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Abstract. We prove that the statement “for every infinite cardinal κ,
every graph with list-chromatic number κ has coloring number at most
iω(κ)” proved by Kojman [7] using the RGCH theorem [13] implies the
WRGCH theorem, which is a weaker relative of the RGCH, via a short
forcing argument.

Similarly, a better upper bound than iω(κ) in this statement implies
stronger (consistent) forms of the WRGCH theorem, the consistency of
whose negations is wide open.

Thus, the optimality of Kojman’s upper bound is a purely cardinal
arithmetic problem, and, as discussed below, is hard to decide.

1. Introduction

Recall that the list-chromatic or choosability number of a graph G =
〈V,E〉 is κ if κ is the least cardinal such that for any assignment of lists of
colors L(v) to all vertices v ∈ V such that |L(v)| ≥ κ there exists a proper
vertex coloring c of G with colors from the lists, namely c(v) ∈ L(v) for all
v ∈ V . A graph G has coloring number κ if κ is the least cardinal such that
there exists a well-ordering ≺ on V such that a vertex v ∈ V is joined by
edges to only < κ vertices u satisfying u ≺ v.

Alon [1] proved that every finite graph with list-chromatic number n has
coloring number at most (4 + o(1))n and this bound is tight up to a factor
of 2 + o(1) by [3].

In [7] Kojman used the Revised GCH theorem from cardinal arithmetic
[13] to prove in ZFC the upper bound of iω(κ) on the coloring number of
any graph with a list chromatic number ≤ κ, where iω(κ) is the cardinal
gotten by applying the exponent function to κ infinitely many times.1

By Erdős and Hajnal [2] from 1966, if the GCH is assumed, κ++ =
(2κ)+ = (i1(κ))+ bounds the coloring number of every graph with list-
chromatic number κ for every infinite κ. It is now known that much weaker
axioms than the GCH — certain weak consequences of the Singular Cardi-
nals Hypothesis — imply the same upper bound (see the second section in
[7]), so in “many” models of set theory, the upper bound is (2κ)+. Komjath
[6] recently improved the GCH upper bound to 2κ = κ+, constructed models

The author thanks the Israel Science Foundation for partial support of this research,
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1Formally, i0(κ) = κ, in+1(κ) = 2in(κ) and iω(κ) = limn in(κ).
1

Paper Sh:1052, version 2016-02-18 11. See https://shelah.logic.at/papers/1052/ for possible updates.



2 SAHARON SHELAH

of the GCH in which χ`(G) = Col(G) for every graph with infinite χ`(G)
and showed that in MA models 2κ is required.

The sharp contrast between the single exponent in the bound for the finite
case, or in the bound for the infinite case in the presence of mild cardinal
arithmetic axioms, and the infinite tower of exponents in the ZFC bound,
led Kojman to ask whether the upper bound iω(κ) could be lowered in ZFC.
He also asked whether the use of the RGCH in proving his iω bound was
necessary.

We prove here that:

(1) Kojman’s iω upper bound implies the so called Weak Revised GCH
theorem (WRGCH) in pcf theory.

(2) better upper bounds imply open strengthenings of the WRGCH the-
orem.

All implications above are via standard forcing arguments.
Thus, improving Kojman’s upper bound on the coloring number of a

graph in terms of its list-chromatic number will be at least as hard as im-
proving the WRGCH theorem. In particular, a better upper bound cannot
be gotten with only graph-theoretic arguments.

Note that consistency results in pcf are hard; only recently Gitik [4] suc-
ceed to make a remarkable advance: for a countable set a of regular cardinals,
pcf(a) may be uncountable. Grand as it is, this is a far cry from what is
needed to show that the WRGCH cannot be improved. If, however, all rel-
evant strengthenings of the WRGCH are indeed not provable in ZFC, then
Kojman’s iω bound is optimal (a more detailed discussion of this is given
below).

We thank Menachem Kojman for asking us the questions and for reading
two earlier versions of this proof and the present one.

1.1. Description of the reduction.

Definition 1.1. The Weak Revised GCH theorem, WRGCH, is the state-
ment that for every strong limit cardinal µ > ℵ0, e.g. iω, and λ > µ, for
some κ < µ there is no sequence λ = 〈λi : i < µ〉 of finite sequences of
regular cardinals in (µ, λ) such that J<λ(λ) ⊆ [µ]<κ.

Here, the pcf operator is extended to sets a of finite sets (as above, we
identify a finite sequence of cardinals with its range) by letting pcf(a) be in-
terpreted as pcf(

⋃
a) and similarly Jλ(a) stands for {b : b ⊆ a& max pcf(b) <

λ}.
The WRGCH is a straightforward consequence of the Revised GCH the-

orem [13].
Now consider, for a natural number m ≤ 1, the following two closely

related statements (even equivalent, see below) with parameter m, which
are stronger than the WRGCH:
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⊕1
m there are no cardinal κ and set a of im(κ) many finite sequences

of regular cardinals, each larger than im(κ), such that J<sup(a)[a] ⊆
[a]<κ, i.e. b ∈ [a]κ implies that max pcf(b) ≥ sup(a).

