LF GROUPS, AEC AMALGAMATION, FEW AUTOMORPHISMS SH1098

SAHARON SHELAH

Abstract

We deal mainly with $\mathbf{K}_{\lambda}^{\mathrm{lf}}$, the class of locally finite groups of cardinality λ, in particular $\mathbf{K}_{\lambda}^{\text {exlf }}$, the class of existentially closed locally finite groups. In $\S 3$ we prove that for almost every cardinal λ "every locally finite G of cardinality λ can be extended to an existentially closed complete group of cardinality λ which moreover is so called (λ, θ)-full; note that $\S 3$ which do not rely on $\S 1, \S 2$. (in earlier results G has cardinality $<\lambda$ and also λ was restricted).

In $\S 1$ we deal with amalgamation bases, for the class of lf ($=$ locally finite) groups, and general suitable classes, we define when it has the (λ, κ) amalgamation property which means that "many" models $M \in K_{\lambda}^{\mathfrak{k}}$ are amalgamation bases and get more than expected. In this case, we deal with a general frame - so called a.e.c., abstract elementary class. In $\S 2$ we deal with weak definability of $a \in N \backslash M$ over M, for $=$ existentially closed lf group.

[^0]
Annotated Content

§0 Introduction, (label w), pg. 3
§1 Amalgamation Basis, (label a), pg. 8
[Consider an a.e.c. \mathfrak{k}, e.g. the class of locally finite groups, \mathbf{K}_{lf}. We define $\mathrm{AM}_{\mathfrak{k}}=\left\{(\lambda, \kappa): \lambda \geq \kappa=\operatorname{cf}(\kappa), \lambda \geq \mathrm{LST}_{\mathfrak{k}}\right.$ and the κ-majority of $M \in K_{\lambda}^{\mathfrak{k}}$ are amalgamation bases\}, on " κ-majority" see below. What pairs have to be there? That is, for all a.e.c. \mathfrak{k} with $\operatorname{LST}_{\mathfrak{k}}<\lambda$. One case is when $M \in K_{\lambda}^{\mathfrak{k}}$ is $(<\kappa)$-existentially closed and some $\sigma \in\left[\operatorname{LST}_{\mathfrak{k}}^{+} \kappa, \lambda\right]$ is a compact cardinal or just satisfies what is needed for M. This implies $(\lambda, \kappa) \in \mathrm{AM}_{\mathfrak{k}}$. A similar argument gives " κ weakly compact $>\mathrm{LST}_{\mathfrak{k}} \Rightarrow(\kappa, \kappa) \in \mathrm{AM}_{\mathfrak{k}}$ ". Those results are naturally expected but surprisingly there are considerably more cases: if λ is strong limit singular of cofinality κ and κ is a measurable cardinal $>\operatorname{LST}_{\mathfrak{k}}$ then $(\lambda, \kappa) \in \mathrm{AM}_{\mathfrak{k}}$. Moreover if also $\theta \in\left(\operatorname{LST}_{\mathfrak{k}}, \lambda\right]$ is a measurable cardinal then $(\lambda, \theta) \in$ AM $_{\mathfrak{k}}$.]
§2 Definability, (label n), pg. 14
[For an a.e.c. \mathfrak{k}, we may say b_{1} is \mathfrak{k}-definable in N over M when $M \leq_{\mathfrak{k}}$ $N, b_{1} \in N \backslash M$ and for no N_{*}, b_{1}, b_{2} do we have $M \leq_{\mathfrak{k}} N_{*}, b_{1} \neq b_{2} \in N_{*}$ and $\operatorname{ortp}\left(b_{\ell}, N, N_{*}\right)=\operatorname{ortp}(b, M, N)$, equality of orbital types; there are other variants. We clarify the situation for \mathbf{K}_{lf}.]
$\S 3$ Complete H are dense in $\mathbf{K}_{\lambda}^{\text {exlf }}$ for almost all λ-s, (label c), pg. 18
[Our aim is to find out when for $\mu \leq \lambda$ (or even $\mu=\lambda$) every $G \in \mathbf{K}_{\mu}^{\text {lf }}$ can be extended to a complete $H \in \mathbf{K}_{\lambda}^{\text {exlf }}$, i.e. ones for which every automorphism is an inner automorphism. We demand that moreover (λ, σ)-full, a strong form of being existentially closed. We prove this for almost all λ 's. A major new point is that we allow $\mu=\lambda$.]

§ 0. Introduction

§ 0(A). Review.

We deal mainly with the class $\mathbf{K}_{\text {lf }}$ of locally finite groups so the reader may consider only this case ignoring the general frame. We continue [She17], see history there; in it we find many definable types for the class of locally finite groups parallel to the ones for stable theories; this will have central role here in the construction of complete existentially closed locally finite groups, in $\S 3$.
We wonder:
Question 0.1. 1) May there be a universal $G \in \mathbf{K}_{\lambda}^{\mathrm{lf}}$, e.g. for $\lambda=\aleph_{1}<2^{\aleph_{0}}$, i.e. consistently?
2) Is there a universal $G \in \mathbf{K}_{\lambda}^{\mathrm{lf}}$, e.g. for $\lambda=\beth_{\omega}$? Or just λ strong limit of cofinality \aleph_{0} (which is not above a compact cardinal)?

On $0.1(2)$ see [Shec]. This leads to questions on the existence of amalgamation bases. We give general claims on existence of amalgamation bases in $\S 1$.

That is, we ask:
Question 0.2. For an a.e.c. \mathfrak{k} or just a universal class (justified by $\S(0 \mathrm{C})$) we ask:

1) For $\lambda \geq \operatorname{LST}_{\mathfrak{k}}$, are the amalgamation bases (in $K_{\lambda}^{\mathfrak{k}}$) dense in $K_{\lambda}^{\mathfrak{k}}$? (Amalgamation basis under $\leq_{\mathfrak{k}}$, of course, see $0.7,1.6$).
2) For $\lambda \geq \operatorname{LST}_{\mathfrak{k}}$ and $\kappa=\operatorname{cf}(\kappa)$ are the κ-majority of $M \in K_{\lambda}^{\mathfrak{k}}$ amalgamation bases? (On κ-majority, see $1.6(3 \mathrm{~A})$). The set of such pairs (λ, κ) is called $\mathrm{AM}_{\mathfrak{k}}$.

Using versions of existentially closed models in $K_{\lambda}^{\mathfrak{k}}$, for λ weakly compact we get $(\lambda, \lambda) \in \mathrm{AM}_{\mathfrak{k}}$; also if $(\exists \sigma)\left[(\sigma\right.$ a compact cardinal $\left.) \wedge \mathrm{LST}_{\mathfrak{k}}<\sigma \leq \kappa \leq \lambda\right) \Rightarrow(\lambda, \kappa) \in$ $\mathrm{AM}_{\mathfrak{k}}$, by [GS83]. But surprisingly there are other cases: (λ, κ) when λ is strong limit singular, with $\operatorname{cf}(\lambda)>\operatorname{LST}_{\mathfrak{k}}$ measurable and $\kappa=\operatorname{cf}(\lambda)$ or just $\lambda>\kappa>\operatorname{LST}_{\mathfrak{k}}$ and κ is measurable.

This is the content of $\S 1$.
In $\S 2$ we deal with the number of $a \in G_{2}$ definable over $G_{1} \subseteq G_{2}$ in the orbital sense and find a ZFC bound for $\mathbf{K}_{\text {lf }}$.
We consider in $\S 3$:
Question 0.3 . For which pair (λ, μ) with $\lambda \geq \mu+\aleph_{1}$ or even cardinals $\lambda=\mu \geq \aleph_{1}$, does every $G \in \mathbf{K}_{\leq \mu}^{\mathrm{lf}}$ have a complete extension in $\mathbf{K}_{\lambda}^{\text {exlf? }}$? That is, one for which every automorphism is an inner automorphism.

We prove that e.g.(to restrict relying on [Shee] in 3.9, we may restrict ourselves to cardinals λ which are successor of regular, still there are many such cardinals; also ignoring \aleph_{1} is not a real lose):
Theorem 0.4. If $\lambda \geq \beth_{\omega} \vee \lambda=\lambda^{\aleph_{0}}$ thenevery $G \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$ can be extended to a complete existentially closed $H \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$.

The earlier results assume more than $\lambda>\mu$, i.e. $\lambda=\mu^{+} \wedge \mu^{\aleph_{0}}=\mu$ or $(\lambda, \mu)=$ $\left(\aleph_{1}, \aleph_{0}\right)$; see [She17] with history; earlier [Hic78], [Tho86]; [GS84], [SZ79].

Note that for \mathbf{K}_{lf}, the statement is stronger when, fixing λ we increase μ (because every $G_{1} \in \mathbf{K}_{\mu}^{\mathrm{lf}}$ has an extension in $\mathbf{K}_{\lambda}^{\mathrm{lf}}$ when $\lambda \geq \mu$). We shall deal in $\S 3$ with proving it for most pairs $\lambda \geq \mu+\aleph_{1}$, even when $\lambda=\mu$. Note that if $\lambda=\mu^{+}$and
we construct a sequence $\left\langle G_{i}: i<\lambda\right\rangle$ of members from $\mathbf{K}_{\mu}^{\text {lf }}$ increasing continuous, $G_{0}=G$ with union of cardinality λ then any automorphism π of $H=\bigcup\left\{G_{i}: i<\lambda\right\}$ satisfies $\left\{\delta<\lambda: \pi\right.$ maps G_{δ} onto $\left.G_{\delta}\right\}$ is a club, this helps. But as we like to have $\lambda=\mu$ we can use only $\left\langle G_{i}: i<\theta\right\rangle$, with $\theta=\operatorname{cf}(\theta) \in\left[\aleph_{1}, \lambda\right)$, to be chosen appropriately. We still like to have, as above, "every $\pi \in \operatorname{aut}(H) \operatorname{maps} G_{i}$ onto G_{i} for a club of $i<\theta$ ". Generally this fail. However, we have a substitute: if for unboundedly many $i<\theta, \theta$ the group G_{i} is θ-indecomposable (see Definition0.13) and $\theta=\operatorname{cf}(\theta)>\aleph_{0}$, then for any automorphism π of $G_{\theta}=\bigcup\left\{G_{i}: i<\theta\right\}$ the set $E=\left\{\delta<\theta: \pi\left(G_{\delta}\right)=G_{\delta}\right\}$ is a club of θ. On indecomposability, see Shelah-Thomas [ST97, $\S(3 \mathrm{~A})]$ phrased there as $\mathrm{CF}(G)$, the cofinality spectrum of G.

An additional point is that we like our H to be "more" than existentially closed, this is interpreted as being (λ, θ)-full. A central set theoretic point is that we also need to have a list of λ countable subsets which is dense enough, for this we use $\lambda=\lambda^{\aleph_{0}}$ or just $\lambda=\lambda^{\left\langle\theta ; \aleph_{0}\right\rangle}$, see below, so the RGCH (from [She00]) is relevant. In earlier version of this paper [Shee], [Shec] were included.
$\S 0(B)$. Amalgamation Spectrum. On a.e.c. see [Shea], [Shef], [Bal09]. We note below that the versions of the amalgamation spectrum are the same (fixing $\lambda \geq \kappa$) for:
(*) (a) all a.e.c. \mathfrak{k} with $\kappa=\mathrm{LST}_{\mathfrak{k}}, \lambda=\kappa+\left(\tau_{\mathfrak{k}}\right)$;
(b) all universal \mathbf{K} with $\kappa=\sup \{\|N\|: N \in \mathbf{K}$ is f.g. $\}, \lambda=\kappa+\left|\tau_{\mathfrak{k}}\right|$;

Why? Recall (universal classes are defined in 0.6).
The Representation Theorem 0.5. Let $\lambda \geq \kappa \geq \aleph_{0}$.

1) For every a.e.c. \mathfrak{k} with $\left|\tau_{\mathfrak{k}}\right| \leq \lambda$ and $\mathrm{LST}_{\mathfrak{k}} \leq \kappa$ there is \mathbf{K} such that:
(a) (α) \mathbf{K} is a universal class;
(β) $\left|\tau_{\mathbf{K}}\right| \leq \lambda, \tau_{\mathbf{K}} \supseteq \tau_{\mathfrak{k}},\left|\tau_{\mathbf{K}} \backslash \tau_{\mathfrak{k}}\right| \leq \kappa$;
(γ) any f.g. member of \mathbf{K} has cardinality $\leq \kappa$.
(b) $K_{\mathfrak{k}}=\left\{N \mid \tau_{\mathfrak{k}}: N \in \mathbf{K}\right\}$, moreover:
$(\mathrm{b})^{+}$if (α) and (β), then (γ), where:
$(\alpha) I$ is a well founded partial order such that $s_{1}, s_{2} \in I$ has a mlb (= maximal lower bound) called $s_{1} \cap s_{2}$;
$(\beta) \bar{M}=\left\langle M_{s}: s \in I\right\rangle$ satisfies $s \leq_{I} t \Rightarrow M_{s} \leq_{\mathfrak{k}} M_{t}$ and $M_{s_{1}} \cap M_{s_{2}}=$ $M_{s_{1} \cap s_{2}} ;$
(γ) there is \bar{N} such that:

- $\bar{N}=\left\langle N_{s}: s \in I\right\rangle ;$
- $N_{s} \in \mathbf{K}$ expand M_{s};
- $s \leq_{I} t \Rightarrow N_{s} \subseteq N_{t}$.
$(\mathrm{b})^{++}$Moreover, in clause (b) $)^{+}$, if $I_{0} \subseteq I$ is downward closed and $\bar{N}^{0}=\left\langle N_{s}^{0}\right.$: $\left.s \in I_{0}\right\rangle$ is as required in (b) ${ }^{+}$on $\bar{N}\left\lceil I_{0}\right.$, then we can demand there that $\bar{N} \upharpoonright I_{0}=\bar{N}^{0}$.

Proof. By [Shea].
Definition 0.6. 1) We say \mathbf{K} is a universal class when:
(a) for some vocabulary τ, \mathbf{K} is a class of τ-models;
(b) \mathbf{K} is closed under isomorphisms;
(c) for a τ-model $M, M \in \mathbf{K}$ iff every finitely generated submodel of M belongs to \mathbf{K}.

Claim 0.7. For \mathfrak{k}, \mathbf{K} as in 0.5 and see Definition 1.6.

1) If $N \in \mathbf{K}_{\lambda_{0}}, M=N\left\lceil\tau_{\mathfrak{k}}\right.$, then : N is a $\left(\lambda_{1}, \lambda_{2}\right)$-amalgamation base in \mathbf{K} iff M is a $\left(\lambda_{1}, \lambda_{2}\right)$-amalgamation base in \mathfrak{k}.
2) \mathbf{K} has $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$-amalgamation iff \mathfrak{k} has $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$-amalgamation.
3) $\mathrm{AM}_{\mathrm{K}}=\mathrm{AM}_{\mathfrak{k}}$ see Definition 1.6(5).

Observation 0.8. If \mathbf{K} is a universal class, $\kappa \geq \sup \{\|N\|: N \in \mathbf{K}$ is finitely generated $\}, \lambda \geq \kappa+\left|\tau_{\mathbf{K}}\right|$, then $\mathfrak{k}=(\mathbf{K}, \subseteq)$ and \mathbf{K} are as in the conclusion of 0.5.

$\S 0(\mathrm{C})$. Preliminaries on groups.

Notation 0.9. 1) For a group G and subset A let $\operatorname{sb}_{G}(A)=\operatorname{sb}(A, G)$ be the subgroup of G generated by A.
2) Let $\mathbf{C}_{G}(A):=\{g \in G: a g=g a$ for every $a \in G\}$; this is the cetralizer of the set A inside the group G.

The following will be used in $\S(3)$.
Definition 0.10. Let $\lambda \geq \theta \geq \sigma$.

