially closed lf group.
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2 SAHARON SHELAH

Annotated Content

§0 Introduction, (label w), pg.3

§1 Amalgamation Basis, (label a), pg.8

[Consider an a.e.c. k, e.g. the class of locally finite groups, Klf . We define
AMk = {(λ, κ) : λ ≥ κ = cf(κ), λ ≥ LSTk and the κ-majority of M ∈ Kk

λ

are amalgamation bases}, on “κ-majority” see below. What pairs have to
be there? That is, for all a.e.c. k with LSTk < λ. One case is when M ∈ Kk

λ

is (< κ)-existentially closed and some σ ∈ [LST+
k κ, λ] is a compact cardinal

or just satisfies what is needed for M . This implies (λ, κ) ∈ AMk. A similar
argument gives “κ weakly compact> LSTk ⇒ (κ, κ) ∈ AMk”. Those results
are naturally expected but surprisingly there are considerably more cases:
if λ is strong limit singular of cofinality κ and κ is a measurable cardinal
> LSTk then (λ, κ) ∈ AMk. Moreover if also θ ∈ (LSTk, λ] is a measurable
cardinal then (λ, θ) ∈ AMk.]

§2 Definability, (label n), pg.14

[For an a.e.c. k, we may say b1 is k-definable in N over M when M ≤k

N, b1 ∈ N\M and for no N∗, b1, b2 do we have M ≤k N∗, b1 6= b2 ∈ N∗ and
ortp(b`, N,N∗) = ortp(b,M,N), equality of orbital types; there are other
variants. We clarify the situation for Klf .]

§3 Complete H are dense in Kexlf
λ for almost all λ -s, (label c), pg.18

[Our aim is to find out when for µ ≤ λ (or even µ = λ) every G ∈ Klf
µ can be

extended to a complete H ∈ Kexlf
λ , i.e. ones for which every automorphism

is an inner automorphism. We demand that moreover (λ, σ)-full, a strong
form of being existentially closed. We prove this for almost all λ’s. A major
new point is that we allow µ = λ.]
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§ 0. Introduction

§ 0(A). Review.

We deal mainly with the class Klf of locally finite groups so the reader may
consider only this case ignoring the general frame. We continue [She17], see history
there; in it we find many definable types for the class of locally finite groups parallel
to the ones for stable theories; this will have central role here in the construction
of complete existentially closed locally finite groups, in §3.
We wonder:

Question 0.1. 1) May there be a universal G ∈ Klf
λ , e.g. for λ = ℵ1 < 2ℵ0 , i.e.

consistently?
2) Is there a universal G ∈ Klf

λ , e.g. for λ = iω? Or just λ strong limit of cofinality
ℵ0 (which is not above a compact cardinal)?

On 0.1(2) see [Shec]. This leads to questions on the existence of amalgamation
bases. We give general claims on existence of amalgamation bases in §1.

That is, we ask:

Question 0.2. For an a.e.c. k or just a universal class (justified by §(0C)) we ask:
1) For λ ≥ LSTk, are the amalgamation bases (in Kk

λ) dense in Kk
λ? (Amalgamation

basis under ≤k, of course, see 0.7, 1.6).
2) For λ ≥ LSTk and κ = cf(κ) are the κ-majority of M ∈ Kk

λ amalgamation bases?
(On κ-majority, see 1.6(3A)). The set of such pairs (λ, κ) is called AMk.

Using versions of existentially closed models in Kk
λ, for λ weakly compact we get

(λ, λ) ∈ AMk; also if (∃σ)[(σ a compact cardinal )∧LSTk < σ ≤ κ ≤ λ)⇒ (λ, κ) ∈
AMk, by [GS83]. But surprisingly there are other cases: (λ, κ) when λ is strong
limit singular, with cf(λ) > LSTk measurable and κ = cf(λ) or just λ > κ > LSTk

and κ is measurable.
This is the content of §1.
In §2 we deal with the number of a ∈ G2 definable over G1 ⊆ G2 in the orbital

sense and find a ZFC bound for Klf .
We consider in §3:

Question 0.3. For which pair (λ, µ) with λ ≥ µ+ ℵ1 or even cardinals λ = µ ≥ ℵ1,
does every G ∈ Klf

≤µ have a complete extension in Kexlf
λ ? That is, one for which

every automorphism is an inner automorphism.

We prove that e.g.(to restrict relying on [Shee] in 3.9, we may restrict ourselves
to cardinals λ which are successor of regular, still there are many such cardinals;
also ignoring ℵ1 is not a real lose):

Theorem 0.4. If λ ≥ iω ∨ λ = λℵ0 thenevery G ∈ Klf
≤λ can be extended to a

complete existentially closed H ∈ Klf
≤λ.

The earlier results assume more than λ > µ, i.e. λ = µ+ ∧ µℵ0 = µ or (λ, µ) =
(ℵ1,ℵ0); see [She17] with history; earlier [Hic78], [Tho86]; [GS84], [SZ79].

Note that for Klf , the statement is stronger when, fixing λ we increase µ (because
every G1 ∈ Klf

µ has an extension in Klf
λ when λ ≥ µ). We shall deal in §3 with

proving it for most pairs λ ≥ µ + ℵ1, even when λ = µ. Note that if λ = µ+ and
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4 SAHARON SHELAH

we construct a sequence 〈Gi : i < λ〉 of members from Klf
µ increasing continuous,

G0 = G with union of cardinality λ then any automorphism π of H =
⋃
{Gi : i < λ}

satisfies {δ < λ : π maps Gδ onto Gδ} is a club, this helps. But as we like to have
λ = µ we can use only 〈Gi : i < θ〉, with θ = cf(θ) ∈ [ℵ1, λ), to be chosen
appropriately. We still like to have, as above, “every π ∈ aut(H) maps Gi onto
Gi for a club of i < θ”. Generally this fail. However, we have a substitute: if for
unboundedly many i < θ, θ the group Gi is θ-indecomposable (see Definition0.13)
and θ = cf(θ) > ℵ0, then for any automorphism π of Gθ =

⋃
{Gi : i < θ} the set

E = {δ < θ : π(Gδ) = Gδ} is a club of θ. On indecomposability, see Shelah-Thomas
[ST97, §(3A)] phrased there as CF(G), the cofinality spectrum of G.

An additional point is that we like our H to be “more” than existentially closed,
this is interpreted as being (λ, θ)-full. A central set theoretic point is that we also
need to have a list of λ countable subsets which is dense enough, for this we use
λ = λℵ0 or just λ = λ〈θ;ℵ0〉, see below, so the RGCH (from [She00]) is relevant. In
earlier version of this paper [Shee], [Shec] were included.

§ 0(B). Amalgamation Spectrum. On a.e.c. see [Shea], [Shef], [Bal09]. We
note below that the versions of the amalgamation spectrum are the same (fixing
λ ≥ κ) for:

(∗) (a) all a.e.c. k with κ = LSTk, λ = κ+ (τk);

(b) all universal K with κ = sup{‖N‖ : N ∈ K is f.g.}, λ = κ+ |τk|;

Why? Recall (universal classes are defined in 0.6).

The Representation Theorem 0.5. Let λ ≥ κ ≥ ℵ0.
1) For every a.e.c. k with |τk| ≤ λ and LSTk ≤ κ there is K such that:

(a) (α) K is a universal class;

(β) |τK| ≤ λ, τK ⊇ τk, |τK\τk| ≤ κ;

(γ) any f.g. member of K has cardinality ≤ κ.
(b) Kk = {N�τk : N ∈ K}, moreover:

(b)+ if (α) and (β), then (γ), where:

(α) I is a well founded partial order such that s1, s2 ∈ I has a mlb (=
maximal lower bound) called s1 ∩ s2;

(β) M̄ = 〈Ms : s ∈ I〉 satisfies s ≤I t ⇒ Ms ≤k Mt and Ms1 ∩Ms2 =
Ms1∩s2 ;

(γ) there is N̄ such that:
• N̄ = 〈Ns : s ∈ I〉;
• Ns ∈ K expand Ms;

• s ≤I t⇒ Ns ⊆ Nt.
(b)++ Moreover, in clause (b)+, if I0 ⊆ I is downward closed and N̄0 = 〈N0

s :
s ∈ I0〉 is as required in (b)+ on N̄�I0, then we can demand there that
N̄�I0 = N̄0.

Proof. By [Shea]. �0.5

Definition 0.6. 1) We say K is a universal class when :
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(a) for some vocabulary τ,K is a class of τ -models;

(b) K is closed under isomorphisms;

(c) for a τ -model M,M ∈ K iff every finitely generated submodel of M belongs
to K.

Claim 0.7. For k,K as in 0.5 and see Definition 1.6.
1) If N ∈ Kλ0 ,M = N�τk, then : N is a (λ1, λ2)-amalgamation base in K iff M is
a (λ1, λ2)-amalgamation base in k.
2) K has (λ0, λ1, λ2)-amalgamation iff k has (λ0, λ1, λ2)-amalgamation.
3) AMK = AMk see Definition 1.6(5).

Observation 0.8. If K is a universal class, κ ≥ sup{‖N‖ : N ∈ K is finitely
generated}, λ ≥ κ+ |τK|, then k = (K,⊆) and K are as in the conclusion of 0.5.

§ 0(C). Preliminaries on groups.

Notation 0.9. 1) For a group G and subset A let sbG(A) = sb(A,G) be the subgroup
of G generated by A.
2) Let CG(A) := {g ∈ G : ag = ga for every a ∈ G}; this is the cetralizer of the set
A inside the group G.

