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Abstract. We analyze the strong polarized partition relation with re-
spect to several cardinal characteristics and forcing notions of the reals.
We prove that random reals (as well as the existence of real-valued mea-
surable cardinals) yield downward negative polarized relations.
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2 SHIMON GARTI AND SAHARON SHELAH

0. Introduction

This paper focuses on two cardinal characteristics of the continuum, the
reaping number r and the splitting number s. Let us commence with the
basic definitions of these invariants:

Definition 0.1. The reaping number.

(ℵ) Suppose B ∈ [ω]ω and S ⊆ ω. S splits B if |S ∩B| = |(ω \S)∩B| =
ℵ0.

(i) {Tα : α < κ} is an unreaped family if there is no single S ∈ [ω]ω so
that S splits Tα for every α < κ.

(ג) The reaping number r is the minimal cardinality of an unreaped
family.

(k) rσ is the minimal cardinality of a collection R ⊆ [ω]ω which is not
splitted by ω-many sets.

The dual of the reaping number is the splitting number. Recall:

Definition 0.2. The splitting number.

(ℵ) Suppose B ∈ [ω]ω and S ⊆ ω. S splits B if |S ∩B| = |(ω \S)∩B| =
ℵ0.

(i) {Sα : α < κ} is a splitting family in ω if for every B ∈ [ω]ω there
exists an ordinal α < κ so that Sα splits B.

(ג) The splitting number s is the minimal cardinality of a splitting family
in ω.

In the present paper, combinatorial arguments serve in the area of cardinal
invariants of the continuum. The main tool is the following concept. If λ ≥ κ
are infinite cardinals then the strong polarized relation

(
λ
κ

)
→

(
λ
κ

)1,1
2

means

that for every c : λ×κ→ 2 there are A ∈ [λ]λ, B ∈ [κ]κ such that c � (A×B)
is constant. We shall make use of the following theorem from [6]:

Claim 0.3. Strong polarized relations below the splitting number.
Assume κ < s.
The positive relation

(
κ
ω

)
→

(
κ
ω

)1,1
2

holds iff cf(κ) > ℵ0.

�0.3

In a way, the splitting number s is a natural point for proving downward
positive relations. The dual notion of the reaping number r is a natural
point for upward positive relations, as shown in the following theorem from
[7]:

Theorem 0.4. Strong polarized relations above the reaping number.
Assume r < κ ≤ c.

If r < cf(κ) then
(
κ
ω

)
→

(
κ
ω

)1,1
2

.

�0.4

Observe that the requirement about the cofinality of κ is stronger in this
theorem, and we do not have full knowledge when ℵ0 < cf(κ) ≤ r, see below.
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RANDOM REALS AND POLARIZED COLORINGS 3

However, some kind of duality is reflected in this theorem. The keypoint
for the results of this paper is that we can prove also a negative downward
theorem with respect to r. It enables us to supply a positive answer to the
following open problem from [8] (Problem 3.19 there):

Question 0.5. Suppose ℵ1 < κ = cf(κ) < λ = c and
(
κ
ω

)
→

(
κ
ω

)1,1
2

. Let P
be Lévy(κ, λ). Is it possible that

(
κ
ω

)
9

(
κ
ω

)1,1
2

in VP?

As we shall see, a wide range of positive answers can be given to the above
problem, i.e., for every regular cardinal κ we can build a model of ZFC in
which the Lévy collapse destroys the strong polarized relation for κ.

Another problem from [8] focuses on the random real forcing. One of
the salient properties of random reals is that they are dominated by old
reals from the ground model, hence the dominating number d is unchanged.
Problem 3.9 (in [8]) asks if one can ruin the positive relation for d while
iterating random real forcing notions:

Question 0.6. Assume
(
d
ω

)
→

(
d
ω

)1,1
2

, and one adds λ-many random reals

(for some λ > d). Does the positive relation
(
d
ω

)
→

(
d
ω

)1,1
2

still hold?

As in the former question, we will be able to show that one can force
a negative relation for d after adding random reals to the universe. This
follows, again, from the downward negative relation for r. Moreover, the
implication of negative results upon adding many random reals is wider.
This gives rise to the third problem (number 3.12) that we quote:

Question 0.7. Assume κ is a real-valued measurable cardinal.

Is it possible that
(
κ
ω

)
→

(
κ
ω

)1,1
2

?

