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NON-REFLECTION OF THE BAD SET FOR Iy[\] AND pcf
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ABSTRACT. We reconsider here the following related pcf questions and make
some advances:

(Q1)  concerning the ideal I;[A\] how much reflection do we have for the bad
set Sl)fii C {6 < X : cf(d) = k} assuming it is well defined, (for transparency
only)?

(Q2) are there somewhat free black boxes?

The advances in (Q2) will be used in subsequent for constructions of Abelian
groups and modules.
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§ 0. INTRODUCTION

§ 0(A). Background.

On Ig[\] for X > 0 regular see (Definition 0. 12( ) and) [She79], [Shec], [She93].
So we know that in many cases there is set S C Sy == {6 < X:cf(d) = 6} such
that dual(s[\]) = 2x + (S) \SA’ ) and so SA p 1s unique (0.12(4)) modulo the club
filter, Zy; for definitions see §(0C).

We know that consistently, starting with a supercompact we can force that; e.g.
GCH and S’Rirh&n (0.12(4)) is stationary for n = 1 but we do not know it for

n > 1. Still in this model de . x, reflects in no R,,, however we use G.C.H. or just

R, > 2% More generally, 1f 1 is strong limit of cofinality Ry and S = SbJr r, We
do not know if S can reflect in stationarily many d’s of cofinality N,, > Nl when
R,, < 2% Similarly for p strong limit of cofinality & < y, (see 0.1, 0.2).

By [She93, §1] for regular A,k such that A > x* there is S € I.[\] which is
stationary, in fact reflect in stationarily many § < X of cofinality, e.g. k™ < X for
n > 1. Related subsets are the good/bad/chaotic sets of scales ((fa : @ < A), fo €
®u), see [She94, Ch.II], [MS94], [Shel3] and 0.18 here.

The proof in [She94, Ch.IX,§2] of pp(R,) < N, in particular continue these
ideas.

Recall that if f = (f, : @ < A) is <j-increasing, <j-cofinal in [] A\i, \; =

i<K
cf(\i) > 0 > kT then SEU(F) == {0 < A : cf(6) = 6 and f|§ is flat (see 0.18)}
has complement orthogonal to Is[\] modulo the non-stationary ideal, (i.e. have a
non-stationary intersection with any A € Ip[\]).

Combining the proofs of [She93, §1] and [She94, Ch.IX,§2] it follows that Sgd(f) =
Sﬁ mod Dy when § = k1", n > 4 but we have not looked at it. On this see
Sharon-Viale [SV10, footnote 5], referring to Abraham-Magidor [AM10, 2.12,2.19]
which contains a representation of pcf theory. We made this work after hearing on
Kojman-Milovich-Spadaro [MK].

We start by continuing [She93, §1], [She94, Ch.IX,§2], to re-examine some of
those problems; see §(0B). More specifically, we shed some light on question (Q1)
in 0.1, 0.2 proved in §(1A).

What about (Q2)? This was a central issue of [Shel3] which deal with one
dimensional black boxes. The n-dimensional black boxes are from [She07]. See
more applications to Abelian groups and modules in Gobel-Shelah [GS09], Gobel-
Shelah-Strilngman [GSS13], Gébel-Herden-Shelah [GHS14]; and lately [S*], which
relies on the results here; see 0.6, 0.4, 0.7 which are proved in §(1B).

Much earlier Solovay proved that above a compact cardinal, the singular cardinal
hypothesis holds; it follows that the so called strong hypothesis (p > cf(u) =
pp(u) = p) holds; so pef becomes trivial. Moreover, by [She94, Ch.I1] if pp ;(u) >
A =cf(A) > p > cf(u) = & ( where J D [k]<" is an ideal on k) then there is a
sequence (fq : a < \) with f, € " which is <j-increasing and is p*-free even as a
sequence, so f 6§ is flat when k < cf(8) < p, (i.e. the good set of f,ed(f) is large).

But if K = cf(u) < p, the consistency result on I,.+[u*] from [She79] can be
strengthened; we know that consistently there are strong reflection properties, say
if GCH, consistently the case of Chang conjecture holds from (R,,+1,R,,) — (X1, Nq),



Paper Sh:1008, version 2015-05-07_12. See https://shelah.logic.at/papers/1008/ for possible updates.

4 SAHARON SHELAH

by Levinski-Magidor-Shelah [LMS90] and (R 4w+1, Rotw) = Rot1,Re). We can
manipulate 2” for k regular.

§ 0(B). Results.

What do we accomplish here? First, assume A > k > Ny and for transparency
assume SE% is well defined. How much can it reflect? Assume X\ = pt,cf(u) =

d < i, ju strong limit. We knew that ([She79]) if, e.g. 6 = (27)T"*! then S}, does

not reflect in Sj. Here 0.2 gives more: assuming (Vn)(?’€+n < A) we have, e.g. for
n>2m>n+2: if Sk)fln reflects in S;\M this reflection does not reflect in S;‘er;
moreover does not reflect in any Sg‘+79 € Reg N A\x*"*2. See more in 0.2.
Second, turning to “if f is < j-increasing cofinal in [[ A\;/J and i < kK = \; =
i<K
cf(N;) > k; how large is Segd[f, J)”? We knew Sgd[f, J] is large; here we prove in
0.1(1) that: if § € [x+4, keomP())) (Vi) (8 < \;) and 6 is regular < X then SE°[f, J]
contains S (modulo the club filter of course). Hence, e.g. f is (T¢0mP()) g+4 J)-
free when x < 6,0+°™P()) < min{); : i < K}, see Definition 1.10(2). So if A\, =
pp(pe) > pfpe > No = cf(pg) for € = 1,2 and pf* < A < A then (Ag, p2)
(A1, ).
But this is not enough to prove what we need for Q2, i.e. 0.4 which is (6,6;)-
freeness; (the problem being for (J; : i < ) increasing continuous, for i of cofinality
< k) but 1.11 tells us more, in particular, enough for Theorem 0.4.
More specifically, we shall show (the proofs are given later, the definitions appear
in §(0C) and 1.10 below):

Theorem 0.1. Assume A\ > o >0 > 01 > 0 > Vg are reqular.
1) Some S € I[N reflect in every § € S, see Definition 0.14(1).
2) Moreover, if § € S then {61 < : cf(61) = O and S reflects in 61} is a stationary
subset of 4.

3) Moreover, for any (0,0, < o)-system 2%, see Definition 0.9, for any ordinal
§ € 82, for any increasing continuous sequence (5; : i < o) of ordinals with limit &

(clearly exists) for some Sy € I3%(0,a), see Definition 0.13(2) we have:

(x) if j € SZ\S1 then there is Sy € I;5(2*); see 0.13(1)(x)2 such that for
some increasing continuous sequence (ic : € < 0) with limit j we have
£ € 89\ Sy = 0;. € goody ().

With stronger assumptions on cardinal arithmetic we get more:

Theorem 0.2. Assume A > 0% and )\, 0 are regular uncountable and 207" <\
for every n.

1) If SE% is (well defined and) stationary then there are n and stationary S C Sg:rn
which reflects in no ordinal & of cofinality € [0,07%).

2) There is S € Iy[\] such that for every n > 2, either Sy = Sp,, Nrefl(A\S) is not
stationary (in \) or Sy is stationary but is the union of < 20" sets each of which
reflect in no & of cofinality € [0"+2,61%).

