On a question about families of entire functions*

Ashutosh Kumar ${ }^{\dagger}$ Saharon Shelah ${ }^{\ddagger}$

Abstract

We show that the existence of a continuum sized family \mathcal{F} of entire functions such that for each complex number z, the set $\{f(z)$: $f \in \mathcal{F}\}$ has size less than continuum is undecidable in ZFC plus the negation of CH .

1 Introduction

In [2], Erdös asked the following (for some history on this, see [3])
Question 1.1. Is there a continuum sized family \mathcal{F} of analytic functions from \mathbb{C} to \mathbb{C} such that for each $z \in \mathbb{C},\{f(z): f \in \mathcal{F}\}$ has size less than continuum?

In the same paper, answering a question of Wetzel, he showed that CH is equivalent to the following: There is an uncountable family \mathcal{F} of analytic functions from \mathbb{C} to \mathbb{C} such that for each $z \in \mathbb{C},\{f(z): f \in \mathcal{F}\}$ is countable. We show here that the answer to Question 1.1 is undecidable in ZFC plus the negation of CH .

Acknowledgment: We are grateful to the referee for several corrections
and simplifications.

[^0]
2 No such family in the Cohen real model

The following theorem implies that there is no such family in the Cohen real model which is obtained by adding \aleph_{2} Cohen reals to L.

Theorem 2.1. Suppose $V \models \mathfrak{c}=\lambda \geq c f(\lambda)>\kappa=\omega_{1}$. Let \mathbb{P} add κ Cohen reals. Then in $V^{\mathbb{P}}$, whenever \mathcal{F} is a continuum sized family of pairwise distinct entire functions, there exists $z \in \mathbb{C}$ such that $|\{f(z): f \in \mathcal{F}\}|=\mathfrak{c}$.

Proof of Theorem 2.1: Let $r \in{ }^{\kappa} 2$ be the Cohen generic sequence added by \mathbb{P}. Clearly, $V[r] \models \mathfrak{c}=\lambda$. Suppose $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is a sequence of pairwise distinct entire functions in $V[r]$. Note that each f_{α} is coded in $V\left[r \upharpoonright \xi_{\alpha}\right]$ for some $\xi_{\alpha}<\kappa$. As $c f(\lambda)>\kappa$, we can choose $X \in[\lambda]^{\lambda}, \xi_{\star}<\kappa$ such that for each $\alpha \in X, f_{\alpha}$ is coded in $V\left[r \upharpoonright \xi_{\star}\right]$. Let $z_{\star} \in \mathbb{C}$ be Cohen over $V\left[r \upharpoonright \xi_{\star}\right]$ so that it avoids every meager subset of the complex plane coded in $V\left[r \upharpoonright \xi_{\star}\right]$. Since two distinct entire functions only agree on a countable set, it follows that $\left\langle f_{\alpha}\left(z_{\star}\right): \alpha \in X\right\rangle$ are pairwise distinct.

3 Consistency with failure of CH

We now show that a positive answer to 1.1 is also consistent with the failure of CH .

Theorem 3.1. It is consistent with ZFC plus the negation of CH that there is a family \mathcal{F} of entire functions such that $|\mathcal{F}|=\mathfrak{c}$ and for every $z \in \mathbb{C}$, $|\{f(z): z \in \mathbb{C}\}|<\mathfrak{c}$.

Before we begin the proof of Theorem 3.1, let us recall Erdös' construction in [2] under CH. Let $\left\{z_{i}: i<\omega_{1}\right\}=\mathbb{C}$. Inductively construct $\left\langle f_{i}: i<\omega_{1}\right\rangle$ such that each $f_{i}: \mathbb{C} \rightarrow \mathbb{C}$ is entire and for every $j<i<\omega_{1}$, $f_{i} \neq f_{j}$ and $f_{i}\left(z_{j}\right)$ is a rational complex number. This is possible because for every countable $X \subseteq \mathbb{C}$, there is a non constant entire function sending X into the set of rational complex numbers.

We adopt a slightly different strategy that exploits the singularity of continuum as follows. Starting with a model where $\mathfrak{c}=\omega_{\omega_{1}}$, we perform a finite support iteration $\left\langle\mathbb{P}_{i}, \mathbb{Q}_{i}: i<\omega_{1}\right\rangle$ such that, at each stage $i<\omega_{1}$, via a ccc forcing \mathbb{Q}_{i} of size ω_{i+1}, we add a family \mathcal{F}_{i} of entire functions such that $\left|\mathcal{F}_{i}\right|=\omega_{i+1}$ and for every $j \leq i$, letting W_{j} be the set of first ω_{j+1} members of $V^{\mathbb{P}_{i}} \cap \mathbb{C}$ in some fixed enumeration, we have that $(\forall z \in$ $\left.W_{j}\right)\left(\left|\left\{f(z): f \in \mathcal{F}_{i}\right\}\right| \leq \omega_{j+1}\right)$. So $\mathcal{F}=\bigcup\left\{\mathcal{F}_{i}: i<\omega_{1}\right\}$ will be the required
family in $V^{\mathbb{P}}$. The possible set of values for $\left\{f(z): f \in \mathcal{F}_{i}\right\}$ is not fixed beforehand but added generically together with \mathcal{F} - This is the major point of difference with Erdös' construction. The main problem then is to ensure that \mathbb{Q}_{i} is ccc. We do this by requiring that the finite approximations to members of $\left\{f(z): z \in W_{i}\right\}$ can be chosen quite independently of those for $\left\{g(z): z \in W_{i}\right\}$, for $f \neq g \in \mathcal{F}_{i}$. This is materialized by using strongly almost disjoint families in $\left[\omega_{i+1}\right]^{\omega_{i+1}}$. The next lemma says that such families can consistently exist.