1) Let $\lambda^{[\theta ; \sigma]}=\min \left\{|\mathscr{P}|: \mathscr{P} \subseteq[\lambda]^{\sigma}\right.$ and for every $u \in[\lambda]^{\theta}$ we can find $\bar{u}=\left\langle u_{i}: i<\right.$ $\left.i_{*}\right\rangle$ such that $i_{*}<\sigma, \cup\left\{u_{i}: i<i_{*}\right\}=u$ and $\left.\left[u_{i}\right]^{\sigma} \subseteq \mathscr{P}\right\}$; if $\lambda=\lambda^{\sigma}$ then $\mathscr{P}=[\lambda]^{\sigma}$ witness $\lambda=\lambda^{[\theta ; \sigma]}$ trivially.
2) Let $\lambda^{\langle\theta ; \sigma\rangle}=\min \left\{|\mathscr{P}|: \mathscr{P} \subseteq[\lambda]^{\sigma}\right.$ and for every $u \in[\lambda]^{\theta}$ there is $v \in[u]^{\sigma}$ which belongs to $\mathscr{P}\}$.
3) Let $\lambda^{(\theta ; \sigma)}=\min \left\{|\mathscr{P}|: \mathscr{P} \subseteq[\lambda]^{\sigma}\right.$ and for every $u \in[\lambda]^{\theta}$ there is $v \in \mathscr{P}$ such that $|v \cap u|=\sigma\}$.
4) For $\lambda \geq \mu \geq \theta \geq \nu$ let $\operatorname{cov}(\lambda, \mu, \theta, \sigma)=\min \left\{|\mathscr{P}|: \mathscr{P} \subseteq[\lambda]^{<\mu}\right.$ and every $u \in[\lambda]^{<\theta}$ is included in the union of $<\sigma$ members of $\mathscr{P}\}$.

Fact 0.11. 1) If $\mu=\beth_{\omega}$ or just $\mu>\aleph_{0}$ is strong limit, then for every $\lambda \geq \mu$, for every large enough $\theta<\mu$ we have $\sigma \leq \theta \Rightarrow \lambda^{[\theta ; \sigma]}=\lambda$ (hence $\sigma \leq \theta \Rightarrow \lambda^{\langle\theta ; \sigma\rangle}=$ $\lambda^{(\theta ; \sigma)}=\lambda$).
2) If $\mu^{+}<\lambda$ and no cardinal in the interval $\left(\mu^{+}, \lambda\right)$ is a fix point then for some regular $\sigma \leq \theta \in(\mu, \lambda)$ we have $\lambda^{(\theta, \sigma)}=\lambda$.
3) If $\sigma \leq \theta \leq \lambda$ then $\lambda=\lambda^{\theta} \Rightarrow \lambda^{[\theta ; \sigma]}=\lambda$ and $\lambda=\lambda^{\sigma} \Rightarrow \lambda^{(\theta, \sigma)}=\lambda$.
4) If $\theta \leq \lambda<\theta^{+\omega}$ then $\lambda^{(\theta ; \theta)}=\lambda$.

Proof. By [She94], [She00], and see [She06] gives an alternative simpler proof.

Remark 0.12. As far as we know, possibly, e.g. $\lambda \geq \aleph_{\omega} \Rightarrow\left(\forall^{\infty} n\right)(\forall \ell>n)\left[\lambda^{\left(\aleph_{n}: \aleph_{\ell}\right)}=\right.$ $\lambda)$ and even $\lambda \geq \aleph_{\omega} \Rightarrow(\exists n)\left[\lambda=\operatorname{cov}\left(\lambda, \aleph_{\omega}, \aleph_{\omega}, \aleph_{n}\right)\right]$. See the works of Gitik on consistency results.

Definition 0.13. 1) We say M is θ-decomposable (called $\theta \in \mathrm{CF}(M)$ in [ST97]) when: θ is regular and if $\left\langle M_{i}: i<\theta\right\rangle$ is \subseteq-increasing with union M, then $M=M_{i}$ for some i.
2) We say M is Θ-indecomposable when it is θ-indecomposable for every $\theta \in \Theta$.
3) We say M is $(\neq \theta)$-indecomposable when: θ is regular and if $\sigma=\operatorname{cf}(\sigma) \neq \theta$ then M is σ-indecomposable.
4) We say $\mathbf{c}:[\lambda]^{2} \rightarrow S$ is θ-indecomposable when: if $\left\langle u_{i}: i<\theta\right\rangle$ is \subseteq-increasing with union λ then $S=\left\{\mathbf{c}\{\alpha, \beta\}: \alpha \neq \beta \in u_{i}\right\}$ for some $i<\theta$; similarly for the other variants.
5) If we replace \subseteq by $\leq_{\mathfrak{k}}, \mathfrak{k}$ an a.e.c., then we write $\mathrm{CF}_{\mathfrak{k}}(M)$ or " θ - \mathfrak{k}-indecomposable".

Definition 0.14. We say G is θ-indecomposable inside G^{+}when :
(a) $\theta=\operatorname{cf}(\theta)$;
(b) $G \subseteq G^{+}$;
(c) if $\left\langle G_{i}: i \leq \theta\right\rangle$ is \subseteq-increasing continuous and $G \subseteq G_{\theta}=G^{+}$then for some $i<\theta$ we have $G \subseteq G_{i}$.

Claim 0.15. 1) Assume I is a linear order or just a set, and $\mathbf{c}:[I]^{2} \rightarrow \mathscr{X}$ is θ-indecomposable, $G_{1} \in \mathbf{K}_{\text {lf }}$ and $a_{i} \in G_{1}\left(i \in J\right.$ are ${ }^{1}$ pairwise commuting and each of order 2.

Then there is G_{2} such that:
(a) $G_{2} \in \mathbf{K}_{\mathrm{lf}}$ extends G_{1};
(b) G_{2} is generated by $G_{1} \cup \bar{b}$ where $\bar{b}=\left\langle b_{s}: s \in I\right\rangle$;
(c) b_{s} commutes with G_{1} and has order 2 for $s \in I$
(d) if $s_{1} \neq s_{2}$ are from I then ${ }^{2}\left[b_{s_{1}}, b_{s_{2}}\right]=a_{\mathbf{c}\left\{s_{1}, s_{2}\right\}}$;
(e) G_{2} is generated by $G_{1} \cup \bar{b}$ freely except the equations implicit in clauses (a), (c), (d) above;
(f) $\operatorname{sb}\left(\left\{a_{i}: i \in \mathscr{X}\right\}, G_{1}\right)$ is θ-indecomposable inside G_{2}; see Definition 0.14, in fact it is θ-indecomposable even as semi-group.
2) Assume $G_{1} \in \mathbf{K}_{\mathrm{lf}}$ and I a linear order which is the disjoint union of $\left\langle I_{\alpha}: \alpha<\right.$ $\left.\alpha_{*}\right\rangle, u_{\alpha} \subseteq$ Ord has cardinality θ_{α} and $\mathbf{c}_{\alpha}:\left[I_{\alpha}\right]^{2} \rightarrow J_{\alpha} \cup\{0\}$ is θ_{α}-indecomposable for $\alpha<\alpha_{*},\left\langle J_{\alpha}: \alpha<\alpha_{*}\right\rangle$ is a sequence of sets with union J or $J \cup\{0\}$ and $0 \in J$ sdsy $\notin u$ and $a_{\varepsilon} \in G_{1}$ for $\varepsilon \in J$ and $a_{\varepsilon}, a_{\zeta}$ commute for $\varepsilon, \zeta \in J_{\alpha}, \alpha<\alpha_{*}$ and each a_{ε} has order 2 except for $\varepsilon=0$, and we assume $a_{0}=e$.

Let $\mathbf{c}:[I]^{2} \rightarrow J$ extends each \mathbf{c}_{α} and is zero otherwise.
Then there is G_{2} such that:
(a)-(e) as above
(f) if $\alpha<\alpha_{*}$ then $\operatorname{sb}\left(\left\{a_{\alpha, \varepsilon}: \varepsilon<J_{\alpha}\right\}, G_{2}\right)$ is θ_{α}-indecomposable inside G_{2}.
3) If in part (1) we omit the assumption "c is θ-indecomposable" (but retain \mathbf{c} : $\left.[I]^{2} \rightarrow \theta\right)$ then still clauses (a)-(e) of part (1) holds.

[^1]4) If $X_{i} \subseteq G_{1} \subseteq G_{2}$ for $i<i_{*}$ and $\operatorname{sb}\left(X_{i}, G_{1}\right)$ is indecomposable in G_{2} and $X=\bigcup\left\{X_{i}: i<i_{*}\right\}$ thensb $\left(X, G_{1}\right)$ is indecomposable in G_{2}.
Proof. By [Shee, = Lb15]. $\square_{0.15}$
Claim 0.16. If $G_{1} \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$ then for some $G_{2} \in \mathbf{K}_{\lambda}^{\mathrm{lf}}$ extending G_{1} and $a_{\alpha}^{\ell} \in G_{2}$ for $\ell \in\{1,2\}, \alpha<\lambda$ we have:
\oplus (a) $\operatorname{sb}\left(\left\{a_{\alpha}^{\ell}: \ell \in\{1,2\}, \alpha<\lambda\right\}, G_{2}\right)$ includes G_{1}
(b) if $\ell \in\{1,2\}$ then $\left\langle a_{\alpha}^{\ell}: \alpha<\lambda\right\rangle$ is a sequence of pairwise distinct commuting elements of G_{2} of order 2
(c) G_{2} is generated by $\cup\left\{a_{\alpha}^{\ell}: \alpha<\lambda, \ell \in\{1,2\}\right\}$
(d) the elements $a_{\alpha(1)}^{\ell(1)}, a_{\alpha(2)}^{\ell(2)}$ commute when $\alpha(1) \neq \alpha(2)$.

Proof. y [Shee, 1.6=Lb24]
Definition 0.17. 1) Let $\mathbf{K}_{\lambda, \mu}^{\mathrm{lf}}$ be the class of pairs $\left(G_{1}, G_{1}^{+}\right)$such that:
(a) $G_{1} \subseteq G_{1}^{+} \in \mathbf{K}_{\mathrm{lf}}$;
(b) G_{1}, G_{1}^{+}is of cardinality λ, μ respectively
2) Let $\left(G_{1}, G_{1}^{+}\right) \leq_{\lambda, \mu}^{\mathrm{f}}\left(G_{2}, G_{2}^{+}\right)$means:
(a) $\left(G_{\ell}, G_{\ell}^{+}\right) \in \mathbf{K}_{\lambda, \mu}^{\mathrm{lf}}$ for $\ell=1,2$
(b) $G_{2} \subseteq G_{2}$
(c) $G_{1}^{+} \subseteq G_{2}^{+}$.
3) We say $\left(G, G^{+}\right) \in \mathbf{K}_{\lambda, \mu}^{\mathrm{lf}}$ is Θ-indecomposable when Θ is a set of regular cardinals and for every $\theta \in \Theta, G$ is θ-indecomposable inside G^{+}.

§ 1. Amalgamation Bases

We try to see if there are amalgamation bases $\left(K_{\lambda}^{\mathfrak{k}}, \leq_{\mathfrak{k}}\right)$ and if they are dense in a strong sense: determine for which regular κ, the κ-majority of $M \in K_{\lambda}^{k}$ are amalgamation bases.

Another problem is $\operatorname{Lim}_{\mathfrak{k}}=\left\{(\lambda, \kappa)\right.$: there is a medium limit model in $\left.K_{\lambda}^{\mathfrak{k}}\right\}$, see [Shea]. This seems close to the existence of (λ, κ)-limit models, see [She15], [She11] and [She14]. In particular, can we get the following:

Question 1.1. If the set of $M \in \mathbf{K}_{\lambda}$, which are an amalgamation base, is dense in $\left(\mathbf{K}_{\lambda}, \subseteq\right)$, then in $\left(\mathbf{K}_{\lambda}, \subseteq\right)$ there is a $\left(\lambda, \aleph_{0}\right)$-limit model.

We shall return to this in $\S(3 \mathrm{C})$.
Convention 1.2.1) $\mathfrak{k}=\left(K_{\mathfrak{k}}, \leq_{\mathfrak{k}}\right)$ is an a.e.c. but for simplicity we allow an empty model, which is $\leq_{\mathfrak{k}}$ than anybody else.
2) $\mathbf{K}=K_{\mathfrak{k}}$, but we may write \mathbf{K} instead of \mathfrak{k} when not said otherwise.

Definition 1.3. 1) For $M \in K_{\mathfrak{k}}$ and $\mu \geq \operatorname{LST}_{\mathfrak{k}}$ and ordinal ε we define an equivalence relation $E_{M, \mu, \varepsilon}=E_{\mu, \varepsilon}^{M}=E_{\varepsilon}^{M}=E_{\varepsilon}$ by induction on ε.
$\underline{\text { Case 1: }}: \varepsilon=0$.
E_{ε}^{M} is the set of pairs $\left(\bar{a}_{1}, \bar{a}_{2}\right)$ such that: $\bar{a}_{1}, \bar{a}_{2} \in{ }^{\mu>} M$ have the same length and realize the same quantifier free type, moreover, for $u \subseteq \ell g\left(\bar{a}_{1}\right)$ we have $M \upharpoonright\left(\bar{a}_{1} \upharpoonright u\right) \leq_{\mathfrak{k}}$ $M \Leftrightarrow M \upharpoonright\left(\bar{a}_{2} \upharpoonright u\right) \leq_{\mathfrak{k}} M$.
Case 2: ε is a limit ordinal.

$$
E_{\varepsilon}=\cap\left\{E_{\zeta}: \zeta<\varepsilon\right\}
$$

Case 3: $\varepsilon=\zeta+1$.
$\bar{a}_{1} E_{\varepsilon}^{M} \bar{a}_{2}$ iff for every $\ell \in\{1,2\}, \alpha<\mu$ and $\bar{b}_{\ell} \in{ }^{\alpha} M$ there is $\bar{b}_{3-\ell} \in{ }^{\alpha} M$ such that $\left(\bar{a}_{1}{ }^{\wedge} \bar{b}_{1}\right) E_{\zeta}\left(\bar{a}_{2}{ }^{\wedge} \bar{b}_{2}\right)$.
Definition 1.4. For $\mu>\operatorname{LST}_{\mathfrak{k}}$ and ordinal ε we define $K_{\mathfrak{k}, \varepsilon}=\mathbf{K}_{\varepsilon}, K_{\mathfrak{k}, \mu, \varepsilon}=\mathbf{K}_{\mu, \varepsilon}$ by induction on ε by (well the notation \mathbf{K}_{ε} from here and $\mathbf{K}_{\lambda}=\{M \in \mathbf{K}:\|M\|=\lambda\}$ are in conflict, but usually clear from the context):
(a) $\mathbf{K}_{\varepsilon}=\mathbf{K}_{\mathfrak{k}}$ for $\varepsilon=0$;
(b) for ε a limit ordinal $\mathbf{K}_{\varepsilon}=\cap\left\{\mathbf{K}_{\zeta}: \zeta<\varepsilon\right\}$;
(c) for $\varepsilon=\zeta+1$, let \mathbf{K}_{ε} be the class of $M_{1} \in \mathbf{K}_{\zeta}$ such that: if $M_{1} \subseteq$ $M_{2} \in \mathbf{K}_{\zeta}, \bar{a}_{1} \in{ }^{\mu>} M_{1}, \bar{b}_{2} \in{ }^{\mu>}\left(M_{2}\right)$ then for some $b_{1} \in{ }^{\mu>} M_{1}$ we have $\bar{a}^{\wedge} \bar{b}_{1} E_{\zeta}^{M_{1}} \bar{a}^{\wedge} \bar{b}_{2}$.
Claim 1.5. For every ε :
(a) for every $M_{1} \in \mathbf{K}_{\mathfrak{k}}$ there is $M_{2} \in \mathbf{K}_{\varepsilon}$ extending H;
(b) E_{ε}^{M} has $\leq \beth_{\varepsilon+1}(\mu)$ equivalence classes, hence in clause (a) we can^{3} add $\left\|M_{2}\right\| \leq\left\|M_{1}\right\|+\beth_{\varepsilon+1}(\mu) ;$
(c) $M_{1} \in \mathbf{K}_{\mu, \varepsilon}$ when \mathbf{K}_{ε} has amalgamation and $M_{1} \subseteq M_{2}, M_{2} \in \mathbf{K}_{\varepsilon}$ implies:

- if $\zeta<\varepsilon, \bar{a} \in{ }^{\mu>}\left(M_{1}\right), \bar{b}_{2} \in{ }^{\mu>}\left(M_{2}\right)$ then there is $\bar{b}_{1} \in^{\ell g(\bar{b})}\left(M_{1}\right)$ such that $\bar{a}^{\wedge} \bar{b}_{1} E_{\mu, \zeta}^{M_{2}} \bar{a}^{\wedge} \bar{b}_{2}$;

[^2](d) if I is a $(<\mu)$-directed partial order and $M_{s} \in \mathbf{K}_{\varepsilon}$ is \subseteq-increasing with $s \in I$, then $M=\bigcup_{s} M_{s} \in \mathbf{K}_{\varepsilon} ;$
(e) if $H_{1} \subseteq H_{2}$ are from \mathbf{K}_{ε} then $H_{1} \prec_{\mathbb{L}_{\infty, \mu, \varepsilon}(\mathfrak{k})} H_{2}$;
(f) if $\varepsilon=\mu, \mu=\operatorname{cf}(\mu)$ or $\varepsilon=\mu^{+}$, and $H_{1} \subseteq H_{2}$ are from $\mathbf{K}_{\mu, \varepsilon}$, then $H_{1} \prec_{\mathbb{L}_{\mu, \mu}}$ H_{2}.