⊕2
m there are no cardinals κ and Υ satisfying ∂ := im(κ) ≤ Υ and

a family of sets A ⊆ [Υ]∂ such that |A ∩ B| < κ for all distinct
A,B ∈ A and |A| > Υ

The status of the statements above is as follows. If m < n then ⊕im
implies ⊕in for i ∈ {1, 2}. All ⊕im hold in models of the GCH or even of
just the strong hypothesis (see [12], §6), so are consistent with the axioms
of ZFC.

The question for which m is ⊕im a theorem of ZFC is wide open, that
is, for all m ≥ 1, neither a ZFC proof nor a consistency of the negation is
known at the moment. The WRGCH, however, is a theorem of ZFC, as it
follows trivially from the RGCH theorem.

Lowering iω(κ) in Kojman’s upper bound to in(κ) for some n < ω
is at least as hard as proving the equivalent statements ⊕1

m and ⊕2
m for

m = 2n+1. The reason for this is that if the configuration that is forbidden
by e.g. ⊕2

m does exists in some model V of ZFC then in some forcing
extension of V there is a graph with list-chromatic number θ and coloring
number > in(θ), for some θ > κ. The relation m = 2n+ 1 can probably be
tightened, but we made no effort to do so.

Also, if it is assumed to the contrary that the configuration that is forbid-
den by the WRGCH does exists in some universe V of set-theory, then in
some forcing extension VP of V there is a graph with list-chromatic number
< κ and coloring number > iω(κ), contrary to the iω upper bound. Thus,
the iω graph-theoretic bound implies the WRGCH.

We discuss next the pcf-theoretic statements and explain further their
connection to upper bounds on coloring numbers.

Let κ ≤ ∂ < Υ < λ = cf(λ) be cardinals. Consider the statement:

(st)1
κ,∂,Υ,λ there is a A ⊆ [Υ]∂ of cardinality λ such that if A1 6= A2 belong to

A then |A1 ∩A2| < κ.

We agree that if λ = Υ+ we may omit it and if µ = Υ, λ = χ+ = µ+ then
we also may omit them, so the typical case (st)1

κ,µ is the existence of a family

A ⊆ [µ]µ of cardinality µ+ which is a κ-family, that is, the intersection of
any two distinct members of A has cardinality < κ.

Why is using (st)1
κ,µ reasonable when im(κ) ≤ µ < im+1(κ)? The history

of this question is rich. In particular, Baumgartner got by forcing, without
using large cardinals, the consistency of (st)1

κ,µ with κ = κ<κ < µ < 2κ, so
here m = 0.

We are, however, interested in the cases m ≥ 1, which are closely related
to pcf problems.

Consider the pcf statement,
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(∗)2
κ,µ,χ,λ κ < µ < χ < λ = cf(λ) and there is a sequence a = 〈ai : i < µ〉 of

finite sets of regular cardinals with each ai ⊆ (µ, χ) and such that
λ = max pcf(

⋃
i ai) and J<λ[a] = {u ⊆ µ : pcf(

⋃
i∈u ai) ⊆ λ} (so

really χ � µ. The main case, and the one we shall deal with, for
transparency, is λ = χ+.)

Why (st)1
κ,µ,χ,λ and (∗)2

κ,µ,χ,λ are related to each other and to graph col-
orings?

(∗)0 if A ⊆ [χ]µ has cardinality > χ, and is a κ-family, κ ≤ µ ≤ χ then
the natural bi-partite graph associated to A and denoted GA, (see
definition 2.4 below) has coloring number ≥ χ+ .

So finding such A with small list-chromatic number, say κ, with in(κ) ≤
λ = χ+, will give consistent lower bounds, which is the purpose of this note.
The main point here is that the list-chromatic number of such graphs can
be lowered by applying the internal forcing axiom from [14] (see also [18]),
a natural generalization of MA.

Observe that

(∗)1 For ` = 1, 2,

(a) if (st)`κ1,µ1,χ and κ1 ≤ κ2 ≤ µ2 ≤ µ1 then (∗)`κ2,µ2,χ.

(b) if (st)`κ1,∂1,Υ1,λ1
and κ1 ≤ κ2 < µ2 ≤ µ1 and Υ1 ≤ Υ2 < λ2 ≤ λ1

then (st)`κ2,∂2Υ2,λ2
.

(∗)2 For ` = 1, 2,
(a) (st)2

κ,∂,Υ implies (st)1
κ,∂,Υ and (st)2

κ,∂,Υ,λ implies (st)1
κ,∂,Υ,λ.

(b) If (st)`κ,∂,Υ and Υ = Υ+
1 , µ1 = min{∂,Υ1} ≥ κ (so ` = 1 ∧ ∂ =

Υ⇒ ∂1 = ∂) then (st)`κ,∂1,Υ1
.

(c) If (st)`µκ,∂Υ,λ and ∂ < Υ and Υ is a limit cardinal of cofinality

6= cf(∂) and 6= cf(λ then for every large enough Υ1 < Υ we have
(st)`κ,∂,Υ1,λ

.

Also

(∗)3 If ∂<κ < λ = cf(λ), κ = cf(κ) > ℵ0 and (st)1
κ,∂,Υ,λ then (st)2

κ,∂,Υ,λ.