Lemma 3.2. The following is consistent.
(a) $\mathfrak{c}=\omega_{\omega_{1}}$
(b) There is a family $\left\{A_{\alpha}: \alpha<\omega_{\omega_{1}}\right\}$ such that each $A_{\alpha} \in\left[\omega_{\omega_{1}}\right]^{\omega_{\omega_{1}}}$
(c) For every $\alpha<\beta<\omega_{\omega_{1}}, A_{\alpha} \cap A_{\beta}$ is finite
(d) For every $i<\omega_{1}$ and $\alpha<\omega_{\omega_{1}},\left|A_{\alpha} \cap \omega_{i+1}\right|=\omega_{i+1}$

Proof of Lemma 3.2: We use Baumgartner's thinning out forcing - See Theorem 6.1 in [1]. Let $V \models$ GCH. Put $\lambda=\omega_{\omega_{1}}$ and $\lambda_{i}=\omega_{i+1}$. For each $1 \leq i<\omega_{1}$, define \mathbb{P}_{i} as follows. Let $K_{i}=\left\{\nu \in\left[\omega_{2}, \lambda_{i}\right]: \nu=\operatorname{cf}(\nu)\right\} . p \in \mathbb{P}_{i}$ iff
(i) $p=\left\langle p_{\nu}: \nu \in K_{i}\right\rangle$
(ii) Each p_{ν} is a function with $\operatorname{dom}\left(p_{\nu}\right) \in[\lambda]^{<\nu}$
(iii) For each $\alpha \in \operatorname{dom}\left(p_{\nu}\right), p_{\nu}(\alpha) \in\left[\lambda_{i}\right]^{<\nu}$
(iv) If $\nu<\nu^{\prime}$, then $\operatorname{dom}\left(p_{\nu}\right) \subseteq \operatorname{dom}\left(p_{\nu^{\prime}}\right)$ and for each $\alpha \in \operatorname{dom}\left(p_{\nu}\right), p_{\nu}(\alpha) \subseteq$ $p_{\nu^{\prime}}(\alpha)$

For $p, q \in \mathbb{P}_{i}$, write $p \leq_{i} q$ iff
(a) For each $\nu \in K_{i}, \operatorname{dom}\left(p_{\nu}\right) \subseteq \operatorname{dom}\left(q_{\nu}\right)$
(b) For each $\alpha, \beta \in \operatorname{dom}\left(p_{\nu}\right), p_{\nu}(\alpha) \subseteq q_{\nu}(\alpha)$ and if $\alpha \neq \beta$, then $p_{\nu}(\alpha) \cap$ $p_{\nu}(\beta)=q_{\nu}(\alpha) \cap q_{\nu}(\beta)$

Let $\mathbb{P}=\prod\left\{\mathbb{P}_{i}: i<\kappa\right\}$ be the full support product of $\left\{\mathbb{P}_{i}: i<\kappa\right\}$. So $p \in \mathbb{P}$ iff $p=\langle p(i): i<\kappa\rangle$ and for every $i<\kappa, p(i) \in \mathbb{P}_{i}$. For $p, q \in \mathbb{P}, p \leq q$ iff for every $i<\kappa, p(i) \leq_{i} q(i)$.

Claim 3.3. \mathbb{P} preserves all regular cardinals below λ.
Proof of Claim 3.3: The proof is almost identical to that of Lemma 6.6 in [1] but we provide a sketch. Let G be \mathbb{P}-generic over V. Let $\tau<\lambda$ be a regular cardinal in V and suppose $V[G] \models \tau>\operatorname{cf}(\tau)=\mu$. Note that \mathbb{P} is ω_{2}-closed so $\mu \geq \omega_{2}$. Fix $1 \leq i_{\star}<\omega_{1}$ such that $\mu=\lambda_{i_{\star}}$.

Let $\mathbb{Q}=\left\{\left\langle p(i) \upharpoonright\left[\lambda_{i_{\star}+1}, \infty\right): i<\omega_{1}\right\rangle: p \in \mathbb{P}\right\}$ and $H=\{\langle p(i) \upharpoonright$ $\left.\left.\left[\lambda_{i_{\star}+1}, \infty\right): i<\omega_{1}\right\rangle: p \in G\right\}$. Then \mathbb{Q} is $\lambda_{i_{\star}+1}$-closed and H is \mathbb{Q}-generic over V. In $V[H]$, for $i_{\star}<i<\omega_{1}$ and $\alpha<\lambda$, let $E_{i, \alpha}=\bigcup\left\{p(i)\left(\lambda_{i_{\star}+1}\right)(\alpha): p \in H\right\}$ and for $i \leq i_{\star}, \alpha<\lambda$, let $E_{i, \alpha}=\lambda_{i}$. Let $\mathbb{Q}^{\prime}=\left\{\left\langle p(i) \upharpoonright\left[0, \lambda_{i_{\star}}\right]: i<\omega_{1}\right\rangle\right.$: $\left.p \in \mathbb{P} \wedge\left(\forall \alpha \in \operatorname{dom}\left(p(i)\left(\lambda_{i_{\star}}\right)\right)\right) p_{i}\left(\lambda_{i_{\star}}\right)(\alpha) \subseteq E_{i, \alpha}\right\}$ and $K=\left\{\left\langle p(i) \upharpoonright\left[0, \lambda_{i_{\star}}\right]:\right.\right.$ $\left.\left.i<\omega_{1}\right\rangle: p \in G\right\}$. Then it is easily verified that K is \mathbb{Q}^{\prime}-generic over $V[H]$ and $V[G]=V[H][K]$. As \mathbb{Q} is $\lambda_{i_{*}+1^{-c l o s e d, ~}} \operatorname{cf}(\tau) \geq \lambda_{i_{\star}+1}$ in $V[H]$. Since $\lambda_{i_{\star}} \geq \omega_{2}$, a Δ-system argument shows that $V[H] \models \mathbb{Q}^{\prime}$ satisfies $\lambda_{i_{\star}+1}$-c.c. (see Lemma 6.3 in $[1]$) hence $V[G]=V[H][K] \models \operatorname{cf}(\tau) \geq \lambda_{i_{\star}+1}>\mu$: A contradiction.