Concerning this question, we will be able to supply only a partial answer,
by proving many negative relations below the real-valued measruable cardi-
nal. We comment that these relations would give the interesting corollary
that s = ℵ1 whenever a real-valued measurable cardinal exists. Likewise,
under the additional assumption that κ = c is real-valued measurable we

shall prove that
(
κ
ω

)
9

(
κ
ω

)1,1
2

as well.
Our notation is standard. We shall follow [1] with respect to cardinal

invariants. We employ the Jerusalem forcing notation, so p ≤ q means that
q is stronger than p. In cases where ambiguity lurks around the corner we
shall state the pertinent conventions explicitly. We thank the referee for the
careful reading of the manuscript.
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4 SHIMON GARTI AND SAHARON SHELAH

1. Continuum reaping

Investigating the interplay between cardinal invariants and strong polar-
ized relations, one may ask whether there exists a natural cardinal invariant

y so that
(
y
ω

)
9

(
y
ω

)1,1
2

always holds. The answer is negative. It is shown in
[7] that for every cardinal invariant, the above polarized relation is indepen-
dent. Nonetheless, there is a natural characteristic for which the negative
relation follows, under the extra assumption of being the continuum. Our
basic result says that if the reaping number and the continuum coincide, then
a negative polarized parition relation can be proved dwon to the cofinality
of the continuum:

Main Claim 1.1. Negative downward relations.

If r = c Then
(
r
ω

)
9

(
r
ω

)1,1
2

.

Moreover,
(
κ
ω

)
9

(
κ
ω

)1,1
2

for every κ ∈ [cf(c), c].

Proof.
Enumerate the members of [ω]ω by {Bγ : γ < r}. For every α < r let
Bα = {Bγ : γ < α}. The size of Bα is less than r, so we can choose a set Sα
which splits all the members of Bα. This is rendered for every α < r, and
gives rise to a coloring d : r× ω → {0, 1} as follows:

d(α, n) = 0⇔ n ∈ Sα.
We claim that d exemplifies the negative relation

(
r
ω

)
9

(
r
ω

)1,1
2

. Indeed,
assume H ∈ [r]r and B ∈ [ω]ω. Assume toward contradiction that d �
(H × B) is constant. If the constant value is 0 then B ⊆ Sα for every
α ∈ H, and if the constant value is 1 then B ⊆ (ω \ Sα) for every α ∈ H.

In any case, The set B appears in the above enumeration, so B ≡ Bγ for
some γ < r. Choose an ordinal α ∈ H so that γ < α, and notice that Sα
splits B, a contradiction.

Moreover, if κ ≥ cf(c) then we enumerate the members of [ω]ω as {Bγ :
γ < c}. We choose an increasing and unbounded sequence of ordinals 〈αε :
ε < κ〉 in c (repetitions are welcome), and define Bε = {Bγ : γ < αε} for
every ε < κ. Again, |Bε| < r for every ε < κ as r = c. For every ε < κ we
choose some Sε ∈ [ω]ω which splits all the members of Bε.

The coloring d : κ× ω → {0, 1} is defined in the same way, i.e., d(ε, n) =
0 ⇔ n ∈ Sε. The same argument shows that d has no monochromatic
product of size κ× ω, so we are done.

�1.1

Remark 1.2. For any uncountable cardinal θ define rθ as the minimal cardi-
nality of a subset of [θ]θ such that no single B ∈ [θ]θ splits all the members
of this family. One can verify that rθ > θ for every infinite cardinal θ, and
the main claim holds for every θ (under the parallel generalized assumption
that rθ = 2θ).

�1.2
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RANDOM REALS AND POLARIZED COLORINGS 5

The main claim is optimal in the sense that the assumption r = c cannot
induce a stronger negative relation in ZFC. The closest attempt would be

refuting the positive unbalanced relation
(
r
ω

)
→

(
r α
ω ω

)1,1
2

for every α < r, but
the following claim proves its independence:

Claim 1.3. Unbalanced negative relations.

The assumption r = c is consistent with both
(
r
ω

)
→

(
r α
ω ω

)1,1
2

for every α < r

and
(
r
ω

)
9

(
r α
ω ω

)1,1
2

for some α < r.