Proof. We can prove this by induction on ε. The details should be clear.
Definition 1.6.1) We say $M_{0} \in \mathbf{K}_{\lambda}$ is a $\bar{\chi}$-amalgamation base when: $\bar{\chi}=\left(\chi_{1}, \chi_{2}\right)$ and $\chi_{\ell} \geq\|M\|$ and if $M_{0} \leq_{\mathfrak{k}} M_{\ell} \in \mathbf{K}_{\chi_{\ell}}$ for $\ell=1,2$, then for some $M_{3} \in \mathbf{K}_{\mathfrak{k}}$ which $\leq_{\mathfrak{k}}$-extend M, both M_{1} and M_{2} can be $\leq_{\mathfrak{k}}$-embedded into M_{3} over M_{0}.
2) We may replace " χ_{ℓ} " by " $<\chi_{\ell}$ " with obvious meaning (so $\chi_{\ell}>\left\|M_{0}\right\|$). If $\chi_{1}=\chi_{2}$ we may write χ_{1} instead of $\left(\chi_{1}, \chi_{2}\right)$. If $\chi_{1}=\chi_{2}=\lambda$ we may write "amalgamation base".
3) We say $\mathbf{K}_{\mathfrak{k}}$ has $(\bar{\chi}, \lambda, \kappa)$-amalgamation bases when the κ-majority of $M \in \mathbf{K}_{\lambda}$ is a $\bar{\chi}$-amalgamation base where:
3A) We say that the κ-majority of $M \in \mathbf{K}_{\lambda}$ satisfies ψ when some F witnesses it, which means:
(*) (a) F is a function with ${ }^{4}$ domain $\left\{M \in \mathbf{K}_{\mathfrak{k}}: M\right.$ has universe an ordinal $\left.\in\left[\lambda, \lambda^{+}\right)\right\} ;$
(b) if $M \in \operatorname{Dom}(F)$ then $M \leq_{\mathfrak{k}} F(M) \in \operatorname{Dom}(F)$;
(c) if $\left\langle M_{\alpha}: \alpha \leq \kappa\right\rangle$ is increasing continuous, $M_{\alpha} \in \operatorname{Dom}(F)$ and $M_{2 \alpha+2}=$ $F\left(M_{2 \alpha+1}\right)$ for every $\alpha<\kappa$, then M_{κ} is a $\bar{\chi}$-amalgamation base.
4) We say the pair $\left(M, M_{0}\right)$ is an ($\left.\chi, \mu, \kappa\right)$-amalgamation base (or amalgamation pair) when: $M \leq_{\mathfrak{k}} M_{0} \in \mathbf{K}_{\mathfrak{k}},\|M\|=\kappa,\left\|M_{0}\right\|=\mu$ and if $M_{0} \leq_{\mathfrak{k}} M_{\ell} \in \mathbf{K}_{\leq \chi}$ for $\ell=1,2$, then for some M_{3}, f_{1}, f_{2} we have $M_{0} \leq_{\mathfrak{k}} M_{3} \in \mathbf{K}_{\mathfrak{k}}$ and $f_{\ell} \leq_{\mathfrak{k}}$-embeds M_{ℓ} into M_{3} over M_{0}.
5) Let $\mathrm{AM}_{\mathbf{K}}=\mathrm{AM}_{\mathfrak{k}}$ be the class of pairs (λ, κ) such that \mathbf{K} has $((\lambda, \lambda), \lambda, \kappa)$ amalgamation bases.

Definition 1.7. 1) For $\mathfrak{k}, \bar{\chi}, \lambda, \kappa$ as above and $S \subseteq \lambda^{+}$(or $S \subseteq$ Ord but we use $S \cap \lambda^{+}$) we say \mathfrak{k} has $(\bar{\chi}, \lambda, \kappa, S)$-amalgamation bases when there is a function F such that:
$(*)_{F}$ (a) F is a function with domain $\left\{\bar{M}: \bar{M}\right.$ is a $\leq_{\mathfrak{k}}$-increasing continuous sequence of members of $\mathbf{K}_{\mathfrak{k}}$ each with universe an ordinal $\in\left[\lambda, \lambda^{+}\right)$ and length $i+1$ for some $i \in S\}$;
(b) if $\bar{M}=\left\langle M_{i}: i \leq j\right\rangle \in \operatorname{Dom}(F)$ then:
(α) $F(\bar{M}) \in \mathbf{K}_{\mathfrak{k}}$;
(β) $M_{j} \leq_{\mathfrak{k}} F(\bar{M})$;
$(\gamma) F(\bar{M})$ has universe an ordinal $\in\left[\lambda, \lambda^{+}\right]$;
(c) if $\delta=\sup (S \cap \delta)<\lambda^{+}$has cofinality κ and $\bar{M}=\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{k}^{-}}$ increasing continuous and for every $j<\kappa$ we have $j \in S \Rightarrow \bar{M}_{j+1}=$ $F(\bar{M} \upharpoonright(j+1))$ hence $\bar{M} \upharpoonright(j+1) \in \operatorname{Dom}(F)$ then M_{δ} is a $\bar{\chi}$-amalgamation base.

[^3]2) We say \mathfrak{k} has weak $(\bar{\chi}, \lambda, \kappa, S)$-amalgamation bases when above we replace clause (c) by:
 then for some club E of λ^{+}we have $\delta \in E$ and $\operatorname{cf}(\delta)=\kappa \Rightarrow M_{\delta}$ is a $\bar{\chi}$-amalgamation base.
3) We say \mathfrak{k} has $(\bar{\chi}, \lambda, W, S)$-amalgamation bases when $W \subseteq \lambda^{+}$is stationary and in part (2) we replace (in the end of $(c)^{\prime}, " \delta \in E$ and $\operatorname{cf}(\delta)=\kappa$ " by " $\delta \in E \cap W$ ".

Proof. Easy.
Claim 1.8. 1) If $\lambda=\kappa>\mathrm{LST}_{\mathfrak{k}}$ is a weakly compact cardinal and $M \in \mathbf{K}_{\kappa, 1}$, see Definition 1.4 then M is a κ-amalgamation base.
2) If κ is compact cardinal and $\lambda=\lambda^{<\kappa}$ and $M \in \mathbf{K}_{\kappa, 1}$ has cardinality λ, then M is a $(<\infty)$-amalgamation base; so \mathfrak{k} has $(<\infty, \lambda, \geq \kappa)$-amalgamation bases.
3) In part (2), κ has to satisfy only: if Γ is a set $\leq \lambda$ of sentences from $\mathbb{L}_{\mathrm{LST}(\mathfrak{k})+, \aleph_{0}}$ and every $\Gamma^{\prime} \in[\Gamma]^{<\kappa}$ has a model, then Γ has a model.
Proof. Use the representation theorem for a.e.c. from [Shea, $\S 1]$ which is quoted in 0.5 here and the definitions.

Conclusion 1.9. If the pair (λ, κ) is as in 1.8 , then \mathfrak{k} has (λ, κ)-amalgamation bases; see 1.6(3).

Claim 1.10. If \mathfrak{k}, \mathbf{K} are as in 0.5 and the universal class \mathbf{K}, i.e. (\mathbf{K}, \subseteq) have $(\bar{\chi}, \lambda, \kappa)$-amalgamation and $\lambda \geq \operatorname{LST}(\mathfrak{k})$, then so does \mathfrak{k}.
Proof. Easy.
A surprising result says that in some singular cardinals we have "many" amalgamation bases.

Claim 1.11. If μ is a strong limit cardinal and $\operatorname{cf}(\mu)>\operatorname{LST}_{\mathfrak{k}}$ is a measurable cardinal (so μ is measurable or μ is singular but the former case is covered by 1.8(1)) then \mathfrak{k} has $(\mu, \operatorname{cf}(\mu))$-amalgamation bases.

Proof. By 1.10 without loss of generality \mathfrak{k} is a universal class K. Without loss of generality μ is a singular cardinal (otherwise the result follows by Claim 1.8). Let $\kappa=\operatorname{cf}(\mu), D$ a normal ultrafilter on κ and let $\left\langle\mu_{i}: i<\kappa\right\rangle$ be an increasing sequence of cardinals with limit μ such that $\mu_{0} \geq \operatorname{LST}_{\mathfrak{k}}+\kappa$.

We choose u such that:
$(*)_{1} \quad$ (a) $\mathbf{u}=\left\langle\bar{u}_{\alpha}: \alpha<\mu^{+}\right\rangle ;$
(b) $\bar{u}_{\alpha}=\left\langle u_{\alpha, i}: i<\kappa\right\rangle$;
(c) $u_{\alpha, i} \in[\alpha]^{\mu_{i}}$ is \subseteq-increasing with i;
(d) $\alpha=\bigcup_{i<\kappa} u_{i, \kappa}$;
(e) if $\alpha<\beta<\mu^{+}$, then $u_{\alpha, i} \subseteq \alpha_{\beta, i}$ for every $i<\kappa$ large enough

For transparency we allow $=^{M}$ to be non-standard, i.e. just a congruence relation on M.

We now choose functions F, G by:
$(*)_{2} \quad$ (a) $\operatorname{dom}(F)=\left\{M \in \mathbf{K}_{\mathfrak{k}}: M\right.$ has universe some $\left.\alpha \in\left[\mu, \mu^{+}\right)\right\} ;$
(b) for $\alpha \in\left[\mu, \mu^{+}\right)$let $\mathscr{M}_{\alpha}=\{M \in \mathbf{K}: M$ has universe $\alpha\}$
(c) for $M \in \mathscr{M}_{\alpha}, u \subseteq \alpha$ let $M[u]=M\left\lceil\operatorname{sb}(u, M)\right.$ and let $M^{[i]}=M\left[u_{\alpha, i}\right]$, hence $u \subseteq \alpha \Rightarrow M[u] \leq_{\mathfrak{k}} M$; recall that $\operatorname{sb}(u, M) \subseteq M$ is well defined and belongs to \mathbf{K} because \mathbf{K} is a universal class
(d) if $M \in \operatorname{dom}(F)$ has universe α then $M^{+}=F(M)$ satisfies:
$(\alpha) M \subseteq M^{+} \in \mathscr{M}_{\alpha+\lambda}$ (equivalently $M \leq_{\mathfrak{k}} M^{+} \in \mathscr{M}_{\alpha+\lambda}$)
(β) if $i<\kappa$ and $M\left[u_{\alpha, i}\right] \subseteq N \in \mathbf{K}_{\mu_{i}}$, then exactly one of the following occurs:

- there is an embedding of N into M^{+}over $M\left[u_{\alpha, i}\right]$
- there is no $M^{\prime} \in \mathbf{K}$ extending M^{+}and an embedding of N into M^{\prime} over $M^{[i]}$

This is straightforward. It is enough to prove that F witnesses that \mathbf{K} has (μ, κ) amalgamation bases, i.e. using $F\left(\left\langle M_{i}: i \leq j\right\rangle\right)=F\left(M_{j}\right)$.

For this it suffices:
$(*)_{3} M^{1}, M^{2}$ can be amalgamated over $M_{\kappa}($ in $\mathbf{K})$ when :
(a) $\left\langle M_{i}: i \leq \kappa\right\rangle$ is \subseteq-increasing continuous;
(b) $M_{i} \in \mathbf{K}_{\mu}$ has universe α_{i}
(c) $F\left(M_{2 i+1}\right)=M_{2 i+2}$;
(d) $M_{\kappa} \subseteq M^{1} \in \mathbf{K}_{\mu}$ and $M_{\kappa} \subseteq M^{2} \in \mathbf{K}_{\mu}$.

We can find an increasing (not necessarily continuous) sequence $\langle\varepsilon(i): i<\kappa\rangle$ of ordinals $<\kappa$ such that $i<j<\kappa \Rightarrow u_{\alpha_{\varepsilon(i)}, j} \subseteq u_{\alpha_{\varepsilon(j)}, j}$ and so $u_{i}:=u_{\alpha_{\varepsilon(i), i}}$ is \subseteq-increasing.

Without loss of generality M^{1}, M^{2} has universe $\beta=\alpha_{\kappa}+\mu$.
Now,
(*) let $\left\langle u_{i}^{*}: i<\kappa\right\rangle$ be \subseteq-increasing with union β such that: $i<\kappa \Rightarrow u_{i} \subseteq u_{i}^{*}$.

Notice that:
\boxplus it suffices to prove that: for every $i<\kappa, M^{1}\left[u_{i}^{*}\right], M^{2}\left[u_{i}^{*}\right]$ can be \subseteq-embedded into M_{κ} over $M_{\kappa}\left[u_{i}\right]$ (you can use its closure); say h_{i}^{ι} is a \subseteq-embedding of $M^{\iota}\left[u_{i}^{*}\right]$ into M_{κ} over $M_{\kappa}\left[u_{i}\right]$.

It suffices to prove \boxplus by taking ultra-products, i.e. let N_{i} be $\left(\mu^{+}, M_{\kappa}, M^{\iota}, M^{\iota}\left[u_{\iota}\right] u_{i}, h_{i}^{\iota}\right)_{\iota=1,2}$ and let D be a normal ultrafilter on κ and "chase arrows" in $\prod_{i<\kappa} N_{i} / D$. It is possible to prove \boxplus by the choice of F so we are done.

Claim 1.12. 1) Assume $\kappa>\theta>\operatorname{LST}_{\mathfrak{k}}, \theta$ is a measurable cardinal and κ is weakly compact. then \mathfrak{k} has (κ, θ)-amalgamation bases.
2) Assume κ, θ are measurable cardinals $>\mathrm{LST}_{\mathfrak{k}}$ and $\mu>\kappa+\theta$ is strong limit singular of cofinality κ. Then \mathfrak{k} has (μ, θ)-amalgamation bases.
3) If $\kappa>\theta>\operatorname{LST}_{\mathfrak{k}}, \theta$ is a measurable cardinal and $\left\{M \in \mathbf{K}_{\kappa}^{\mathfrak{k}}: M\right.$ is a $\left(\chi_{1}, \chi_{2}\right)$ amalgamation base $\}$ is $\leq_{\mathfrak{k}}$-dense in $\mathbf{K}_{\kappa}^{\mathfrak{k}}$, then \mathfrak{k} has $\left(\chi_{1}, \chi_{2}, \kappa, \theta\right)$-amalgamation bases.

Proof. 1) As \mathfrak{k} has (κ, κ)-amalgamation bases by $1.8(1)$ we can apply part (3) of 1.12 with $(\kappa, \kappa, \kappa, \theta)$ here standing for $\left(\chi_{1}, \chi_{2}, \kappa, \theta\right)$ there.
2) Similarly to part (1) using 1.11 instead of 1.8(1).
3) Similar to the proof of 1.11 , that is, we replace \boxplus by Claim 1.13 and $(*)_{2}$ by:
$(*)_{2}^{1}$ if $M \in \mathbf{K}_{\alpha}$, then $F(M)$ is a member of $K_{\mathfrak{k}}$ which is a $\bar{\chi}$-amalgamation base and $M \leq_{\mathfrak{k}} F(M)$.
1.12

We finish the section with some comments; we actually proved:
Claim 1.13. Assume κ is a measurable cardinal, $\bar{M}=\left\langle M_{i}: i \leq \kappa\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing (not necessarily continuous) and $M_{\kappa}:=\bigcup_{i<\kappa} M_{i}$ is of cardinality $\leq \min \left\{\chi_{1}, \chi_{2}\right\}$ and each M_{i} is a $\bar{\chi}$-amalgamation base. Then M_{κ} is a $\bar{\chi}$-amalgamation base.

Claim 1.14. 1) In 1.11, we can replace " $(\mu, \operatorname{cf}(\mu))$-amalgamationbase" by" $(\mu, \operatorname{cf}(\mu), S)$ amalgamation base" for any unbounded subset S of S.
2) Similarly in 1.12.