The following will be used in §(3).

Definition 0.10. Let λ ≥ θ ≥ σ.
1) Let λ[θ;σ] = min{|P| : P ⊆ [λ]σ and for every u ∈ [λ]θ we can find ū = 〈ui : i <
i∗〉 such that i∗ < σ,∪{ui : i < i∗} = u and [ui]

σ ⊆ P}; if λ = λσ then P = [λ]σ

witness λ = λ[θ;σ] trivially.
2) Let λ〈θ;σ〉 = min{|P| : P ⊆ [λ]σ and for every u ∈ [λ]θ there is v ∈ [u]σ which
belongs to P}.
3) Let λ(θ;σ) = min{|P| : P ⊆ [λ]σ and for every u ∈ [λ]θ there is v ∈P such that
|v ∩ u| = σ}.
4) For λ ≥ µ ≥ θ ≥ ν let cov(λ, µ, θ, σ) = min{|P| : P ⊆ [λ]<µ and every u ∈ [λ]<θ

is included in the union of < σ members of P}.

Fact 0.11. 1) If µ = iω or just µ > ℵ0 is strong limit, then for every λ ≥ µ, for
every large enough θ < µ we have σ ≤ θ ⇒ λ[θ;σ] = λ (hence σ ≤ θ ⇒ λ〈θ;σ〉 =
λ(θ;σ) = λ).
2) If µ+ < λ and no cardinal in the interval (µ+, λ) is a fix point then for some
regular σ ≤ θ ∈ (µ, λ) we have λ(θ,σ) = λ.
3) If σ ≤ θ ≤ λ thenλ = λθ ⇒ λ[θ;σ] = λ and λ = λσ ⇒ λ(θ,σ) = λ.
4) If θ ≤ λ < θ+ω then λ(θ;θ) = λ.

Proof. By [She94], [She00], and see [She06] gives an alternative simpler proof.
�0.11

Remark 0.12. As far as we know, possibly, e.g. λ ≥ ℵω ⇒ (∀∞n)(∀` > n)[λ(ℵn:ℵ`) =
λ) and even λ ≥ ℵω ⇒ (∃n)[λ = cov(λ,ℵω,ℵω,ℵn)]. See the works of Gitik on
consistency results.
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6 SAHARON SHELAH

Definition 0.13. 1) We say M is θ-decomposable (called θ ∈ CF(M) in [ST97])
when : θ is regular and if 〈Mi : i < θ〉 is ⊆-increasing with union M , then M = Mi

for some i.
2) We say M is Θ-indecomposable when it is θ-indecomposable for every θ ∈ Θ.
3) We say M is ( 6= θ)-indecomposable when : θ is regular and if σ = cf(σ) 6= θ then
M is σ-indecomposable.
4) We say c : [λ]2 → S is θ-indecomposable when : if 〈ui : i < θ〉 is ⊆-increasing
with union λ then S = {c{α, β} : α 6= β ∈ ui} for some i < θ; similarly for the
other variants.
5) If we replace⊆ by≤k, k an a.e.c., then we write CFk(M) or “θ−k-indecomposable”.

Definition 0.14. We say G is θ-indecomposable inside G+ when :

(a) θ = cf(θ);

(b) G ⊆ G+;

(c) if 〈Gi : i ≤ θ〉 is ⊆-increasing continuous and G ⊆ Gθ = G+ then for some
i < θ we have G ⊆ Gi.

Claim 0.15. 1) Assume I is a linear order or just a set, and c : [I]2 → X is
θ-indecomposable, G1 ∈ Klf and ai ∈ G1(i ∈ J are1 pairwise commuting and each
of order 2.

Then there is G2 such that:

(a) G2 ∈ Klf extends G1;

(b) G2 is generated by G1 ∪ b̄ where b̄ = 〈bs : s ∈ I〉;
(c) bs commutes with G1 and has order 2 for s ∈ I
(d) if s1 6= s2 are from I then 2 [bs1 , bs2 ] = ac{s1,s2};

(e) G2 is generated by G1 ∪ b̄ freely except the equations implicit in clauses
(a),(c),(d) above;

(f) sb({ai : i ∈X }, G1) is θ-indecomposable inside G2; see Definition 0.14, in
fact it is θ-indecomposable even as semi-group.

2) Assume G1 ∈ Klf and I a linear order which is the disjoint union of 〈Iα : α <
α∗〉, uα ⊆ Ord has cardinality θα and cα : [Iα]2 → Jα ∪ {0} is θα-indecomposable
for α < α∗, 〈Jα : α < α∗〉 is a sequence of sets with union J or J ∪ {0} and
0 ∈ Jsdsy /∈ u and aε ∈ G1 for ε ∈ J and aε, aζ commute for ε, ζ ∈ Jα, α < α∗ and
each aε has order 2 except for ε = 0, and we assume a0 = e.

Let c : [I]2 → J extends each cα and is zero otherwise.
Then there is G2 such that:

(a)-(e) as above

(f) if α < α∗ then sb({aα,ε : ε < Jα}, G2) is θα-indecomposable inside G2.

3) If in part (1) we omit the assumption “c is θ-indecomposable” (but retain c :
[I]2 → θ) then still clauses (a)-(e) of part (1) holds.

1The demand “the ai’s commute in G1” is used in the proof of (∗)8, and the demand “aβi has

order 2” is used in the proof of (∗)7.
2Mote that as a ∈ X ⇒ a = a−1 and [bs2 .bs1 ] = ([bs1 .bs2 ])−1 the order between s1, s)2 is

irrelavant; if a ∈ X has a differnet order we would have to be more careful.
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4) If Xi ⊆ G1 ⊆ G2 for i < i∗ and sb(Xi, G1) is indecomposable in G2 and
X =

⋃
{Xi : i < i∗} thensb(X,G1) is indecomposable in G2.

Proof. By [Shee, =Lb15]. �0.15

Claim 0.16. If G1 ∈ Klf
≤λ then for some G2 ∈ Klf

λ extending G1 and a`α ∈ G2 for

` ∈ {1, 2}, α < λ we have:

⊕ (a) sb({a`α : ` ∈ {1, 2}, α < λ}, G2) includes G1

(b) if ` ∈ {1, 2} then 〈a`α : α < λ〉 is a sequence of pairwise distinct
commuting elements of G2 of order 2

(c) G2 is generated by ∪{a`α : α < λ, ` ∈ {1, 2}}
(d) the elements a

`(1)
α(1), a

`(2)
α(2) commute when α(1) 6= α(2).

Proof. y [Shee, 1.6=Lb24] �B

Definition 0.17. 1) Let Klf
λ,µ be the class of pairs (G1, G

+
1 ) such that:

(a) G1 ⊆ G+
1 ∈ Klf ;

(b) G1, G
+
1 is of cardinality λ, µ respectively

2) Let (G1, G
+
1 ) ≤lf

λ,µ (G2, G
+
2 ) means:

(a) (G`, G
+
` ) ∈ Klf

λ,µ for ` = 1, 2

(b) G2 ⊆ G2

(c) G+
1 ⊆ G

+
2 .

3) We say (G,G+) ∈ Klf
λ,µ is Θ-indecomposable when Θ is a set of regular cardinals

and for every θ ∈ Θ, G is θ-indecomposable inside G+.
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§ 1. Amalgamation Bases

We try to see if there are amalgamation bases (Kk
λ,≤k) and if they are dense

in a strong sense: determine for which regular κ, the κ-majority of M ∈ Kk
λ are

amalgamation bases.
Another problem is Limk = {(λ, κ): there is a medium limit model in Kk

λ}, see
[Shea]. This seems close to the existence of (λ, κ)-limit models, see [She15], [She11]
and [She14]. In particular, can we get the following:

Question 1.1. If the set of M ∈ Kλ, which are an amalgamation base, is dense in
(Kλ,⊆), then in (Kλ,⊆) there is a (λ,ℵ0)-limit model.

We shall return to this in §(3C).

Convention 1.2. 1) k = (Kk,≤k) is an a.e.c. but for simplicity we allow an empty
model, which is ≤k than anybody else.
2) K = Kk, but we may write K instead of k when not said otherwise.

Definition 1.3. 1) For M ∈ Kk and µ ≥ LSTk and ordinal ε we define an equiva-
lence relation EM,µ,ε = EMµ,ε = EMε = Eε by induction on ε.

Case 1: ε = 0.
EMε is the set of pairs (ā1, ā2) such that: ā1, ā2 ∈ µ>M have the same length and

realize the same quantifier free type, moreover, for u ⊆ `g(ā1) we have M�(ā1�u) ≤k

M ⇔M�(ā2�u) ≤k M .

Case 2: ε is a limit ordinal.
Eε = ∩{Eζ : ζ < ε}.

Case 3: ε = ζ + 1.
ā1E

M
ε ā2 iff for every ` ∈ {1, 2}, α < µ and b̄` ∈ αM there is b̄3−` ∈ αM such

that (ā1ˆb̄1)Eζ(ā2ˆb̄2).

Definition 1.4. For µ > LSTk and ordinal ε we define Kk,ε = Kε,Kk,µ,ε = Kµ,ε by
induction on ε by (well the notation Kε from here and Kλ = {M ∈ K : ‖M‖ = λ}
are in conflict, but usually clear from the context):

(a) Kε = Kk for ε = 0;

(b) for ε a limit ordinal Kε = ∩{Kζ : ζ < ε};
(c) for ε = ζ + 1, let Kε be the class of M1 ∈ Kζ such that: if M1 ⊆

M2 ∈ Kζ , ā1 ∈ µ>M1, b̄2 ∈ µ>(M2) then for some b1 ∈ µ>M1 we have

āˆb̄1E
M1

ζ āˆb̄2.