3) In part (2) in the second possibility some stationary Sy C S1(C S).) either
reflect in no ordinal of cofinality < 0T or S3 = {§ € S$‘+n+1 1 S9N is stationary
in 0} is a stationary subset of Sg‘+n+1 which reflect in no § < \ of cofinality < 07+,
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4) If S) ¢ Ip[\] and m > 2 then there are n € {m, m + 1} and stationary S C S;
such that S reflects in no § < X of cofinality € [T+, 1),

In [Shel3] we consider another version of freeness, note that being (6, 0)-free
follows from f-free and is stronger than stable in every x € [0,0). We do not get
it fully but enough to get “quite free k-combinatorial parameters” which is enough
for applications in [ST].

Remark 0.3. 1) Recall that for regular 0 > g, 1 € Cy means just that u is strong
limit singular of cofinality 0.

2) For 0 = Xg the class Cp is almost equal to (and is contained in) the class
{p : p > Ny strong limit of cofinality Ry}, more specifically, the difference does not
reflect in any singular cardinal.

3) Having two possibilities in 0.4, make us prefer the non-tree version of the black
box, (see [ST]).

Theorem 0.4. Assume o < K are reqular, p € C,,, i.e. u is strong limit singular
of cofinality k.
At last one of the following holds:

(A) there is a pu*t-free F C "u of cardinality A := 2%, this is called “u has a
1-solution”
(B) A =2 is reqular and there is a (\, u, 0, k) — 5-solution, see Definition 0.6.

Claim 0.5. If p > k = cf(u) > o = cf(0) and we let X\ = p* then there is i
satisfying clauses (a)-(f) of Definition 0.6.

Definition 0.6. Assume p € Cy, A = 2# = cf(N),0 = cf(0) < k; we say x is a
(\, p, K, o) — 5-solution when it consists of:

(a) N={(ns:6€5)

(b) S C S2 is stationary in A (and € I,[\])

(¢) ns == (a5, : (4,5) € 0 x k) and (as,0 : ¢ < 0) is increasing with limit &
and as;; € [es.5,0, 5,50 + ) increasing with j and a0 + p < Q544105
and let Cs = {as;;: (4,)) € 0 X K}

(d) [treeness] if A5y iq 51 = Xdain,ja then (i17j1) = (ig,jg) and 7 < 11 NG <jo=
Q6§ i,j = Abai,j

(e) [freeness| 77 is (9771 0+, J,)-free, see 1.10(4) when x < 0 < p and J, =
JE = {u C o x k: for some (i, j.) € o X k we have u C {(i,j) € o X K :
i< iy orj < g}

(f) [freeness] 7] is (kT J,)-free

(9) [black box] for every x < u and F = (F5 : § € S) such that Fs : (C5)§ — y
there is @ = (a5 : § € S) € Sy such that (Vn € *\) (5 € S)(as =
F(nlCs)), e-g.

(g)’ for every relational vocabulary 7 of cardinality < p there is a sequence

M = (Ms € S), Ms a T-model with universe C;5 := Rang(ns;) = {as; -
i < 0,j < K} such that for every 7-model M with universe A we have

(Ftat5 € S)(Ms = M|Cy).

Discussion 0.7. 1) It may be helpful to use this to prove results by cases. First,
find a proof using a 1-solution, that is with p*-freeness using (A) of 0.4 or at
least O,-free, F C *u,|F| = 2% 0, large enough so in [ST] terms using x with

See https://shelah.logic.at/papers/1008/ for possible updates.
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kx = 1. Second, use n cases of a 5-solution (see 0.4(B) and Definition 0.6) so have
X = Xo X X] X ... X Xp, X is as above so have enough cases of (6%, 07*)-freeness.
This is done in [S*] which uses Theorem 0.4.

2) We may use a different division to cases then 0.4, dividing case (B) as in [Shel3].
Let T = min{d : 22 > 2#}; and ask whether T = X or T < \.

2A) If T = X then A = A< hence we have better statements on A, e.g. if A is a
successor cardinal then we have s, OF & 2, by [Shel0].

2B) If T < A, by [Shel3, §2], we can construct a (one dimensional) black box for T
by [Shel3, §2].

§ 0(C). Quoting Definitions.
We try to make this work reasonably self-contained.

Notation 0.8. 1) For regular uncountable cardinal A let 2\ be the filter generated
by the clubs of .

2) () is the set of x with transitive closure of cardinality < x.

3) Let <} will denote a well ordering of J#(x).

4) For regular x and cardinal (or ordinal) A > & let S} = {§ < X : cf(§) = k}.
5) For an ideal J on & let comp(J) be max{6 : J is f-complete}, it is well defined.

Definition 0.9. 1) We say & is a (9,0, < u)-system when :

(a) 0 <9 and 0 is regular uncountable, usually 6 is regular

)
)

d) feae Py=anpe P
) &, has cardinality < p.

2) If p = & we may write (0, 0)-system. Instead “< pu'” we may write p. If
Py ={a} fora < dso P a(d,< 6,1)-system, and we may write a = (a, : @ < 9)
instead of . Instead of # we may write < 0 when # = 97.

3) We say 2 is closed when each a € 2, is a closed subset of .

Remark 0.10. Concerning Definition 0.9(1) note that we allow p > 9; in fact, this

case was used in [She94, Ch.II], in proving: if A = tcf(J] i, <u), N = cf(\;) > K
<K

and g = limy(\; 14 < k) < Ay = cf(Ay) < A then there are A} = cf(A\}) < \; with

p = limy(\f : i < k) such that A, = tcf([] Af, <s) exemplified by some u*-free

<K
(fo s o0 < As).

Fact 0.11. For every regular 6 and stationary S C {6 < 6% : cf(d) < 0} there is a
(67,0, 1)-system so satisfying ((a)-(d) and also) clause (e); also there is a satisfying
(a)-(d),(f),(g) where:
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(e) if (a < 0T and) cf(a) € [, 0) then a = sup(ay)

(f) if Eis a club of 7 and ¢ < 6 then there is « such that a, € EANa =
sup(aqy) A otp(ay) = ¢

(g9) if E is a club of 87 and ¢ < 6, then for some § € SN E we have a5 C
E A = sup(as) and ¢ divides otp(as).

Proof. See [She94, Ch.III] + correction in [Sheb]. As of guessing clubs for clause
(f), it is like [She93, §1]. We just are more explicit in what we get. Oo.11

Recall ([She79] = [Shec],[She93, §1]), (there we vary 0)

Definition 0.12. Let A > 6 with A regular.
1) For a (A, 0, < p)-system & = (P :a < A) let

e good_,(P) = {6 < A: 4§ is a limit ordinal of cofinality < § and there is an
unbounded u C ¢ of order type < ¢ such that « € u = uNa € £}

e good” ,(2) is defined similarly but otp(u) = cf(é).
2A) For a (A, 0, < p)-system 2, we define good,(Z), good. () naturally; we
defined good’_y(2), good” ,(2) similarly but demand cf(8) = 6.
3) Ip[)] is the set of S C Sp := {6 < X : cf(§) = 0} such that for some (),0,1)-
system @ and club E of A we have SN E C goody(a), equivalently for some
(A, < 0,1)-system a and club E of \,SNE C goody(a); equivalently, we may use
P a (M A, < A)-system or (), 0, < \)-system; abusing notation for S C \, S € I[\]
means S N S} € Ig[\]; the “equivalently” holds by [She93, §1] or see [Shea.
3A) Let I[\ = {A C \: if 0 = cf(f) < A then AN S, € Ip[\].
4) If I4[\] = (the non-stationary ideal on S;) +S, then we call S, the good set on
A for cofinality 6; it will be denoted Sf%; its complement Sffi@ = Sg,\\S* is called
the bad set; of course, as only S./%), is unique this notation pedentically is not
justified.
4A) We define %4, 58 similarly.
5) Let IF[\] = {S C S): if S € I[\] then S; N S is not stationary (in \)}.
6) Let I[\] = {S C \: if 0 = cf(f) < X then SN S € Ip[\]}.