Let G be \mathbb{P}-generic over V and $V_{1}=V[G]$. In V_{1}, for $\alpha<\lambda$, let $F_{\alpha}=$ $\bigcup\left\{F_{i, \alpha} \cap\left[\omega_{i}, \omega_{i+1}\right): i<\omega_{1}\right\}$ where $F_{i, \alpha}=\bigcup\left\{q_{\omega_{2}}(\alpha):(\exists p \in G)(q=p(i))\right\}$. Then each F_{α} is unbounded in ω_{i+1} for $1 \leq i<\omega_{1}$ and their pairwise intersections have sizes $\leq \omega_{1}$. In V_{1}, define \mathbb{P}_{1} by $p \in \mathbb{P}_{1}$ iff p is a function, $\operatorname{dom}(p) \in[\lambda]^{<\aleph_{1}}$ and for each $\alpha \in \operatorname{dom}(p), p(\alpha) \in\left[F_{\alpha} \cup \omega_{1}\right]^{<\aleph_{1}}$. For $p, q \in \mathbb{P}_{1}$, $p \leq q$ iff $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$ and for all $\alpha, \beta \in \operatorname{dom}(p), p(\alpha) \subseteq q(\alpha)$ and if $\alpha \neq \beta$, then $p(\alpha) \cap p(\beta)=q(\alpha) \cap q(\beta)$. As CH holds in V_{1}, a Δ-system argument shows that \mathbb{P}_{1} satisfies \aleph_{2}-cc. Since it is also countably closed, all cofinalities from V_{1} are preserved. Let G_{1} be \mathbb{P}_{1}-generic over V_{1} and $V_{2}=V_{1}\left[G_{1}\right]$. For $\alpha<\lambda$, put $F_{\alpha}^{\prime}=\bigcup\left\{p(\alpha): p \in G_{1}\right\}$. Then each F_{α}^{\prime} is unbounded in ω_{i+1} for $i<\omega_{1}$ and their pairwise intersections are countable. In V_{2}, define \mathbb{P}_{2} by $p \in \mathbb{P}_{2}$ iff p is a function, $\operatorname{dom}(p) \in[\lambda]^{<\aleph_{0}}$ and for each $\alpha \in \operatorname{dom}(p)$, $p(\alpha) \in\left[F_{\alpha}^{\prime}\right]^{<\aleph_{0}}$. For $p, q \in \mathbb{P}_{1}, p \leq q$ iff $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$ and for all $\alpha, \beta \in \operatorname{dom}(p), p(\alpha) \subseteq q(\alpha)$ and if $\alpha \neq \beta$, then $p(\alpha) \cap p(\beta)=q(\alpha) \cap q(\beta)$. A Δ-system argument shows that \mathbb{P}_{2} satisfies ccc so all cofinalities are preserved. Let G_{2} be \mathbb{P}_{2}-generic over V_{2} and $V_{3}=V_{2}\left[G_{2}\right]$. For $\alpha<\lambda$, put $A_{\alpha}=\bigcup\left\{p(\alpha): p \in G_{2}\right\}$. Then each A_{α} is unbounded below ω_{i+1} for each $i<\omega_{1}$ and their pairwise intersections are finite. As $\left\{A_{\alpha} \cap \omega_{1}: \alpha<\lambda\right\}$ is a mod finite almost disjoint family, $V_{3} \models \mathfrak{c} \geq \lambda$. The other inequality follows from a name counting argument using $V_{2} \models \lambda^{\aleph_{0}}=\lambda$.

Proof of Theorem 3.1: Let V be a model satisfying the clauses of Claim 3.2. We'll construct a finite support iteration $\left\langle\mathbb{P}_{i}, \mathbb{Q}_{i}: i<\omega_{1}\right\rangle$ of ccc
forcings with limit \mathbb{P} satisfying the following.
(1) $|\mathbb{P}|=\omega_{\omega_{1}}$
(2) $\vdash_{\mathbb{P}_{i}}\left\langle\ddot{z}_{i, \alpha}: \alpha<\omega_{\omega_{1}}\right\rangle$ lists \mathbb{C} and $\dot{Z}_{i}=\left\{\dot{z}_{j, \alpha}: j \leq i, \alpha<\omega_{i+1}\right\}$
(3) $\left\langle\grave{y}_{\alpha}: \alpha<\omega_{i+1}\right\rangle \in V^{\mathbb{P}_{i}}$ is such that $\Vdash_{\mathbb{P}_{i}}\left\langle\grave{y}_{\alpha}: \alpha<\omega_{i+1}\right\rangle$ is a one-one listing of \check{Z}_{i} - So $\left\{\check{y}_{\alpha}: \alpha<\omega_{\omega_{1}}\right\}=\mathbb{C} \cap V^{\mathbb{P}}$
(4) In $V^{\mathbb{P}_{i}}, \mathbb{Q}_{i}$ is a ccc forcing of size λ_{i} that adds a family \mathcal{F}_{i} of entire functions of size ω_{i+1} such that for every $j \leq i, \Vdash_{\mathbb{Q}_{i}} \mid\left\{f\left(y_{\alpha}\right): \alpha<\right.$ $\left.\omega_{j+1}\right\} \mid \leq \omega_{j+1}$

Put $\mathcal{F}=\bigcup_{i<\omega_{1}} \mathcal{F}_{i}$. If $\dot{z} \in V^{\mathbb{P}} \cap \mathbb{C}$, then for some $i_{\star}<\omega_{1}$ and $\alpha<\omega_{i_{\star}+1}$, $\stackrel{z}{z}=y_{\alpha}$. Hence $|\{f(\tilde{z}): f \in \mathcal{F}\}| \leq\left|\bigcup_{i<i_{\star}}\left\{f(\tilde{z}): f \in \mathcal{F}_{i}\right\}\right|+\mid \bigcup_{i>i_{\star}}\left\{f\left(y_{\alpha}\right):\right.$ $\left.f \in \mathcal{F}_{i}\right\} \mid \leq \omega_{i_{\star}+1}+\omega_{1} \cdot \omega_{i_{\star}+1}=\omega_{i_{\star}+1}<\mathfrak{c}$. The following lemma shows that \mathbb{Q}_{i} 's can be constructed.