Claim 1.5. For every ε:

(a) for every M1 ∈ Kk there is M2 ∈ Kε extending H;

(b) EMε has ≤ iε+1(µ) equivalence classes, hence in clause (a) we can3 add
‖M2‖ ≤ ‖M1‖+ iε+1(µ);

(c) M1 ∈ Kµ,ε when Kε has amalgamation and M1 ⊆M2,M2 ∈ Kε implies:

• if ζ < ε, ā ∈ µ>(M1), b̄2 ∈ µ>(M2) then there is b̄1 ∈ `g(b̄)(M1) such

that āˆb̄1E
M2

µ,ζ āˆb̄2;

3We can improve the bound a little, e.g.if µ = χ+ then iε+1(χ) suffices.
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(d) if I is a (< µ)-directed partial order and Ms ∈ Kε is ⊆-increasing with
s ∈ I, then M =

⋃
s
Ms ∈ Kε;

(e) if H1 ⊆ H2 are from Kε then H1 ≺L∞,µ,ε(k) H2;

(f) if ε = µ, µ = cf(µ) or ε = µ+, and H1 ⊆ H2 are from Kµ,ε, then H1 ≺Lµ,µ
H2.

Proof. We can prove this by induction on ε. The details should be clear. �1.5

Definition 1.6. 1) We say M0 ∈ Kλ is a χ̄-amalgamation base when : χ̄ = (χ1, χ2)
and χ` ≥ ‖M‖ and if M0 ≤k M` ∈ Kχ` for ` = 1, 2, then for some M3 ∈ Kk which
≤k-extend M , both M1 and M2 can be ≤k-embedded into M3 over M0.
2) We may replace “χ`” by “< χ`” with obvious meaning (so χ` > ‖M0‖). If
χ1 = χ2 we may write χ1 instead of (χ1, χ2). If χ1 = χ2 = λ we may write
“amalgamation base”.
3) We say Kk has (χ̄, λ, κ)-amalgamation bases when the κ-majority of M ∈ Kλ is
a χ̄-amalgamation base where:
3A) We say that the κ-majority of M ∈ Kλ satisfies ψ when some F witnesses it,
which means:

(∗) (a) F is a function with4 domain {M ∈ Kk : M has universe an ordinal
∈ [λ, λ+)};

(b) if M ∈ Dom(F ) then M ≤k F (M) ∈ Dom(F );

(c) if 〈Mα : α ≤ κ〉 is increasing continuous, Mα ∈ Dom(F ) and M2α+2 =
F (M2α+1) for every α < κ, then Mκ is a χ̄-amalgamation base.

4) We say the pair (M,M0) is an (χ, µ, κ)-amalgamation base (or amalgamation
pair) when : M ≤k M0 ∈ Kk, ‖M‖ = κ, ‖M0‖ = µ and if M0 ≤k M` ∈ K≤χ for
` = 1, 2, then for some M3, f1, f2 we have M0 ≤k M3 ∈ Kk and f` ≤k-embeds M`

into M3 over M0.
5) Let AMK = AMk be the class of pairs (λ, κ) such that K has ((λ, λ), λ, κ)-
amalgamation bases.

Definition 1.7. 1) For k, χ̄, λ, κ as above and S ⊆ λ+ (or S ⊆ Ord but we use
S ∩ λ+) we say k has (χ̄, λ, κ, S)-amalgamation bases when there is a function F
such that:

(∗)F (a) F is a function with domain {M̄ : M̄ is a ≤k-increasing continuous
sequence of members of Kk each with universe an ordinal ∈ [λ, λ+)
and length i+ 1 for some i ∈ S};

(b) if M̄ = 〈Mi : i ≤ j〉 ∈ Dom(F ) then:
(α) F (M̄) ∈ Kk;

(β) Mj ≤k F (M̄);

(γ) F (M̄) has universe an ordinal ∈ [λ, λ+];

(c) if δ = sup(S ∩ δ) < λ+ has cofinality κ and M̄ = 〈Mi : i ≤ δ〉 is ≤k-
increasing continuous and for every j < κ we have j ∈ S ⇒ M̄j+1 =
F (M̄�(j+1)) hence M̄�(j+1) ∈ Dom(F ) then Mδ is a χ̄-amalgamation
base.

4We may use F with domain {M̄ : M = 〈Mi : i < j〉 is increasing, each Mi ∈ K has universe
an ordinal α ∈ [λ, λ+)}; see [Sheb].
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2) We say k has weak (χ̄, λ, κ, S)-amalgamation bases when above we replace clause
(c) by:

(c)′ if 〈Mi : i < λ+〉 is ≤k-increasing and j ∈ S ∩ λ+ ⇒ Mj+1 = F (M̄�(j + 1))
then for some club E of λ+ we have δ ∈ E and cf(δ) = κ ⇒ Mδ is a
χ̄-amalgamation base.

3) We say k has (χ̄, λ,W, S)-amalgamation bases when W ⊆ λ+ is stationary and
in part (2) we replace (in the end of (c)′, “δ ∈ E and cf(δ) = κ” by “δ ∈ E ∩W”.

Proof. Easy. �1.19

Claim 1.8. 1) If λ = κ > LSTk is a weakly compact cardinal and M ∈ Kκ,1, see
Definition 1.4 then M is a κ-amalgamation base.
2) If κ is compact cardinal and λ = λ<κ and M ∈ Kκ,1 has cardinality λ, then M
is a (<∞)-amalgamation base; so k has (<∞, λ,≥ κ)-amalgamation bases.
3) In part (2), κ has to satisfy only: if Γ is a set ≤ λ of sentences from LLST(k)+,ℵ0
and every Γ′ ∈ [Γ]<κ has a model, then Γ has a model.

Proof. Use the representation theorem for a.e.c. from [Shea, §1] which is quoted in
0.5 here and the definitions. �1.8

Conclusion 1.9. If the pair (λ, κ) is as in 1.8, then k has (λ, κ)-amalgamation
bases; see 1.6(3).

Claim 1.10. If k,K are as in 0.5 and the universal class K, i.e. (K,⊆) have
(χ̄, λ, κ)-amalgamation and λ ≥ LST(k), then so does k.

Proof. Easy. �1.10

A surprising result says that in some singular cardinals we have “many” amalga-
mation bases.

Claim 1.11. If µ is a strong limit cardinal and cf(µ) > LSTk is a measurable
cardinal (so µ is measurable or µ is singular but the former case is covered by
1.8(1)) then k has (µ, cf(µ))-amalgamation bases.

Proof. By 1.10 without loss of generality k is a universal class K. Without loss of
generality µ is a singular cardinal (otherwise the result follows by Claim 1.8). Let
κ = cf(µ), D a normal ultrafilter on κ and let 〈µi : i < κ〉 be an increasing sequence
of cardinals with limit µ such that µ0 ≥ LSTk + κ.

We choose u such that:

(∗)1 (a) u = 〈ūα : α < µ+〉;
(b) ūα = 〈uα,i : i < κ〉;
(c) uα,i ∈ [α]µi is ⊆-increasing with i;

(d) α =
⋃
i<κ

ui,κ;

(e) if α < β < µ+, then uα,i ⊆ αβ,i for every i < κ large enough

For transparency we allow =M to be non-standard, i.e. just a congruence relation
on M .

We now choose functions F,G by:

(∗)2 (a) dom(F ) = {M ∈ Kk : M has universe some α ∈ [µ, µ+)};
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(b) for α ∈ [µ, µ+) let Mα = {M ∈ K : M has universe α}
(c) for M ∈ Mα, u ⊆ α let M [u] = M�sb(u,M) and let M [i] = M [uα,i],

hence u ⊆ α ⇒ M [u] ≤k M ; recall that sb(u,M) ⊆ M is well defined
and belongs to K because K is a universal class

(d) if M ∈ dom(F ) has universe α then M+ = F (M) satisfies:

(α) M ⊆M+ ∈Mα+λ (equivalently M ≤k M
+ ∈Mα+λ)

(β) if i < κ and M [uα,i] ⊆ N ∈ Kµi , then exactly one of the follow-
ing occurs:
• there is an embedding of N into M+ over M [uα,i]

• there is no M ′ ∈ K extending M+ and an embedding of N
into M ′ over M [i]

This is straightforward. It is enough to prove that F witnesses that K has (µ, κ)-
amalgamation bases, i.e. using F (〈Mi : i ≤ j〉) = F (Mj).

For this it suffices:

(∗)3 M1,M2 can be amalgamated over Mκ (in K) when :

(a) 〈Mi : i ≤ κ〉 is ⊆-increasing continuous;

(b) Mi ∈ Kµ has universe αi

(c) F (M2i+1) = M2i+2;

(d) Mκ ⊆M1 ∈ Kµ and Mκ ⊆M2 ∈ Kµ.

We can find an increasing (not necessarily continuous) sequence 〈ε(i) : i < κ〉 of
ordinals < κ such that i < j < κ ⇒ uαε(i),j ⊆ uαε(j),j and so ui := uαε(i),i is
⊆-increasing.

Without loss of generality M1,M2 has universe β = ακ + µ.
Now,

(∗) let 〈u∗i : i < κ〉 be ⊆-increasing with union β such that:
i < κ⇒ ui ⊆ u∗i .

Notice that:

� it suffices to prove that: for every i < κ,M1[u∗i ],M
2[u∗i ] can be ⊆-embedded

into Mκ over Mκ[ui] (you can use its closure); say hιi is a ⊆-embedding of
M ι[u∗i ] into Mκ over Mκ[ui].