Why? By [11], 6.1 with λ,Υ, ∂, κ∗ here substituting ∂∗, ∂, κ, σ there.
Similarly, by Theorem 6.2 in [11] we have ⊕1

m ⇐⇒ ⊕2
m for all m ≥ 1.

Let

(∗)0,n
κ,µ µ ∈ (in(κ),in+1(κ)).

So the problem with the consistency of (st)1
κ,µ,Υ+(st)0,n

κ,∂ is having (st)2
κ,∂,Υ+

(st)0,n
κ,∂ .

We may note that clause (b) is justified by the RGCH and λ = cf(λ) is
usually natural.

An example, then, of how this note clarifies the question of whether the
upper bound of iω(κ) is tight is:

Conclusion 1.2. We have (A) ⇐⇒ (B) ⇐⇒ (C) where:
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(A) For every n in some forcing extension of V there are κ, ∂ = in(κ),
Υ > ∂ and a κ-family A ⊆ [Υ]∂ of cardinality > Υ.

(B) For every n in some forcing extension of V there are κ, ∂ = in(κ)
and a set a of ∂ finite sets of regular cardinals ∂ such that J<sup(a)[a] ⊆
[a]<κ, i.e. b ∈ [a]κ implies that max pcf(b) ≥ sup(a).

(C) For every n in some forcing extension of V there are κ, ∂ == in(κ)
and a graph G with list-chromatic number κ and coloring number
> ∂.

Proof of 1.2. (A) =⇒ (B) follows from [11], 6.1 (and (B) =⇒ (A) is
obvious by (∗)2 above).

(A) =⇒ (C) is done in Theorem 2.1 below, where we start letting θ = 2κ,
or, if κ is regular, also θ = 2<κ suffices to get the assumptions of 2.1. For
every n, (A)n ⇐⇒ (B)n and (A)2n+2 ⇒ (Bn)⇒ (C)n.

To prove (C) =⇒ (B) it suffices to note, (use θ = θ<θ) that (a)λ,θ,κ ⇒
(b)λ.θ,κ in Claim 2.13. See [8] and use the proof of compactness in singulars
[10] and [15], Section 2. �

In conclusion, the upper bound iω(κ) cannot be lowered without making
substantial progress in pcf theory. If, on the other hand, the negations of
⊕2
m are consistent for all m, then Kojman’s iω(κ) upper bound is optimal.

1.2. Should we expect consistency or better pcf theorems? Let us
mention first the known consistency results. Only quite recently Gitik [4]
succeeded to prove, from the consistency of large cardinal axioms, the con-
sistency of a countable set of regular cardinals a with pcf(a) uncountable,
but really just | pcf(a)| = ℵ1. In particular he got (st)2

ℵ0,ℵ1,µ. While a great
achievement, this is still very distant from what we need.

For κ > ℵ0 there are no known consistency results. After the RGCH was
proved in the early nineties much effort (at least by the present author) was
made to lower iω — so far without any success. However in some other
directions there were advances ([16, 17, 5]).

So do we expect consistency or ZFC results? Wishful thinking, or, if you
prefer, the belief that “set theory behaves in an interesting way” suggests
that the answer to “for which m the statement ⊕1

m holds in ZFC” should
turn out to be somewhere in the middle, e.g. m = 4 (or m = 957, for that
matter). More seriously, the situation is wide open. Perhaps, as on the one
hand the ZFC iω(κ) gap has not changed for a long time now, while on
the other hand there has been a recent breakthrough in consistency, there
is some sense in viewing consistency as more likely.

2. Proofs

Theorem 2.1. Suppose that κ < θ = θ<κ, Υ > ∂ = i2`+1(θ) and there
a κ-family A ⊆ [Υ]∂ of size Υ+ Then in some forcing extension there is a
graph G with list-chromatic number θ and coloring number > i`(θ).
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As promised in the introduction, we may prove a weak version of the
RGCH theorem from a bound on list-chromatic number.

Theorem 2.2. Suppose that κ < θ = θ<κ, Υ > ∂ > iω(θ) and there is a
κ-family A ⊆ [Υ]∂ of size ∂+. Then in some forcing extension there is a
graph G with list-chromatic number θ and coloring number ≥ ∂ > iω(θ).

Convention: For this section we fix ℵ0 ≤ κ < θ.
We shall need the following definition from [14] p. 5. (See also [18] for

more on this and other forcing axioms). We recall one implication from 2.4
below: if A is as in 2.1 then GA, define in 2.4, has coloring number > ∂.

Definition 2.3. A forcing notion P satisfies ∗ωµ where ℵ0 < µ = cf(µ) if
Player I (the ”completeness” player) has a winning strategy in the following
game in ω moves:

At step k: If k 6= 0 then Player I chooses 〈pk1,α : α < µ+〉 with pk1,α ∈ P
such that for all ξ < ζ and for club-many α < µ+ in Sµ

+

µ , pk−1
2,α ≤ pk1,α, and

also chooses a function fk : µ+ → µ+ which is regressive on a club of µ+.
If k = 0 Player I chooses p0

1,αi = ∅P and f0 as the identically 0 function on

µ+.