Proof.
For the positive direction force p = c, in which case r = c as well. However,

the relation
(
p
ω

)
→

(
p α
ω ω

)1,1
2

for every α < p is established in [10] and holds in

ZFC, so
(
r
ω

)
→

(
r α
ω ω

)1,1
2

for every α < r. Observe that r is a regular cardinal
in such models.

For the negative direction choose any λ = λℵ0 such that λ > ℵ1. Let Q
be a finite support iteration of adding λ-many Cohen reals. It is known that

VQ |=
(
µ
ω

)
9

(
ω1

ω

)1,1
2

for every µ ∈ (ℵ0, λ], as shown in [6], Remark 2.4. In
particular, it holds for µ = c. As r = c in this generic extension and λ > ℵ1
we have the consistency of the negative direction.

�1.3

We turn back to the balanced relation. In the case of a regular continuum,
we can characterize now the strong polarized relation for c as follows:

Corollary 1.4. Assume c is a regular cardinal.

Then
(
c
ω

)
→

(
c
ω

)1,1
2

iff r < c.

Proof.

If r < c then Theorem 0.4 gives the positive direction of
(
c
ω

)
→

(
c
ω

)1,1
2

, since
c is a regular cardinal. If r = c then Claim 1.1 gives the negative relation,
so the proof is accomplished.

�1.4

We employ the above corollary in the proof of the following theorem:

Theorem 1.5. Lévy collapse and random reals.
Suppose κ is an uncountable regular cardinal.

For every λ = cf(λ) > κ there is a model of ZFC in which c = λ,
(
κ
ω

)
→

(
κ
ω

)1,1
2

and if P =Lévy(κ, λ) then VP |=
(
κ
ω

)
9

(
κ
ω

)1,1
2

.

Likewise, it is consistent that
(
d
ω

)
→

(
d
ω

)1,1
2

in the ground model, and after

adding λ-many random reals for some λ > d we have
(
d
ω

)
9

(
d
ω

)1,1
2

.

Proof.
If κ = ℵ1 then the theorem follows from the fact that 2ℵ0 = ℵ1 implies(ℵ1
ℵ0

)
9

(ℵ1
ℵ0

)1,1
2

(as proved in [3]). So assume that κ > ℵ1. We begin with

MA + 2ℵ0 = λ. In this case, s = λ as well, so
(
κ
ω

)
→

(
κ
ω

)1,1
2

by Claim 0.3.
Observe also that r = λ. We claim that after forcing with P we will get the

negative relation
(
κ
ω

)
9

(
κ
ω

)1,1
2

.
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6 SHIMON GARTI AND SAHARON SHELAH

Indeed, r = κ in the generic extension. This fact follows from the com-
pleteness of P which ensures that no new sequence of sets of length below κ
is introduced. The length λ of r-sequences in the old universe is collapsed
to κ, but no r-family of size less than κ appears. Hence r = c = κ in VP.

From Claim 1.1 we infer that
(
κ
ω

)
9

(
κ
ω

)1,1
2

as required.
We indicate that if r < κ in the ground model then the positive relation(

κ
ω

)
→

(
κ
ω

)1,1
2

holds both in the old universe and after the collapse (see
Corollary 1.4), so the opposite situation is also consistent for every regular
cardinal κ above ℵ1.

For the second assertion, begin with a model in which the positive relation(
d
ω

)
→

(
d
ω

)1,1
2

holds, and d > ℵ1. This can be done due to [7], based on the
model of [2], upon noticing that r < d gives the desired result when d is a
regular cardinal (see Theorem 0.4).

We choose a large enough singular cardinal λ so that λ > d but cf(λ) ≤ d.
By adding λ-many random reals we blow up the continuum to λ but d
remains in its place. Moreover, r = λ as well (see, e.g., [1]). Since cf(λ) ≤ d

we conclude that the negative relation
(
d
ω

)
9

(
d
ω

)1,1
2

holds in the generic
extension, so the proof is accomplished.

�1.5

Can we incorporate singular cardinals in Corollary 1.4? A good under-
standing of polarized relations for singular cardinals above r is needed. It is

consistent that κ > cf(κ) = r and
(
κ
ω

)
→

(
κ
ω

)1,1
2

. The opposite direction is
not so clear:

Question 1.6. Is it consistent that κ > r, cf(κ) > ℵ0 and
(
κ
ω

)
9

(
κ
ω

)1,1
2

?