It suffices to prove� by taking ultra-products, i.e. letNi be (µ+,Mκ,M
ι,M ι[uι]ui, h

ι
i)ι=1,2

and let D be a normal ultrafilter on κ and “chase arrows” in
∏
i<κ

Ni/D. It is possible

to prove � by the choice of F so we are done. �1.11

Claim 1.12. 1) Assume κ > θ > LSTk, θ is a measurable cardinal and κ is weakly
compact. then k has (κ, θ)-amalgamation bases.
2) Assume κ, θ are measurable cardinals > LSTk and µ > κ + θ is strong limit
singular of cofinality κ. Then k has (µ, θ)-amalgamation bases.
3) If κ > θ > LSTk, θ is a measurable cardinal and {M ∈ Kk

κ : M is a (χ1, χ2)-
amalgamation base} is ≤k-dense in Kk

κ, then k has (χ1, χ2, κ, θ)-amalgamation
bases.
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Proof. 1) As k has (κ, κ)-amalgamation bases by 1.8(1) we can apply part (3) of
1.12 with (κ, κ, κ, θ) here standing for (χ1, χ2, κ, θ) there.
2) Similarly to part (1) using 1.11 instead of 1.8(1).
3) Similar to the proof of 1.11, that is, we replace � by Claim 1.13 and (∗)2 by:

(∗)1
2 if M ∈ Kα, then F (M) is a member of Kk which is a χ̄-amalgamation base

and M ≤k F (M).

�1.12

We finish the section with some comments; we actually proved:

Claim 1.13. Assume κ is a measurable cardinal, M̄ = 〈Mi : i ≤ κ〉 is ≤k-increasing
(not necessarily continuous) and Mκ :=

⋃
i<κ

Mi is of cardinality ≤ min{χ1, χ2} and

each Mi is a χ̄-amalgamation base. Then Mκ is a χ̄-amalgamation base.

Claim 1.14. 1) In 1.11, we can replace “(µ, cf(µ))−amalgamationbase”by“(µ, cf(µ), S)-
amalgamation base” for any unbounded subset S of S.
2) Similarly in 1.12.

Question 1.15. 1) What can AMk = {(λ, κ) : k has (λ, κ)-amalgamation, λ > LSTk}
be?
2) What is AMk for k = Kexlf?
3) Suppose we replace κ by stationary W ⊆ {δ < λ+ : cf(δ) = κ}. How much does
this matter?

Discussion 1.16. 1) May be helpful for analyzing AMKlf
but also of self interest

is analyzing Sk,n[K] with k, n possibly infinite, see [She17, §4].
2) In fact for 1.15(3) we may consider Definition 1.17.

Definition 1.17. For a regular θ and µ ≥ α fixing k let:

(A) Seq0
µ,α is in the class of N̄ such that:

(a) N̄ = 〈Ni : i ≤ α〉 is ≤k-increasing continuous

(b) i 6= 0⇒ ‖Ni‖ = µ;

(B) Seq1
µ,α = {n = (N̄1, N̄2) : N̄ ι ∈ Seq0

µ,α+1 and β ≤ α ⇒ N1
β = N2

β so let

Nβ = Nn,β = N1
β ;

(C) we define the game aN̄,n for n ∈ Seq1
µ,α;

(a) a play last α+ 1 moves and is between AAM and AM;

(b) during a play a sequence 〈(Mi,M
′
i , fi) : i ≤ α〉 is chosen such that:

(α) Mi ∈ Kλ is ≤k-increasing continuous;

(β) fi is a ≤k-embedding of Nn,i into Mi and even M ′i ;

(γ) fi is increasing continuous for limit i, fδ =
⋃
i<δ

fi and f0 is empty;

(δ) Mi ≤k M ′i+1 ≤Mi+1 and for i limit or zero M ′i = Mi;

(c) (α) if i = 0 in the i-th move first AM chooses M0 and
second AAM chooses f0 = ∅,M ′0 = M0;

(β) if i = j+ 1, in the i-th move first AM chooses fi,M
′
i and second

AAM chooses Mi;

(γ) if i is a limit ordinal: Mi, fi,M
′
i are determined;
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(δ) if i = α + 1, first AAM chooses Ni ∈ {N1
α, N

2
α} and then this

continues as above;

(d) the player AMM wins when AM has no legal move;

(D) let Seqk be the set of λ, µ, θ such that there is n satisfying:

(a) n ∈ Seq1
µ,θ;

(b) N1
n,θ+1, N

2
n,θ+2 cannot be amalgamated over Nn,θ(= N ι

n,θ, ι = 1);

(c) in the game an, the player AM has a winning strategy.

Question 1.18. 1) What can be Seqk for k an a.e.c. with LSTk = χ?
2) What is SeqKlf

?

Claim 1.19. Let S be the class of odd ordinals.
1) If k has (χ̄, λ, κ, S)-amalgamation then k has (χ̄, λ, κ)-amalgamation.
2) If λ = λ<κ then also the inverse holds.

Proof. Should be clear. �1.19
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§ 2. Definability

The notion of “a ∈ M2\M1 is definable over M1” is clear for first order logic,
M1 ≺M2. But in a class like Klf we may wonder. We can also consider the general
case of an a.e.c.,e, see 2.1, but we shall concentrate on lf groups.

Claim 2.1. Below (i.e. in 2.3 - 2.6) we can replace Klf by:

(∗) k is a a.e.c. and one of the following holds:

(a) k is a universal, so k1 = k�{M ∈ Kk : M is finitely good} determine k;

(b) like (a) but k1 is closed under products;

(c) like (a), but in addition:
(α) 0k = 0k1 is an individual constant;

(β) if M1,M2 ∈ Kk1 then N = M1×M2 ∈ Kk1 ; moreover f` : M` →
N is a ≤k1-embedding for ` = 1, 2 where:
• f1(a1) = (a1, 0M2);

• f2(a2) = (0M1 , a2).

Discussion 2.2. Can we in (c) define types as in 2.3 such that they behave suitably
(i.e. such that 2.5, 2.6 below works?) We need c`(A,M) to be well defined.

Definition 2.3. 1) For G ⊆ H ∈ Klf we let uniq(G,H) = {x ∈ H: if H ⊆ H+ ∈
Klf , y ∈ H+ and tpbs(y,G,H

+) = tpbs(x,G,H) then y = x}.
1A) Above we let uniqα(G,H) = uniq1

α(G,H) = {x̄ ∈ αH: if H ⊆ H+ ∈ Klf , then
no ȳ ∈ α(H+) realizes tpbs(x̄, G,H) in H+ and satisfies Rang(ȳ) ∩ Rang(x̄) ⊆ G}.
1B) Let uniq2

α(G,H) be defined as in (1A) but in the end “Rang(x̄) = Rang(ȳ)”.
1C) Let uniq3

α(G,H) be defined as in (1A) but in the end “x̄ = ȳ”.
2) For G1 ⊆ G2 ⊆ G3 ∈ Klf let uniq(G1, G2, G3) = {x ∈ G2: if G3 ⊆ G ∈ Klf then
for no y ∈ G\G2 do we have tpbs(y,G1, G) = tpbs(x,G1, G2).

Question 2.4. 1) Given λ, can we bound {|uniq(G,H)| : G ⊆ H ∈ Klf and |G| ≤ λ}.
2) Can we use the definition to prove “no G ∈ Klf

iω is universal”?

To answer 2.4(1) we prove 2λ is a bound and more; toward this:

Claim 2.5. If (A) then (B), where:

(A) (a) Gn ∈ Klf for n < n∗;n∗ may be any ordinal but the set {Gn : n < n∗}
is finite;

(b) hα,n : I → Gn for α < γ∗, n < n∗;

(c) if s ∈ I, then the set {(Gn, hα,n(s)) : α < γ∗ and n < n∗} is finite;

(B) there is (H, ā) such that:

(a) H ∈ Klf ;

(b) ā = 〈as : s ∈ I〉 generates H;

(c) if s0, . . . , sk−1 ∈ I then
tpat(〈as` : ` < k〉, ∅, H) =

⋂
n,α

tpat(〈hα,n(s0), . . . , hα,n(sk−1〉, ∅, Gn);

(d) the mapping bs → as for s ∈ I∗ embeds H∗ into H when :
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(∗) H∗ ⊆ Gn for n < n∗, I∗ ⊆ I, 〈bs : s ∈ I∗〉 list the elements
of H∗ (or just a sequence of elements which generates it) and
α < γ∗ ∧ s ∈ I∗ ∧ n < n∗ ⇒ hα,n(s) = bs.

Proof. Note that:

(∗)1 there are H and ā such that:

(a) H is a group;

(b) ā = 〈as : s ∈ I〉;
(c) as ∈ H;

(d) for any finite u ⊆ I and atomic formula ϕ(x̄[u]) we have H |= ϕ(ā[u])
iff for every n < n∗ and α < γ∗ we have Gn |= ϕ[. . . , hα,n(s), . . .]s∈u.

[Why? Let Gα,n = Gn for α < γ∗, n < n∗ and let H ′ = Π{Gα,n : n < n∗, α < γ∗}
and let as = 〈hα,n(s) : (α, n) ∈ (γ∗, n∗)〉 for s ∈ I and, of course, ā = 〈as : s ∈ I〉.]

(∗)2 Without loss of generality ā generates H.

[Why? Just read (∗)1 and replace H by the subgroup of H generated by ā.]