Definition 0.13. Let A > 6 be regular.
1) Let I,%[\, u] be the set of S C S such that (cg stands for club guessing) there
is no (\, 0, < p)-system & witnessing S € (I;®[\, u])™ which means S C S; A S ¢
I;8( ) that is:

()1 P =(P,:a<N)isa(\0,< p)-system

()2 for P, X as above let I;%(2) be the set of S C Sj such that

e for some club F of A for no § € S and a € s do we have a C
E Asup(a) = 0.

1A) We define I38[\, u], I38( ) similarly except that in e of (%)s we demand only
a € Py

2) Assume A\ = cf(\) > 0 = cf(6),\ > p and pt > 0. Let I3°(\, ) be the set of
S C S such that there are Y > A+ and z € #(x) for which there is no sequence
N = (N, : ¢ < ) satisfying:

(a) Ne < (H(x),0,<})
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(b) (N¢:(¢ < 0) is increasing continuous
(c) (N¢:(<¢)€Neya
(d) ||Nc|]] < p and N. N p is an ordinal
(6) {.’IJ, )‘7/’67 9} € NO

(f) UN.NA:e< 0} eS.
Definition 0.14. For A regular uncountable and unbounded S C X let refl(S) =
{6 < A:cf(0) > Xy and S reflects in §} where “S reflects in 6” means SNJ is a
stationary subset of 4.
2) We say S C A reflects in Sj if {0 € Sj : SN & is stationary in 6} is a stationary
subset of \. We may replace Sé\ by any stationary subset of A.

Cc

Definition 0.15. For a regular cardinal 0, let Cy be the class of strong limit
singular cardinals p of cofinality @ such that pp*(u) =1 2#.

Discussion 0.16. 1) For the equivalence of the two versions in Definition 0.12(3),
see [She93, §1].
2) When does Sffle exist?

See [She79] = [Shec], Sffie exists under quite weak cardinal arithmetic assump-
tions (much weaker than GCH).
3) Trivially, if a < A = |o|<? < X then S}% = 0.
4) It is proved there for A, e.g. successor of strong limit singular p and 6 € (cf(u), )
that S'i’% exists and does not reflect in cofinality (2Y)* and in cofinality 0 when
(Vo < 9)[|al? < 3.
5) Also it is proved ([She94, Ch.II]) that if X is a successor of regular Xy < 0 = cf(6)
and 0% < X then S¥9 is 0; (i.e. not stationary), see 0.17(1).

Fact 0.17. 1) Assume A is regular and A = cf(\) > g and A = p* A p = cf(p), then
0 = cf(0) < u= S € Iy[\], moreover, there is a closed (), i, < A)-system & such
that: § < AAcf(§) < p= (Fa € Fs)(sup(a) = & A otp(a) = cf(0)).

1A) In part (1) instead of “\ = utAp = cf(u)” we can demand o < A = cf ([a] <, C
) <A

2) 13°(\, ) N Ig[\] is the non-stationary ideal when well defined.

3) If A > 6% and \,0 are regular and S € Iy[)\] is stationary, then there is a

(A, < 0, < \)-system & such that S ¢ I;®(Z) and a« < AAa € P, = otp(a) = 0.

Proof. 1) By [She91, §4] or [She94] as corrected in [Sheb].

1A) By Dzamonja-Shelah [DS95].

2) See 1.3.

3) By part (1) the proof of “club guessing”, see [She94, Ch.III], i.e. let & =
(P, a <)) bea (\6,< \-system such that S C goody (). Without loss of
generality £, is increasing with o and shows that for some club E of A the sequence
Pp = (Prao:a <)\ is as required where gl(a, E) := {sup(a N E) : a € a} and
P ={gl(a,E) : a € Ps for some § € [sup(E N a), min(E\(a + 1))} O

In §(1B) we shall use [She94, Ch.II].

Definition 0.18. Let f be < j-increasing in #Ord, J an ideal on 1.
1) We say f is flat in dorde Saalf,J] = S%d[f] when 6 < lg(f),cf(d) > k and
there is a <j-eub g to f[0 such that (Vi < x)(cf(g(i)) = cf(4)), equivalently there

See https://shelah.logic.at/papers/1008/ for possible updates.
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are increasing sequences (a; . : € < cf(d)) for i < k such that (Vo < 6)(Fe <
cf(0))(fa < (e 11 < k)) and (Ve < cf(d)) (T < 8)({as e 11 < k) <j fa).

2) We say § is strongly chaotic for f or § € Ssen[f,J] = S5B[f] when there is a
sequence (u; : i < k),u; € Ord,|u;| < k and (Vo < §)(3g € [[uw:) (38 < 0)(fa <

9 <y [fa)

2A) We say § is chaotic for f or § € SP[f] = Sen[f, J] when there is @ as above
such that for every a < § for some 3 € («, ) the set A, 5 = Aq gla, f] belongs to
Jt where A, 5 = {i < £ : min(u; U {oo}\ fa(i)) < min(u; U {oo}\ f5(i))}.

2B) We define St [f,J] = S}fg[f],Sgh[f, J] = Sﬁf‘e[f] similarly but restricting
ourselves to § of cofinality 6.

3) We say § is bad for f or 6 € Spa[f,J] = SH4[f] when § < lg(f),cf(6) > k and

f10 has < -eub g but is not flat.
Claim 0.19. Let J, f be as in 0.18.

1) If § < Lg(f) and cf(8) > Kkt then § satisfies exactly one of good, bad or chaotic.

2) In other words {6 : § < Lg(f) and cf(8) > k*} is included in the disjoint union

of Sgalf], Svalf]; Senlf]-
Proof. By [She94, Ch.IL,§2]. Oo.1s

Claim 0.20. Let f,J,k be as in 0.18 and X = Lg(f).

1) If 6 € S[f] then for some club e of §, we have a € e Acf(a) > Kk = o € SP[f].
1A) Similarly for Ssen|[f].

2) If § € S5%(f] then for some club e of § we have a € e Act(a) > k = a € S5°[f).
3) If 6 < X\, 0 € SH4[f] then cf(8) > g Heomp(J)+1

4) If 6 € S%4(f],g an <j-eub of f1d,0 = cf(c) and {i < Kk : cf(g(i)) > o} € JT
then {01 < d:cf(01) =0 but 61 ¢ Sid[f]} N SS is not stationary in J.

Proof. 1),2),3) By [MS94].
4) Should be clear. Uo.20

By [She94, Ch.1,1.2).

Claim 0.21. Assume (\ ), J, k) is a pcf case, f a witness for it, see Definition
1.6. If k < o <min{)\; : i < K} or just k < o < lim —inf;(\) and S € I, [\ then

ENS C Sgalf] for some club E of .
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§ 1. ON SYSTEMS
§ 1(A). Existence of large members of Ip[\].