Question 1.15. 1) What can $\mathrm{AM}_{\mathfrak{k}}=\left\{(\lambda, \kappa): \mathfrak{k}\right.$ has (λ, κ)-amalgamation, $\left.\lambda>\operatorname{LST}_{\mathfrak{k}}\right\}$ be?
2) What is $\mathrm{AM}_{\mathfrak{k}}$ for $\mathfrak{k}=\mathbf{K}_{\text {exlf }}$?
3) Suppose we replace κ by stationary $W \subseteq\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\kappa\right\}$. How much does this matter?

Discussion 1.16. 1) May be helpful for analyzing $\mathrm{AM}_{\mathbf{K}_{1 f}}$ but also of self interest is analyzing $\mathfrak{S}_{k, n}[\mathbf{K}]$ with k, n possibly infinite, see [She17, §4].
2) In fact for $1.15(3)$ we may consider Definition 1.17.

Definition 1.17. For a regular θ and $\mu \geq \alpha$ fixing \mathfrak{k} let:
(A) $\operatorname{Seq}_{\mu, \alpha}^{0}$ is in the class of \bar{N} such that:
(a) $\bar{N}=\left\langle N_{i}: i \leq \alpha\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing continuous
(b) $i \neq 0 \Rightarrow\left\|N_{i}\right\|=\mu$;
(B) $\operatorname{Seq}_{\mu, \alpha}^{1}=\left\{\mathbf{n}=\left(\bar{N}^{1}, \bar{N}^{2}\right): \bar{N}^{\iota} \in \operatorname{Seq}_{\mu, \alpha+1}^{0}\right.$ and $\beta \leq \alpha \Rightarrow N_{\beta}^{1}=N_{\beta}^{2}$ so let
$N_{\beta}=N_{\mathbf{n}, \beta}=N_{\beta}^{1}$
(C) we define the game $\partial_{\bar{N}, \mathbf{n}}$ for $\mathbf{n} \in \operatorname{Seq}_{\mu, \alpha}^{1}$;
(a) a play last $\alpha+1$ moves and is between AAM and AM;
(b) during a play a sequence $\left\langle\left(M_{i}, M_{i}^{\prime}, f_{i}\right): i \leq \alpha\right\rangle$ is chosen such that:
(α) $M_{i} \in \mathbf{K}_{\lambda}$ is $\leq_{\mathfrak{k}}$-increasing continuous;
(β) f_{i} is a $\leq_{\mathfrak{k}}$-embedding of $N_{\mathbf{n}, i}$ into M_{i} and even M_{i}^{\prime};
$(\gamma) f_{i}$ is increasing continuous for limit $i, f_{\delta}=\bigcup_{i<\delta} f_{i}$ and f_{0} is empty;
($\delta) \quad M_{i} \leq_{k} M_{i+1}^{\prime} \leq M_{i+1}$ and for i limit or zero $M_{i}^{\prime}=M_{i}$;
(c) $\quad(\alpha)$ if $i=0$ in the i-th move first AM chooses M_{0} and second AAM chooses $f_{0}=\emptyset, M_{0}^{\prime}=M_{0}$;
(β) if $i=j+1$, in the i-th move first AM chooses f_{i}, M_{i}^{\prime} and second AAM chooses M_{i};
(γ) if i is a limit ordinal: $M_{i}, f_{i}, M_{i}^{\prime}$ are determined;
(δ) if $i=\alpha+1$, first AAM chooses $N_{i} \in\left\{N_{\alpha}^{1}, N_{\alpha}^{2}\right\}$ and then this continues as above;
(d) the player AMM wins when AM has no legal move;
(D) let $\operatorname{Seq}_{\mathfrak{k}}$ be the set of λ, μ, θ such that there is \mathbf{n} satisfying:
(a) $\mathbf{n} \in \operatorname{Seq}_{\mu, \theta}^{1}$;
(b) $N_{\mathbf{n}, \theta+1}^{1}, N_{\mathbf{n}, \theta+2}^{2}$ cannot be amalgamated over $N_{\mathbf{n}, \theta}\left(=N_{\mathbf{n}, \theta}^{\iota}, \iota=1\right)$;
(c) in the game $\partial_{\mathbf{n}}$, the player AM has a winning strategy.

Question 1.18. 1) What can be $\mathrm{Seq}_{\mathfrak{k}}$ for \mathfrak{k} an a.e.c. with $\mathrm{LST}_{\mathfrak{k}}=\chi$?
2) What is $\operatorname{Seq}_{\mathbf{K}_{\mathrm{lf}}}$?

Claim 1.19. Let S be the class of odd ordinals.

1) If \mathfrak{k} has $(\bar{\chi}, \lambda, \kappa, S)$-amalgamation then \mathfrak{k} has $(\bar{\chi}, \lambda, \kappa)$-amalgamation.
2) If $\lambda=\lambda^{<\kappa}$ then also the inverse holds.

Proof. Should be clear.

§ 2. Definability

The notion of " $a \in M_{2} \backslash M_{1}$ is definable over M_{1} " is clear for first order logic, $M_{1} \prec M_{2}$. But in a class like $\mathbf{K}_{\text {lf }}$ we may wonder. We can also consider the general case of an a.e.c.,e, see 2.1, but we shall concentrate on lf groups.

Claim 2.1. Below (i.e. in 2.3-2.6) we can replace \mathbf{K}_{lf} by:
$(*) \mathfrak{k}$ is a a.e.c. and one of the following holds:
(a) \mathfrak{k} is a universal, so $\mathbf{k}_{1}=\mathfrak{k} \uparrow\left\{M \in K_{\mathfrak{k}}: M\right.$ is finitely good $\}$ determine \mathfrak{k};
(b) like (a) but \mathfrak{k}_{1} is closed under products;
(c) like (a), but in addition:
(α) $0_{\mathfrak{k}}=0_{\mathfrak{k}_{1}}$ is an individual constant;
(β) if $M_{1}, M_{2} \in K_{\mathfrak{k}_{1}}$ then $N=M_{1} \times M_{2} \in K_{\mathfrak{k}_{1}}$; moreover $f_{\ell}: M_{\ell} \rightarrow$ N is a $\leq_{\mathfrak{k}_{1}}$-embedding for $\ell=1,2$ where:

- $f_{1}\left(a_{1}\right)=\left(a_{1}, 0_{M_{2}}\right)$;
- $f_{2}\left(a_{2}\right)=\left(0_{M_{1}}, a_{2}\right)$.

Discussion 2.2. Can we in (c) define types as in 2.3 such that they behave suitably (i.e. such that $2.5,2.6$ below works?) We need $c \ell(A, M)$ to be well defined.

Definition 2.3. 1) For $G \subseteq H \in \mathbf{K}_{\mathrm{lf}}$ we let uniq $(G, H)=\left\{x \in H\right.$: if $H \subseteq H^{+} \in$ $\mathbf{K}_{\mathrm{lf}}, y \in H^{+}$and $\operatorname{tp}_{\mathrm{bs}}\left(y, G, H^{+}\right)=\operatorname{tp}_{\mathrm{bs}}(x, G, H)$ then $\left.y=x\right\}$.
1A) Above we let $\operatorname{uniq}_{\alpha}(G, H)=\operatorname{uniq}_{\alpha}^{1}(G, H)=\left\{\bar{x} \in{ }^{\alpha} H\right.$: if $H \subseteq H^{+} \in \mathbf{K}_{\text {lf }}$, then no $\bar{y} \in{ }^{\alpha}\left(H^{+}\right)$realizes $\operatorname{tp}_{\mathrm{bs}}(\bar{x}, G, H)$ in H^{+}and satisfies $\left.\operatorname{Rang}(\bar{y}) \cap \operatorname{Rang}(\bar{x}) \subseteq G\right\}$.
1B) Let $\operatorname{uniq}_{\alpha}^{2}(G, H)$ be defined as in (1A) but in the end "Rang $(\bar{x})=\operatorname{Rang}(\bar{y})$ ".
1C) Let $\operatorname{uniq}_{\alpha}^{3}(G, H)$ be defined as in (1A) but in the end " $\bar{x}=\bar{y}$ ".
2) For $G_{1} \subseteq G_{2} \subseteq G_{3} \in \mathbf{K}_{\mathrm{lf}}$ let $\operatorname{uniq}\left(G_{1}, G_{2}, G_{3}\right)=\left\{x \in G_{2}\right.$: if $G_{3} \subseteq G \in \mathbf{K}_{\mathrm{lf}}$ then for no $y \in G \backslash G_{2}$ do we have $\operatorname{tp}_{\mathrm{bs}}\left(y, G_{1}, G\right)=\operatorname{tp}_{\mathrm{bs}}\left(x, G_{1}, G_{2}\right)$.

Question 2.4. 1) Given λ, can we bound $\left\{|\operatorname{uniq}(G, H)|: G \subseteq H \in \mathbf{K}_{\mathrm{lf}}\right.$ and $\left.|G| \leq \lambda\right\}$. 2) Can we use the definition to prove "no $G \in \mathbf{K}_{\beth_{\omega}}^{\mathrm{lf}}$ is universal"?

To answer $2.4(1)$ we prove 2^{λ} is a bound and more; toward this:
Claim 2.5. If (A) then (B), where:
(A) (a) $G_{n} \in \mathbf{K}_{\text {lf }}$ for $n<n_{*} ; n_{*}$ may be any ordinal but the set $\left\{G_{n}: n<n_{*}\right\}$ is finite;
(b) $h_{\alpha, n}: I \rightarrow G_{n}$ for $\alpha<\gamma_{*}, n<n_{*}$;
(c) if $s \in I$, then the set $\left\{\left(G_{n}, h_{\alpha, n}(s)\right): \alpha<\gamma_{*}\right.$ and $\left.n<n_{*}\right\}$ is finite;
(B) there is (H, \bar{a}) such that:
(a) $H \in \mathbf{K}_{\mathrm{lf}}$;
(b) $\bar{a}=\left\langle a_{s}: s \in I\right\rangle$ generates H;
(c) if $s_{0}, \ldots, s_{k-1} \in I$ then $\operatorname{tp}_{\mathrm{at}}\left(\left\langle a_{s_{\ell}}: \ell<k\right\rangle, \emptyset, H\right)=\bigcap_{n, \alpha} \operatorname{tp}_{\mathrm{at}}\left(\left\langle h_{\alpha, n}\left(s_{0}\right), \ldots, h_{\alpha, n}\left(s_{k-1}\right\rangle, \emptyset, G_{n}\right) ;\right.$
(d) the mapping $b_{s} \rightarrow a_{s}$ for $s \in I_{*}$ embeds H_{*} into H when :
$(*) H_{*} \subseteq G_{n}$ for $n<n_{*}, I_{*} \subseteq I,\left\langle b_{s}: s \in I_{*}\right\rangle$ list the elements of H_{*} (or just a sequence of elements which generates it) and $\alpha<\gamma_{*} \wedge s \in I_{*} \wedge n<n_{*} \Rightarrow h_{\alpha, n}(s)=b_{s}$.
Proof. Note that:
$(*)_{1}$ there are H and \bar{a} such that:
(a) H is a group;
(b) $\bar{a}=\left\langle a_{s}: s \in I\right\rangle$;
(c) $a_{s} \in H$;
(d) for any finite $u \subseteq I$ and atomic formula $\varphi\left(\bar{x}_{[u]}\right)$ we have $H \models \varphi\left(\bar{a}_{[u]}\right)$ iff for every $n<n_{*}$ and $\alpha<\gamma_{*}$ we have $G_{n}=\varphi\left[\ldots, h_{\alpha, n}(s), \ldots\right]_{s \in u}$.
[Why? Let $G_{\alpha, n}=G_{n}$ for $\alpha<\gamma_{*}, n<n_{*}$ and let $H^{\prime}=\Pi\left\{G_{\alpha, n}: n<n_{*}, \alpha<\gamma_{*}\right\}$ and let $a_{s}=\left\langle h_{\alpha, n}(s):(\alpha, n) \in\left(\gamma_{*}, n_{*}\right)\right\rangle$ for $s \in I$ and, of course, $\bar{a}=\left\langle a_{s}: s \in I\right\rangle$.]
$(*)_{2}$ Without loss of generality \bar{a} generates H.
[Why? Just read $(*)_{1}$ and replace H by the subgroup of H generated by \bar{a}.]
$(*)_{3}$ If $u \subseteq I$ is finite, then $\operatorname{sb}\left(\bar{a}_{[u]}, H\right)$ is finite (and for 2.1 it belongs to $K_{\mathfrak{k}}$)
[Why? By Clause (A)(c) of Claim 2.5; and for the generalization in 2.1 recalling 2.1(d).]
$(*)_{4} H \in \mathbf{K}_{\text {lf }}$ (i.e. (B)(a) holds).
[Why? By $(*)_{2}+(*)_{3}$; for 2.1 use also 2.1(d).]
$(*)_{5}$ Clause (B)(c) holds.
[Why? By $(*)_{1}(d)$.]
$(*)_{6}$ Clause (B)(d) holds.
[Why? Follows from our choices.]
Claim 2.6. If $G_{1} \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$ and $G_{1} \subseteq G_{2} \in \mathbf{K}_{\mathrm{lf}}$ has cardinality $\leq \mu=\mu^{\lambda}$ (e.g. $\left.G_{1} \subseteq G_{2} \in \mathbf{K}_{\lambda}^{\mathrm{lf}}, \mu=2^{\lambda}\right)$, then for some pair $\left(G_{3}, X\right)$ we have:
\oplus (a) $G_{2} \subseteq G_{3} \in \mathbf{K}_{\mu}^{\mathrm{lf}}$
(b) $X \subseteq G_{3}$ has cardinality $\leq 2^{\lambda}$
(c) if $c \in G_{3}$, then exactly one of the following occurs:
$(\alpha) c \in X$ and $\left\{b \in G_{3}: \operatorname{tp}_{\mathrm{at}}\left(b, G_{1}, G_{3}\right)=\operatorname{tp}_{\mathrm{at}}\left(c, G_{1}, G_{3}\right)\right\}$ is a singleton and moreover this holds also in G_{4} whenever $G_{3} \subseteq$ $G_{4} \in \mathbf{K}_{\mathrm{lf}} ;$
(β) there are $\left\|G_{3}\right\|$ elements of G realizing $\operatorname{tp}_{\mathrm{bs}}\left(a, G_{1}, G_{3}\right)$;
(d) if $\alpha<\lambda^{+}, \bar{a} \in{ }^{\alpha}\left(G_{3}\right)$ and $p\left(\bar{x}_{[\alpha]}\right)=\operatorname{tp}_{\mathrm{at}}\left(\bar{a}, G, G_{3}\right), p^{\prime}\left(\bar{x}_{[\alpha]}\right)=\operatorname{tp}_{\mathrm{bs}}\left(\bar{a}, G, G_{3}\right)$, then for some non-empty $\mathscr{P} \subseteq \mathscr{P}(\alpha)$ closed under the intersection of 2 to which α belongs we have:
(α) if $\bar{a}^{\prime}, \bar{a}^{\prime \prime} \in{ }^{\alpha}\left(G_{3}\right)$ realizes $p\left(\bar{x}_{[\alpha]}\right)$ then $u:=\left\{\beta<\alpha:\left(a_{\beta}^{\prime}=\right.\right.$ $\left.\left.a_{\beta}^{\prime \prime}\right)\right\} \in \mathscr{P} ;$
(β) if $u \in \mathscr{P} \underline{\text { then }}$ we can find $\left\langle\bar{a}_{\varepsilon}: \varepsilon<\left\|G_{3}\right\|\right\rangle$ a Δ-system with heart $u\left(\right.$ i.e. $\left.\bar{a}_{\varepsilon_{1}, \beta_{1}}=\bar{a}_{\varepsilon_{2}, \beta_{2}} \Leftrightarrow\left(\left(\varepsilon_{1}, \beta_{1}\right)=\left(\varepsilon_{2}, \beta_{2}\right)\right) \vee\left(\beta_{1}=\beta_{2} \in u\right)\right)$, each \bar{a}_{ε} realizing $p\left(\bar{x}_{[\alpha]}\right.$ and even $\left.p^{\prime}\left(\bar{x}_{[\alpha]}\right)\right)$.
Remark 2.7.1) Can we generalize the (weak) elimination of quantifiers in modules? 2) An alternative presentation is to try G_{D}^{I} / \mathscr{E}, where:

- $\mathscr{E} \subseteq\{E: E$ is an equivalence relation on I such that I / E is finite $\}$ and $(\mathscr{E} \geq)$ is directed;
- G_{D}^{I} is $G^{I} \upharpoonright\{f: f+G$ and there is $E \in \mathscr{E}$ such that $s E t \Rightarrow f(s)=f(t)\}$.