(∗)3 If u ⊆ I is finite, then sb(ā[u], H) is finite (and for 2.1 it belongs to Kk)

[Why? By Clause (A)(c) of Claim 2.5; and for the generalization in 2.1 recalling
2.1(d).]

(∗)4 H ∈ Klf (i.e. (B)(a) holds).

[Why? By (∗)2 + (∗)3; for 2.1 use also 2.1(d).]

(∗)5 Clause (B)(c) holds.

[Why? By (∗)1(d).]

(∗)6 Clause (B)(d) holds.

[Why? Follows from our choices.] �2.5

Claim 2.6. If G1 ∈ Klf
≤λ and G1 ⊆ G2 ∈ Klf has cardinality ≤ µ = µλ (e.g.

G1 ⊆ G2 ∈ Klf
λ , µ = 2λ), then for some pair (G3, X) we have:

⊕ (a) G2 ⊆ G3 ∈ Klf
µ

(b) X ⊆ G3 has cardinality ≤ 2λ

(c) if c ∈ G3, then exactly one of the following occurs:

(α) c ∈ X and {b ∈ G3 : tpat(b,G1, G3) = tpat(c,G1, G3)} is a
singleton and moreover this holds also in G4 whenever G3 ⊆
G4 ∈ Klf ;

(β) there are ‖G3‖ elements of G realizing tpbs(a,G1, G3);

(d) if α < λ+, ā ∈ α(G3) and p(x̄[α]) = tpat(ā, G,G3), p′(x̄[α]) = tpbs(ā, G,G3),
then for some non-empty P ⊆P(α) closed under the intersection of
2 to which α belongs we have:

(α) if ā′, ā′′ ∈ α(G3) realizes p(x̄[α]) then u := {β < α : (a′β =

a′′β)} ∈P;
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(β) if u ∈P then we can find 〈āε : ε < ‖G3‖〉 a ∆-system with heart
u (i.e. āε1,β1 = āε2,β2 ⇔ ((ε1, β1) = (ε2, β2)) ∨ (β1 = β2 ∈ u)),
each āε realizing p(x̄[α] and even p′(x̄[α])).

Remark 2.7. 1) Can we generalize the (weak) elimination of quantifiers in modules?
2) An alternative presentation is to try GID/E , where:

• E ⊆ {E : E is an equivalence relation on I such that I/E is finite} and
(E ≥) is directed;

• GID is GI�{f : f +G and there is E ∈ E such that sEt⇒ f(s) = f(t)}.

3) For suitable (I,D,E ) we have: if p is a set of ≤ µ basic formulas with parameters
from G1 = GID/E we have: p is realized in G1 iff every ϕ1, . . . , ϕn,¬ϕi ∈ p, ϕ`
atomic is realized in G1.

Proof. We can easily find G3 such that:

(∗)1 (a) G2 ⊆ G3 ∈ Klf
µ ;

(b) if G3 ⊆ H ∈ Klf , γ < λ+, ā ∈ γH and u = {α < γ : aα ∈ G3}, then
there are āε ∈ γ(G3) for ε < µ such that:

(α) tpbs(ā
ε, G1, G3) = tpbs(ā, G1, G3);

(β) if ε, ζ < µ and α, β < γ and aεα = aζβ then ((ε, α) = (ζ, β))∨(α =

β ∈ u ∧ aεα = aα = aζα).

We shall prove that

(∗)2 G3 is as required in ⊕.

Obviously this suffices. Clearly clause ⊕(a) holds and clauses ⊕(b) + (c) follows
from clause ⊕(d).

[Why? Without loss of generality G1 = Klf
λ , let 〈aβ : β < λ〉 list the elements

of G1. For c ∈ G3 let āc = 〈aβ : β < λ〉ˆ〈c〉 and applying clause (d) we get
Pc ⊆P(λ+ 1) as there. We finish letting X := {c ∈ G3 : λ /∈Pc}.]

Now let us prove clause⊕(d), so let α < λ+, ā ∈ α(G3) and p(x̄[α]) = tpat(ā, G1, G3)
and p′(x̄[α]) = tpbs(ā, G1, G3); without loss of generality ā is without repetitions
but this is not used.

Define:

(∗)3 P = {u ⊆ α: there are ā′, ā′′ ∈ α(G3) realizing p(x̄[α]) such that u = (∀β <
α)(β ∈ u ≡ a′β = a′′β)}.

Now

(∗)4 α ∈P.

[Why? Let ā′ = ā′′ = ā.]

(∗)5 if u1, u2 ∈P, then u1 ∩ u2 ∈P.

[Why? Let ā′`, ā
′′
` witness that u` ∈ P, i.e. both ā′`, ā

′′
` realize p(x̄[α]) in G3 and

u` = {β < α : a′`,β = a′′`,β}.
Let I = I∗ +

∑
ε<µ

Iε be linear orders (so I∗, Iε(ε < µ) are pairwise disjoint),

where we chose the linear orders such that Iε ∼= α for ε < µ and let sε,β be the
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β-th member of Iε and I∗ has cardinality λ and let 〈cs : s ∈ I∗〉 list G3 such that
cs(∗) = eG3 and s(∗) ∈ I∗.

We shall now apply 2.5, so let

(a) γ∗ = 1 + α+ α and n∗ = 1

(b) for ε < µ, γ < γ∗ let 〈hγ,0(sε,β) : β < α〉 be equal to:

• ā if γ = 0;

• ā′1 if γ ∈ {1 + ζ : ζ < ε};
• ā′′1 if γ ∈ [1 + ζ : ζ ∈ [ε, α)};
• ā′2 if γ ∈ {1 + α+ ζ : ζ < ε};
• ā′′2 if γ ∈ {1 + α+ ζ : ζ ∈ [ε, α)};

(c) hγ,0(s) = cs for s ∈ I, γ < γ∗;

(d) G3, G3, I, I∗ here stand for G0, H∗, I, I∗ there.

We get (H, ā∗) as there, so by (B)(d) there essentially G3 ⊆ H and by (B)(c)
there the ā∗�Iε realizes p(x̄[α]); moreover, realizes p′(x̄[α]); also 〈ā∗�Iε : ε < µ〉 is a
∆-system with heart u.

The rest should be clear; we do not need to extend G3 by (∗)1.] �2.6
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§ 3. Density of being Complete in Klf
λ

We prove here that for almost all cardinals λ, the complete G ∈ Kexlf
λ are dense

in (Kexlf
λ , c);

Discussion 3.1. 1) We would like to prove for as many cardinals µ = λ or at
least pairs µ ≤ λ of cardinals that (∀G ∈ Klf

µ)(∃H ∈ Kexlf
λ )(G ⊆ H ∧H complete).

We necessarily have to assume λ ≥ µ + ℵ1. So far we have known it only for
λ = µ+, µ = µℵ0 , (and λ = ℵ1, µ = ℵ0, see the introduction of [She17]). We would
like to prove it also for as many pairs of cardinals as we can and even for λ = µ.
2) Given G1 ∈ Klf

λ we shall find m consisting of:

• Ḡ = 〈Gi : i ≤ θ〉, increasing continuous, G2+i ∈ Klf
≤λ

• for unboundedly many i < θ, we make a step toward Gθ being in Kexlf , by
realizing all suitably definable complet qf types on Gi, formally p ∈ SS(Gi)
in Gi+1 but not to lose control, we like to combine those types “nicely”, as
in [She17, §3]

• for unboundedly many i < θ,Gi is θ-indecomposable inside Gi+3.
• also G1 ≤S Gθ, see 3.2(3).

This will imply that any automorphism π of Gθ maps Gi onto Gi for a club of i’s.
This replaces “if Gα ∈ Klf

≤λ is ⊆-increasing continuous for α < λ+ any automor-

phism π of G =
⋃
{Gα : α < λ} maps Gδ onto Gδ for a club of δ < λ+” which

was used in earlier proofs. The present construction rely on §(0C) (so on [Shee],
[She17]).
3) We shall use λ = λ(θ0;ℵ0); how does this help? We ask, given π ∈ aut(Gθ) whether
for every i < θ, on the centralizer C(Gi, Gθ) of Gi in Gθ, the automorphism is not
the identity.

The proof split, in the first case the answer is yes. Let ci ∈ C(Gi, Gθ) witness
it. If we assume λ = λ〈θ;ℵ0〉 we may (without loss of generality the set of elements
of Gδ be λ), have an a priori list of λ countable sets in which a countable subset
of {ci : i < θ} necessarily appear; in fact, many as we can consider any {ci : i ∈
v}, v ∈ [θ]θ. To finish, we use on the one hand, Gθ is “nicely” constructed over G1

and on the other hand the c’s in m to be derived for a witness of Pr∗(λ, λ, λ,ℵ0).
The second case is when the answer to the question is no, so for some i < θ this

fails, then we shall prove that for every j, π�Gj is induced by an inner automorphism
(as Gj a conjugate in C(Gi, Gθ)), so we need just no θ-branch is the natural tree.

In this section, in particular in 3.2(3) we rely on [She17].

Hypothesis 3.2. 1) λ > θ = cf(θ) > ℵ0 but there is no µ such that λ = µ+ ∧ µ >
cf(µ) = θ, this5 exclude very few pairs.
2) K = Klf .
3) S is a set of schemes (for Klf , see [She17, Def.0.9=La14], there are ≤ 2ℵ0 ones)
consisting of all of them or is just of cardinality ≤ λ, is dense and containing enough
of those mentioned in [She17, §2]

Also c`(S) = S, i.e. S is closed, see [She17, 1.6=La21,1.8=La22] hence by
[She17] there is such countable S. Recall that G ≤S H means that G ⊆ H and for
every b̄ ∈ ω>H for some ā ∈ ω>G and s ∈ c`(S) we have tpbs(b̄, G,H) = qs(ā, G).