Lemma 3.4. Suppose κ is regular uncountable. Let $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ be such that for every $\alpha<\beta<\kappa$ and uncountable cardinal $\mu \leq \kappa$, $A_{\alpha} \cap \mu \in[\mu]^{\mu}$ and $A_{\alpha} \cap A_{\beta}$ is finite (so $\kappa \leq \mathfrak{c}$). Let $\left\langle y_{\alpha}: \alpha<\kappa\right\rangle$ be a sequence of distinct complex numbers. Then there exists a ccc forcing \mathbb{Q} of size κ such that the following hold in $V^{\mathbb{Q}}$.
(a) There is a family \mathcal{F} of entire functions of size κ
(b) For every uncountable cardinal $\mu \leq \kappa,\left|\left\{f\left(y_{\alpha}\right): \alpha<\mu, f \in \mathcal{F}\right\}\right|=\mu$

Proof of Lemma 3.4: For $\xi<\kappa$, let $h_{\xi}: \kappa \rightarrow A_{\xi}$ be such that $h_{\xi}(\alpha)$ is the α th member of A_{ξ}. Note that for every regular uncountable $\mu<\kappa$, $h_{\xi}[\mu]=A_{\xi} \cap \mu$. Define \mathbb{Q} as follows: $p \in \mathbb{Q}$ iff $p=\left(n_{p}, m_{p}, u_{p}, v_{p}, w_{p},\left\langle m_{\xi, \alpha}^{p}: \xi \in u_{p}, \alpha \in v_{p}\right\rangle,\left\langle f_{\xi}^{p}: \xi \in u_{p}\right\rangle,\left\langle B_{\gamma, m}^{p}: \gamma \in\right.\right.$ $\left.\left.w_{p}, m<m_{p}\right\rangle\right)$ where
(1) $1 \leq n_{p}<\omega, 1 \leq m_{p}<\omega$
(2) $u_{p}, v_{p}, w_{p} \in[\kappa]^{<\aleph_{0}}$ and for every $\alpha \in v_{p},\left|y_{\alpha}\right|<n_{p}$
(3) $w_{p} \supseteq\left\{h_{\xi}(\alpha): \xi \in u_{p}, \alpha \in v_{p}\right\}$
(4) $m_{\xi, \alpha}^{p}<m_{p}$ for every $\xi \in u_{p}, \alpha \in v_{p}$
(5) For each $\xi \in u_{p}, f_{\xi}^{p}=f_{\xi}^{p}\left(x, x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime}\right)_{\alpha \in v_{p}}$ is a rational function in the $2\left|v_{p}\right|+1$ variables $\{x\} \cup\left\{x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime}: \alpha \in v_{p}\right\}$ over the rational complex field which can be expressed as a polynomial in x whose coefficients are rational functions of $\left\{x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime}: \alpha \in v_{p}\right\}$ that satisfies: For every $\beta \in v_{p}, f_{\xi}^{p}\left(x_{\beta}^{\prime}, x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime}\right)_{\alpha \in v_{p}}=x_{\beta}^{\prime \prime}$
(6) For every $\gamma \in w_{p}$ and $m<m_{p}, B_{\gamma, m}^{p}$ is a closed disk in complex plane with rational complex center and rational radius that satisfies: If $z_{\alpha, \xi, m} \in B_{h_{\xi}(\alpha), m}^{p}$, for $\xi \in u_{p}, \alpha \in v_{p}$ and $m<m_{p}$, then $f_{\xi}\left(x, y_{\alpha}, z_{\alpha, \xi, m_{\xi, \alpha}^{p}}\right)_{\alpha \in v_{p}}$ is well defined (no vanishing denominators).

Informally, p promises that for $\xi \in u_{p}$, the ξ th entire function \dot{f}_{ξ} added by \mathbb{Q} is approximated by $f_{\xi}^{p}\left(x, y_{\alpha}, z_{\alpha}\right)_{\alpha \in v_{p}}$ uniformly on the disk $\{x \in \mathbb{C}$: $\left.|x| \leq n_{p}\right\}$ with an error $\leq 2^{-n_{p}}$ where z_{α} is an arbitrary point in $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p}}^{p}$. It also promises that \dot{f}_{ξ} will map y_{α} (for $\alpha \in v_{p}$) into $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p}}^{p}$. The parameter m in $B_{\gamma, m}^{p}$ allows us a countable amount of freedom to choose ${ }_{f}^{\circ}\left(y_{\alpha}\right)$ (this is useful to increase v_{p}, see Claim 3.5(c) below).

For $p, q \in \mathbb{Q}$, define $p \leq q$ iff
(6) $n_{p} \leq n_{q}, m_{p} \leq m_{q}$
(7) $u_{p} \subseteq u_{q}, v_{p} \subseteq v_{q}$ and $w_{p} \subseteq w_{q}$
(8) If $\xi \in u_{p}, \alpha \in v_{p}$, then $m_{\xi, \alpha}^{q}=m_{\xi, \alpha}^{p}$
(9) $B_{\gamma, m}^{q} \subseteq B_{\gamma, m}^{p}$ for every $\gamma \in w_{p}$ and $m<m_{p}$
(10) Whenever $|z|<n_{p}, \xi \in u_{p}, z_{\xi, \alpha} \in B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q}}^{q}$ for $\alpha \in v_{q}$, we have

$$
\left|f_{\xi}^{p}\left(z, y_{\alpha}, z_{\xi, \alpha}\right)_{\alpha \in v_{p}}-f_{\xi}^{q}\left(z, y_{\alpha}, z_{\xi, \alpha}\right)_{\alpha \in v_{q}}\right| \leq 1 / 2^{n_{p}}-1 / 2^{n_{q}}
$$

Claim 3.5. The following are dense in \mathbb{Q}
(a) $\left\{p \in \mathbb{Q}: \xi \in u_{p}\right\}$ for $\xi<\kappa$
(b) $\left\{p \in \mathbb{Q}:\left(\gamma \in w_{p}\right) \wedge\left(n_{p}, m_{p} \geq N\right)\right\}$ for $N<\omega$ and $\gamma<\kappa$
(c) $\left\{p \in \mathbb{Q}: \beta \in v_{p}\right\}$ for $\beta<\kappa$
(d) $\left\{p \in \mathbb{Q}:\left(\forall m<m_{p}\right)\left(\forall \gamma \in w_{p}\right)\left(\operatorname{diam}\left(B_{\gamma, m}^{p}\right)<2^{-N}\right)\right\}$ for $N<\omega$
(e) $\left\{p \in \mathbb{Q}:\left(\forall \gamma_{1}, \gamma_{2} \in w_{p}\right)\left(\forall m_{1}, m_{2}<m_{p}\right)\left(\left(\gamma_{1}, n_{1}\right) \neq\left(\gamma_{2}, n_{2}\right) \Longrightarrow\right.\right.$ $\left.\left.B_{\gamma_{1}, m_{1}}^{p} \cap B_{\gamma_{2}, m_{2}}^{p}=\phi\right)\right\}$