3) For suitable (I, D, \mathscr{E}) we have: if p is a set of $\leq \mu$ basic formulas with parameters from $G_{1}=G_{D}^{I} / \mathscr{E}$ we have: p is realized in G_{1} iff every $\varphi_{1}, \ldots, \varphi_{n}, \neg \varphi_{i} \in p, \varphi_{\ell}$ atomic is realized in G_{1}.

Proof. We can easily find G_{3} such that:
$(*)_{1} \quad$ (a) $G_{2} \subseteq G_{3} \in \mathbf{K}_{\mu}^{\text {lf }} ;$
(b) if $G_{3} \subseteq H \in \mathbf{K}_{\mathrm{lf}}, \gamma<\lambda^{+}, \bar{a} \in{ }^{\gamma} H$ and $u=\left\{\alpha<\gamma: a_{\alpha} \in G_{3}\right\}$, then there are $\bar{a}^{\varepsilon} \in{ }^{\gamma}\left(G_{3}\right)$ for $\varepsilon<\mu$ such that:
$(\alpha) \operatorname{tp}_{\mathrm{bs}}\left(\bar{a}^{\varepsilon}, G_{1}, G_{3}\right)=\operatorname{tp}_{\mathrm{bs}}\left(\bar{a}, G_{1}, G_{3}\right) ;$
(β) if $\varepsilon, \zeta<\mu$ and $\alpha, \beta<\gamma$ and $a_{\alpha}^{\varepsilon}=a_{\beta}^{\zeta}$ then $((\varepsilon, \alpha)=(\zeta, \beta)) \vee(\alpha=$ $\left.\beta \in u \wedge a_{\alpha}^{\varepsilon}=a_{\alpha}=a_{\alpha}^{\zeta}\right)$.

We shall prove that
$(*)_{2} \quad G_{3}$ is as required in \oplus.
Obviously this suffices. Clearly clause $\oplus(a)$ holds and clauses $\oplus(b)+(c)$ follows from clause $\oplus(d)$.
[Why? Without loss of generality $G_{1}=\mathbf{K}_{\lambda}^{\text {lf }}$, let $\left\langle a_{\beta}: \beta<\lambda\right\rangle$ list the elements of G_{1}. For $c \in G_{3}$ let $\bar{a}_{c}=\left\langle a_{\beta}: \beta<\lambda\right\rangle^{\wedge}\langle c\rangle$ and applying clause (d) we get $\mathscr{P}_{c} \subseteq \mathscr{P}(\lambda+1)$ as there. We finish letting $X:=\left\{c \in G_{3}: \lambda \notin \mathscr{P}_{c}\right\}$.]

Now let us prove clause $\oplus(d)$, so let $\alpha<\lambda^{+}, \bar{a} \in{ }^{\alpha}\left(G_{3}\right)$ and $p\left(\bar{x}_{[\alpha]}\right)=\operatorname{tp}_{\text {at }}\left(\bar{a}, G_{1}, G_{3}\right)$ and $p^{\prime}\left(\bar{x}_{[\alpha]}\right)=\operatorname{tp}_{\mathrm{bs}}\left(\bar{a}, G_{1}, G_{3}\right)$; without loss of generality \bar{a} is without repetitions but this is not used.

Define:
$(*)_{3} \mathscr{P}=\left\{u \subseteq \alpha\right.$: there are $\bar{a}^{\prime}, \bar{a}^{\prime \prime} \in{ }^{\alpha}\left(G_{3}\right)$ realizing $p\left(\bar{x}_{[\alpha]}\right)$ such that $u=(\forall \beta<$ $\left.\alpha)\left(\beta \in u \equiv a_{\beta}^{\prime}=a_{\beta}^{\prime \prime}\right)\right\}$.

Now
$(*)_{4} \quad \alpha \in \mathscr{P}$.
[Why? Let $\bar{a}^{\prime}=\bar{a}^{\prime \prime}=\bar{a}$.]
$(*)_{5}$ if $u_{1}, u_{2} \in \mathscr{P}$, then $u_{1} \cap u_{2} \in \mathscr{P}$.
[Why? Let $\bar{a}_{\ell}^{\prime}, \bar{a}_{\ell}^{\prime \prime}$ witness that $u_{\ell} \in \mathscr{P}$, i.e. both $\bar{a}_{\ell}^{\prime}, \bar{a}_{\ell}^{\prime \prime}$ realize $p\left(\bar{x}_{[\alpha]}\right)$ in G_{3} and $u_{\ell}=\left\{\beta<\alpha: a_{\ell, \beta}^{\prime}=a_{\ell, \beta}^{\prime \prime}\right\}$.

Let $I=I_{*}+\sum_{\varepsilon<\mu} I_{\varepsilon}$ be linear orders (so $I_{*}, I_{\varepsilon}(\varepsilon<\mu)$ are pairwise disjoint), where we chose the linear orders such that $I_{\varepsilon} \cong \alpha$ for $\varepsilon<\mu$ and let $s_{\varepsilon, \beta}$ be the
β-th member of I_{ε} and I_{*} has cardinality λ and let $\left\langle c_{s}: s \in I_{*}\right\rangle$ list G_{3} such that $c_{s(*)}=e_{G_{3}}$ and $s(*) \in I_{*}$.

We shall now apply 2.5 , so let
(a) $\gamma_{*}=1+\alpha+\alpha$ and $n_{*}=1$
(b) for $\varepsilon<\mu, \gamma<\gamma_{*}$ let $\left\langle h_{\gamma, 0}\left(s_{\varepsilon, \beta}\right)\right.$: $\left.\beta<\alpha\right\rangle$ be equal to:

- \bar{a} if $\gamma=0$;
- \bar{a}_{1}^{\prime} if $\gamma \in\{1+\zeta: \zeta<\varepsilon\}$;
- $\bar{a}_{1}^{\prime \prime}$ if $\gamma \in[1+\zeta: \zeta \in[\varepsilon, \alpha)\}$;
- \bar{a}_{2}^{\prime} if $\gamma \in\{1+\alpha+\zeta: \zeta<\varepsilon\}$;
- $\bar{a}_{2}^{\prime \prime}$ if $\gamma \in\{1+\alpha+\zeta: \zeta \in[\varepsilon, \alpha)\}$;
(c) $h_{\gamma, 0}(s)=c_{s}$ for $s \in I, \gamma<\gamma_{*}$;
(d) G_{3}, G_{3}, I, I_{*} here stand for G_{0}, H_{*}, I, I_{*} there.

We get $\left(H, \bar{a}^{*}\right)$ as there, so by $(\mathrm{B})(\mathrm{d})$ there essentially $G_{3} \subseteq H$ and by (B)(c) there the $\bar{a}^{*} \upharpoonright I_{\varepsilon}$ realizes $p\left(\bar{x}_{[\alpha]}\right)$; moreover, realizes $p^{\prime}\left(\bar{x}_{[\alpha]}\right)$; also $\left\langle\bar{a}^{*} \upharpoonright I_{\varepsilon}: \varepsilon<\mu\right\rangle$ is a Δ-system with heart u.

The rest should be clear; we do not need to extend G_{3} by $(*)_{1}$.]

§ 3. Density of being Complete in $\mathbf{K}_{\lambda}^{\mathrm{lf}}$

We prove here that for almost all cardinals λ, the complete $G \in \mathbf{K}_{\lambda}^{\text {exlf }}$ are dense in $\left(\mathbf{K}_{\lambda}^{\text {exlf }}, \mathbf{c}\right)$;
Discussion 3.1. 1) We would like to prove for as many cardinals $\mu=\lambda$ or at least pairs $\mu \leq \lambda$ of cardinals that $\left(\forall G \in \mathbf{K}_{\mu}^{\text {lf }}\right)\left(\exists H \in \mathbf{K}_{\lambda}^{\text {exlf }}\right)(G \subseteq H \wedge H$ complete $)$. We necessarily have to assume $\lambda \geq \mu+\aleph_{1}$. So far we have known it only for $\lambda=\mu^{+}, \mu=\mu^{\aleph_{0}}$, (and $\lambda=\aleph_{1}, \mu=\aleph_{0}$, see the introduction of [She17]). We would like to prove it also for as many pairs of cardinals as we can and even for $\lambda=\mu$. 2) Given $G_{1} \in \mathbf{K}_{\lambda}^{\mathrm{lf}}$ we shall find \mathbf{m} consisting of:

- $\bar{G}=\left\langle G_{i}: i \leq \theta\right\rangle$, increasing continuous, $G_{2+i} \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$
- for unboundedly many $i<\theta$, we make a step toward G_{θ} being in $K_{\text {exlf }}$, by realizing all suitably definable complet qf types on G_{i}, formally $p \in \mathbf{S}_{\mathfrak{S}}\left(G_{i}\right)$ in G_{i+1} but not to lose control, we like to combine those types "nicely", as in [She17, §3]
- for unboundedly many $i<\theta, G_{i}$ is θ-indecomposable inside G_{i+3}.
- also $G_{1} \leq_{\mathfrak{S}} G_{\theta}$, see 3.2(3).

This will imply that any automorphism π of G_{θ} maps G_{i} onto G_{i} for a club of i 's. This replaces "if $G_{\alpha} \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$ is \subseteq-increasing continuous for $\alpha<\lambda^{+}$any automorphism π of $G=\bigcup\left\{G_{\alpha}: \alpha<\lambda\right\}$ maps G_{δ} onto G_{δ} for a club of $\delta<\lambda^{+}$" which was used in earlier proofs. The present construction rely on $\S(0 \mathrm{C})$ (so on [Shee], [She17]).
3) We shall use $\lambda=\lambda^{\left(\theta_{0} ; \aleph_{0}\right)}$; how does this help? We ask, given $\pi \in \operatorname{aut}\left(G_{\theta}\right)$ whether for every $i<\theta$, on the centralizer $\mathbf{C}\left(G_{i}, G_{\theta}\right)$ of G_{i} in G_{θ}, the automorphism is not the identity.

The proof split, in the first case the answer is yes. Let $c_{i} \in \mathbf{C}\left(G_{i}, G_{\theta}\right)$ witness it. If we assume $\lambda=\lambda^{\left\langle\theta ; \aleph_{0}\right\rangle}$ we may (without loss of generality the set of elements of G_{δ} be λ), have an a priori list of λ countable sets in which a countable subset of $\left\{c_{i}: i<\theta\right\}$ necessarily appear; in fact, many as we can consider any $\left\{c_{i}: i \in\right.$ $v\}, v \in[\theta]^{\theta}$. To finish, we use on the one hand, G_{θ} is "nicely" constructed over G_{1} and on the other hand the \mathbf{c} 's in \mathbf{m} to be derived for a witness of $\operatorname{Pr}_{*}\left(\lambda, \lambda, \lambda, \aleph_{0}\right)$.

The second case is when the answer to the question is no, so for some $i<\theta$ this fails, then we shall prove that for every $j, \pi \upharpoonright G_{j}$ is induced by an inner automorphism (as G_{j} a conjugate in $\mathbf{C}\left(G_{i}, G_{\theta}\right)$), so we need just no θ-branch is the natural tree.

In this section, in particular in $3.2(3)$ we rely on [She17].
Hypothesis 3.2.1) $\lambda>\theta=\operatorname{cf}(\theta)>\aleph_{0}$ but there is no μ such that $\lambda=\mu^{+} \wedge \mu>$ $\operatorname{cf}(\mu)=\theta$, this ${ }^{5}$ exclude very few pairs.
2) $\mathbf{K}=\mathbf{K}_{\mathrm{lf}}$.
3) \mathfrak{S} is a set of schemes (for \mathbf{K}_{lf}, see [She17, Def.0.9=La14], there are $\leq 2^{\aleph_{0}}$ ones) consisting of all of them or is just of cardinality $\leq \lambda$, is dense and containing enough of those mentioned in [She17, §2]

Also $c \ell(\mathfrak{S})=\mathfrak{S}$, i.e. \mathfrak{S} is closed, see [She17, $1.6=\mathrm{La} 21,1.8=\mathrm{La} 22]$ hence by [She17] there is such countable \mathfrak{S}. Recall that $G \leq_{\mathfrak{S}} H$ means that $G \subseteq H$ and for every $\bar{b} \in{ }^{\omega>} H$ for some $\bar{a} \in^{\omega>} G$ and $\mathfrak{s} \in c \ell(\mathfrak{S})$ we have $\operatorname{tp}_{\mathrm{bs}}(\bar{b}, G, H)=q_{\mathfrak{s}}(\bar{a}, G)$.

[^4]4) $\bar{S}=\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of $\theta \backslash\{0\}$ to stationary subsets, such that $S_{3} \subseteq$ $S_{\aleph_{0}}^{\theta}:=\left\{\delta<\theta: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ and for every $i \in S_{2}$ there is j such that $i \in\{j, j+$ $1, j+2\} \subseteq S_{2}$ but $j+3 \notin S_{2}$ and $\omega^{2} \mid j$; we may let $S_{0}=\{0\}$ and $S_{1}^{\text {limit }}=\left\{i \in S_{1}: i\right.$ is a limit ordinal $\}$.
Definition 3.3. Let $\mathbf{M}_{1}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{1}$ be the class of objects \mathbf{m} which consists of:
(a) $G_{i}=G_{\mathbf{m}, i}$ for $i \leq \theta$ is increasing continuous, G_{0} is the trivial group with universe $\{0\}, G_{1} \in \mathbf{K}_{\leq \lambda}$ has universe $\left\{\theta \alpha: \alpha<\left|G_{1}\right|\right\}$, and for $i \in(\theta+$ 1) $\backslash\{0,1\}$ the group $G_{i} \in \mathbf{K}_{\lambda}$ has universe $\{\theta \alpha+j: \alpha<\lambda$ and $j<1+i\}$ and so $e_{G_{i}}=0$;
(b) if $i<\theta$, then we have:
$(\alpha) \quad$ - sequences $\mathbf{b}_{i}=\left\langle\bar{b}_{i, s}: s \in I_{i}\right\rangle, \mathbf{a}_{i}=\left\langle\bar{a}_{i, s}: s \in J_{i}\right\rangle ;$

- each $\bar{a}_{i, s}$ is a finite sequence from G_{i};
- each $\bar{b}_{i, s}$ is a finite sequence from G_{i+1};
- I_{i} is a linear order of cardinality λ with a first element;
- J_{i} is a set or linear order of cardinality $\leq \lambda$;
- if $i=0$ then $J_{i} \subseteq \lambda, I_{i} \subseteq \lambda$ and $\left\langle\bar{b}_{i, s}=\left\langle b_{i, s}\right\rangle: s \in I_{i}\right\rangle$ lists the members of G_{1} possibly with repetitions and $\bar{a}_{i, s}=\langle \rangle ;$
- if $\ell g\left(\bar{a}_{i, s}\right)=1$ then let $\bar{a}_{i, s}=\left\langle a_{i, s}\right\rangle$ and similarly for the $b_{i . s}-\mathrm{s}$;
- $\left\langle I_{i}: i\langle\theta\rangle\right.$ are pairwise disjoint, and so are the $I_{i, \alpha}$ when defined, also $s \in I_{i} \Rightarrow s \in \lambda$ for transparency. Similarly concerning $\left\langle J_{i}: i<\theta\right\rangle$
(β) G_{i+1} is generated by $\cup\left\{\bar{b}_{i, s}: s \in I_{i}\right\} \cup G_{i}$;
$(\gamma) \bar{a}_{i, \min \left(J_{i}\right)}=e_{G_{i}} ;$
(δ) $\mathbf{c}_{i}:\left[I_{i}\right]^{2} \rightarrow \lambda$;
(c) [toward being in $\mathbf{K}_{\text {exlf }}$ if $i \in S_{1}$, then $J_{i}=I_{i}$ and we also have $\left\langle\mathfrak{s}_{i, s}: s \in I_{i}\right\rangle$ such that:
$(\alpha) \mathfrak{s}_{i, s} \in \mathfrak{S}$;
$(\beta) \operatorname{tp}_{\mathrm{bs}}\left(\bar{b}_{i, s}, G_{i}, G_{i+1}\right)=q_{\mathfrak{s}_{i, s}}\left(\bar{a}_{i, s}, G_{i}\right)$ so $\ell g\left(\bar{b}_{i, s}\right)=n\left(\mathfrak{s}_{i, s}\right)$ and $\ell g\left(\bar{a}_{i, s}\right)=$ $k\left(\mathfrak{s}_{i, s}\right)$;
(γ) if $s_{0}<_{I_{i}} \ldots<_{I_{i}} s_{n-1}$ then $\operatorname{tp}_{\mathrm{bs}}\left(\bar{b}_{i, s_{0}}{ }^{\wedge} \ldots{ }^{\wedge} \bar{b}_{i, s_{n-1}}, G_{i}, G_{i+1}\right)$ is gotten from $\left(\mathfrak{s}_{i, s_{0}}, \bar{a}_{i, s_{0}}\right), \ldots,\left(\mathfrak{s}_{i, s_{n-1}}, \bar{a}_{i, s_{n-1}}\right)$ by one of the following two ways: Option 1: we use the linear order I_{i} on λ so $\operatorname{tp}_{\mathrm{qf}}\left(\bar{b}_{i, s}, G_{i, s}, G_{i, t}\right)$ is equal to $q_{\mathfrak{s}_{i, s}}\left(\bar{a}_{i, s}, G_{i, s}\right)$ where $G_{i, s}$ is the subgroup of G_{i+1} generated by $G_{i} \cup\left\{\bar{b}_{i, t}: t<_{I_{i}} s\right\}$, see [She17, $\left.\S(1 \mathrm{C}), 1.28=\mathrm{La} 58\right]$; but ${ }^{6}$ we choose:
Option 2: intersect the atomic types over all orders on $\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ each gotten as in Option 1, so I_{i} can be a set of cardinality λ, see [She $17, \S 3]$; so clause $(\mathrm{b})(\gamma)$ is the only use of " I is a linear order".
$(\delta) \mathbf{c}_{i}$ is constantly zero;
(d) [toward indecomposability] if $i \in S_{2}$ then:
$(\alpha) J_{i} \subseteq \lambda$ and $J_{i}=\bigcup\left\{J_{i, \alpha}: \alpha<\lambda\right\}$ disjoint union
$(\beta)\left\langle I_{i, \alpha}: \alpha<\lambda\right\rangle$ is a partition of $I_{i} \subseteq \lambda$;