5We can exclude more but immaterial here.
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4) S̄ = 〈S1, S2, S3〉 is a partition of θ\{0} to stationary subsets, such that S3 ⊆
Sθℵ0 := {δ < θ : cf(δ) = ℵ0} and for every i ∈ S2 there is j such that i ∈ {j, j +

1, j+ 2} ⊆ S2 but j+ 3 /∈ S2 and ω2|j; we may let S0 = {0} and Slimit
1 = {i ∈ S1 : i

is a limit ordinal }.

Definition 3.3. Let M1 = M1
λ,θ,S̄

be the class of objects m which consists of:

(a) Gi = Gm,i for i ≤ θ is increasing continuous, G0 is the trivial group with
universe {0}, G1 ∈ K≤λ has universe {θα : α < |G1|}, and for i ∈ (θ +
1)\{0, 1} the group Gi ∈ Kλ has universe {θα + j : α < λ and j < 1 + i}
and so eGi = 0;

(b) if i < θ, then we have:

(α) • sequences bi = 〈b̄i,s : s ∈ Ii〉,ai = 〈āi,s : s ∈ Ji〉;
• each āi,s is a finite sequence from Gi;

• each b̄i,s is a finite sequence from Gi+1;

• Ii is a linear order of cardinality λ with a first element;

• Ji is a set or linear order of cardinality ≤ λ;

• if i = 0 then Ji ⊆ λ, Ii ⊆ λ and 〈b̄i,s = 〈bi,s〉 : s ∈ Ii〉 lists the
members of G1 possibly with repetitions and āi,s = 〈〉;

• if `g(āi,s) = 1 then let āi,s = 〈ai,s〉 and similarly for the bi.s-s;
• 〈Ii : i < θ〉 are pairwise disjoint, and so are the Ii,α when defined,

also s ∈ Ii ⇒ s ∈ λ for transparency. Similarly concerning
〈Ji : i < θ〉

(β) Gi+1 is generated by ∪{b̄i,s : s ∈ Ii} ∪Gi;
(γ) āi,min(Ji) = eGi ;

(δ) ci : [Ii]
2 → λ;

(c) [toward being in Kexlf ] if i ∈ S1, then Ji = Ii and we also have 〈si,s : s ∈ Ii〉
such that:

(α) si,s ∈ S;

(β) tpbs(b̄i,s, Gi, Gi+1) = qsi,s(āi,s, Gi) so `g(b̄i,s) = n(si,s) and `g(āi,s) =
k(si,s);

(γ) if s0 <Ii . . . <Ii sn−1 then tpbs(b̄i,s0ˆ . . . ˆb̄i,sn−1
, Gi, Gi+1) is gotten

from (si,s0 , āi,s0), . . . , (si,sn−1
, āi,sn−1

) by one of the following two ways:

Option 1: we use the linear order Ii on λ so tpqf(b̄i,s, Gi,s, Gi,t) is
equal to qsi,s(āi,s, Gi,s) where Gi,s is the subgroup of Gi+1 generated

by Gi ∪ {b̄i,t : t <Ii s}, see [She17, §(1C),1.28=La58];
but6 we choose:
Option 2: intersect the atomic types over all orders on {α0, . . . , αn−1}
each gotten as in Option 1, so Ii can be a set of cardinality λ, see
[She17, §3]; so clause (b)(γ) is the only use of ”I is a linear order”.

(δ) ci is constantly zero;

(d) [toward indecomposability] if i ∈ S2 then :

(α) Ji ⊆ λ and Ji =
⋃
{Ji,α : α < λ} disjoint union

(β) 〈Ii,α : α < λ〉 is a partition of Ii ⊆ λ;

6Option 1 is useful in some generalizations to Kk not closed under products.
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(γ) āi,α = 〈ai,α〉, b̄i,s = 〈bi,s〉 and ai,0 = eGi ;

(δ) if i ∈ Slimit
2 then Gi is generated by {as,α : s ∈ Ji;

(ε) Gi+1 is generated by Gi ∪ {bi,s : s ∈ Ii}
(ζ) (Ii, ci, Gi+1, Gi, 〈bi,s : s ∈ Ii〉, 〈ai,s : s ∈ Ji〉, 〈Ii,α : α < λ〉, 〈Ji,α :

α < λ〉) is like (I, c, G2, G1, 〈bs, c`,s :, s ∈ I〉, 〈as : s ∈ J〉, 〈Ii,α : α <
λ〉, 〈Ji.α : α < λ〉) in 0.15(2)

(η) assume i ∈ {j, j + 1, j + 2} ⊆ S1,
•1 if i = j then we apply 0.16, i.e. 0.15(2), with for transparency
Ii, Ji ⊆ λ, Ii = {2α, 2α+ 1 : α ∈ Ji}, and ci being zero except for the
pairs (2α, 2α+ 1) for α ∈ Ji
•2 if ` ∈ {1, 2} and i = j + ` then we apply 0.15(1) and Ji = Jj and
ai,α = b`j,α

(e) [against external automorphism] for i ∈ S3 the triple (barj, Īi, J̄i) satisfies
(recalling i ∈ S3 ⇒ cf(i) = ℵ0):

(α) j̄i = 〈ji,n : n < ω〉 is increasing with limit i;

(β) Īi = 〈Ii,α : α < λ〉 is a partition of Ii; for s ∈ Ii let αi(s) be the α < λ
such that s ∈ Ii,α and let ci,α = ci�[Ii,α]2;

(γ) 〈Ji,α : α < λ〉 is a partition of Ji and Ji,α = {ωα` : ` < ω}
(δ) ai,ωα+` ∈ Gji,`+1

commutes with Gji,` and if ` 6= 0 then it has order 2,
and /∈ Gji,` and ai,ωα ≡ eGi ; moreover:

• for some infinite v ⊆ ω\{0} we7 have ` ∈ ω\v ⇒ ai,ωα+` =
eGi , ` ∈ v ⇒ ai,ωα+` ∈ C(Gj[i,ωα+`], Gj[i,ωα+`]+1), where:

• j[i, ωα+ `) ∈ [ji,`, ji,`+1);
(ε) if s, t ∈ Ii,α then [bi,s, bi,t] = ai,ci{s,t} and ci{s, t} ∈ {ωα+ ` : ` < ω};
(ζ) if s, t ∈ Ii and αi(s) 6= αi(t) then [bi,s, bi,t] = eGi
(η) bi,s commutes with Gi.

Convention 3.4. If the identity of m is not clear, we may write Gm,i, etc., but if
it is clear from the context we may not add it.

Definition 3.5. 1) We shall say that s = (λ, θ, Ī, J̄ , s̄, j̄, c̄) is a legal parameter
when it is as in Def 3.3, ignoring the Gi, āi,s, b̄i,s-s; but we usually omit λ, θ as they
are clear from the context.

2) We say s is a short parameter when we replace c̄ by c : [λ]2 → λ. the ci
and ci,α are the restrictions of c to the suitable sets, except that when the value is
”illegal” i.e. not in the required set it is corrected to be zero; illegal values are when
for β, γ ∈ Ii the value is not in Ji,α ∪ {0} or as demanded in 3.3(d)(ζ), 3.7(d)(θ)
and 3.3(e)(δ).
2A) We shall say that the legal parameter s is derived from the short parameter
when they are as above; we may not pedantically distinguish between them.
3) We say that m ∈M1 satisfies the legal/short parameter s when it satisfies s.
4) We shall say that the legal parameter s is θ-indecomposable whenfor every j ∈
Slimit2 the function cj+i : [Ii]

2 → Ji is θ-indecomposable.

7An alternative is v = ω\{0}, ai,ωα+` ∈ C(Gji,` , Gji,`+1
). In this case in 3.7(e)(ε) we naturally

have cε ∈ C(Giε , Giε+1 ) and `0 = 1, `1 = 2, . . .. But then we have to be more careful in 3.10, e.g.

in 3.10(1) if we assume, e.g. λ = λ〈θ;θ〉 and θ > ℵ1 all is O.K. (recalling we have guessing clubs
on Sθℵ0 ). However, using scg, see ([She17, 2.17=Lc50]), the present is enough here.
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Claim 3.6. 1) If s is a legal parameter and G1 is a group of cardinality |Js,1|
thenthere is m ∈M1 which satisfies this parameter.
2) If s is a short parameter then there is a unique legal parameter derived form it.

Definition 3.7. 1) Let M2 = M2
λ,θ,S̄

be the set of m ∈M1 satisfying the following

additions to Definition 3.3:

(c) (ε) if s ∈ S, i ∈ S1, ā ∈ n(s)(Gi) and k = k(s), then for λ elements s ∈ Ii
we have (si,s, āi,s) = (s, ā);

(d) (θ) if {j, j + 1, j + 2} ⊆ S2 then
•1 if i = j then {ai,α : α ∈ Ji} generates Gi+1 and of course āi,α =
〈ai,α〉
•2 if ` ∈ {1, 2} and i = j + ` then ci if θ-indecomposable.

(e) (ζ) if 〈iε : ε < θ〉 is increasing continuous and iε < θ and cε ∈ C(Giε , Giε+1)
has order 2 and for transparency cε /∈ Giε then for some
(i, α, v, `0, `1, . . . , ε0, ε1, . . .) we have:
•1 i < θ, α < λ and v ⊆ w\{0} is infinite;

•2 ε0 < ε1 < . . . < θ and 1 ≤ `0 < `1 < . . .;

•3 i = ∪{εn : n < ω};
•4 ji,ωα+`n ≤ iεn < ji,θ,α+`n+1

and am,i,ωα+`n = cεn ;

1A) Let M1.5 = M1.5
λ,θ,S̄

be the set of m ∈M1 as it satisfies (c) of part (1).