Proof of Claim 3.5: Clauses (b), (d) and (e) should be clear. Let us check (a) and (c).
(a) Suppose $q \in \mathbb{Q}$ with $\xi_{\star} \in \kappa \backslash u_{q}$. If $v_{q}=\phi$, then we can add ξ_{\star} to u_{q} and set $f_{\xi_{\star}}^{q}(x)=0$. So assume $v_{q}=\left\{\alpha_{i}: 1 \leq i \leq k\right\}$. Define $g_{i}=g_{i}\left(x, x_{\alpha_{j}}^{\prime}, x_{\alpha_{j}}^{\prime \prime}\right)_{1 \leq j \leq i}$ for $1 \leq i \leq k$ recursively as follows

$$
\begin{gathered}
g_{1}=x+x_{\alpha_{1}}^{\prime \prime}-x_{\alpha_{1}}^{\prime} \\
g_{i+1}=g_{i}+\left(\prod_{1 \leq j \leq i}\left(x-x_{\alpha_{j}}^{\prime}\right)\right)\left(\frac{x_{\alpha_{i+1}}^{\prime \prime}-g_{i}\left(x_{\alpha_{i+1}}^{\prime}, x_{\alpha_{j}}^{\prime}, x_{\alpha_{j}}^{\prime \prime}\right)_{1 \leq j \leq i}}{\prod_{1 \leq j \leq i}\left(x_{\alpha_{i+1}}^{\prime}-x_{\alpha_{j}}^{\prime}\right)}\right)
\end{gathered}
$$

Define $p \geq q$ as follows. Put $n_{p}=n_{q}, m_{p}=m_{q}, u_{p}=u_{q} \cup\left\{\xi_{*}\right\}$, $v_{p}=v_{q}, w_{p}=w_{q} \cup\left\{h_{\xi_{\star}}(\alpha): \alpha \in v_{q}\right\}, f_{\xi_{\star}}^{p}=g_{k}$ and $f_{\xi}^{p}=f_{\xi}^{q}$ for $\xi \in u_{q}$. Set $m_{\xi, \alpha}^{p}=m_{\xi, \alpha}^{q}$ and $B_{\gamma, m}^{p}=B_{\gamma, m}^{q}$ if already defined otherwise choose them arbitrarily.
(c) Suppose $q \in \mathbb{Q}$ and $\beta \in \kappa \backslash v_{q}$. By increasing n_{q}, we can assume $\left|y_{\beta}\right|<n_{q}$. For each $\xi \in u_{q}$, define f_{ξ}^{p} by

$$
f_{\xi}^{p}=f_{\xi}^{q}+\left(\prod_{\alpha \in v_{q}}\left(x-x_{\alpha}^{\prime}\right)\right)\left(\frac{x_{\beta}^{\prime \prime}-f_{\xi}^{q}\left(x_{\beta}^{\prime}, x_{\alpha}^{\prime}, x_{\alpha}^{\prime \prime}\right)_{\alpha \in v_{q}}}{\prod_{\alpha \in v_{q}}\left(x_{\beta}^{\prime}-x_{\alpha}^{\prime}\right)}\right)
$$

where, we take a product over the empty index set to be 1 .
Let $\varepsilon=\min \left\{\left|y_{\beta}-y_{\alpha}\right|: \alpha \in v_{q}\right\}$ if $v_{q} \neq \phi$ and $\varepsilon=1$ otherwise. Put $u_{p}=u_{q}, v_{p}=v_{q} \cup\{\beta\}, w_{p}=w_{q} \cup\left\{h_{\xi}(\beta): \xi \in u_{q}\right\}, n_{p}=n_{q}+1$, $m_{p}=m_{q}+\left|u_{q}\right|$. For each $\xi \in u_{q}$, choose $m_{\xi, \beta}^{p} \geq m_{q}$ such that $\xi_{1} \neq \xi_{2}$ implies $m_{\xi_{1}, \beta}^{p} \neq m_{\xi_{2}, \beta}^{p}$. We need to choose $B_{\gamma, m}^{p}$'s such that whenever $|z|<n_{q}, \xi \in u_{q}$ and $z_{\xi, \alpha} \in B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p}}^{p}$ for $\alpha \in v_{p}$,

$$
\left|\left(\prod_{\alpha \in v_{q}}\left(z-y_{\alpha}\right)\right)\left(\frac{z_{\xi, \beta}-f_{\xi}^{q}\left(y_{\beta}, y_{\alpha}, z_{\xi, \alpha}\right)_{\alpha \in v_{q}}}{\prod_{\alpha \in v_{q}}\left(y_{\beta}-y_{\alpha}\right)}\right)\right| \leq \frac{1}{2^{n_{q}}}-\frac{1}{2^{n_{q}+1}}
$$

For this it is enough to have

$$
\left|z_{\xi, \beta}-f_{\xi}^{q}\left(y_{\beta}, y_{\alpha}, z_{\xi, \alpha}\right)_{\alpha \in v_{q}}\right| \leq \frac{\varepsilon^{k}}{\left(2 n_{q}\right)^{k}\left(2^{n_{q}+1}\right)}
$$

where $k=\left|v_{q}\right|$. But this is easily arranged by first shrinking $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q}}^{q}$'s for $\alpha \in v_{q}$ and then choosing $B_{h_{\xi}(\beta), m_{\xi, \beta}^{p}}^{p}$ accordingly.

Let G be \mathbb{Q}-generic over V. For $\gamma<\kappa$ and $m<\omega$, let $a_{\gamma, m}$ be the unique member of $\bigcap\left\{B_{\gamma, m}^{p}: p \in G\right\}$.