[^5]$(\gamma) \bar{a}_{i, \alpha}=\left\langle a_{i, \alpha}\right\rangle, \bar{b}_{i, s}=\left\langle b_{i, s}\right\rangle$ and $a_{i, 0}=e_{G_{i}}$;
(δ) if $i \in S_{2}^{\text {limit }}$ then G_{i} is generated by $\left\{a_{s, \alpha}: s \in J_{i}\right.$;
(ع) G_{i+1} is generated by $G_{i} \cup\left\{b_{i, s}: s \in I_{i}\right\}$
(ζ) $\left(I_{i}, \mathbf{c}_{i}, G_{i+1}, G_{i},\left\langle b_{i, s}: s \in I_{i}\right\rangle,\left\langle a_{i, s}: s \in J_{i}\right\rangle,\left\langle I_{i, \alpha}: \alpha<\lambda\right\rangle,\left\langle J_{i, \alpha}:\right.\right.$ $\alpha<\lambda\rangle)$ is like ($I, \mathbf{c}, G_{2}, G_{1},\left\langle b_{s}, c_{\ell, s}:, s \in I\right\rangle,\left\langle a_{s}: s \in J\right\rangle,\left\langle I_{i, \alpha}: \alpha<\right.$ $\left.\lambda\rangle,\left\langle J_{i . \alpha}: \alpha<\lambda\right\rangle\right)$ in $0.15(2)$
(η) assume $i \in\{j, j+1, j+2\} \subseteq S_{1}$,
\bullet_{1} if $i=j$ then we apply 0.16 , i.e. $0.15(2)$, with for transparency $I_{i}, J_{i} \subseteq \lambda, I_{i}=\left\{2 \alpha, 2 \alpha+1: \alpha \in J_{i}\right\}$, and \mathbf{c}_{i} being zero except for the pairs $(2 \alpha, 2 \alpha+1)$ for $\alpha \in J_{i}$
\bullet_{2} if $\ell \in\{1,2\}$ and $i=j+\ell$ then we apply $0.15(1)$ and $J_{i}=J_{j}$ and $a_{i, \alpha}=b_{j, \alpha}^{\ell}$
(e) [against external automorphism] for $i \in S_{3}$ the triple ($\left.\operatorname{barj}, \bar{I}_{i}, \bar{J}_{i}\right)$ satisfies (recalling $i \in S_{3} \Rightarrow \operatorname{cf}(i)=\aleph_{0}$):
(α) $\bar{j}_{i}=\left\langle j_{i, n}: n<\omega\right\rangle$ is increasing with limit i;
(β) $\bar{I}_{i}=\left\langle I_{i, \alpha}: \alpha<\lambda\right\rangle$ is a partition of I_{i}; for $s \in I_{i}$ let $\alpha_{i}(s)$ be the $\alpha<\lambda$ such that $s \in I_{i, \alpha}$ and let $\mathbf{c}_{i, \alpha}=\mathbf{c}_{i} \upharpoonright\left[I_{i, \alpha}\right]^{2}$;
$(\gamma)\left\langle J_{i, \alpha}: \alpha<\lambda\right\rangle$ is a partition of J_{i} and $J_{i, \alpha}=\left\{\omega \alpha_{\ell}: \ell<\omega\right\}$
(δ) $a_{i, \omega \alpha+\ell} \in G_{j_{i, \ell+1}}$ commutes with $G_{j_{i, \ell}}$ and if $\ell \neq 0$ then it has order 2 , and $\notin G_{j_{i, \ell}}$ and $a_{i, \omega \alpha} \equiv e_{G_{i}}$; moreover:

- for some infinite $v \subseteq \omega \backslash\{0\}$ we 7 have $\ell \in \omega \backslash v \Rightarrow a_{i, \omega \alpha+\ell}=$ $e_{G_{i}}, \ell \in v \Rightarrow a_{i, \omega \alpha+\ell} \in \mathbf{C}\left(G_{j[i, \omega \alpha+\ell]}, G_{j[i, \omega \alpha+\ell]+1}\right)$, where:
- $j[i, \omega \alpha+\ell) \in\left[j_{i, \ell}, j_{i, \ell+1}\right)$;
(ϵ) if $s, t \in I_{i, \alpha}$ then $\left[b_{i, s}, b_{i, t}\right]=a_{i, \mathbf{c}_{i}\{s, t\}}$ and $\mathbf{c}_{i}\{s, t\} \in\{\omega \alpha+\ell: \ell<\omega\}$;
(ζ) if $s, t \in I_{i}$ and $\alpha_{i}(s) \neq \alpha_{i}(t)$ then $\left[b_{i, s}, b_{i, t}\right]=e_{G_{i}}$
$(\eta) b_{i, s}$ commutes with G_{i}.
Convention 3.4. If the identity of \mathbf{m} is not clear, we may write $G_{\mathbf{m}, i}$, etc., but if it is clear from the context we may not add it.

Definition 3.5. 1) We shall say that $\mathbf{s}=(\lambda, \theta, \bar{I}, \bar{J}, \overline{\mathfrak{s}}, \bar{j}, \overline{\mathbf{c}})$ is a legal parameter when it is as in Def 3.3 , ignoring the $G_{i}, \bar{a}_{i, s}, \bar{b}_{i, s}$-s; but we usually omit λ, θ as they are clear from the context.
2) We say \mathbf{s} is a short parameter when we replace $\overline{\mathbf{c}}$ by $\mathbf{c}:[\lambda]^{2} \rightarrow \lambda$. the \mathbf{c}_{i} and $\mathbf{c}_{i, \alpha}$ are the restrictions of \mathbf{c} to the suitable sets, except that when the value is "illegal" i.e. not in the required set it is corrected to be zero; illegal values are when for $\beta, \gamma \in I_{i}$ the value is not in $J_{i, \alpha} \cup\{0\}$ or as demanded in $3.3(\mathrm{~d})(\zeta), 3.7(\mathrm{~d})(\theta)$ and $3.3(\mathrm{e})(\delta)$.
2A) We shall say that the legal parameter \mathbf{s} is derived from the short parameter when they are as above; we may not pedantically distinguish between them.
3) We say that $\mathbf{m} \in \mathbf{M}_{1}$ satisfies the legal/short parameter \mathbf{s} when it satisfies \mathbf{s}.
4) We shall say that the legal parameter \mathbf{s} is θ-indecomposable whenfor every $j \in$ $S_{2}^{\text {limit }}$ the function $\mathbf{c}_{j+i}:\left[I_{i}\right]^{2} \rightarrow J_{i}$ is θ-indecomposable.

[^6]Claim 3.6. 1) If \mathbf{s} is a legal parameter and G_{1} is a group of cardinality $\left|J_{\mathbf{s}, 1}\right|$ thenthere is $\mathbf{m} \in \mathbf{M}_{1}$ which satisfies this parameter.
2) If \mathbf{s} is a short parameter then there is a unique legal parameter derived form it.

Definition 3.7. 1) Let $\mathbf{M}_{2}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{2}$ be the set of $\mathbf{m} \in \mathbf{M}_{1}$ satisfying the following additions to Definition 3.3:
(c) ((ε) if $\mathfrak{s} \in \mathfrak{S}, i \in S_{1}, \bar{a} \in{ }^{n(\mathfrak{s})}\left(G_{i}\right)$ and $k=k(\mathfrak{s})$, then for λ elements $s \in I_{i}$ we have $\left(\mathfrak{s}_{i, s}, \bar{a}_{i, s}\right)=(\mathfrak{s}, \bar{a})$;
(d) (θ) if $\{j, j+1, j+2\} \subseteq S_{2}$ then
\bullet_{1} if $i=j$ then $\left\{a_{i, \alpha}: \alpha \in J_{i}\right\}$ generates G_{i+1} and of course $\bar{a}_{i, \alpha}=$ $\left\langle a_{i, \alpha}\right\rangle$
\bullet_{2} if $\ell \in\{1,2\}$ and $i=j+\ell$ then \mathbf{c}_{i} if θ-indecomposable.
(e) (ζ) if $\left\langle i_{\varepsilon}: \varepsilon<\theta\right\rangle$ is increasing continuous and $i_{\varepsilon}<\theta$ and $c_{\varepsilon} \in \mathbf{C}\left(G_{i_{\varepsilon}}, G_{i_{\varepsilon}+1}\right)$ has order 2 and for transparency $c_{\varepsilon} \notin G_{i_{\varepsilon}}$ then for some $\left(i, \alpha, v, \ell_{0}, \ell_{1}, \ldots, \varepsilon_{0}, \varepsilon_{1}, \ldots\right)$ we have:
$\bullet_{1} i<\theta, \alpha<\lambda$ and $v \subseteq w \backslash\{0\}$ is infinite;
$\bullet_{2} \varepsilon_{0}<\varepsilon_{1}<\ldots<\theta$ and $1 \leq \ell_{0}<\ell_{1}<\ldots$;
${ }^{-3} i=\cup\left\{\varepsilon_{n}: n<\omega\right\}$;
${ }^{\bullet}{ }_{4} j_{i, \omega \alpha+\ell_{n}} \leq i_{\varepsilon_{n}}<j_{i, \theta, \alpha+\ell_{n+1}}$ and $a_{\mathbf{m}, i, \omega \alpha+\ell_{n}}=c_{\varepsilon_{n}}$;
1A) Let $M_{1.5}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{1.5}$ be the set of $\mathbf{m} \in \mathbf{M}_{1}$ as it satisfies (c) of part (1).
2) Let $\mathbf{M}_{4}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{4}$ be the class of $\mathbf{m} \in \mathbf{M}_{2}$ such that in addition:
(f) there is a short parameter \mathbf{s} of \mathbf{m} such that \mathbf{c} is a witness of $\operatorname{Pr}_{0}\left(\lambda, \lambda, \lambda, \aleph_{0}\right)$; see Definition 3.8(1) below.
3) $\mathbf{M}_{3}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{3}$ means $\mathbf{m} \in \mathbf{M}_{2}$ satisfies
$(\mathrm{f})^{\prime}$ there is a legal parameter \mathbf{s} of \mathbf{m} such that $\left(\mathbf{c}, \bar{I}^{3}, \bar{I}^{2}\right)$ is a witness of $\operatorname{Pr}_{*}\left(\lambda, \lambda, \aleph_{0}, \aleph_{0}, \theta\right)$; see Definition 3.8(2) below; where $\bar{I}^{\ell}=\left\langle I_{i}: i \in S_{\ell}\right\rangle$.
4) Let $\mathbf{M}_{2.5}=\mathbf{M}_{\lambda, \theta, \bar{S}}^{2.5}$ be the class of $\mathbf{m} \in \mathbf{M}_{1.5}$ such that in addition:
(f) as in part (2).

The following definition $3.8(1)$ of Pr_{0} is just a sufficient condition for what we need to get many cardinals. Then $3.8(2)$ give a replacement of Pr_{0} which is sufficient for our purposes, not the best we can get.
Definition 3.8. Assume $\lambda \geq \mu \geq \sigma+\theta_{0}+\theta_{1}, \bar{\theta}=\left(\theta_{0}, \theta_{1}\right)$; if $\theta_{0}=\theta_{1}$ we may write θ_{0} instead of $\bar{\theta}$.

1) Let $\operatorname{Pr}_{0}(\lambda, \mu, \sigma, \bar{\theta})$ mean that there is $\mathbf{c}:[\lambda]^{2} \rightarrow \sigma$ witnessing it which means:
$(*)_{\mathbf{c}}$ if (a) then (b) where:
(a) (α) for $\iota=0,1$ and $\alpha<\lambda$ we have $\bar{\zeta}^{\iota}=\left\langle\zeta_{\alpha, i}^{\iota}: \alpha<\mu, i<\mathbf{i}_{\iota}\right\rangle$, a sequence without repetitions of ordinals $<\lambda$
$(\beta) \mathbf{i}_{0}<\theta_{0}, \mathbf{i}_{1}<\theta_{1}$;
$(\gamma) h: \mathbf{i}_{0} \times \mathbf{i}_{1} \rightarrow \sigma$
(b) for some $\alpha_{0}<\alpha_{1}<\mu$ we have:

- if $i_{0}<\mathbf{i}_{0}$ and $i_{1}<\mathbf{i}_{1}$ then $\mathbf{c}\left\{\zeta_{\alpha_{0}, i_{0}}^{0}, \zeta_{\alpha_{1}, i_{1}}^{1}\right\}=h\left(i_{0}, i_{1}\right)$.

1A) We define $\operatorname{Pr}_{1}(\lambda, \mu, \sigma, \theta)$ similalry except that in clause (a)(γ) we demand that the function h is constant.
2) Let $\operatorname{Pr}_{*}(\lambda, \mu, \sigma, \partial, \theta)$ mean that $\theta=\operatorname{cf}(\theta), \lambda \geq \mu, \sigma, \partial, \theta$ and some pair (\mathbf{c}, \bar{W}) witness it, which means (if $\lambda=\mu$ we may omit λ, if $\sigma=\partial \wedge \lambda=\mu$ then we can omit σ, λ):
(a) $\bar{W}_{\ell}=\left\langle W_{i}^{\ell}: i<\mu\right\rangle$ for $\ell=1,2$ and $\bar{W}_{1}{ }^{\wedge} \bar{W}_{2}$ is a sequence of pairwise disjoint subsets of λ; but we may replace μ but a set of cardinality μ, even using two different such sets.
(b) $\mathbf{c}:[\lambda]^{2} \rightarrow \sigma$;
(c) if $i \in W_{1}$ and $\varepsilon \in u_{\varepsilon} \in[\lambda]^{<\partial}$ for $\varepsilon \in W_{i}$ and $\gamma<\sigma$ then for some $\varepsilon<\zeta<\lambda$ we have:
$(\alpha) \varepsilon \notin u_{\zeta}, \zeta \notin u_{\varepsilon} ;$
(β) $\mathbf{c}\{\varepsilon, \zeta\}=\gamma$;
(γ) if $\xi_{1} \in u_{\zeta} \backslash u_{\varepsilon}$ and $\xi_{2} \in u_{\varepsilon} \backslash u_{\zeta}$ and $\left\{\xi_{1}, \xi_{2}\right\} \neq\{\varepsilon, \zeta\}$ then $\mathbf{c}\left\{\xi_{1}, \xi_{2}\right\}=0$;
(δ) optional $\left(u_{\varepsilon}, u_{\zeta}\right)$ is a Δ-system pair (see proof);
(d) if $\left\langle\mathscr{U}_{\zeta}: \zeta<\theta\right\rangle$ is \subseteq-increasing with union W_{i} where $i \in W_{2}$ then for some $\zeta<\theta$ we have $\operatorname{Rang}\left(\mathbf{c} \upharpoonright\left[\mathscr{U}_{\zeta}\right]^{2}\right)=\sigma$.
3) We will say that the legal parameter \mathbf{s} witness $\operatorname{Pr}_{*}(\lambda, \mu, \sigma, \partial, \theta)$ when $\left(\overline{\mathbf{c}}, \bar{I}_{i}, \bar{J}_{i}\right)$ witness it, (so $\bar{I}_{i}=\left\langle I_{\mathbf{s}, i}: i \in S_{3}\right\rangle$ and $\bar{J}_{i}=\left\langle I_{\mathbf{s}, i}: i \in S_{3}\right\rangle$).