Claim 1.1. Assume X\ > Ry is regular and M. < (J€()\), €) has cardinality < A
and {\,0} C M, and M. N\ € X\. Then we can find a pair (E,2?) which is
(A, M,.)-suitable, which means:

B (a) FEisa club of \; we may add o € ENa > sup(aNE) = cf(a) =Ny

(b) P =(P,:a< isa(\)\<\)-system and 0 = cf(0) < AN M, =
goody (P) D S)\E

(¢c) if o> 0 are reqular € AN M, and
P = (P a< )€ M, is a(0,0,< o)-system and
(0; 11 < o) is an increasing continuous sequence of members
from E, then there are f,e such that:

(o) e isa club of D

(8) [ is an increasing continuous function from O into {§; :i < o}

(v) ife<0,ae PF anda Ce then {f(§): € € a and otp(ané)
is a successor ordinal} € Py(41)

(c)™  like (c) but we replace () by

(V)" ife<d,ae PF andaCe and (7, : L < otp(a)) list a
in increasing order then in addition to the conclusion of ()
e we can choose B, € [v,,V.+1) for ¢ < otp(a) such that
{Bj 5 <1} € Pp,,, for every 1 < otp(a)
e if a has no last member then sup(a) € goody ()

(d) if {6; : i < o) is an increasing continuous sequence of members of E
and o > 0 > 0 are reqular € A\N M, and P* = (P* :¢ < 0) € M,
is a (0,< 6, < o)-system then for some e, f satisfying
clauses (), (8), (v), () we have

(0)  the following set belongs to Igg(@*), recalling 0.13(14)
{Ce Sg: there is no a C e,a € P~ such that a C ¢ = sup(a)
and otp(a) = 0}

(e)  the following set belongs to I3°(a,0), see Definition 0.13(2)
{i € S§: there are no e, f satisfying sup(e) =i and
clauses (a), (B), (7), (7)™, (6) above}.

Remark 1.2. 1) Note that for goody (), only (2, N [a]<? : a < \) matters.

2) For M as in @ in the proof and a < A essentially & satisfies the conclusion
with M, replaced by M,; the essentially because we should ignore the ordinals < «,
i.e. in clauses (), (c)T, (d) demand &y > a.

Proof. Let x > X and let M be such that:
®1 (@) M = (M, :a < \) be a <-increasing continuous sequence
(0) Mo < (H(x), € <)
@ 1Ml <A
(@) Mi(a+1)€ My

See https://shelah.logic.at/papers/1008/ for possible updates.
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() ManNAefor every a < A
(f) if @ < A is non-limit, then M, N A has cofinality N
(9) M. € My hence M, C M.

Let E' = {a: M, N\ = a}. Clearly E is a club of A, hence clause (a) of B holds.
Let & = (P, : a < \) be defined by:

Oy Py ={a€ Myy1:aCasolal] <Xand f €a=anpf e Mgi1} so

P = (P a<A)isa (A < A)-system, moreover, H(b) holds.

[Why does B(b) hold? Let § € Sp\E be a limit ordinal, so for some o < & we have
d € M, hence there is an unbounded (and even closed) subset a of § in M, of order
type cf(4) so B € (a\a) = (a\a)N B € M, C Mg = (a\a) N B € Ma. So indeed
goody(2) 2 Sy\E.]

So we arrive to the main point, that is to prove clauses (c), (c)™ and later com-
ment on its relative (d). So let 0 < o € M, N\ be regular and #* € M, be a
(0,0, < o)-system and let 6 = (J; : i < o) be an increasing continuous sequence of
ordinals from F and let §, := U{d; : i < o} so also (4; : i < o) is an increasing
continuous sequence of ordinals from F.

We choose N by induction on € < @ such that:

©3 (a) Ne < (H(x),€,<3)
IN.J| <o
(Ne: €< ()€ N, when ¢ <e¢
d) (N¢:(¢ <e¢g) is <-increasing continuous
e) X\o0,0,0,E M,§ and 2* belongs to N.
(f) 90+ 1C N. moreover (follows if c = 9%) N.No € (9,0).
This is easy. Let i(¢) := N. No for e < 9, hence i(e) < o is increasing continuous
with €. So d;) is an ordinal € E C X hence Ms, ., is well defined and d;.) €
Ms, . +1, also (J;c) : € < 0) is increasing continuous with limit ;). For e = 0
clearly cf(d;)) = cf(0;(9)) = cf(9) = O hence
@©1 (a) there is a club C of §;(5) of order type cf(d;)) = 9
(b)  mecessarily C' € #(x) and without loss of generality C' € Ms, , +1
(¢) let g be the unique increasing continuous function from 9@ onto C, so
necessarily g € Ms, , +1
(d) let e={e<0:6.) € C, moreover € = otp(C N ;(,)) and,
actually follows, ;) = g(e)}
(e) let f:0 — o be defined by f(e) = d;().

Now C is a club of 0 and both (g(¢) : € < 9) and (d;) : € < 0) are increasing
continuous sequences of ordinals with limit §;g), so clearly

@2 e is a club of 0.

So concerning clause (c) (of H) it suffices to prove that the pair (f,e) we have just

chosen is as required there. Now obviously e, f satisfy sub-clauses («), (8) of (c).

What about sub-clause () of clause (¢) and subclause (v)" of clause (c)*?
Clearly
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®3 fle = gle, see the definition of e.
Now we shall prove
®©4 if € <0 and a € P; satisfies a C e, then {g(¢): ( € a} € My(-41).

The proof of @4 is done in (*)4.1 — (*)4.7.
Note

(¥)a1 P2 C NoN My C Neyr N Msgy41 € Neyr N M,

[Why? For the first inclusion, obviously £* € M,,0 = (g(£*) € M, N X but
M.NAC MyNA € Xhence 9 C My so together Z2F € My. Now | ZF| < o < X and
c€M.NAXC MyNA€EAso P C MyC Ms, ., S Mgy CMs,. Also P* € Ny
and €,0 € N, and | 2|+ 0 < o and by ©3(f) we have N.No € o hence &7 C N,
so together we are done. The other inclusions are immediate as N is C-increasing
by ®3(d) and M is C-increasing by ®1(a).]

Also

(*)4.2 {Q(C) : C € a’} € Méi(a)_H = M§a~

[Why? As a and g belong to this model; why? For a because a € 2%, see the
assumption of @4 and &} C M, C M, © Ms by (*)4.1. For g, by the choice
of C and g, see ®1(a), (b), (c).]

(¥)as {9(Q): Cea} ={(fle)(() : C € a} € Ny

[Why? The equality holds by @3 as a C e A a C ¢ by the assumptions of @y
because fle = gle by @3. Why the membership “€ N.y1” holds? On the one hand
a Ce,a € P hence by (x)41 also a € No41. On the other hand fle € N.11 < Np
because (N¢ : ¢ < &) € Ney1 by @s(c) hence (i(¢) : ¢ < ¢e) € N.y1 by the choice
i(¢) = sup(IN¢ N o) after ®3 and 5 € Ny by ®3(e) hence (9ic) : ¢ <€) € Neyq s0
fl(e+1) € Ney1 by @1(e).] B

As 6 € Ng < Nj(s) by @3(e) we have 6 = (0; : i < o) € Ng < N.41 so necessarily
8o € Ny < N.11 and recalling M € Ny by ©3(e) it follows that Ms, = U{M, : a <
§o} € Noyq and M6, € Noyq < ((x), €, <;) hence

i(8)+1

(*)4.4 Még N N€+1 c Msup(N€+1r‘|5<,)
but (by (x)a2 + (*)a.3)
(#)as {9(¢) : ¢ € a} € M5, N Neya.

Now as M, 8 € Ny and o € Ny by ®3(e), clearly Ms_ € No and as N.y1No = i(e+1)
by the choice of i(e + 1) after ®3 and || N.y1|| < o by ©3(b) clearly

(*)a6 Nex1 N Ms, € Ms, .-
But f(e 4+ 1) = d;(c41) by @1(e) hence by ()45 4 (*)a.6 we have
(¥)ar {9(¢): C € a} € My yy).

So we have proved @®g4.