Player II chooses 〈pk2,i : i < µ+〉 such that for club many α < µ+ in Sµ
+

µ

it holds that pk1,α ≤ pk2,α.

Player I wins play of if there is a club E ⊆ µ+ such that for all α < β in

E ∩ Sµ
+

µ , if fk(α) = fk(β) for all k < ω then there is an upper bound in P
to the set {pk1.α : k < ω} ∪ {pk2,β : k < ω}.

Definition 2.4. (1) A is a κ-family of sets when |A ∩ B| < κ for all
distinct A,B ∈ A and is a (θ, κ)-family if in addition, |A| ≥ θ for
all A ∈ A and, for notational transparency, A ∩

⋃
A = ∅.

(2) Suppose A is a κ-family of sets. We define the (bipartite) graph GA.
Its set of vertices is VA = A ∪

⋃
A. We denote

⋃
A by pt(A). The

edge set EA is {{v,A} : v ∈ A ∈ A}. When A is fixed or clear from
context, we refer to GA as 〈V,E〉.

Definition 2.5. For a (θ, κ)-family A, a set Y ⊆ GA is closed (pedantically,
A-closed, but the identity of A is clear from the context) if:

(a) A 6= B ∈ Y ∩ A ⇒ A ∩B ⊆ Y .
(b) If A ∈ A and |A ∩ Y | ≥ κ then A ∈ Y .

A sub-graph G′ of GA is closed if its set of vertices is closed.

Claim 2.6. If A is a (θ, κ)-family and λκ = λ ≥ θ then every sub-graph of
GA of size λ is contained in a closed sub-graph of the same size. Moreover,
if Y1 ⊆ G is closed and X ⊆ Y1 is of size λ, then there is a closed Y ⊆ Y1

of cardinality λ such that X ⊆ Y .

Remark: instead of λκ = λ it suffices that D(λ, κ) = λ, where D(λ, κ) =
cf([λ]κ,⊇), (see [7]).
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Definition 2.7. Suppose θ > κ and µ are cardinals and |α|κ < µ for all
α < µ. We say that Prθ,κ(µ) holds when for every (θ, κ)-family A and every
[closed] Y ⊆ GA of cardinality |Y | < µ the list chromatic number of Y is at
most θ; that is, for every assignments of lists L(v) to vertices in GA such
that |L(v)| ≥ θ there is a valid coloring c ∈

∏
v L(v).

Claim 2.8. Assume that A is a (θ, κ)-family, Y ⊆ GA is closed, cf(δ) 6=
cf(κ), δ < cf(µ) and Zi ∈ [Y ]<µ is increasing with i < δ. If each Zi is
A-closed then Z :=

⋃
i<δ Zi is A-closed.

Proof. First, if A 6= B ∈ Z ∩A then for some i < δ it holds that A,B ∈ Zi,
but Zi is A-closed hence A∩B ⊆ Zi ⊆ Z as required (in 2.5(a)). Second, if
A ∈ A satisfies that |A∩Z| ≥ κ then (because cf(δ) 6= cf(κ)) for some i < δ
it holds that |A ∩ Zi| ≥ κ and as Zi is closed, A ∈ Zi ⊆ Z. �

Lemma 2.9 (Step-up Lemma). Suppose that λ > µ = µ<µ > κ and θ > κ.
Assume that

(a) The internal forcing axiom for posets that satisfy ∗ωµ (see Def 2.3)
holds for < λ dense sets.

(b) (∀α < µ)(|α|κ < µ).
(c) (∀α < λ)(|α|κ < λ)
(d) Prθ,κ(µ) holds.

Then Prθ,κ(λ).

Proof. Suppose
(∗)1 A is a (θ, κ)-family and Y∗ ⊆ GA is closed, |Y∗| < λ and L(v) such

that |L(v)| = θ is given for all v ∈ Y∗.
We need to prove the existence of a valid coloring c of G such that c(v) ∈

L(v) for all v ∈ Y∗.
Let P be the following poset: q ∈ P iff q is a partial valid coloring for the

given lists and dom (q) ⊆ Y∗ ⊆ GA is closed of cardinality < µ. A condition
q is stronger than a condition p, q ≥ p, iff p ⊆ q.

(∗)2 P is a forcing notion.
(∗)3 (Density) if p ∈ P and Z ⊆ Y∗ satisfies |Z| < µ then there is q ≥ p

such that Z ⊆ dom (q).

Proof of (∗)3: By possibly increasing Z, we may assume that Z is closed in
Y∗ and that dom (p) ⊆ Z. As dom (p) is closed, for all A ∈ A ∩ Z \ dom (p)
it holds that |A ∩ dom (p)| < κ. For A ∈ A ∩ Z \ dom (p) let L′(A) =
L(A) \ {p(v) : v ∈ A ∩ dom (p)}. As |A ∩ dom p| < κ < θ it holds that
|L′(A)| = θ.

For v ∈ (Z \ dom (p)) ∩ pt(A) there is at most one A ∈ dom (p) such
that v ∈ A, because dom (p) is closed. Let L′(v) be gotten from L(v) by
subtracting {p(A)} from L(v) for that unique A, when A exists. For all
x ∈ dom (p) let L′(x) = L(x).