The negative downward theorem below r (under the assumption that r =
c) can be used also for a surprising relationship between r and s. One of the
dividing lines in the realm of cardinal invariants is the distinction between
small characteristics (which are bounded by cf(c)) and large characteristics
(which are not bounded by cf(c)). The distributivity number h is a typical
example of a small invariant, while s is a large invariant. Nevertheless, if
r = c then s becomes small:

Theorem 1.7. If r = c then s ≤ cf(c).
Moreover, if rσ = c then s ≤ cf(c).

Proof.
We prove the first assertion with the aid of the polarized relations, and
the second assertion in a direct way. Let κ be cf(c). By Claim 1.1 we

have
(
κ
ω

)
9

(
κ
ω

)1,1
2

, since r = c. This relation excludes the possibility that

s > cf(c), because in this situation we have
(
κ
ω

)
→

(
κ
ω

)1,1
2

since κ is an
uncountable regular cardinal and due to Claim 0.3.

Assume now that rσ = c. Enumerate the members of [ω]ω by {Bγ : γ <
c}, and choose an increasing unbounded sequence of ordinals of the form
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RANDOM REALS AND POLARIZED COLORINGS 7

〈αε : ε < κ〉 in c. For every ε < κ let Bε be {Bγ : γ < αε}, and we choose a
collection of sets {Sεn : n ∈ ω} which splits the members of Bε.

The collection F = {Sεn : ε < κ, n ∈ ω} is a splitting family for [ω]ω. For
this, pick up any B ∈ [ω]ω and any ordinal ε < κ so that B ∈ Bε. By the
choice of {Sεn : n ∈ ω} there is a set Sεn which splits B. But Sεn ∈ F , hence
F is a splitting family. Consequently, s ≤ |F| ≤ cf(c), so we are done.

�1.7

The above results raise some natural problems. We phrase a couple of
them:

Question 1.8. Small cofinality above r.

(α) Assume r < κ ≤ c and cf(κ) ≤ r. Is it possible that
(
κ
ω

)
9

(
κ
ω

)1,1
2

?
In particular, is it possible for κ = c?

(β) Assume rσ = c. Is it provable that
(
rσ
ω

)
9

(
rσ
ω

)1,1
2

?
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8 SHIMON GARTI AND SAHARON SHELAH

2. Random reals and real-valued measurability

In this section we try to analyze the polarized relation under the existence
of random reals and in the presence of real-valued measurable cardinals. For
a general background and notational conventions used below, we refer to [5].
We commence with a negative downward spectrum which issues from adding
random reals.

Theorem 2.1. Random reals and polarized relations.
Assume κ > ℵ0 and Q is a forcing notion for adding κ-many random reals.

Then 
Q
(
θ
ω

)
9

(
θ
ω

)1,1
2

for every θ ≤ κ, and even 
Q
(
κ
ω

)
9

(
θ
ω

)1,1
2

.

Proof.
Choose a generic subset G ⊆ Q, and fix a cardinal θ ∈ [ℵ1, κ]. Let m be the
product measure over κ2. Recall that p ∈ Q iff p ⊆ κ2, where p is a Borel set
of positive measure, supported by some countable set u = up ∈ [κ]≤ℵ0 . We
indicate that a support of a given condition p is not unique (every countable
subset of κ which contains a support can serve as well), though a minimal
support always exists. For p, q ∈ Q we define p ≤ q iff q ⊆ p.

Let F be the set {f : f is a finite (partial) function from κ into 2}. For

every f ∈ F let O(f) be {g ∈ κ2 : f ⊂ g}, denoted also by (κ2)[f ]. By the
definition of the product measure, m(O(f)) = 1

2|f |
. In particular, each O(f)

belongs to Q.
We define a Q-name η

˜
of a function from κ into {0, 1} by η

˜
⊃ f ⇔ O(f) ∈

G. If α ∈ κ, f = {〈α, 0〉} and g = {〈α, 1〉} then A = {O(f),O(g)} forms
a maximal antichain, so exactly one member of A belongs to G. Hence
α ∈ dom(η

˜
) for every α < κ. The fact that η

˜
is a function follows from the

directness of G. This gives rise to the definition of a name c
˜

for a coloring
from κ× ω into {0, 1} as follows:

c
˜
(α, n) = η

˜
(ωα+ n).