For $\xi<\lambda$, define $f_{\xi}: \mathbb{C} \rightarrow \mathbb{C}$ as follows. Choose $\left\{p_{k}: k<\omega\right\} \subseteq$ G such that $\xi \in u_{p_{k}}$ and $n_{p_{k}} \geq k$ for every $k<\omega$, and put $f_{\xi}(z)=$ $\lim _{k} f_{\xi}^{p_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_{k}}}\right)_{\alpha \in v_{p_{k}}}$. Since we have uniform convergence on compact sets, f_{ξ} is analytic. Note that the definition of f_{ξ} is independent of the choice of $\left\{p_{k}: k<\omega\right\} \subseteq G$. For suppose $\left\{q_{k}: k<\omega\right\} \subseteq G$ is such that $\xi \in u_{q_{k}}$ and $n_{q_{k}} \geq k$ for every $k<\omega$. Let $r_{k} \in G$ be a common extension of p_{k}, q_{k}. Then, for every $z \in \mathbb{C}$ with $|z|<k$, we have $\left|f_{\xi}^{p_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_{k}}}\right)_{\alpha \in v_{p_{k}}}-f_{\xi}^{q_{k}}\left(z, y_{\alpha}, a_{\left.h_{\xi}(\alpha), m_{\xi, \alpha}^{q_{k}}\right)}\right)_{\alpha \in v_{q_{k}}}\right| \leq 2^{-k+1}$ since it is at most the sum of $\left|f_{\xi}^{p_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_{k}}}\right)_{\alpha \in v_{p_{k}}}-f_{\xi}^{r_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{r_{k}}}\right)_{\alpha \in v_{r_{k}}}\right|$ and $\left|f_{\xi}^{q_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q_{k}}}\right)_{\alpha \in v_{q_{k}}}-f_{\xi}^{r_{k}}\left(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{r_{k}}}\right)_{\alpha \in v_{r_{k}}}\right|$ and hence the two limits must be the same.

Put $\mathcal{F}=\left\{f_{\xi}: \xi<\kappa\right\}$. For $\xi, \alpha<\kappa$, let $m_{\xi, \alpha}$ be such that for some $p \in G, \xi \in u_{p}, \alpha \in v_{p}$ and $m_{\xi, \alpha}^{p}=m_{\xi, \alpha}$. Note that, for every $\xi, \alpha<\kappa$, by considering a sequence $\left\{p_{k}: k<\omega\right\} \subseteq G$ with $\alpha \in v_{p_{k}}$, we can infer that $f_{\xi}\left(y_{\alpha}\right)=a_{h_{\xi}(\alpha), m_{\xi, \alpha}}$. Next suppose $\xi_{1}<\xi_{2}<\kappa$. Choose $\alpha<\kappa$ such that $h_{\xi_{1}}(\alpha) \neq h_{\xi_{2}}(\alpha)$. Then $f_{\xi_{1}}\left(y_{\alpha}\right)=a_{h_{\xi_{1}}(\alpha), m_{\xi_{1}, \alpha}} \neq a_{h_{\xi_{2}}(\alpha), m_{\xi_{2}, \alpha}}=f_{\xi_{2}}\left(y_{\alpha}\right)$. So f_{ξ} 's are pairwise distinct. Finally, for every uncountable $\mu \leq \kappa$, we have $\left|\left\{f_{\xi}\left(y_{\alpha}\right): \alpha<\mu, \xi<\kappa\right\}\right| \leq\left|\left\{a_{h_{\xi}(\alpha), m_{\xi, \alpha}}: \xi<\kappa, \alpha<\mu\right\}\right| \leq \mid\left\{a_{\gamma, m}: \gamma<\right.$ $\mu, m<\omega\} \mid=\mu$.

So it suffices to show that \mathbb{Q} is ccc. Suppose $A \subseteq \mathbb{Q}$ is uncountable. Choose $S \subseteq A$ uncountable such that the following hold.
(1) $n_{p}=n_{\star}, m_{p}=m_{\star},\left|u_{p}\right|=n_{\star}^{1}$ and $\left|v_{p}\right|=n_{\star}^{2}$ do not depend on $p \in S$
(2) $\left\langle u_{p}: p \in S\right\rangle$ is a Δ-system with root u_{\star} and $\left\langle v_{p}: p \in S\right\rangle$ is a Δ-system with root v_{\star}
(3) If $\xi_{1} \neq \xi_{2}$ are from u_{\star} and $h_{\xi_{1}}\left(\alpha_{1}\right)=h_{\xi_{2}}\left(\alpha_{2}\right)$, then $\left\{\alpha_{1}, \alpha_{2}\right\} \cap\left(v_{p} \backslash v_{\star}\right)=$ ϕ for every $p \in S$ - This uses the fact that $A_{\xi_{1}} \cap A_{\xi_{2}}$ is finite (countable suffices)
(4) By possibly extending $p \in S$, we can assume $1 \leq\left|v_{\star}\right|<n_{\star}^{2}$ (so v_{p} and $\left.v_{p} \backslash v_{\star} \neq \phi\right)$
(5) $u_{p}=\left\{\xi_{p, j}: j<n_{\star}^{1}\right\}, v_{p}=\left\{\alpha_{p, k}: k<n_{\star}^{2}\right\}$ list members in increasing order and $r_{\star}^{1} \subseteq n_{\star}^{1}, r_{\star}^{2} \subseteq n_{\star}^{2}$ are such that $u_{\star}=\left\{\xi_{p, k}: j \in r_{\star}^{1}\right\}$ and $v_{\star}=\left\{\alpha_{p, k}: k \in r_{\star}^{2}\right\}$
(6) For every $j<n_{\star}^{1}, k<n_{\star}^{2}$ and $m<m_{\star}$, we have $f_{\xi_{p, j}}^{p}=f_{j}\left(x, x_{\alpha_{p, k}}^{\prime}, x_{\alpha_{p, k}}^{\prime \prime}\right)_{k<n_{\star}^{2}}$, $m_{\xi_{p, j}, \alpha_{p, k}}^{p}=m_{j, k}$ and $B_{h_{\xi_{p, j}}\left(\alpha_{p, k}\right), m}=B_{j, k, m}$ where $f_{j}, m_{j, k}, B_{j, k, m}$ do not depend on $p \in S$,
(7) $0<\varepsilon_{1}<2^{-\left(n_{\star}+1\right)}$, ε_{1} is smaller than the radius of every $B_{j, k, m}$, and for every $p \in S$, for every $k_{1}<k_{2}<n_{\star}^{2},\left|y_{\alpha_{p, k_{1}}}-y_{\alpha_{p, k_{2}}}\right|>\varepsilon_{1}$
(8) Each point of $X=\left\{\left\langle y_{\alpha_{p, k}}: k<n_{\star}^{2}\right\rangle: p \in S\right\}$ is a condensation point of $X \subseteq \mathbb{C}^{n_{\star}^{2}}$

Suppose $p, p^{\prime} \in S$ and we would like to find a common extension q. This boils down to constructing f_{ξ}^{q} for $\xi \in u_{p} \cup u_{p^{\prime}}$. For $\xi \in\left(u_{p} \cup u_{p^{\prime}}\right) \backslash u_{\star}$, this is similar to the proof of Claim 3.5(c). To construct f_{ξ}^{q} for $\xi \in u_{\star}$, we'll make use of the following lemma.