Fact 3.9. 1) If $\lambda=\mu=\sigma$ is successor of regular and $\partial^{+}=\theta^{+}<\lambda$ then the property $\operatorname{Pr}_{0}(\lambda, \mu, \sigma, \partial, \theta)$ holds
2) There is a θ-indecomposable colouring $\mathbf{c}:[\lambda]^{2} \rightarrow \theta$
3) If (λ, θ are as in Hyp 3.2(1) and) $\mu=\lambda, \sigma^{+}<\lambda, \partial=\aleph_{0}$ then we can find a legal parameter \mathbf{s} such that for every $i \in S_{2} \backslash S_{2}^{\text {limit }}$ the function \mathbf{c}_{i} is θ-indecomposable, but do we have some freedom left for $i \in S_{2}$?..
4) If (λ, θ are as in $\operatorname{Hyp} 3.2(1)$ and) $\mu=\lambda, \sigma^{+}<\lambda, \partial=\aleph_{0}$ then we can find a legal parameter \mathbf{s} which witness $P \operatorname{Pr}_{*}\left(\lambda, \lambda, \aleph_{0}, \aleph_{0}, \theta\right)$

Proof. 1) By [Shed] and see history there.
2) Follows from part (1),
3) If part (1) apply then this follows, using a short parameter using such colouring. Otherwise Choose s as in $3.6(1)$ such that for every non limit $i \in S_{2}$, the function \mathbf{c}_{i} is a θ-indecomposable function from $\left[I_{i}\right]^{2}$ onto J_{i}, this is possible by part (1) or directly by part (3).
4) By the recent version of [Shee], we can get more.
\square
Claim 3.10. 1) Assume $\theta=\operatorname{cf}(\theta) \in\left(\aleph_{0}, \lambda\right), \lambda=\lambda^{\left\langle\theta ; \aleph_{0}\right\rangle}$ or just $\lambda=\lambda^{\left\langle\theta, \aleph_{0}\right\rangle}$, see Definition 0.10 recalling (see 3.2). If $G \in \mathbf{K}_{\leq \lambda}$, then there is $\mathbf{m} \in \mathbf{M}_{\lambda, \theta, \bar{S}}^{2}$ such that $G_{\mathbf{m}, 1} \cong G$.
1A) If in part (1), in addition $\operatorname{Pr}_{0}\left(\lambda, \lambda, \lambda, \aleph_{0}\right)$ or just $\operatorname{Pr}_{0}\left(\lambda, \lambda, \aleph_{0}, \aleph_{0}\right)$ then we can $a d d \mathbf{m} \in \mathbf{M}_{\lambda, \theta, \bar{S}}^{4}$
1B) If in part (1), in addition $\operatorname{Pr}_{*}\left(\lambda, \lambda, \aleph_{0}, \aleph_{0}, \theta\right)$ then we can add $\mathbf{m} \in \mathbf{M}_{\lambda, \theta \cdot \bar{S}}^{3}$; (but here this always holds).
2) If $\lambda \geq 2^{\aleph_{0}}$ then in part (1) we can strengthen Definition 3.7 adding in clause $(e)(\varepsilon) \bullet_{1}, \bullet_{2}$ that $v=\omega \backslash\{0\}$ hence $\ell_{0}=1, \ell_{1}=2, \ldots$.
3) In part (2), if in addition $\operatorname{Pr}_{0}\left(\lambda, \lambda, \aleph_{0}, \aleph_{0}\right)$ then we can add $\mathbf{m} \in \mathbf{M}_{\lambda, \theta, 5}^{2.5}$.
4) If $\lambda \geq \mu:=\beth_{\omega}$ (or just μ strong limit) then for every large enough regular $\theta<\mu$, the assumption of part (1) holds.
5) If above $\theta=\aleph_{1}<\lambda=\lambda^{\theta}$, then the assumption of part (1) holds.

Proof. 1) We us Claim 3.9(2),(3) still we have freedom in choosing the \bar{j}-s the \bar{j}-s., see below; then we shall choose $\mathbf{m} \in \mathbf{M}_{2}$ accordingly.
Case 1: $\lambda=\lambda^{\left\langle\theta, \aleph_{0}\right\rangle}$, see $\S(0 \mathrm{C})$.
Let \mathscr{P} be a subset of $[\lambda]^{\aleph_{0}}$ of cardinality λ witnessing $\lambda=\lambda^{\left(\theta ; \aleph_{0}\right)}$, so
$(*)_{1}$ if $u \subseteq[\lambda]^{\theta}$ then $[u]^{\aleph_{0}} \cap \mathscr{P} \neq \emptyset$.
Without loss of generality $v \in \mathscr{P} \Rightarrow \operatorname{otp}(v)=\omega$.
Hence
$(*)_{2}$ if $\bar{\alpha} \in{ }^{\theta} \lambda$ is increasing then $S_{\bar{\theta}}=\left\{\delta<\theta: \operatorname{cf}(\delta)=\aleph_{0}\right.$ and for some increasing $\bar{\varepsilon} \in{ }^{\omega} \delta$ with limit δ we have $\left.\left\{\varepsilon_{n}: n<\omega\right\} \in \mathscr{P}\right\}$ is stationary
$(*)_{3}$ there is a stationary $S_{2} \subseteq\left\{\delta<\theta: \operatorname{cf}(\delta)=\aleph_{0}\right.$ is stationary.
[Why? If $\theta>\aleph_{1}$ trivially, if not increasing \mathscr{P} by decreasing using a pairing function.]

Now use 3.9(2)
Case 2: $\lambda=\lambda^{\left\langle\theta ; \aleph_{0}\right\rangle}$
Now we choose G_{i} and if $i<\theta$ also $\mathbf{a}_{i}, \mathbf{b}_{i}$ as required; but anyhow we are concentrating on the case $\lambda \geq 2^{\aleph_{0}}$, and then the two cases are equivalent.
1A) Similarly using $3.9(1)$
1B) Similalry using $3.9(4)$
2) Should be similar.
3) Straightforward.
4) By [She00] or see [She06, §1].
5) Check the definitions and 0.16 .

Note that 3.11)(2),(3) is not used here but will help later,
Claim 3.11. Let $\mathbf{m} \in \mathbf{M}_{1}$.

1) If $i<j \leq \theta$ and $i \notin S_{2}^{\text {limit }}$ then $G_{\mathbf{m}, i} \leq_{\mathfrak{S}} G_{\mathbf{m}, j}$, see 3.2(3).
2) For every finite $A \subseteq G_{\mathbf{m}, \theta}$ there is a sequence $\bar{u}=\left\langle u_{i}: i \in v\right\rangle$ such that:
$(*) \frac{1}{\bar{u}}$ for $i \in S_{2}$
(a) $v \subseteq \theta$ is finite and $0 \in v$ for notational simplicity;
(b) $u_{i} \subseteq I_{i}$ is finite ${ }^{8}$ for $i \in v$;
(c) if $i \in v$, then $\operatorname{tp}_{\mathrm{qf}}\left(\left\langle\bar{b}_{i, s}: s \in u_{i}\right\rangle, G_{i}, G_{\theta}\right)$ does not split over $\cup\left\{\bar{a}_{j, s}\right.$: $j \in v \cap i$ and $\left.s \in u_{j}\right\} ;$
(d) if $i \in S_{1}$ and $s \in u_{i}$ then $\bar{a}_{i, s} \subseteq \operatorname{sb}\left(\left\{\bar{b}_{j, s}: j \in v \cap i, s \in u_{j}\right\}, G_{i}\right)$;
(e) if $i \in S_{2} \cup S_{3}$ and $s, t \in u_{i} \underline{\text { then }} \bar{a}_{i, \mathbf{c}\{s, t\}} \subseteq \operatorname{sb}\left(\left\{\bar{b}_{j, s}: j \in v \cap i, s \in\right.\right.$ $\left.\left.u_{j}\right\}, G_{i}\right)$;
(f) if $A \subseteq G_{\mathbf{m}, i}$ and $i \in(0, \theta)$ then $v \subseteq i$;
$(*)_{2} A$ is included in $\operatorname{sb}\left(\left\{\bar{b}_{i, s}: i \in v, s \in u_{i}\right\}, G_{\theta}\right)$.
3) We have $\bar{u}=\left\langle u_{i}^{1} \cup u_{i}^{2}: i \in v\right\rangle$ satisfies $(*)_{1}$, i.e. (*) $\frac{1}{\bar{u}}$ from part (2) holds when :

[^7]\oplus (a) $\bar{u}_{\ell}=\left\langle u_{i}^{\ell}: i \in v\right\rangle$ for $\ell=1,2$;
(b) we have $(*)_{\bar{u}_{\ell}}^{1}$ for $\ell=1,2$;
(c) if $i \in v, s_{1} \in u_{i}^{1} \backslash u_{i}^{2}$ and $s_{2} \in u_{i}^{2} \backslash u_{i}^{1}$ then $\mathbf{c}_{i}\left\{s_{1}, s_{2}\right\}=0$.

3A) If $v_{1} \subseteq v_{2}, \bar{u}^{2}=\left\langle u_{i}: i \in v_{2}\right\rangle, \bar{u}^{1}=\bar{u}^{2} \upharpoonright v_{1}$ and $i \in v_{2} \backslash v_{1} \Rightarrow u_{i}=\emptyset$ then $(*)_{\bar{u}^{1}}^{1} \Leftrightarrow(*)_{\bar{u}^{2}}^{1}$.
4) The type $\operatorname{tp}_{\mathrm{qf}}\left(\left\langle\bar{b}_{i, s}^{\ell}: s \in u_{i}^{\ell}, \ell \in\{1,2\}\right\rangle, G_{i}, G_{i+1}\right)$ does not split over $\left\{\bar{b}_{j, s}^{\ell}: j \in\right.$ $\left.v \cap i, s \in u_{j}^{\ell}, \ell \in\{1,2\}\right\} \cup\left\{a_{i, \alpha}\right\}$ when:
(a) $\bar{u}_{\ell}=\left\langle u_{j}^{\ell}: j \in v\right\rangle$;
(b) $(*)_{\bar{u}_{\ell}}^{1}$ holds for $\ell=1,2$;
(c) $i \in S_{3} \cap v$;
(d) $s_{*} \in u_{i}^{1} \backslash u_{i}^{2}, t_{*} \in u_{i}^{2} \backslash u_{i}^{1}$;
(e) $\alpha=\mathbf{c}_{i}\left\{s_{*}, t_{*}\right\}$;
(f) clause (c) from part (3) holds when $\left\{s_{1}, s_{2}\right\} \neq\left\{s_{*}, t_{*}\right\}$.
Proof. 1) By part (2) recalling the assumptions on \mathfrak{S}.
2) By induction on $\min \left\{j<\theta: A \subseteq G_{\mathbf{m}, j}\right\}$. Note that for $A \subseteq G_{1}$ clause $(*) \frac{1}{\bar{u}}(c)$ is trivial.
3),4) Easy, too.

Main Claim 3.12. If $\mathbf{m} \in \mathbf{M}_{2}$, then $G_{\mathbf{m}, \theta} \in \mathbf{K}_{\lambda}^{\text {exlf }}$ is complete and is $(\lambda, \theta, \mathfrak{S})$-full, (see [She17, 1.15=La33]) and extend $G_{\mathbf{m}, 1}$.

Proof. Being in $\mathbf{K}_{\lambda}^{\mathrm{lf}}$ is obvious as well as extending $G_{\mathbf{m}, 1}$; being ($\lambda, \theta, \mathfrak{S}$)-full is witnessed by $\left\langle G_{\mathbf{m}, i}: i<\theta\right\rangle, S_{1}$ being unbounded in θ and clauses 3.3(c), 3.7(c)(ε) so far $\mathbf{m} \in \mathbf{M}_{1.5}$ is sufficient.

The main point is proving $G_{\mathbf{m}, \theta}$ is complete, so assume π is an automorphism of $G_{\mathbf{m}, \theta}$.

Now
$(*)_{1}$ if $i \in S_{2}^{\text {limit }}$ then G_{i} is θ-indecomposable in G_{i+3}.
[Why? By 3.7(d)(θ) .]
So $\left\langle\pi\left(G_{\mathbf{m}, i}\right): i<\theta\right\rangle$ is $\leq_{\mathbf{K}_{1 f}}$-increasing with union $G_{\mathbf{m}, \theta}$ hence by $(*)_{1}$ above, if $i \in S 6[\text { limit }]_{2}$ is a limit ordinal then $\left(\forall^{\infty} j<\theta\right)\left(G_{\mathbf{m}, i} \subseteq \pi\left(G_{\mathbf{m}, j}\right)\right)$. The parallel statement holds for π^{-1} hence E is a club of θ where $E:=\{i<\theta: i$ is a limit ordinal, hence $i=\sup \left(S_{1} \cap i\right)$ and π maps $G_{\mathbf{m}, i}$ onto $\left.G_{\mathbf{m}, i}\right\}$; note that by 3.7(c)(ε) and the middle demand, $i \in E \Rightarrow G_{i} \in \mathbf{K}_{\text {exlf }}$.

Next we define:
$(*)_{2} S^{\bullet}$ is the set of $i \in E \cap S_{1}$ such that π is not the identity on $\mathbf{C}\left(G_{\mathbf{m}, i}, G_{\mathbf{m}, i+\omega}\right)$.
The proof now split to two cases. Case 1: S^{\bullet} is unbounded in θ
So for $i \in S^{\bullet}$ choose $c_{i} \in \mathbf{C}\left(G_{\mathbf{m}, i}, G_{\mathbf{m}, i+\omega}\right)$ such that $\pi\left(c_{i}\right) \neq c_{i}$. Without loss of generality c_{i} has order 2 , because the set of elements of order 2 from $\mathbf{C}\left(G_{\mathbf{m}, i}, G_{\mathbf{m}, i+\omega}\right)$ generates it, see $[$ She17, $4.1=\mathrm{Ld} 36,4.10=\mathrm{Ld} 93]$. Choose $\left\langle\mathbf{i}_{\varepsilon}=\right.$ $\mathbf{i}(\varepsilon): \varepsilon<\theta\rangle$ increasing, $\mathbf{i}_{\varepsilon} \in S^{\bullet}$ and so as $\mathbf{i}_{\varepsilon}+\omega \leq \mathbf{i}_{\varepsilon+1} \in E$ clearly $\pi\left(c_{\varepsilon}\right) \in G_{\mathbf{m}, \mathbf{i}(\varepsilon+1)}$. Now we apply 3.7(e), 3.8(1) and get contradiction by 3.11(4) recalling 3.7(2)(h) and $3.3(\mathrm{e})$; but we elaborate.

Now shall we apply $3.7(1)(\mathrm{e})$, (indirectly $3.10(1), 0.10)$. So there are $\left(i, \alpha, v, \ell_{0}, \ell_{1}, \ldots, \varepsilon_{0}, \varepsilon_{1}, \ldots\right)$ as there, in particular $i \in S_{3}$ and here $v=\omega \backslash\{0\}$. Now for every $s \in I_{i, \alpha}$ we apply $3.11(2)$, getting $\bar{u}_{s}=\left\langle u_{s, \iota}: \iota \in v_{s}\right\rangle$ and let ℓ_{s} be such that $v_{s} \subseteq j_{i, \omega \alpha+\ell_{s}}$, without loss of generality $i \in v_{s}, s \in u_{s, i}$.