By Prθ,κ(µ) there is condition p′′ with dom (p′′) = Z such that p′′(v) ∈
L′(v) for every v ∈ Z. Let p′ = p′′ � (Z \ dom (p)) and let q = p ∪ p′. Now
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we claim that q ∈ P. As x ∈ Z ⇒ q(x) ∈ L′(x) ⊆ L(x) for all x ∈ dom (q),
all that needs to be checked is the validity of the coloring q. Suppose that
v ∈ A and v,A ∈ dom (q). First assume that v ∈ dom (p) and A ∈ dom (p′).
In this case p(v) 6= p′(A) because p(v) /∈ L′(A) by the definition of L′(A).
Another case to check is v ∈ dom (p′) and A ∈ dom (p), which followed from
the choice of L′(v). The two remaining cases are clear, holds as p, p ∈ P.

(∗)4 If 〈pi : i < δ〉 is an increasing sequence of conditions in P and δ < µ
and cf(δ) 6= cf(κ) then the union is a condition, and is an upper bound of
the sequence.

Proof of (∗)4: Let Yδ =
⋃
{dom pi) : i < δ}. Now |Yδ| < µ as δ < µ by the

assumptions, and i < δ ⇒ dom (pi) ∈ [Y∗]
<µ ⊆ [GA]<µ by the definition of

P, recalling that µ is regular (by µ = µ<µ from of the claim’s assumptions).
Since cf(δ) 6= κ, by 2.8 it holds that p =

⋃
i pi is a condition.

(∗)5 If δ < µ, p = 〈pi : i < δ〉 is increasing in P and cf(δ) = cf(κ) then p has
an upper bound in P.

Proof of (∗)5: Let Z ⊆ Y∗ ⊆ GA be closed such that |Z| < µ and Y =⋃
i<δ dom (pi) ⊆ Z. By restricting to a subsequence we may assume that

δ = cf(κ) and so A ∈ A\Y ⇒
∧
i<κ(|A∩dom (pi)| < κ⇒ |A∩Y | ≤ κ. Now

repeat the proof of (∗)3 with p =
⋃
i pi with the following changes:

(a) if A ∈ Z \ Y , A ∈ A, then |A ∩ Y | ≤ κ hence L′(A) = L(A) \ {p(v) :
v ∈ A ∩ Y } has cardinality θ as L(A) has cardinality θ > κ ≥
|A ∩ Y | ≥ |{p(v) : v ∈ A ∩ Y }|.

(b) if v ∈ Z \ Y , v ∈ pt(GA), then

i < κ⇒ |{A ∈ dom (pi)∩]A : v ∈ A}| ≤ 1,

hence

|{A ∈ A ∩ Y : v ∈ A}| ≤ 1

and L′(v) = L(v) \ {p(A) : A ∈ Yδ ∧ v ∈ A} has cardinality θ.

Now we can finish as in (∗)3.

(∗)6 {p`ζ : ` = 1, 2 and ζ < δ} has a common upper bound when:

(a) δ < κ+ ≤ µ (we will use δ = ω < κ+ when simpler as this us the one
we shall use). 2016-02-09 simpler).
(b) p`ζ ∈ P
(c) ζ < ξ < δ ⇒ p`ζ ≤P p

`
ξ.

(d) p1
ζ , p

2
ζ are compatible functions for ζ < δ.

Proof of (∗)6: Let p =
⋃
`,ζ p

`
ζ , so p is a function, but not necessarily a

condition in P. Let Y = dom (p) and Z ⊇ Y be closed and of cardinality
< µ such that Z ⊆ Y∗ ⊆ GA.

(A) If A ∈ Z \ Y , A ∈ A, and ` ∈ {1, 2} then ` ∈ {1, 2} ∧ ζ < δ ⇒
|A ∩ dom (p`ζ)| < κ so 〈|A ∩ dom (p`ζ)| : ζ < δ〉 is a non-decreasing sequence

of sets each of cardinality < κ hence ≤ κ. So |A ∪
⋃
ζ dom (p`ζ)| ≤ κ, hence

|A ∩ Y | ≤ κ.
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(B) If v ∈ Z \ Y , v ∈ pt(GA), and ` ∈ {1, 2} then |{A ∈
⋃
ζ dom (p`ζ), v ∈

A}| ≤ 1 hence |{A ∈ Z \A : A ∈ A, v ∈ A}| ≤ 2. So all is fine.
We continue as in the proof of (∗)5.

(∗)7 P is µ-complete (by (∗)4 + (∗)5).

(∗)8 The property ∗ωµ holds for P.
The game which defines ∗ωµ lasts ω steps and at each step k < ω for

` = 1, 2 a sequence of conditions 〈pk1,α : α < µ+〉, a club Ek ⊆ µ+ and a

regressive function fk with domain µ+ played by the completeness player I
(see Def 2.3 or [14] p. 5. See also [18] for more on this and related forcing
axioms).