2) Let M4 = M4
λ,θ,S̄

be the class of m ∈M2 such that in addition:

(f) there is a short parameter s of m such that c is a witness of Pr0(λ, λ, λ,ℵ0);
see Definition 3.8(1) below.

3) M3 = M3
λ,θ,S̄

means m ∈M2 satisfies

(f)′ there is a legal parameter s of m such that (c, Ī3, Ī2) is a witness of
Pr∗(λ, λ,ℵ0,ℵ0, θ); see Definition 3.8(2) below; where Ī` = 〈Ii : i ∈ S`〉.

4) Let M2.5 = M2.5
λ,θ,S̄

be the class of m ∈M1.5 such that in addition:

(f) as in part (2).

The following definition 3.8(1) of Pr0 is just a sufficient condition for what we need
to get many cardinals. Then 3.8(2) give a replacement of Pr0 which is sufficient for
our purposes, not the best we can get.

Definition 3.8. Assume λ ≥ µ ≥ σ+ θ0 + θ1, θ̄ = (θ0, θ1); if θ0 = θ1 we may write
θ0 instead of θ̄.
1) Let Pr0(λ, µ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it which means:

(∗)c if (a) then (b) where:

(a) (α) for ι = 0, 1 and α < λ we have ζ̄ι = 〈ζια,i : α < µ, i < iι〉, a
sequence without repetitions of ordinals < λ

(β) i0 < θ0, i1 < θ1;

(γ) h : i0 × i1 → σ

(b) for some α0 < α1 < µ we have:

• if i0 < i0 and i1 < i1 then c{ζ0
α0,i0

, ζ1
α1,i1
} = h(i0, i1).
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1A) We define Pr1(λ, µ, σ, θ) similalry except that in clause (a)(γ) we demand that
the function h is constant.
2) Let Pr∗(λ, µ, σ, ∂, θ) mean that θ = cf(θ), λ ≥ µ, σ, ∂, θ and some pair (c, W̄ )
witness it, which means (if λ = µ we may omit λ, if σ = ∂ ∧ λ = µ then we can
omit σ, λ):

(a) W̄` = 〈W `
i : i < µ〉 for ` = 1, 2 and W̄1ˆW̄2 is a sequence of pairwise disjoint

subsets of λ; but we may replace µ but a set of cardinality µ, even using
two different such sets.

(b) c : [λ]2 → σ;

(c) if i ∈W1 and ε ∈ uε ∈ [λ]<∂ for ε ∈Wi and γ < σ then for some ε < ζ < λ
we have:

(α) ε /∈ uζ , ζ /∈ uε;
(β) c{ε, ζ} = γ;

(γ) if ξ1 ∈ uζ\uε and ξ2 ∈ uε\uζ and {ξ1, ξ2} 6= {ε, ζ} then c{ξ1, ξ2} = 0;

(δ) optional (uε, uζ) is a ∆-system pair (see proof);

(d) if 〈Uζ : ζ < θ〉 is ⊆-increasing with union Wi where i ∈ W2 then for some
ζ < θ we have Rang(c�[Uζ ]

2) = σ.

3) We will say that the legal parameter s witness Pr∗(λ, µ, σ, ∂, θ) when (c̄, Īi, J̄i)
witness it, (so Īi = 〈Is,i : i ∈ S3〉 and J̄i = 〈Is,i : i ∈ S3〉).

Fact 3.9. 1) If λ = µ = σ is successor of regular and ∂+ = θ+ < λ then the
property Pr0(λ, µ, σ, ∂, θ) holds
2) There is a θ-indecomposable colouring c : [λ]2 → θ
3) If (λ, θ are as in Hyp 3.2(1) and) µ = λ, σ+ < λ, ∂ = ℵ0 then we can find a legal
parameter s such that for every i ∈ S2 \ Slimit

2 the function ci is θ-indecomposable,
but do we have some freedom left for i ∈ S2?..
4) If (λ, θ are as in Hyp 3.2(1) and) µ = λ, σ+ < λ, ∂ = ℵ0 then we can find a legal
parameter s which witness P Pr∗(λ, λ,ℵ0,ℵ0, θ)

Proof. 1) By [Shed] and see history there.
2) Follows from part (1),
3) If part (1) apply then this follows, using a short parameter using such colouring.
Otherwise Choose s as in 3.6(1) such that for every non limit i ∈ S2, the function
ci is a θ-indecomposable function from [Ii]

2 onto Ji, this is possible by part (1) or
directly by part (3).
4) By the recent version of [Shee], we can get more.

�3.9

Claim 3.10. 1) Assume θ = cf(θ) ∈ (ℵ0, λ), λ = λ〈θ;ℵ0〉 or just λ = λ〈θ,ℵ0〉 , see
Definition 0.10 recalling (see 3.2). If G ∈ K≤λ, then there is m ∈ M2

λ,θ,S̄
such

that Gm,1
∼= G.

1A) If in part (1), in addition Pr0(λ, λ, λ,ℵ0) or just Pr0(λ, λ,ℵ0,ℵ0) then we can
add m ∈M4

λ,θ,S̄

1B) If in part (1) , in addition Pr∗(λ, λ,ℵ0,ℵ0, θ) then we can add m ∈ M3
λ,θ.S̄

;

(but here this always holds).
2) If λ ≥ 2ℵ0 then in part (1) we can strengthen Definition 3.7 adding in clause
(e)(ε)•1, •2 that v = ω\{0} hence `0 = 1, `1 = 2, . . ..
3) In part (2), if in addition Pr0(λ, λ,ℵ0,ℵ0) then we can add m ∈M2.5

λ,θ,5.
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4) If λ ≥ µ := iω (or just µ strong limit) then for every large enough regular θ < µ,
the assumption of part (1) holds.
5) If above θ = ℵ1 < λ = λθ, then the assumption of part (1) holds.

Proof. 1) We us Claim 3.9(2),(3) still we have freedom in choosing the j̄-s the j̄-s.,
see below; then we shall choose m ∈M2 accordingly.

Case 1: λ = λ〈θ,ℵ0〉, see §(0C).
Let P be a subset of [λ]ℵ0 of cardinality λ witnessing λ = λ(θ;ℵ0), so

(∗)1 if u ⊆ [λ]θ then [u]ℵ0 ∩P 6= ∅.

Without loss of generality v ∈P ⇒ otp(v) = ω.
Hence

(∗)2 if ᾱ ∈ θλ is increasing then Sθ̄ = {δ < θ : cf(δ) = ℵ0 and for some increasing
ε̄ ∈ ωδ with limit δ we have {εn : n < ω} ∈P} is stationary

(∗)3 there is a stationary S2 ⊆ {δ < θ : cf(δ) = ℵ0 is stationary.

[Why? If θ > ℵ1 trivially, if not increasing P by decreasing using a pairing func-
tion.]

Now use 3.9(2)
Case 2: λ = λ〈θ;ℵ0〉

Now we choose Gi and if i < θ also ai,bi as required; but anyhow we are
concentrating on the case λ ≥ 2ℵ0 , and then the two cases are equivalent.
1A) Similarly using 3.9(1)
1B) Similalry using 3.9(4)
2) Should be similar.
3) Straightforward.
4) By [She00] or see [She06, §1].
5) Check the definitions and 0.16. �3.10

Note that 3.11)(2),(3) is not used here but will help later,

Claim 3.11. Let m ∈M1.
1) If i < j ≤ θ and i /∈ Slimit

2 then Gm,i ≤S Gm,j, see 3.2(3).
2) For every finite A ⊆ Gm,θ there is a sequence ū = 〈ui : i ∈ v〉 such that:

(∗)1
ū for i ∈ S2

(a) v ⊆ θ is finite and 0 ∈ v for notational simplicity;

(b) ui ⊆ Ii is finite8 for i ∈ v;

(c) if i ∈ v, then tpqf(〈b̄i,s : s ∈ ui〉, Gi, Gθ) does not split over ∪{āj,s :
j ∈ v ∩ i and s ∈ uj};

(d) if i ∈ S1 and s ∈ ui then āi,s ⊆ sb({b̄j,s : j ∈ v ∩ i, s ∈ uj}, Gi);
(e) if i ∈ S2 ∪ S3 and s, t ∈ ui then āi,c{s,t} ⊆ sb({b̄j,s : j ∈ v ∩ i, s ∈

uj}, Gi);
(f) if A ⊆ Gm,i and i ∈ (0, θ) then v ⊆ i;

(∗)2 A is included in sb({b̄i,s : i ∈ v, s ∈ ui}, Gθ).

3) We have ū = 〈u1
i ∪u2

i : i ∈ v〉 satisfies (∗)1, i.e. (∗)1
ū from part (2) holds when :

8Note that in 3.11(2) we allow “ui is empty”.
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⊕ (a) ū` = 〈u`i : i ∈ v〉 for ` = 1, 2;

(b) we have (∗)1
ū`

for ` = 1, 2;

(c) if i ∈ v, s1 ∈ u1
i \u2

i and s2 ∈ u2
i \u1

i then ci{s1, s2} = 0.

3A) If v1 ⊆ v2, ū
2 = 〈ui : i ∈ v2〉, ū1 = ū2�v1 and i ∈ v2\v1 ⇒ ui = ∅ then

(∗)1
ū1 ⇔ (∗)1

ū2 .