Now consider the statement:
$(*)_{3}$ there are $s_{1} \neq s_{2} \in I_{i, \alpha}$ and k such that:
(a) $\mathbf{c}\left\{s_{1}, s_{2}\right\}=\ell_{k}$;
(b) $\ell_{k}>\ell_{s_{1}}, \ell_{s_{2}}$;
(c) if $t_{1} \in \cup\left\{u_{s_{1}, \iota}: \iota \in v_{t_{1}} \backslash i\right\}, t_{2} \in \cup\left\{u_{s_{2}, \iota}: \iota \in v_{t_{2}} \backslash i\right\}$ and $\left\{t_{1}, t_{2}\right\} \neq$ $\left\{s_{1}, s_{2}\right\}$ then $\mathbf{c}\left\{t_{1}, t_{2}\right\}=0 ;$ or for later proofs:
$(\mathrm{c})^{\prime} \quad(\alpha)$ if $t_{1} \in u_{s_{1}, i} \backslash u_{s_{2}, i}$ and $t_{2} \in u_{s_{2}, i} \backslash u_{s_{1}, i}$ and

- $\left\{t_{1}, t_{2}\right\} \neq\left\{s_{1}, s_{2}\right\}$ then $\mathbf{c}\left\{t_{1}, t_{2}\right\}=0$, or just
- $t_{1}, t_{2} \in I_{i, \alpha} \Rightarrow \mathbf{c}\left\{t_{1}, t_{2}\right\}<\ell_{k}$;
- $t_{1}, t_{2} \in I_{i, \beta}, \beta<\lambda ; \beta \neq \alpha$ then $j_{i, \omega \beta+\mathbf{c}\left\{t_{1}, t_{2}\right\}}<j_{i, \omega \alpha+\ell(k)}$ (we use $j_{i, \omega \alpha+\ell} \in\left(j_{i, \ell}^{*}, j_{i, \ell+1}^{*}\right)$ - check);
(β) if $\iota \in v_{1} \cap v_{2}$ and $\iota>i,\left(\iota \in S_{3}\right), \beta<\lambda$ and $t_{1} \in v_{s_{1}, \iota}, t_{2} \in v_{s_{2}, \iota}$ then $\mathbf{c}\left\{t_{1}, t_{2}\right\}=0$.

Now why is $(*)_{3}$ true? This is by the choice of \mathbf{c}, that is, as \mathbf{c} witnesses $\operatorname{Pr}_{0}\left(\lambda, \lambda, \lambda, \aleph_{0}\right)$
Now to get a contradiction we would like to prove:
$(*)_{4}$ the type $\operatorname{tp}\left(\left(\pi\left(b_{s_{1}}\right), \pi\left(b_{s_{2}}\right)\right), G_{\mathbf{m}, i}, G_{\mathbf{m}, \theta}\right)$ does not split over $G_{\mathbf{m}, j_{i, \omega \alpha+\ell(k)}} \cup$ $\left\{c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right\}$ hence over $G_{\mathbf{m}, \mathbf{i}\left(\varepsilon_{k}\right)} \cup\left\{c_{\mathbf{i}(\varepsilon(k))}\right\}$.

It follows from $(*)_{4}$ that $\operatorname{tp}\left(\left(b_{s_{1}}, b_{s_{2}}\right), \pi^{-1}\left(G_{\mathbf{m}, i}\right), \pi^{-1}\left(G_{\mathbf{m}, \theta}\right)\right)$ does not split over $\left.\pi^{-1}\left(G_{m, \mathbf{i}\left(\varepsilon_{k}\right)}\right) \cup\left\{\pi^{-1}\left(c_{\mathbf{i}(\varepsilon)}\right)\right\}\right)$. But $i\left(\varepsilon_{k}\right), i \in E$ have it follows that $\pi\left(G_{m, i}\right)=$ $G_{\mathbf{m}, i}$ and $\pi^{-1}\left(G_{\mathbf{i}\left(\varepsilon_{k}\right)}=G_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)$ has $\operatorname{tp}\left(\left(b_{s_{1}}, b_{s_{2}}\right), G_{\mathbf{m}, i}, G_{\mathbf{m}, \theta}\right)$ does not split over $G_{\mathbf{i}\left(\varepsilon_{k}\right)} \cup\left\{\pi^{-1}\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)\right\}$.

Now $\left[b_{s_{1}}, b_{s_{2}}\right]=\pi^{1}\left(\left[b_{s_{1}}, b_{s_{2}}\right]\right)=\pi^{-1}\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)$ which is $\neq c_{i\left(\varepsilon_{k}\right)}$. But as $c_{\mathbf{i}\left(\varepsilon_{k}\right)} \in$ $\mathbf{C}\left(G_{\mathbf{m}, \mathbf{i}\left(\varepsilon_{k}\right)}, G_{\mathbf{m}, \theta}\right)$ clearly also $\pi^{-1}\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)$ belongs to it, hence it follows that $\pi^{-1}\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right) \in$ $\operatorname{sb}\left(\left\{c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right\} ; G_{\theta}\right)$, but as $c_{\mathbf{i}\left(\varepsilon_{k}\right)}$ has order two, the latter belongs to $\left\{c_{\mathbf{i}\left(\varepsilon_{k}\right)}, e_{G_{\sigma}}\right\}$.

However $\pi^{-1}\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)$ too has order 2 hence is equal to $c_{\mathbf{i}\left(\varepsilon_{k}\right)}$; applying π we get $c_{\mathbf{i}\left(\varepsilon_{k}\right)}=\pi\left(c_{\mathbf{i}\left(\varepsilon_{k}\right)}\right)$ a contradiction to the choice of the c_{i} 's.
Case 2: $i_{*}=\sup \left(S^{\bullet}\right)+1$ is $<\theta$.
Now for any $i \in S^{\prime}:=E \cap S_{1} \backslash i_{*}$ by [She17, 2.18=Lc62] there is $g_{i} \in G_{\mathbf{m}, i+1}$ such that $\square^{g_{i}}\left(G_{\mathbf{m}, i}\right) \subseteq \mathbf{C}\left(G_{\mathbf{m}_{i}}, G_{\mathbf{m}, i+1}\right)$. So if $a \in G_{\mathbf{m}, i}$ then $g_{i}^{-1} a g_{i} \in \mathbf{C}\left(G_{m, i}, G_{\mathbf{m}, i+1}\right)$ and $a=g_{i}\left(g_{i}^{-1} a g_{i}\right) g_{i}^{-1}$ hence $\pi(a)=\pi\left(g_{i}\right) \pi\left(g_{i}^{-1} a g_{i}\right) \pi\left(g_{i}^{-1}\right)=\pi\left(g_{i}\right)\left(g_{i}^{-1} a g_{i}\right) \pi\left(g_{i}\right)^{-1}$ recalling $i \notin S^{\bullet}$ being $\geq i_{*}$ hence $\pi(a)=\left(g_{i} \pi\left(g_{i}\right)^{-1}\right)^{-1} a g_{i} \pi\left(g_{i}^{-1}\right)$. If for some g the set $\left\{i \in S^{\prime}: g_{i}=g\right\}$ is unbounded in θ we are easily done, so toward contradiction assume this fails.

But for every $\delta \in \operatorname{acc}(E) \cap S_{1} \backslash i_{*}$, we can by $3.11(1)$ choose a finite $\bar{a}_{\delta} \subseteq G_{\delta}$ and $\mathfrak{s}_{\delta} \in \mathfrak{S}$ such that $\operatorname{tp}_{\mathrm{bs}}\left(\pi\left(g_{\delta}\right) g_{\delta}^{-1}, G_{\delta}, G_{\theta}\right)=q_{\mathfrak{s}_{\delta}}\left(\bar{a}_{\delta}, G_{\delta}\right)$ and let $i(\delta) \in E \cap \bar{\delta}$ be such that $\bar{a}_{\delta} \subseteq G_{i(\delta)}$.

Clearly:
\circledast if $d_{1}, d_{2} \in G_{\delta}, d_{2} \neq \pi\left(d_{1}\right)$ then $\operatorname{tp}_{\mathrm{bs}}\left(\left\langle d_{1}, d_{2}\right\rangle, \bar{a}_{\delta}, G_{\delta}\right) \neq \operatorname{tp}_{\mathrm{bs}}\left(\left\langle d_{1}, \pi\left(d_{1}\right)\right\rangle, \bar{a}_{\delta}, G_{\delta}\right)$.
[Why? Because $\pi\left(d_{1}\right)=\pi\left(g_{\delta}\right) g_{i}^{-1} d_{1} g_{i} \pi\left(g_{\delta}\right)^{-1}$ and the choice of \bar{a}_{δ}.]
Hence for some group term $\sigma_{d_{1}}\left(\bar{x}_{1+\ell g\left(\bar{b}_{\delta}\right)}\right)$ we have $\pi\left(d_{1}\right)=\sigma_{d_{1}}^{G_{\delta}}\left(d_{1}, \bar{a}_{\delta}\right)$ and $\sigma_{d_{1}}$ depends only on $\operatorname{tp}_{\mathrm{bs}}\left(d_{1}, \bar{a}_{\delta}, G_{\delta}\right)$. By Fodor Lemma for some $i(*)$ the set $S=\{\delta$: $\delta \in \operatorname{acc}(E) \cap S_{1} \backslash i_{*}$ and $\left.i(\delta)=i(*)\right\}$ is a stationary subset of θ.

Now we can finish easily, e.g. as G_{δ} for $\delta \in S$ belongs to $\mathbf{K}_{\text {exlf }}$ and we know that it can be extended to a complete $G^{\prime} \in \mathbf{K}_{\text {exlf }}$ or just see that all the definitions in $*$ agree and should be one conjugation.
$\square_{3.12}$
Conclusion 3.13. 1) Assume $\lambda>\beth_{\omega}$ and $G \in \mathbf{K}_{\leq \lambda}^{\mathrm{lf}}$ and $\theta=\operatorname{cf}(\theta) \in\left(\aleph_{0}, \beth_{\omega}\right)$ is large enough and \mathfrak{S} is as in 3.2(3).

Then there is a complete $(\lambda, \theta, \mathfrak{S})$-full $H \in \mathbf{K}_{\lambda}^{\text {exlf }}$ extending G.
2) Instead $\lambda>\beth_{\omega}$ we can assume $\lambda=\lambda^{\aleph_{0}}>\aleph_{1}$.

Proof. 1) Fixing λ and θ and it suffices to find $\mathbf{m} \in \mathbf{M}_{\lambda, \theta}^{3}$ such that $G_{\mathbf{m}, 1}=G$. As $\lambda \geq \beth_{\omega}$, the assumption of $3.10(1)$ holds for every sufficiently large $\theta<\beth_{\omega}$; hence there is $\mathbf{m} \in \mathbf{M}_{\lambda, \theta, \bar{S}}^{2}$ such that $G_{\mathbf{m}, 1}$ is isomorphic to G and \bar{S} as there.

As λ is a successor of a regular, the assumption of $3.10(1 \mathrm{~A})$ holds (by 3.8(1) hence $\mathbf{m} \in \mathbf{M}_{\lambda, \theta, \bar{S}}^{3}$. So by 3.12 we indeed are done.
Remark 3.14. The assumption " $\lambda>\beth_{\omega}$ " comes from quoting 3.10(2) hence it is "hard" for $\lambda<\beth_{\omega}$ to fail. Similarly below.

Of course we have:
Observation 3.15. If $\mathbf{m} \in \mathbf{M}_{1.5}$ then $G_{\mathbf{m}, \theta}$ is $(\lambda, \theta, \mathfrak{S})$-full and extends $G_{\mathbf{m}, 0}$.

References

[Bal09] John Baldwin, Categoricity, University Lecture Series, vol. 50, American Mathematical Society, Providence, RI, 2009.
[GS83] Rami P. Grossberg and Saharon Shelah, On universal locally finite groups, Israel J. Math. 44 (1983), no. 4, 289-302. MR 710234
[GS84] Donato Giorgetta and Saharon Shelah, Existentially closed structures in the power of the continuum, Ann. Pure Appl. Logic 26 (1984), no. 2, 123-148. MR 739576
[Hic78] Ken Hickin, Complete universal locally finite groups, Transactions of the American Mathematical Society 239 (1978), 213-227.
[Shea] Saharon Shelah, Abstract elementary classes near \aleph_{1}, arXiv: 0705.4137 Ch. I of [Sh:h].
[Sheb] , Appendix to: Classification of Nonelementary Classes. II., appendix of [Sh:88].
[Shec] , Canonical universal locally finite groups.
[Shed] , Colouring of successor of regular again, arXiv: 1910.02419.
[Shee] , Density of indecomposable locally finite groups.
[Shef] , Introduction and Annotated Contents, arXiv: 0903.3428 introduction of [Sh:h].
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She00] , The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285321, arXiv: math/9809200. MR 1759410
[She06] _, More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056
[She11] , No limit model in inaccessibles, Models, logics, and higher-dimensional categories, CRM Proc. Lecture Notes, vol. 53, Amer. Math. Soc., Providence, RI, 2011, arXiv: 0705.4131, pp. 277-290. MR 2867976
[She14] \qquad , Dependent T and existence of limit models, Tbilisi Math. J. 7 (2014), no. 1, 99-128, arXiv: math/0609636. MR 3313049
[She15] , Dependent theories and the generic pair conjecture, Commun. Contemp. Math. 17 (2015), no. 1, 1550004, 64, arXiv: math/0702292. MR 3291978
[She17] _ Existentially closed locally finite groups (Sh312), Beyond first order model theory, CRC Press, Boca Raton, FL, 2017, arXiv: 1102.5578, pp. 221-298. MR 3729328
[ST97] Saharon Shelah and Simon Thomas, The cofinality spectrum of the infinite symmetric group, J. Symbolic Logic 62 (1997), no. 3, 902-916, arXiv: math/9412230. MR 1472129
[SZ79] Saharon Shelah and Martin Ziegler, Algebraically closed groups of large cardinality, J. Symbolic Logic 44 (1979), no. 4, 522-532. MR 550381
[Tho86] Simon Thomas, Complete universal loclly finite groups of large cardinality, 277-301.
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: February 17, 2020.
 1991 Mathematics Subject Classification. Primary: 03C55, 03C50, 03C60; Secondary: 03C98, 03C45.

 Key words and phrases. model theory, applications of model theory, groups, locally finite groups, canonical closed extension, endo-rigid group.

 The author thanks Alice Leonhardt for the beautiful typing. First typed February 18, 2016. This is paper number 1098 in the author list of publication. In References [She17, 0.22=Lz19] means [She17, 0.22] has label z19 there, L stands for label; so will help if [She17] will change. The reader should note that the version in my website is usually more updated than the one in the mathematical archive.

[^1]: ${ }^{1}$ The demand "the a_{i} 's commute in G_{1} " is used in the proof of $(*)_{8}$, and the demand " $a_{\beta_{i}}$ has order 2 " is used in the proof of $(*)_{7}$.
 ${ }^{2}$ Mote that as $a \in \mathscr{X} \Rightarrow a=a^{-1}$ and $\left[b_{s_{2}} \cdot b_{s_{1}}\right]=\left(\left[b_{s_{1}} \cdot b_{s_{2}}\right]\right)^{-1}$ the order between $\left.s_{1}, s\right) 2$ is irrelavant; if $a \in \mathscr{X}$ has a differnet order we would have to be more careful.

[^2]: ${ }^{3}$ We can improve the bound a little, e.g.if $\mu=\chi^{+}$then $\beth_{\varepsilon+1}(\chi)$ suffices.

[^3]: ${ }^{4}$ We may use F with domain $\left\{\bar{M}: M=\left\langle M_{i}: i<j\right\rangle\right.$ is increasing, each $M_{i} \in \mathbf{K}$ has universe an ordinal $\left.\alpha \in\left[\lambda, \lambda^{+}\right)\right\}$; see [Sheb].

[^4]: ${ }^{5}$ We can exclude more but immaterial here.

[^5]: ${ }^{6}$ Option 1 is useful in some generalizations to $K_{\mathfrak{k}}$ not closed under products.

[^6]: ${ }^{7}$ An alternative is $v=\omega \backslash\{0\}, a_{i, \omega \alpha+\ell} \in \mathbf{C}\left(G_{j_{i, \ell}}, G_{j_{i, \ell+1}}\right)$. In this case in $3.7(e)(\varepsilon)$ we naturally have $c_{\varepsilon} \in \mathbf{C}\left(G_{i_{\varepsilon}}, G_{i_{\varepsilon+1}}\right)$ and $\ell_{0}=1, \ell_{1}=2, \ldots$ But then we have to be more careful in 3.10, e.g. in $3.10(1)$ if we assume, e.g. $\lambda=\lambda^{\langle\theta ; \theta\rangle}$ and $\theta>\aleph_{1}$ all is O.K. (recalling we have guessing clubs on $S_{\aleph_{0}}^{\theta}$). However, using $\mathfrak{s}_{\mathrm{cg}}$, see $([\operatorname{She} 17,2.17=\mathrm{Lc} 50])$, the present is enough here.

[^7]: ${ }^{8}$ Note that in $3.11(2)$ we allow " u_{i} is empty".