Lemma 3.6. Suppose
(i) $1 \leq n_{\star}<\omega, 0<\varepsilon_{1}<0.5$
(ii) $f=f\left(z, x_{k}, y_{k}\right)_{k<k_{\star}}$ is a rational function in the variables $\{z\} \cup$ $\left\{x_{k}, y_{k}: k<k_{\star}\right\}$ over the rational complex field which can be expressed as a polynomial in z whose coefficients are rational functions of x_{k}, y_{k} for $k<k_{\star}$ over the rational complex field, satisfying $f\left(x_{l}, x_{k}, y_{k}\right)_{k<k_{\star}}=y_{l}$ for every $l<k_{\star}$
(iii) $a_{k}, b_{k} \in \mathbb{C}$ for $k<k_{\star}$, for each $k<k_{\star},\left|a_{k}\right|<n_{\star}$ and for every $k_{1}<k_{2}<k_{\star},\left|a_{k_{1}}-a_{k_{2}}\right|>\varepsilon_{1}$
(iv) If $\left|a_{k}^{\prime}-a_{k}\right|<\varepsilon_{1}$ and $\left|b_{k}^{\prime}-b_{k}\right|<\varepsilon_{1}$ for $k<k_{\star}$, then $f\left(z, a_{k}^{\prime}, b_{k}^{\prime}\right)_{k<k_{\star}}$ is well defined (no vanishing denominators)
$(v) v_{\star} \subseteq k_{\star}, v_{\star} \notin\left\{\phi, k_{\star}\right\}$
Then there exist $0<\varepsilon_{2}<\varepsilon_{1} / 8$ and $g=g\left(z, x_{l}, y_{l}, x_{k}^{1}, x_{k}^{2}, y_{k}^{1}, y_{k}^{2}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}$ such that whenever $\left|a_{k}^{2}-a_{k}\right|<\varepsilon_{2}$ for $k \in k_{\star} \backslash v_{\star}$, letting $b_{k}^{2}=f\left(a_{k}^{2}, a_{j}, b_{j}\right)_{j<k_{\star}}$ we have $\left|b_{k}^{2}-b_{k}\right|<\varepsilon_{1}-2 \varepsilon_{2}$ for $k \in k_{\star} \backslash v_{\star}$ and the following hold.
(a) g is a polynomial in z whose coefficients are rational functions of the other variables over the rational complex field satisfying $z=x_{l}$ implies $g=y_{l}$ for $l \in v_{\star}$ and $z=x_{k}^{j}$ implies $g=y_{k}^{j}$ for $j=1,2$ and $k \in k_{\star} \backslash v_{\star}$
(b) Letting $a_{k}^{1}=a_{k}, b_{k}^{1}=b_{k}$ for $k \in k_{\star} \backslash v_{\star}$ we have the following. For every c_{l}, c_{k}^{j} satisfying $\left|c_{l}-b_{l}\right|<\varepsilon_{2},\left|c_{k}^{j}-b_{k}^{j}\right|<\varepsilon_{2}$ for $l \in v_{\star}, j=1,2$, $k \in k_{\star} \backslash v_{\star}$, for every $|z|<n_{\star}$ and $j=1,2$, we have

$$
\left|f\left(z, a_{l}, a_{k}^{j}, c_{l}, c_{k}^{j}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}-g\left(z, a_{l}, c_{l}, a_{k}^{1}, a_{k}^{2}, c_{k}^{1}, c_{k}^{2}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|<\varepsilon_{1}
$$

Proof of Lemma 3.6: Put

$$
g=f\left(z, x_{l}, x_{k}^{1}, y_{l}, y_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}+\sum_{j \in k_{\star} \backslash v_{\star}} G_{j}
$$

where

$$
G_{j}=\frac{F_{j}(z)\left[y_{j}^{2}-f\left(x_{j}^{2}, x_{l}, x_{k}^{1}, y_{l}, y_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right]}{F_{j}\left(x_{j}^{2}\right)}
$$

where

$$
F_{j}(z)=\prod_{k \in k_{\star} \backslash v_{\star}}^{k \neq j}\left(z-x_{k}^{2}\right) \prod_{l \in v_{\star}}\left(z-x_{l}\right) \prod_{k \in k_{\star} \backslash v_{\star}}\left(z-x_{k}^{1}\right)
$$

Clause (a) is easily verified. We need to find $0<\varepsilon_{2}<\varepsilon_{1} / 8$ such that clause (b) holds. Note that for all sufficiently small $\varepsilon_{2}<\varepsilon_{1} / 8$, if $\left|a_{j}^{2}-a_{j}\right|<$ ε_{2}, then $\left|b_{j}^{2}-b_{j}\right|=\left|f\left(a_{j}^{2}, a_{k}, b_{k}\right)_{k<k_{\star}}-f\left(a_{j}, a_{k}, b_{k}\right)_{k<k_{\star}}\right|<3 \varepsilon_{1} / 4<\varepsilon_{1}-2 \varepsilon_{2}$. Fix c_{l}, c_{k}^{j} as in clause (b) and consider

$$
\left|f\left(z, a_{l}, a_{k}^{j}, c_{l}, c_{k}^{j}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}-g\left(z, a_{l}, c_{l}, a_{k}^{1}, a_{k}^{2}, c_{k}^{1}, c_{k}^{2}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|
$$

This is at most the sum of

$$
\left|f\left(z, a_{l}, a_{k}^{1}, c_{l}, c_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}-f\left(z, a_{l}, a_{k}^{2}, c_{l}, c_{k}^{2}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|
$$

and

$$
\sum_{j \in k_{\star} \backslash v_{\star}}\left|G_{j}\left(z, a_{l}, c_{l}, a_{k}^{1}, a_{k}^{2}, c_{k}^{1}, c_{k}^{2}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|
$$

The former term is easily bounded by $\varepsilon_{1} / 2$ by choosing sufficiently small ε_{2}. For the latter, notice that

$$
\left|\frac{F_{j}(z)}{F_{j}\left(a_{j}^{2}\right)}\right|<\left(\frac{4 n_{\star}}{\varepsilon_{1}}\right)^{2 k_{\star}}
$$