4) The type tpqf(〈b̄`i,s : s ∈ u`i , ` ∈ {1, 2}〉, Gi, Gi+1) does not split over {b̄`j,s : j ∈
v ∩ i, s ∈ u`j , ` ∈ {1, 2}} ∪ {ai,α} when :

(a) ū` = 〈u`j : j ∈ v〉;
(b) (∗)1

ū`
holds for ` = 1, 2;

(c) i ∈ S3 ∩ v;

(d) s∗ ∈ u1
i \u2

i , t∗ ∈ u2
i \u1

i ;

(e) α = ci{s∗, t∗};
(f) clause (c) from part (3) holds when {s1, s2} 6= {s∗, t∗}.

Proof. 1) By part (2) recalling the assumptions on S.
2) By induction on min{j < θ : A ⊆ Gm,j}. Note that for A ⊆ G1 clause (∗)1

ū(c) is
trivial.
3),4) Easy, too. �3.11

Main Claim 3.12. If m ∈M2, then Gm,θ ∈ Kexlf
λ is complete and is (λ, θ,S)-full,

(see [She17, 1.15=La33]) and extend Gm,1.

Proof. Being in Klf
λ is obvious as well as extending Gm,1; being (λ, θ,S)-full is

witnessed by 〈Gm,i : i < θ〉, S1 being unbounded in θ and clauses 3.3(c), 3.7(c)(ε)
so far m ∈M1.5 is sufficient.

The main point is proving Gm,θ is complete, so assume π is an automorphism
of Gm,θ.

Now

(∗)1 if i ∈ Slimit
2 thenGi is θ-indecomposable in Gi+3.

[Why? By 3.7(d)(θ) .]
So 〈π(Gm,i) : i < θ〉 is ≤Klf

-increasing with union Gm,θ hence by (∗)1 above,
if i ∈ S6[limit]2 is a limit ordinal then (∀∞j < θ)(Gm,i ⊆ π(Gm,j)). The parallel
statement holds for π−1 hence E is a club of θ where E := {i < θ : i is a limit
ordinal, hence i = sup(S1 ∩ i) and π maps Gm,i onto Gm,i}; note that by 3.7(c)(ε)
and the middle demand, i ∈ E ⇒ Gi ∈ Kexlf .

Next we define:

(∗)2 S• is the set of i ∈ E∩S1 such that π is not the identity on C(Gm,i, Gm,i+ω).

The proof now split to two cases. Case 1: S• is unbounded in θ
So for i ∈ S• choose ci ∈ C(Gm,i, Gm,i+ω) such that π(ci) 6= ci. Without

loss of generality ci has order 2, because the set of elements of order 2 from
C(Gm,i, Gm,i+ω) generates it, see [She17, 4.1=Ld36,4.10=Ld93]. Choose 〈iε =
i(ε) : ε < θ〉 increasing, iε ∈ S• and so as iε+ω ≤ iε+1 ∈ E clearly π(cε) ∈ Gm,i(ε+1).
Now we apply 3.7(e), 3.8(1) and get contradiction by 3.11(4) recalling 3.7(2)(h) and
3.3(e); but we elaborate.
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Now shall we apply 3.7(1)(e), (indirectly 3.10(1), 0.10). So there are (i, α, v, `0, `1, . . . , ε0, ε1, . . .)
as there, in particular i ∈ S3 and here v = ω\{0}. Now for every s ∈ Ii,α we apply
3.11(2), getting ūs = 〈us,ι : ι ∈ vs〉 and let `s be such that vs ⊆ ji,ωα+`s , without
loss of generality i ∈ vs, s ∈ us,i.

Now consider the statement:

(∗)3 there are s1 6= s2 ∈ Ii,α and k such that:

(a) c{s1, s2} = `k;

(b) `k > `s1 , `s2 ;

(c) if t1 ∈ ∪{us1,ι : ι ∈ vt1\i}, t2 ∈ ∪{us2,ι : ι ∈ vt2\i} and {t1, t2} 6=
{s1, s2} then c{t1, t2} = 0;
or for later proofs:

(c)′ (α) if t1 ∈ us1,i\us2,i and t2 ∈ us2,i\us1,i and
• {t1, t2} 6= {s1, s2} then c{t1, t2} = 0, or just

• t1, t2 ∈ Ii,α ⇒ c{t1, t2} < `k;

• t1, t2 ∈ Ii,β , β < λ;β 6= α then ji,ωβ+c{t1,t2} < ji,ωα+`(k)

(we use ji,ωα+` ∈ (j∗i,`, j
∗
i,`+1) - check);

(β) if ι ∈ v1 ∩ v2 and ι > i, (ι ∈ S3), β < λ and t1 ∈ vs1,ι, t2 ∈ vs2,ι
then c{t1, t2} = 0.

Now why is (∗)3 true? This is by the choice of c, that is, as c witnesses Pr0(λ, λ, λ,ℵ0)
Now to get a contradiction we would like to prove:

(∗)4 the type tp((π(bs1), π(bs2)), Gm,i, Gm,θ) does not split over Gm,ji,ωα+`(k)
∪

{ci(εk)} hence over Gm,i(εk) ∪ {ci(ε(k))}.

It follows from (∗)4 that tp((bs1 , bs2), π−1(Gm,i), π
−1(Gm,θ)) does not split over

π−1(Gm,i(εk)) ∪ {π−1(ci(ε))}). But i(εk), i ∈ E have it follows that π(Gm,i) =

Gm,i and π−1(Gi(εk) = Gi(εk)) has tp((bs1 , bs2), Gm,i, Gm,θ) does not split over

Gi(εk) ∪ {π−1(ci(εk))}.
Now [bs1 , bs2 ] = π1([bs1 , bs2 ]) = π−1(ci(εk)) which is 6= ci(εk). But as ci(εk) ∈

C(Gm,i(εk), Gm,θ) clearly also π−1(ci(εk)) belongs to it, hence it follows that π−1(ci(εk)) ∈
sb({ci(εk)};Gθ), but as ci(εk) has order two, the latter belongs to {ci(εk), eGσ}.

However π−1(ci(εk)) too has order 2 hence is equal to ci(εk); applying π we get
ci(εk) = π(ci(εk)) a contradiction to the choice of the ci’s.

Case 2: i∗ = sup(S•) + 1 is < θ.
Now for any i ∈ S′ := E∩S1\i∗ by [She17, 2.18=Lc62] there is gi ∈ Gm,i+1 such

that �gi(Gm,i) ⊆ C(Gmi , Gm,i+1). So if a ∈ Gm,i then g−1
i agi ∈ C(Gm,i, Gm,i+1)

and a = gi(g
−1
i agi)g

−1
i hence π(a) = π(gi)π(g−1

i agi)π(g−1
i ) = π(gi)(g

−1
i agi)π(gi)

−1

recalling i /∈ S• being ≥ i∗ hence π(a) = (giπ(gi)
−1)−1agiπ(g−1

i ). If for some g the
set {i ∈ S′ : gi = g} is unbounded in θ we are easily done, so toward contradiction
assume this fails.

But for every δ ∈ acc(E)∩ S1\i∗, we can by 3.11(1) choose a finite āδ ⊆ Gδ and
sδ ∈ S such that tpbs(π(gδ)g

−1
δ , Gδ, Gθ) = qsδ(āδ, Gδ) and let i(δ) ∈ E ∩ δ be such

that āδ ⊆ Gi(δ).
Clearly:

~ if d1, d2 ∈ Gδ, d2 6= π(d1) then tpbs(〈d1, d2〉, āδ, Gδ) 6= tpbs(〈d1, π(d1)〉, āδ, Gδ).
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[Why? Because π(d1) = π(gδ)g
−1
i d1giπ(gδ)

−1 and the choice of āδ.]

Hence for some group term σd1(x̄1+`g(b̄δ)) we have π(d1) = σGδd1 (d1, āδ) and σd1
depends only on tpbs(d1, āδ, Gδ). By Fodor Lemma for some i(∗) the set S = {δ :
δ ∈ acc(E) ∩ S1\i∗ and i(δ) = i(∗)} is a stationary subset of θ.

Now we can finish easily, e.g. as Gδ for δ ∈ S belongs to Kexlf and we know that
it can be extended to a complete G′ ∈ Kexlf or just see that all the definitions in
~ agree and should be one conjugation. �3.12

Conclusion 3.13. 1) Assume λ > iω and G ∈ Klf
≤λ and θ = cf(θ) ∈ (ℵ0,iω) is

large enough and S is as in 3.2(3).
Then there is a complete (λ, θ,S)-full H ∈ Kexlf

λ extending G.
2) Instead λ > iω we can assume λ = λℵ0 > ℵ1.

Proof. 1) Fixing λ and θ and it suffices to find m ∈M3
λ,θ such that Gm,1 = G. As

λ ≥ iω, the assumption of 3.10(1) holds for every sufficiently large θ < iω; hence
there is m ∈M2

λ,θ,S̄
such that Gm,1 is isomorphic to G and S̄ as there.

As λ is a successor of a regular, the assumption of 3.10(1A) holds (by 3.8(1)
hence m ∈M3

λ,θ,S̄
. So by 3.12 we indeed are done. �3.13

Remark 3.14. The assumption “λ > iω” comes from quoting 3.10(2) hence it is
“hard” for λ < iω to fail. Similarly below.

Of course we have:

Observation 3.15. If m ∈M1.5 then Gm,θ is (λ, θ,S)-full and extends Gm,0.
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