This is how player I chooses Ek and fk: Ek is sufficiently closed; fk has
domain µ+ and is regressive such that:

⊕ If α1, α2 ∈ dom (fk) ∩ Sµ
+

µ ∩ Ek, fk(α1) = fζ(α2) then pk1,α1
, pk1,a2 are

compatible functions.
This clearly suffices (as the 〈(pk1,α1

, pk1,α2
) : k < δ〉 are like 〈(p1

ζ , p
2
ζ) in

(∗)6).
Clearly such a function fk exists but we elaborate.
(∗)8.1 fζ(δ) codes:

(a) akδ = dom (pk1,δ) ∩ (
⋃
α<δ dom pk1,α).

(b) pk1,δ � a
k
δ .

(c) {pk1,δ(v) : v ∈ dom (pk1,δ) ∩ ∩(A) and pk1,δ(v) ∈
⋃
α<δ Rang(pk1,α)}

(d) {pk1,δ(A) : A ∈ dom (pk1,δ) ∩ A and pk1,δ(A) ∈
⋃
α<δ Rang(pk1,α)}

[ What is the point of clauses (c), (d)? Consider pk1,α1
, pk1,α2

with α1 < α2;

maybe there are ` ∈ {1, 2}, v ∈ dom (pk1,α`) ∩ pt(GA), A ∈ dom (pk1,α3−`
) ∩ A

such that v ∈ A and pk1,α`(v) = pk1,α3−`
(A). Those are avoided by those

clauses. 2016-02-10 s
So now player I wins as whenever α < β belong to Sµ

+

µ ∩
⋂
k Ek and∧

k fk(α) = fk(β), the set of conditions {pk1,α : k < ω} ∪ {pk1,β : k < ω} has

an upper bound in P by (∗)6.
This proves (∗)8.
(∗)9 If x ∈ Y∗ then Dx is an open dense subset of P where
Dx = {p ∈ P : x ∈ dom (p)}
[ Why (∗)9 holds? by (∗)3.]
By the axiom for posets with ∗ωµ , there is a generic filter for P which meets

all dense sets Dx for x ∈ Y , where p ∈ Dx if x ∈ dom (p). The union of the
generic is a valid coloring from the lists on Y∗. �

Corollary 2.10. Suppose n ≥ 1 and

(a) µ0 < µ1 · · · < µn.
(b) For all l ≤ n− 1 it holds that (∀α < µ`)(|α|κ < µ`).
(c) µ<µ`` = µ` and 2µi = µi+1 for i < n.
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(d) For every ` < n, the forcing axiom for posets with ∗ωµ` and < µ`+1

dense sets holds.
(e) µ0 ≤ θ+ and κ < θ.

Then Prθ,κ(µn).

Proof. By induction on n. Since the list-chromatic number of any graph G
of cardinality < µ0 is ≤ |G| ≤ θ, the condition Prθ,κ(µ0) holds trivially. The
induction step follows from the main lemma 2.9. �

Next we show how to force the conditions of the previous lemma.

Claim 2.11. Assume that:

(A) θ = θ<κ > κ and i2n+1(θ) < µ ≤ χ < λ.
(B) (st)1

κ,µ,χ,λ.

Then: For some P and µ̄

(a) P is a θ+-complete forcing notion that satisfies (i2n+1(θ))+-c.c.
(b) µ̄ = 〈µ` : ` ≤ n〉 in VP such that µ` = µµ` = (i`(θ))+ < i`+1(θ) for

all ` ≤ n, |α|κ < µ` for all α < µ` and in(θ) < µ ≤ χ < in+1(θ).
(c) (st)1

κ,µ,χ,λ.

(d) The forcing axiom ∗ωµ` with < µ`+1 holds for all ` ≤ n.

Proof. Now,

(∗)1 (i2n+1(θ))+ ≤ ∂ and (i2n+1(θ))+ < Υ

Why (∗)1? The first inequality hold by (A). For the second, letting χ1 =

i2n+1(θ)+ we have χ
i2n(θ)
1 = χ1 hence χκ1 = χ1 whereas Υκ ≥ λ > µ because

we are assuming (st)1
κ,µ,χ,λ

Now let

(∗)2 (a) µ` = (i2`(θ))
+ for† ` ≤ n so 2<µ` ≤ i2`+1(θ).

(b) Choose µn+1 such that µn+1 = cf(µn+1) = (µn+1)(µκn) > λ s
and α < µn+1 ⇒ |α|κ < µn+1

Remark: less suffices; µn+1 = (λκ)+ or just µn+1 = cf(µn+1) > λ satisfies
(∀α < µn+1)(|α|κ < µn+1), but will complicate the notation below, e.g.
(∗)4(b) for ` = n is different.

Now

(∗)3 (a) µ0 = θ+ hence µ0 = cf(µ0) and (∀α)(α < µ0 → |α|κ ≤ θκ =
θ < µ0).

(b) µ0 < µ1 < · · · < µn < µn+1 are regular.
(c) (∀α < µ`)(|α|κ < µ`) for all ` ≤ n+ 1.

(d) (µ`+1)2<µ` = µ`+1.
(e) µn < µ ≤ χ < λ < µn+1.