So it suffices to ensure that

$$
\left|c_{j}^{2}-f\left(a_{j}^{2}, a_{l}, a_{k}^{1}, c_{l}, c_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|<\frac{\varepsilon_{1}^{2 k_{\star}+1}}{k_{\star}\left(4 n_{\star}\right)^{2 k_{\star}}}
$$

The expression on the left side is at most

$$
\left|c_{j}^{2}-b_{j}^{2}\right|+\left|b_{j}^{2}-f\left(a_{j}^{2}, a_{l}, a_{k}^{1}, c_{l}, c_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|
$$

Recalling our choice of b_{j}^{2}, this is bounded by

$$
\varepsilon_{2}+\left|f\left(a_{j}^{2}, a_{l}, a_{k}^{1}, b_{l}, b_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}-f\left(a_{j}^{2}, a_{l}, a_{k}^{1}, c_{l}, c_{k}^{1}\right)_{l \in v_{\star}, k \in k_{\star} \backslash v_{\star}}\right|
$$

It is clear that this can be made arbitrarily small by choosing sufficiently small ε_{2}.

Fix $p \in S$. For each $j \in r_{\star}^{1}$, using Lemma 3.6, get $\varepsilon_{2}=\varepsilon_{2, j}$ and $g=g_{j}$ w.r.t. $f=f_{j}, a_{k}=y_{\alpha_{p, k}}, b_{k}=$ the center of $B_{j, k, m_{j, k}}$ and $v_{\star}=r_{\star}^{2}$. Let $\varepsilon_{3}=\min \left\{\varepsilon_{2, j}: j \in r_{\star}^{1}\right\}$. Choose $p^{\prime} \neq p$ from S such that for each $k<n_{\star}^{2}$, $\left|y_{\alpha_{p, k}}-y_{\alpha_{p^{\prime}, k}}\right|<\varepsilon_{3}$. We'll construct a common extension q of p, p^{\prime}.

Put $n_{q}=n_{\star}+1, m_{q}=m_{\star}+n_{\star}^{1} n_{\star}^{2}, u_{q}=u_{p} \cup u_{p^{\prime}}, v_{q}=v_{p} \cup v_{p^{\prime}}$ and $w_{q}=w_{p} \cup w_{p^{\prime}} \cup\left\{h_{\xi}(\alpha): \xi \in u_{q}, \alpha \in v_{q}\right\}$. Choose $m_{\xi, \alpha}^{q}$'s such that $\left\{m_{\xi, \alpha}^{q}:\right.$ $\left(\xi \in u_{p} \backslash u_{\star} \wedge \alpha \in v_{p} \backslash v_{\star}\right)$ or $\left.\left(\xi \in u_{p^{\prime}} \backslash u_{\star} \wedge \alpha \in v_{p^{\prime}} \backslash v_{\star}\right)\right\}$ are pairwise distinct integers in $\left[m_{\star}, m_{p}\right)$. Next choose $f_{\xi}^{q}, B_{\gamma, m}^{q}$ for $\xi \in u_{q}, \gamma \in w_{q}$ and $m<m_{q}$ as follows.
(1) If $\xi \in u_{p} \backslash u_{\star}$, let f_{ξ}^{q} be as in the proof of Claim 3.5(c) applying the process $\left|v_{p^{\prime}}-v_{\star}\right|$ times. Define $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q}}^{q}$ for $\alpha \in v_{p}$ by shrinking $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p}}^{p}$ and choose $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q}}^{q}$ for $\alpha \in v_{p^{\prime}} \backslash v_{\star}$ accordingly.
(2) If $\xi \in u_{p^{\prime}} \backslash u_{\star}$, we define f_{ξ}^{q} and $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q}}^{q}$ analogously.
(3) If $\xi \in u_{\star}$, choose $j \in r_{\star}^{1}$ such that $\xi_{p, j}=\xi$ and put $f_{\xi}^{q}=g_{j}$. Obtain b_{k}^{2} for $k \in n_{\star}^{2} \backslash r_{\star}^{2}$ as in Lemma 3.6 w.r.t. $a_{k}^{2}=y_{\alpha_{p^{\prime}, k}}$. For $k \in n_{\star}^{2}$, choose $B_{h_{\xi}\left(\alpha_{p, k}\right), m_{j, k}}^{q}$ to be a rational disk contained in $B_{j, k, m_{j, k}}$ with center b_{k} and radius less than ε_{3}. For $k \in n_{\star}^{2} \backslash r_{\star}^{2}$, choose $B_{h_{\xi}\left(\alpha_{p^{\prime}, k}\right), m_{j, k}}^{q}$ to be a rational disk with center b_{k}^{2} and radius less than ε_{3} (so it is contained in $\left.B_{j, k, m_{j, k}}\right)$. Notice that if $\xi_{1} \neq \xi_{2}$ are from u_{\star} and $\left\{\alpha_{1}, \alpha_{2}\right\} \cap\left(v_{q} \backslash v_{\star}\right) \neq \phi$, then $h_{\xi_{1}}\left(\alpha_{1}\right) \neq h_{\xi_{2}}\left(\alpha_{2}\right)$ so there is no conflict in doing this.

4 Regular continuum

We conclude with the following.
Question 4.1. Is a positive answer to Question 1.1 consistent with $2^{\aleph_{0}}=$ \aleph_{2} ?

One way to get this would be to construct a model where $2^{\aleph_{0}}=\aleph_{2}$ and for some $A \in[\mathbb{C}]^{\aleph_{1}}$, for every $X \in[\mathbb{C}]^{\aleph_{1}}$, there is a non constant entire function sending X into A. We do not know if this is possible.

References

[1] J. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Annals of Math. Logic 10 (1976), 401-439
[2] P. Erdös, An interpolation problem associated with the continuum hypothesis, Michigan Math J. 11 (1964), 9-10
[3] S. Garcia, A. Shoemaker, Wetzel's problem, Paul Erdös and the continuum hypothesis: A mathematical mystery, Notices Amer. Math. Soc. 62 (2015), No. 3, 243-247

[^0]: *2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E75. Key words and phrases: Forcing, Entire functions
 ${ }^{\dagger}$ Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel; email: akumar@math.huji.ac.il; Supported by a Postdoctoral Fellowship at the Einstein Insititute of Mathematics funded by European Research Council grant 338821
 ${ }^{\ddagger}$ Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel and Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA; email: shelah@math.huji.ac.il; Partially supported by European Research Council grant 338821; Publication no. 1078