We claim that c
˜

exemplifies the negative relation
(
κ
ω

)
9

(
θ
ω

)1,1
2

.
Assume this is not the case. Pick up a condition p ∈ Q, a color ` ∈ {0, 1}

and names of sets A
˜
∈ [κ]θ, B

˜
∈ [ω]ℵ0 so that p 
 c

˜
� (A

˜
×B

˜
) = {`}.

For every α < κ we choose a Borel set Bα ⊆ κ2 with support uα ∈ [κ]≤ℵ0

such that Bα ⊆ p and Bα decides whether α̌ belongs to A
˜

in the following
sense: if m(Bα) > 0 then Bα 
 α̌ ∈ A

˜
and if not then (p − Bα) 
 α̌ /∈ A

˜
.

Similarly, for every n ∈ ω we choose a Borel set Bn ⊆ κ2 with support
un ∈ [κ]≤ℵ0 such that Bn ⊆ p and the following is satisfied: if m(Bn) > 0
then Bn 
 ň ∈ B

˜
and if not then (p−Bn) 
 ň /∈ B

˜
.

Let v ∈ [κ]≤ℵ0 be a support of the condition p so that un ⊆ v for every
n ∈ ω. We shall force with the part of Q above p using conditions with the
support v.

For any ordinal α ∈ κ \ v let rα = {η ∈ κ2 : η � {ωα + n : n ∈ B} = `}.
Since B

˜
is a name of an unbounded subset of ω, m(rα) = 0. Indeed, for

every n ∈ ω let {bj : j < n} enumerate the first n members of B, and let
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RANDOM REALS AND POLARIZED COLORINGS 9

fn = {〈ωα + bj , `〉 : j < n}. By definition, m(O(fn)) = 1
2n , and m(rα) ≤

m(O(fn)) for every n ∈ ω, so m(rα) = 0.
Since p 
 A

˜
∈ [κ]θ, there exists an ordinal α and a condition q ≥ p so

that q 
 α̌ ∈ A
˜

and α /∈ v. Notice that q 
 c
˜
(α, n) = ` for every n ∈ B. It

follows that q ⊆ rα, so m(q) = 0, which is impossible since q ∈ Q.
�2.1

The effect of adding random reals is sharpened if we assume the existence
of a real-valued measurable cardinal. The classical way to introduce such
a cardinal is the random real forcing, as proved by Solovay, but this is not
the only way. Gitik and Shelah, [9], introduced a different way to introduce
such cardinals, and some of the properties of Solovay’s construction are
not shared by all real-valued measurable cardinals. We shall see, however,
that the mere existence of a real-valued measurable cardinal entails strong
negative relations.

We say that κ is real-valued measurable iff there exists an atomless κ-
additive measure over κ. The requirement of being atomless implies κ ≤ 2ℵ0 ,
so κ is not strongly inaccessible. It is known, however, that such κ is weakly
inaccessible. Before embarking on the impact of real-valued meaurable car-
dinals we need some preliminaries. Let (X,Σ,m) be a measure space. The
measure algebra associated with it is the Boolean algebra B = Σ/I when
I = {A ⊆ X : m(A) = 0}. The following belongs to Maharam:

Theorem 2.2. Maharam’s Theorem.
Suppose m is a homogeneous σ-additive measure on a σ-complete Boolean
algebra B.
The measure algebra (B,m) is isomorphic to the measure algebra of λ2 for
some λ, with the product measure.

This fundamental theorem appears in [11]. Let κ be real-valued measur-
able as witnessed by the measure m, and let I = {a ⊆ κ : m(a) = 0}. From
Maharam’s theorem there is some µ for which P(κ)/I is isomorphic to the
Boolean algebra Borel(µ2)/J , where J is the ideal of null sets in µ2. It has
been proved in [9], Section 2, that µ > κ.

Theorem 2.3. Negative relations and real-valued measurable cardinals.
Let κ be a real-valued measurable cardinal.
Then

(
θ
ω

)
9

(ℵ1
ω

)1,1
2

for every θ < κ.

Proof.
Let m : P(κ) → [0, 1]R be a measure which exemplifies the fact that κ is
real-valued measurable. The collection of sets I = {a ⊆ κ : m(a) = 0} is a
κ-complete ideal over κ. By the facts quoted above, let µ > κ be such that
P(κ)/I is isomorphic to the Boolean algebra Borel(µ2)/J , where J is the
ideal of null sets in µ2. We fix an isomorphism  which exemplifies this fact.
Fix any cardinal θ < κ.