@5 if ¢ < 0,a € P a C eand £ € a A (anN& has a last member) then
{9(¢) : Ceant} € My
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[Why? Let ¢(*) = max(ang), it is well defined by the assumption on £. But £2* is a
(0,0, < o)-system by the assumption of clause (c) (so of clause (¢)™) of H, hence by
clause (d) of Definition 0.9(1) we have aN((x) € &7, and, of course, aN((x) C e
hence we can apply @4 with ({(*),aN{(x)) here standing for (e, a) there, so we can

deduce {g(C) : ¢ € aN((x)} € My(¢(xy41)- But ((x)+1 < & hence f(((x)+1) < f(§)
hence My (¢(s)41) € My(e). So {g(¢) : { € an((*)} € My, hence by the obvious

closure properties of M) N [f(£)]=% also {g(¢) : ¢ € aN&} € Mye).]

@ if € < 0,a € ZF and a C e then the set b= {f({) : ¢ € a and otp(aN () is
a successor ordinal} belongs to Py(.41).

[Why? By @4 + @5, the definition of &1y in ®2 and the obvious closure prop-
erties of each M,.]

So we are done proving clause (c)(y) of B hence clause (c). Clause (¢)*(y)" is
proved similarly. Say let h, be chosen by induction on o < A such that (hg: 5 < )
is C-increasing continuous and h, is a one-to-one function from M, onto some
ordinal v < « and h, is <}-minimal under those restrictions; now (h(f[(aN()) :
¢ € ¢) will be as required.

We are left with proving clause (d) of B, let z = {\,0,0,60, 2* E, M} and let
Sy = {j € S3: there is N as in ®3 such that j = sup(U{N. : £ < 8} No)}. Now by
the definition 0.13(2) of 13°(c, o) we know that S§\S; € I3%(c, o).

Next, for each j € S; let (N. : ¢ < 9) witness that j € S;. Now choose C, g, ¢, f
as in @;. So by the definition of Igg(,@*) in 0.13(1A) the set S\ S belongs to
Igg(@*) where Sy = {¢ € SJ: there is a € 9%, such that otp(a) = 6, sup(a) = ¢
and a C e hence ¢ € e}.

For each ( € S, let a € &%, witness ( € Sz, as in the proof of clause (c)(v) we
get that ¢ € goody(Z). Clearly this suffices for proving clauses (d)(8), (¢). O

Claim 1.3. Leto > 0 > 0.

1) S§ ¢ 13°(0, ) moreover I3°(0,c) is a normal ideal on S§.
2)IfS; e Iy [o] and Sz € jgc<a, 0) then S1 NSy is non-stationary.

Remark 1.4. If o0 = 07, see 0.17.

Proof. 1) Easy.
2) Let &' = (P, : e < g) be a (0,0, < 0)-system witnessing S; € Iy[o].

Now instead of choosing N, for ¢ < 0 we choose N. and N, by induction on
€ < o such that:

®(A4) (a) Ne = (H(x), € <))

(b) ||INel<oand N.No€o
() (Ne: (<& eN foré<e
(B) (a) Ne = <Ne,a tac ,@9
() New= (#(),6 <)
(© [Newll <
(d) if a € Z. then (N¢one 1 € € aU {e}) is <-increasing and

EeaU{C}NE=sup(anN§) = Ne¢ane = U{N¢anc : € € a}
and{€a=E&Nac Neg

(e) E,M,8,0,0,0,2* and &' belongs to N.,
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(f) (Nep:¢ <& be P)and (Ne: (<€) belongs to Ne , and to Ne
when £ < e, <o

(99 ONN., €0.
The rest should be clear. Ui

Proof. Proof of 0.1 1) As 0,6 are regular cardinals and 9 > 6% let 2% := (2% .
a < ) be a (9,< 0,< 0)-system satisfying S§ ¢ I;8(2?*), see 0.17(3). Let x, M.
be as in 1.1 for our A such that £2* € M.,. Let F, 2 be as constructed in 1.1 for
our \, M, and recall a € nacc(E) = cf(a) = Ng. Soif § € ENS2 then § € acc(E)
and so there is an increasing continuous sequence (J; : i < o) of members of E with
limit §; hence by clauses (¢)*(y) we have (3%t < §)[i € goody (2)].

As we have started with any § € EN Sy clearly goody(Z?) reflects in any § €
E N S2, but goodjy (P) € Is[\]. Now by B(b) of 1.1 § € S)\E = 6 € goodjj (P) so
goody (P) € Iy[)] is as required.
2) Same proof.
3) Similarly using clause (d)(e) of 1.1. Coa

Proof. Proof of 0.2:
1) Let x, A, M, be as the assumption of 1.1 such that in addition 2™ < M.NA\
for every n. Let E and & = (#, : a < \) be as in the conclusion of 1.1.
Recalling Definition 0.12(2A), let S, = goodj () C S, so obviously S, € Iy[\]
and for every n let S, = {6 : ¢f(d) =0T andn =0=§ ¢ S, and [n > 1 =
5N Sy\S, is a stationary subset of 6]}.
Note that by the assumption of part of the theorem

H; Sy is a stationary subset of A.

For n > 1 and § € S,, we choose {75, : € < cf(d)), an increasing continuous
sequence with limit § and let s5 = {& < cf(d) : cf(e) = 0 and 5. ¢ Si}, so as
§ € S, necessary s; is a stationary subset of 677,

For every stationary s C Sg+n let S, s = {0 € S, : ss = s}, the sequence
(Sp,s s C Sgw is stationary) is a partition of \S,, and for some club E,, s C E of
A we have [S, s NE, ; =0 < S, s is not stationary] for every such s.

Let B, =n{E,s; :n >1and s C 67" is stationary}, so as we are assuming
207" < A, clearly E, is a club of \.

Clearly if “n > 2 A (s C ng stationary) = S, s C A is not stationary” then let
k < n be maximal such that Sy, is stationary (well defined because we are assuming
that Sy is stationary), so S = Sy satisfy the desired conclusion. So assume that
n > 2 and s C 01" is stationary and S, s is stationary. If S, s reflects in no
S(;\+m, m > n we are done, and also if refl(S, 5) N Sg‘+n+1 is stationary but reflect in
no Sg‘+m,m > n+ 1, we are done.

Hence it suffices to prove

By ifn>2s5C Sg+n is stationary and S, s C A is stationary, m > n + 2 then
Sp,s does not reflect in any ¢, € Sg;m Nacc(Ey).

Toward this let o = 7™ and § = (§; : i < ¢) be an increasing continuous sequence
of ordinals from E, with limit 6;;) := d.. As s C Sgﬂ is stationary and n > 2,
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let & = 0™ by 0.11, 0.17(3) there is * = (2¢:(<0) a(0,0)-system such that
s ¢ I;5(2%).
Note that &* € M, because 20" < X and M, N ). So our & satisfies the

conclusion of 1.1, so H holds indeed hence we are done.
2),3),4) The proof is really included in the proof of part (1). oo

Remark 1.5. In the proof of 1.1, for regular x € (6, A) and s a stationary subset of
St we can let Sy, s = {0 € S): for some increasing continuous sequence (q; : i < k)
of ordinals with limit 4, the set {i € S§ : i € s iff a; € S.} is not stationary}.
Let E, s be a club of A, disjoint to S s if Sk s is not stationary. Let k., < A and
E,=n{Ey;: K € (0,ks) is regular and s C k}. We can then continue as above.

§ 1(B). Quite free witnesses of pcf-cases exist.