Let

(∗)4 Let
(a) Q∗` = Levy(µ`, 2

<µ`) for ` ≤ n.
(b) Q∗ =

∏
`≤nQ∗` .
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(c) Q∗≤k =
∏
`≤kQ∗`

Easily,

(∗)5 (a) Q∗` is µ`-complete and of cardinality 2<µ` . so satisfies the 2<µ`-
cc.

(b) Let V` := V
∏
k<` Q∗

κ

(∗)6 in Vn+1 := V
∏
`≤n Q` , we define 〈(Pk,Q

∼
2

`
) : k ≤ n + 1, ` ≤ n〉 such

that :
(a) P0 is the trivial forcing.
(b) P`+1 is a forcing notion of cardinality µ`+1.
(c) P`+1 satisfies the µ+

` -c.c.

(d) P`+1 = P` ∗Q
∼

2

`
.

(e) Q
∼

2

`
is a P<`-name of a forcing notion of cardinality µ`+1 that

satisfies µ+
` -c.c. that forces 2µ` = µ`+1 and the axiom for forcing

notions that satisfy ∗ωµ` for < min{µ`+1, (∂
κ)+} dense sets.

(f) Pk+1 is a Q∗-name and actually a Q∗≤k-name

There is no problem to carry the induction (note that (µ`+1)<µ = µ`+1 in

VPn+1
n+1 .) We return to V, so we have a Q≤k-names so P

∼`
for ` = 0, . . . , k+ 1

for the forcing notion above. Let, in V, Pk+1 = Q∗≤k ∗ P∼k+1
. Why P = Pn is

as required?
Clearly, all forcing notions Q∗` ,Q∗,Q∗≤k,Pk , are θ+-complete, hence in

particular so is P. Therefore, in VP still (∀α < µ`)(|α|κ < µ`+1) for all
` < n+ 1 because we prove below that µ` does not collapse.

Clearly, Pk+1 has cardinality µk+1 and satisfies the (2<µk)+-cc and in V

the forcing notion Q` are µ`-complete and in VQ∗
≤k the forcing notion Q2

` is

forced to be µ`-complete. Hence in V for ` ≤ k we have Pk ”µ` = µ<µ`` is

not collapsed”, and Pk satisfies the ((2<µk)+)-c.c. as Q∗≤k does, and Pk+1

satisfies (µκ)+-c.c..
Lastly, the relevant forcing axiom holds: if ` < n, the one for (∗)εµ` and

< µ`+1-dense sets. So replacing µn+1 by (µκ)+ and applying 2.6 we are
done. �

A similar argument works to replace n with ω:

Theorem 2.12. The condition (A)`(∗) implies the condition (B)`(∗) for
`(∗) ∈ {1, 2}, where:

(A)1 ℵ0 < cf(κ) ≤ κ < θ = θ<κ, χ ≥ λ ≥ iω(κ) and there exists a
κ-family A ⊆ [χ]λ of cardinality |A| ≥ χ+.

(A)2 ℵ0 < cf(κ) ≤ κ < θ = θ<κ and for every n < ω there are χn >
λn ≥ in(θ) a κ-family An ⊆ [χn]λn of cardinality |An| ≥ χ+

n and
λn /∈ [iω(θ),iθ+1(θ)]
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(B)1 For some forcing notion P not adding new sequences of ordinals of
length < θ, it holds that:

• (iω(θ))V
P

= (iω(θ))V.
• There exists a graph G with list-chromatic number θ and color-

ing number > (iω(θ))+.
(B)2 Like (B)1 with the coloring number ≥ (iω(θ))+.

Proof. Stage A. For (A)1 ⇒ (B)1 assume (A)1 and let

(∗)1 (χn, λn) = (χ, λ), An = A, so we can assume (A)2.

(∗)2 Let u1 = {n : λn < iω(θ)} hence n ∈ u1 ⇒ λn < iω)θ) and let
u3 = {n : λn > iω(θ)}.

Recalling clause (A)2 note that u1, u3 is a partition of ω.

(∗)3 Without loss of generality, for some i ∈ {1, 2, 3} we have:
(a) ui = ω.
(b) If i = 3 without loss of generality there is some λ∗ > iω(θ) such

that
∧
n λn = λ∗.

(c) If i = 2 let µ∗ = iω(θ).

Stage B. Now

(∗)4 Without loss of generality there is a sequence 〈µn : n < ω〉 such that
(a) µ0 = θ+.
(b) µn = cf(µn).
(c) 2µn = µn+1 .
(d) Hence

∑
n µn = iω(θ).

(e) The forcing axiom ∗ωµn and < µn+1 dense sets holds.

Why? As in the proof of 2.11, but note that the forcing may (in fact
do) collapse iω+1 to iω(ω)+. Also in the case i = 1 letting wlog λn ∈
[ik(n),ik(n)+1(ω)) wlog k(n) is increasing and k(n+ 1) > k(n) + n.

(∗)5 Without loss of generality, in addition, letting θω = (iω(θ)), we have
2θω = θ+

ω and µω+1 = 2µω is >
∑

n χn and as in (∗)4(e) the forcing
axiom ∗ω

θ+ω
and < µω+1 dense sets holds.