Viewing the Boolean algebra as a forcing notion, let η
˜

= (η
˜
α : α <

µ) be a random sequence of reals (i.e. η
˜
α ∈ ω2 for every α < µ, and

Paper Sh:1047, version 2017-06-26 11. See https://shelah.logic.at/papers/1047/ for possible updates.



10 SHIMON GARTI AND SAHARON SHELAH

η
˜
α = 〈η

˜
(ωα + n) : n ∈ ω〉). For each η

˜
α we choose a sequence of sets

(Bαn : n ∈ ω) so that Bαn ⊆ κ and (Bαn/I) = (µ2)[(α,η˜
α(n))]/J , i.e.

(Bαn/I) = {ν ∈ µ2 : ν(α) = η
˜
α(n)}/J .

For every α < µ and each n ∈ ω we define eαn ∈ κ2 by eαn(i) = 1 ⇔
i ∈ Bαn. We concentrate on the collection T = {eαn : α < θ, n ∈ ω}. We
define κ colorings ci for every i < κ, each ci is a function from θ× ω into 2,
by letting ci(α, n) = eαn(i) for each member of T . We claim that for some

i < κ the coloring ci exemplifies the negative relation
(
θ
ω

)
9

(ℵ1
ω

)1,1
2

.
For proving this, choose an ordinal i < κ for which {(eαn(i) : n ∈ ω) :

α < θ} is a Sierpiński set, i.e. for every B ⊆ ω2 of Lebesgue measure zero
we have (eαn(i) : n ∈ ω) /∈ B apart from a countable set of such sequences.
Notice that each sequence of the form (eαn(i) : n ∈ ω) is an element in ω2.
Such i exists by the following paragraph, upon noticing that θ < κ.

The existence of a Sierpiński set is a well-known property of real-valued
measurable cardinals, see [4] 6F, p. 215. We make the comment that here
is the only point along the proof in which we use the assumption θ < κ, and
we do not know whether the existence of a Sierpiński set can be guaranteed
if θ = κ.

Assume now that H0 ∈ [θ]ℵ1 , H1 ∈ [ω]ℵ0 , and we shall show that ci �
(H0 × H1) is not constant. Let B be {e ∈ ω2 : e � H1 is constant}. Since
H1 is unbounded in ω we have m(B) ≤ 1

2n for every n ∈ ω and hence
m(B) = 0. Consequently, (eαn(i) : n ∈ ω) /∈ B apart from a countable set
of such sequences. Since |H0| > ℵ0 we can choose an ordinal α ∈ H0 so that
(eαn(i) : n ∈ ω) � H1 is not constant. It means that there are n0, n1 ∈ H1

such that ci(α, n0) 6= ci(α, n1), so we are done.
�2.3

As a consequence, we deduce the following known fact:

Corollary 2.4. If there is a real-valued measurable cardinal, then the split-
ting number is ℵ1.

Proof.

By Claim 0.3, if s > ℵ1 then
(
ω1

ω

)
→

(
ω1

ω

)1,1
2

. However, this is impossible if
one assumes the existence of a real-valued measurable cardinal.

�2.4

Finally, we return to Question 0.7 and we ask about the negative relation(
κ
ω

)
9

(
κ
ω

)1,1
2

for the real-valued measurable κ itself. If we force the existence
of such a cardinal by the classical way of Solovay, [12], then r = κ and the
negative relation follows. It turns out that this is always true:

Claim 2.5. If κ is real-valued measurable then r ≥ κ. Consequently, if c = κ

is real-valued measurable then
(
κ
ω

)
9

(
κ
ω

)1,1
2

.

Proof.
Suppose that κ is real-valued measurable and assume toward contradiction
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that r < κ. Since κ is a limit cardinal, θ = r+ < κ as well. By Theo-

rem 2.3 we have
(
θ
ω

)
9

(
θ
ω

)1,1
2

. However,
(
θ
ω

)
→

(
θ
ω

)1,1
2

by Theorem 0.4, a
contradiction.

In case c = κ is real-valued measurable we have r = κ, hence
(
κ
ω

)
9

(
κ
ω

)1,1
2

by virtue of Corollary 1.4, so we are done.
�2.5
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