Definition 1.6. 1) We say (A, )\, J, k) is a pcf-case (may omit J in the case J =
[£]<") when :

(@) A= (\; :i < k) is a sequence of regular cardinals > x
(b) J is an ideal on &

(¢) A=tct(I] My <i)-
<K
2) We say f witnesses a pcf-case (A, ), J, k) or is a witness for it when f is <j-
increasing and < j-cofinal in ([ A, <J).
1<K
3) We say f obeys (A, A, J, &, k) when for some g the sequence f obeys (A, X\ J, Kk, P)
as witnessed by g, see part (4) below and f witnesses the pcf-case (A, A, J, k). Not
mentioning g means for some g.
4) We say that f obeys (\, @i, J, k, &) as witnessed by g when :

(@) f=(fara<A)

(b) Jis an ideal on k and 1 = (u; : ¢ < K)

(¢) fo €"0rd

(d) f is < j-increasing

() P =(Py:a <N isa ()< 2V)-system (normally a (A, A, < A)-system)
SO Wlthout loss of generality C-increasing

(f) §=(9a:aeUPa)

(g) ga € "Ord

(h) ga(i) < gp(¢) when a<b are from Py and |b| < p; where P, = U{Ps:
B <a}

(1) if a € P, then g, <J fa

(j) if peae Py,i<kand |a| < p; then fz(i) < gq (7).

e

Convention 1.7. We may allow f = (f, : @ € S) where S C A = sup(9), that is,
say f obeys (A, fi, J, k, &) as witnessed by some g when (f/ : a < A) satisfies the
demands there where o € S = f'tp (Sna) = = fa-
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Claim 1.8. Assume (\, )\, J, k) is a pcf-case, p = liminf ;(X) and & is a (\, p, <
A)-system.

1) There is f obeying (\,\, J, K, P).

2) For every f witnessing (\, A, J, k), for some unbounded S C \, f|S obeys (\, A, J, k, 2).
3) If f obeys (\, A, J, K, 2) and 6 = cf(0) < liminf ;(A\) then Sga[f] 2 goody(2).

Remark 1.9. The proof is like the ones in [Shear, Ch.I], [She08].

Proof. 1) Follows by (2). B
2) Let f = (fo : @ < A) witness the pcf-case (A, A, J, k), trivially exists.
By induction on 8 < A we choose (g, : a € &) and () such that

B (a) g, €l
(b) ifi<k,b<aand {a,b} C P and |a| < A; then ¢,(7) < gq(7)
(¢) a(B)<Xand 8 < B = a(f1) < a(f)

(d) ifi<k,pre€ac Pgandlal <\ then fop,)(1) < gali)

(e) ifac P<p then g, <y fa(ﬁ).

In stage 8 we first choose g, for a € g\ P, note that this means that for every
i < k, we have to choose g,(7) as an ordinal < \;, which is a regular cardinal and
if la| < A; it should be bigger than < |a| ordinals < \;, so this is easy.

As for a(p) for each a € P<p, as f is cofinal in (IIX, <) there is 75 < A such
that g, < fy.. So a(f) should be an ordinal < A and > sup{a(f1); 51 < 8} which
is an ordinal < A, as X is regular and it also should be > sup{v, : @« € <3} which
is < A as A is regular > | &2, ].

3) Stralght D1.8

Definition 1.10. Let J be an ideal on x, we may omit it below when J = JPd.
1) A set F C ®Ord is J-free when there is a sequence (ay : f € F) of members of
J such that f; 7é fa N {fl,fg} CFANie /-@\afl\an = fl(l) 7é fz(l)

2) A set . C ®Ord is (0, J)-free when F#' is J-free whenever %’ C Z has cardi-
nality < 6.

3) A sequence (fy : o < ay) of members of *Ord is a (6, J)-free sequence when,
for every u € [a.,]<? there is a sequence (a, : @ € u) of members of J such that: if
a < f are from u then i € k\an\ag = fo(i) < fa(7).

4) A set # C "Ord (we may use a sequence listing it) is called (6s,0;,J)*-free!
when for every .Z#’ C .Z of cardinality < 63, we can find a partition (%, : e < g(x))
of .Z’ such that:

e cach %/ has cardinality < 6;
e we can find a sequence (sy : f € #’) of members of J such that f; €

ﬁ;’l A fo € yg/z NeyF egNi € K\Sfl\sz = fl(l) #* fQ(Z)

4A) A set # C “Ord is called (63, 0;, J)-free when for every .#’ C .7 of cardinality
02, there is a J-free F" C .F' of cardinality 6;.

4B) Similarly to 4), 4A) for a sequence (f, : a € u) of members of “Ord where
u C Ord means that it is with no repetitions and {f, : @ € wu} satisfies the
requirement.

Un Definition [Shel3, 1.2(1)], a variant (62,6;)-free is defined, when 0; = cf(61) > k =
|Dom(J)| the two versions are equivalent.
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5) A set & C *Ord is called (65, 61, J)-stable when for every u C Ord of cardinality
< 0 the set {f € .Z :itheset {i < x: f(i) € u} is not in J} has cardinality < 5.
5A) A set # C "Ord is (0, J)-stable when it is (6,6, J)-stable.

5B) A set .# C “Ord is (62,61, J)-stable when for every 6 € [f2,0;) is (0, J)-stable.

Toward proving Theorem 0.4 we prove
Claim 1.11. If (A) then (B) where:
(A) (a) (M, J,K) is a pcf-case
(b) M, < (H(N\T),0,<}) has cardinality < X\, M.NX € X and (A, J, k) €

M,; (clearly exists and by 1.1 and 1.8 there are 2, E, f, as required
below)

(¢) P,E are as in 1.1 for our \, M,

(c) f' obeys (AN, J, K, P)

(d) w is a limit uncountable cardinal

() p=liminf;(\), i.e. u=min{x: the set {i < k:\; < x} is not

from J}
(f) 0 =cf(d) <k,J is T -complete
(9) S CS) is stationary such that § € S = (u? divide §)
(h) a={as;:0€S,i<09) where as = (a5, : 1 < 0) is increasing
continuous with limit § such that os; is divisible by p
(i) f=f*=(f2:5€8) is where f}:0 x k — 0§ is defined by f2(i,j) =
asi+ f5(7)
() Je=J84x J={uCdxk: for every i < 0 large enough, {j < r :
(i,7) € u} € J}; of course, we can translate J, to an ideal
on kK, that is {v Ck:{(i,j) €O xKk:0 -j+i€v}e .}
(B) (a)(e) if 0 € [k, p) then the sequence f? is (9T<OmP(NFL g+ ) free
recalling 0 < comp(J) < k, see 1.13 and 0.8(5)
(B)  f? is (comp(J), J,)-free
(v) if 0 € [k, p) is a limit cardinal and cf(0) ¢ [comp(J), k™)
then f? is (Feomp(N+1 g+ ) -free
(b) if o is reqular and § € S) and o < u then, see Definition 0.18:
(@) Kt <o=0d¢SPf]
(B) KT <o < kgteomp)Hl o 5 ¢ Ghd[f]
(7) K<OANOTE <o < greomp(NHL = 5 ¢ ghd[f].

Remark 1.12. This continues [She79] and [MS94]; note that here 9 < k. This helps;
there are relatives with ¢ > k but not needed at present.

Proof. Note that
Mo if 0 = cf(f) € p\x™* then Sga[f] N Sy 2 goody[Z].
[Why? By 1.8(3).]

M if 0,0 are regular cardinals from (k, u) and 612 < o then Sgq[f]N S} reflect
in every § € S2.
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[Why? Let T = 672, hence by 0.17(3) there is a (1,0, < T)-system such that
St ¢ I38[Y], see Definition 0.13(1) hence by 1.1, that is by the choice of &, the
set goody () C S reflect in every ¢ € S2, and so by H; we are done.]

My if 0 = cf(f) € [T, \) then refl(goody[Z?]) includes S, hence Sgd [f,J] is

non-stationary.
[Why? As in the proof of Hj, only simpler.]
By S59[f] include {5 < A : 674 < cf(8) < greomP()+1} when 0 € [k, ).