Stage C. We deal with the case i = 1.
By 2.10, for every n, Prθ,κ(µn) holds. By easy compactness for singulars

argument we have, as ℵ0 < cf(θ∗), also Prθ,κ(µω).
Now clearly for each n, ∂n < Υn as in the proof of Theorem 1, there

is a graph Gn with |An| vertices, coloring number ≥ λn and list-chromatic
number θ.

Taking then the disjoint sum of all Gn we have established (A)2 ⇒ (B)2.
Stage D. i ∈ {3}. Similarly, but we use (∗)5.

�

Remark: We can replace iω(θ) with iδ(∗)(θ) when δ(∗) < cf(κ).

Proof of Theorems 1 and 2. The proofs consists of combining the lemmas
above. �
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We conclude with a few simple implications that are needed above.

Claim 2.13. Assume that θ is a regular cardinal and 2κ ≤ θ ≤ λ. We have
(a)λ,θ,κ ⇒ (b)λ,θ,κ ⇒ (c)λ,θ,κ ⇒ (d)λ,θ,κ. If, in addition, θ = θκ (or just
∂ < θ ⇒ ∂κ < λ then (d)λ,θ,κ ⇒ (e)λ,θ,κ ⇒ (f)λ,θ,κ,

Where

(a)λ,θ,κ λ is minimal such that there is a graph G with λ vertices, coloring
number ≥ θ and list-chromatic number ≤ κ.

(b)λ,θ,κ λ is regular and there is a graph G with λ vertices, coloring number
≥ θ, every sub-graph of G with < λ vertices has coloring number ≤ θ
and the complete bipartite graph K(κ, 2κ) is not weakly embeddable
into G.

(c)λ,θ,κ λ > θ is regular and there is C such that:

(α) C = 〈Cδ : δ ∈ S〉
(β) S ⊆ {δ : δ < λ ∧ cf(δ) = θ} is stationary.
(γ) Cδ ⊆ δ and otp(Cδ) = θ.
(δ) If u ∈ [λ]κ then {δ ∈ S : u ⊆ Cδ} is bounded in λ.

(d)λ,θ,κ λ > θ is regular and for some µ < λ for every ∂ ∈ [κ, θ) there is

A ⊆ [µ]∂ of cardinality λ such that u ∈ [µ]κ ⇒ (∃<λv ∈ A)(u ⊆ v)
(e)λ,θ,κ λ > θ is regular and there are µ < λ and {A∂ : ∂ ∈ [κ, θ)} such that

A∂ ⊆ [µ]∂ is a κ-family of cardinality λ.
(f)λ,θ,κ λ > θ is regular and there are µ < λ and {a∂ : ∂ ∈ [κ, θ)} such that

a ⊆ Reg ∩ (µ \ θ), |a∂ | = ∂ and (
∏

a∂ , <[a∂ ]<κ) is λ-directed.

Proof. (a)λ,θ,κ ⇒ (b)λ,θ,κ. Choose G witnessing (a)λ,θ,κ. We know that λ is
regular, and without loss of generality the vertex set of the graph is λ. The
coloring number is≥ θ by the choice ofG. IfH ⊆ G has fewer than λ vertices
then it has coloring number < θ by the minimality of λ . Also the complete
bipartite graph K(κ, 2κ) and even K(κ, κ+) is not weakly embedded in G
because its list-chromatic number is κ+ and λ > 2κ and even just λ > κ+.
Minimality of λ gives more. So (b)λ,θ,κ holds.

(b)λ,θ,κ ⇒ (c)λ,θ,κ. See [9] or [10]. Assume that the vertex set is λ and let
S = {δ : (∃α ≥ δ)(|G[α]∩δ| ≥ θ} where G[α] = {β : (α, β) is an edge of G}.
If S is not stationary then using ”every subgraph with < λ vertices has
coloring number ≤ θ” we conclude that G has coloring number ≤ θ. By
renaming we get (c)λ,θ,κ.

(c)λ,θ,κ ⇒ (d)λ,θ,κ. For each ∂ ∈ [κ, θ) we find, by Fodor’s lemma, α∂ < λ
such thatA∂ = {δ ∈ S : |C∂∩α∂ | ≥ ∂} has cardinality λ. So α∗ =

⋃
∂ α∂ < λ

satisfies the desired conclusion for the µ that is defined as µ = |α∗| so by
renaming we are done.

(d)λ,θ,κ ⇒ (e)λ,θ,κ. When, e.g., ∂ < θ ⇒ ∂κ < λ for each ∂ ∈ [κ, θ) let
〈u∂,α : α < λ} list A∂ , and for α < λ let Wα = {β < λ : |uγ,β ∩ u∂,α| ≥ κ}.
As |[u∂,α]κ| ≤ ∂ < λ = cf(λ), the set W∂ is bounded in λ, hence for some
club E∂ ⊆ λ it holds that α < β ∈ E∂ ⇒ |uγ,α∩u∂,β| < κ, so {u∂,α : α ∈ E∂}
is as required.

(e)λ,θ,κ ⇒ (f)λ,θ,κ if ∂ < θ ⇒ ∂κ < λ. By [11] 6.1.
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