[Why? By H;, 0.19(2), 0.20(1),(2),(3),(4).]
So we have proved (b) of (B);

My f?is (wteomp(D+L 4] T)-free, see Definition 1.10(4), that is as a set.
[Why? By Hg proved below using Hs.]

M5 if 6 € [k, p) then f2 is (TeomP(N+1 g+4 ) free.
[Why? By Hg below using Hs.]

B if 62 > ) = cf(6)) > x and § < AA6; < cf(8) < 0y = § € S5°[f] then f?
is (02, 01, J.)-free.

Toward this we consider for 6 € [01, 63) the statement

@ ifu C S, recalling S C S5, |u| = 6 then we can find 5 = (s, : @ € u) € “(J,)
such that in the graph (u, Rs) every node has valency < 6; where:
e for u C X and § € “J, let (u, Rs) be the following graph: aR;f iff
a # [ € u and for some (i,7) € o X k, we have (3,j) ¢ sq U sg and
f2(i,3) = f30.5).
Why this suffice? As then let (u; : ¢ € I) list the components of the graph (u, Rs),
o0 necessarily each component has cardinality < 6y, recalling 6, is regular, so ({f, :

a € u}:t € I) is a partition as required in Definition 1.10(4).
Why this is true? We prove this by induction on otp(u).

Case 1: otp(u) < 64
Let s, = 0 € J, for a € u, clearly as required.

Case 2: otp(u) =(¢+1

Let a = max(u), let 5* € “"*(J,) be as promised for u N o and let 5> = (s7 :
B € a) be defined by s% ={(4,j) €O x K : fg(i,j) = fali,5)}, sO s% € Ji.

Lastly, define 5 € *(J,) by: sg is sé N s% if 3 < a and is () if 8 = «, now check.

Case 3: § = otp(u) is a limit ordinal of cofinality < 6,

Let o := cf(d) and (ae : € < ) be increasing continuous with limit sup(u) such
that ap = 0. For ¢ < o let ue = uN [ae, ac11) and let 5. = (s4 : @ € uc) be as
required for u,, exists as otp(ues) < otp(u). So 5 = (s4 : @ € u) is well defined. Now
for each B € u, (i, jx) € O x k and € the set wg i, ;. = {7y € ue : (44, jx) ¢ 54 and
S2(iw, Ji) = f;(z*,j*)} has cardinality < 61 because 1,72 € W e, 5. = ((ix,74) €
O X K\(Sy, U8y,)) A f2 (i, 42) = f2,(ix, j+); hence wg := U{wpge;; : € < o and
i < 0,j < k} has cardinality < 0; and § is as required.
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Case 4: ¢ = otp(u) has cofinality > 6;.
We choose 3,a' such that:

(x)6.1 (a) B = (B :e<cf(§)) is increasing continuous

b) Bo=0

) U{Be:i<cf(d)} =sup(u)

d) a' = (al:e < cf(6) non-limit)

e) aleld

f) ife> 0 then 8. =sup(un Be)

g9) ife,¢ < cf(d) are non-limit and j € w\at\a¢ then f§ (j) < f5.(j)

)
h) B. €S} iff cf(e) = 0.

o~~~ o~ o~ o~ o~ o~

[Why such a, a exist? First, sup(u) € S’%d [f1] holds by an assumption of B because
01 < cf(sup(u)) by the case assumption and cf(sup(u)) < 2 as |u| < f3. Second,
use Definition 0.18(1) recalling clause (d) of (*)g.1.]

(*)6.2 we can find a such that:
(a) a={ac:e <cf(d))

(b) ac =al if € is non-limit

(¢c) aceJ

(d) ife<¢<cf(d) and cf(¢) < comp(J) or cf(¢) > k then
J € r\ac\a¢c = fp.(j) < fs.(4)-

[Why? For non-limit € < cf(§) let a. = al.

If e < cf(d) and Ny < cf(e) < comp(J) then let e. be an unbounded subset of € of
order type cf(¢) and let a. = w\{i < & : 7 ¢ U{ag,,, : ¢ € e} and fj (i) < fésﬂ (1)
and ( € e, = fﬁlcﬂ(i) < fég(z)}

As J is comp(.J)-complete ideal on x and f! is < j-increasing clearly a. € J.

If ¢ < cf(0) and cf(e) > & then let a. = {i < k: the set {{ < e :4 ¢ ac41 and
JBesa (1) < fa.(i)} is a bounded subset of €}.

Toward proving a. € J, first we find £(¢) < e such that: if ¢ < k and the set
{¢ <e:i€r\agr and f5., (4) < f5 (i)} is bounded below ¢ then it is < &(¢);
this is possible as cf(e) > &.

So k\ae 2 {i < Kk : fég(s)ﬂ < f5.(i) and i ¢ ag(e)+1} and the latter set is = &
mod J because (age)41 € J) A (fp.,,, <7 f3.); it follows that a. € J.

In the remaining cases cf(e) € [comp(J), k] let a. = k\{i < K : f3_(i) < fa.,, (i)
and @ ¢ ac11}. Actually only the a. for € € ng(é) are used later.

Let us check that (a. : € < cf(9)) is as required in (x)g.2 so assume € < ¢ < cf(0)
and i € k\a.\a¢. First, without loss of generality ¢ is a successor ordinal, otherwise
we know that fs_ (i) < fs. (i) and i € a.4, by the choice of a.. Second, if ¢ is
non-limit then i € w\al\a; hence f (i) < fg (i). Third, if ¢f(¢) < comp(J) then
we can find § € e which is > ¢, 504 ¢ ag,,, as ag,, C ap, hence fg_(i) < fs,,, (7)
and by the choice of a,, also fg, (i) < fg. (i), together fg_ (i) < fs (i). Fourth,
if ¢f(¢) > &, let £ € e be such that ¢ < § and i & agq1 and fp,,, (i) < féc (i). As
i¢ap.,, and i ¢ ag, and € <+ 1 by the “second” we have fg_(i) < fg,,, (i), so
recalling the previous sentence fs_(i) < fs.(i). So we have proved (*)e.2.]
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Now for each € < cf(0) let ue = wN [Be, Betr1) hence otp(u.) < otp(u) = § hence

there is a sequence (s, : @ € u.) of members of J, as required. For each € < cf(0)

and 8 € uc\{B:} hence 8 € S, let i(8) < @ be such that {ag,; : i € [i(8),0)}NB =0
and if € < cf(d), 8 = B. € S s0 B € S} let i(a) = 0.
Lastly, let us define 5§ = (sg : § € u):

(%)6.3 if B € ue then sg:=s5U{(i,j) € 0 x ki <i(B)}U{(i,j) €I xr:j€E
acUac1} U{(i,5) € 0 x k1 =(f5.(5) < f30) < f3.,, ()}

Let 8 € u and let wg = {y € u: there is (i, ) € 9 x r\sg\s, satisfying f2(i,j) =
f3(4,4)} and we have to prove that ws has cardinality < 6;. Let ¢ < cf(d) be such
that 8 € u. that is 8 € [Be, Be+1), clearly € exists and is unique. As sg D sg clearly
wg N [Be, B+1) have cardinality < 6;. Now if v € uNf: A > B¢ then by the choice
of sg we have sg 2 i(f) x k and by the choice of i(8) we have v ¢ wg recalling
{ayj 1§ <0} CBe. If y €unpBe AB = then necessarily 8. € S5 so cf(B:) = 9
and let § < cf(6) be such that v € [B¢, Beq1), now if (i,7) € 9 x k\sg\s, then by
(*)6.2(d) we have f1(i) < féﬁl(i) < fa_(i) so v ¢ wg. Together wg Nz =0

Next, assume v € u\Bey1 say v € ug,§ > e if cf(§) # OV vy > [ we use
i(y) x K C s, and if cf(§) = O Ay = B¢ we use the chocies of ag,a.; hence
wﬂ\/BE-‘rl = (.

Together wg has cardinality < 6; as required. So we are done proving Case 4,
hence proving Hg.

M7 the sequence f? is (comp(J)™, J.)-free; this is clause (a)(3) of (B).

[Why? Let uw C A have cardinality < comp(J), let (8. : ¢ < |ul) list v and
a. = {i < k: for some ¢ < £ we have fég(z) = f5.(i)}, so as J is |u|*-complete
by the assumption clearly a. € J. Let sg, = 0 X a. for € < |ul, recalls that for
each ( <e,{i <k: féc (1) = f5,(1)} € J by clause (A)(c) of the assumption and so
(sg : B € u) is as required.|

Mg if 6 € [k, p) then f2 is (gFeomP(N)+1 g+4 T ) free.
Why? By Hg and (B)(b which we have proved in Hs.
v

My if 6 € [x,p) is a limit cardinal and cf(f) ¢ [comp(J),x) then f? is
[gFeomp(N)+1 g T )-free. This is clause (B)(a)(y) of the desired conclusion.

Why? Clearly 6 # r hence recalling 6 is a limit ordinal > x we have § > kT4
Again by g it suffices to prove that if § < X and cf(8) € [0, #TeomP())+1) then
5 ¢ S(7) and 6 ¢ S,

If cf(6) > 07 this holds by Hs, so we can assume cf(5) € {6+ : ¢ < 3}. Now
§ ¢ SSM[f] as otherwise there is a club e of ¢ such that a € e Acf(a) > kK = a €

S<h[f], contradicting B3 applied to k4.
Bo.1 6 ¢ SHLf].
[Why? Otherwise cf(d) = (][] 04, <s) for some o; = cf(o;) € (k,cf(0)). Now if

<K
m < £, clearly {i < k : o; = 7™} belongs to J hence without loss of generality
(Vi)(o; < 6). Also limy{o; : i < k) = 0, otherwise we contradict Hj, hence
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necessarily cf(f) € [comp(J), k) but this contradicts the assumption of Hg, e.g.

(B)(a)(7) ]

Together we are done proving Hg. U111

Proof. Proof of 0.4:
The proof is by cases.

Case 1: A is singular.

In this case there is a pT-free .F C *pu of cardinality 2# = X by [Shel3,
3.10(3)=1£.28(3)]; more fully by [She94, Ch.I1,2.3,pg.53] for every x € (u, A) there
is a pt-free #, C " of cardinality x; by letting x = (x. : € < cf()\)) be increasing
with limit A, combining the .%, ’s and F () we are done. So clause (A) of 0.4
holds and we are done.

Case 2: A is regular and |o|<" = X for some o < .
In this case by [Shel3, 3.6=1f.21] there is a u*-free F C *p of cardinality 2# = A
so again clause (A) of 0.4 holds and we are done.

Case 3: A is regular and o < A = |a<" < A

Let E={0 <A:a < A= |a|<" <§and J is divisible by u -}, clearly a club
of .

Let S C E be any stationary subset of S2. We choose (as : § € S) such that
a5 = (a5, : @ < o) is increasing with limit ¢ such that each as, is divisible by
p. By the case assumption we have S € I, [A], hence without loss of generality
A§1 i = Oy ig = 11 =12 A (Vi < Z'1>(0451)i = Ozgz)i). ~

Now as pu € C,, recalling [She94, Ch.VIII] there is a sequence A such that
(A, A, JP4 k) is a pcf-case such that A\ is an increasing sequence of regular cardinals
with limit . We can choose x, M, as in the assumption of 1.1 for A such that
(1) € M, and the choose E, & as in the conclusion of 1.1.

Hence by 1.8(1) we can find f! = (fL : a < ) obeying (\,\, JP4 k, ). Let
cd : "7 — p be one-to-one, we may assume that (Vi)\; > k and v € [[ A\j Ai <

J<k
Jj <k =cd(vli) <cd(v]j). Define f*: k — p by fX(i) = cd(fal(i+ 1)), so f* is
increasing.

Lastly, let as ;. ; = a4+ f5(j) and we should prove that (a5, ;: 0 € S,i < o0,j <
k) is as required in Definition 0.6, so s = {(as,; : (4,7) € 0 X k). If we have used
1} instead of f* we just have to omit clause (d) of 0.6.

Clauses (a),(c) of 0.6 holds by our choice of n5. Clause (b) of 0.6 holds by the
choice of S noting that S € I,[\] as S € F N S) and the case assumption. Clause
(d) of 0.6 holds by the choices of the @;s’s and of cd, f recalling fl € *u and s,
is divisible by u. Clause (e) holds by 1.11, that is (B)(a) there says f = f2 is
(0F1F1 0, J,)-free when 0 € [r, 1). Also clause (f) of 0.6 that is “f is (k¥ J,)-free”
holds by direct inspection or see clause (B)(a)(83) of 1.11 recalling JP? is k-complete
ideal on &.

Lastly, clause (g)’ follows by clause (g) and clause (g) holds by [She05]. g4

Definition 1.13. Let J be an ideal on k.

1) We say .% C *Ord is strongly semi-(0s, 61, J)-stable when there are no f. € .#
for ¢ < 65 and u C Ord of cardinality < #; such that for ¢ < ¢ < 65 the following
set Acc = Apc(u,(fe e €u))is #0 mod J

Ao i={i <k :min(u U {oo}\fo (7)) # min(u U {oo}\ fc (7))}
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2) For < j-increasing f = (f, : @ < au), fo € "Ord we say f is a strongly-semi-
(02, 0,1, J)-stable sequence when there are no v C a of cardinality 03 and u C Ord
of cardinality < 6; such that: if a < 8 are from v then the following set is # ()
mod J

{i <k :min(uU {oo}\ fa (7)) £ min(uU {co}\ f5(7)}.
3) In parts (1),(2) above, if §; = 02 we may write (0, J) instead of (61, 65).
4) In parts (1),(2) above writing (02,61, J) instead of (02,61, J) means: strongly-
semi- (6, J)-stable for every 6 € [0y, 05).
Claim 1.14. Assume f = (f, : a < \) witness the pcf-case (M, J, k) and is
strongly-semi-(0, 01, J)-stable, see 1.18(2),(4) and 02 < chom(‘]). Then S%d[f] 2
{5 <A Cf(5) S [91,92)}.
Proof. Straightforward. 0114

Note also

Observation 1.15. Let J be an ideal on k.

1) If fo € "Ord for a < au. and the sequence (fq : o < aw) is (0, J)-free then the
set {fo o < ay} is (0,J)-free and is with no repetitions.

2) Similarly for (02,01, J)-free.

24) Similarly for (02,01, J)-free.

3) If 0y > 0, > 01 > 0] then

(a) F is (0, J)-free implies F is (01, J)-free

(b) similarly for f

(¢) F is (0a,61,J)-stable implies F is (05,0}, J)-stable.
4) If F C *Ord is (0T, J)-free then it is (0, J)-stable.
5) If F C *0rd is (05,61, J)-free then F is (02,01, J)-free.
6) If # C ~Ord is (0o,01, J)-free then it is (65,01, J)-stable.

Remark 1.16. We also have obvious monotonicity in .# and f and other obvious
implications.

Claim 1.17. 1) Assume % C "Ord is semi-(0, J)-stable or just J is 0.-complete
and ¢ < 0. Then F is strongly semi-(07=t1 J)-stable.
2) Similarly without sems.
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