On a question about families of entire functions*

Ashutosh Kumar[†], Saharon Shelah[‡]

Abstract

We show that the existence of a continuum sized family \mathcal{F} of entire functions such that for each complex number z, the set $\{f(z): f \in \mathcal{F}\}$ has size less than continuum is undecidable in ZFC plus the negation of CH.

1 Introduction

In [2], Erdös asked the following (for some history on this, see [3])

Question 1.1. Is there a continuum sized family \mathcal{F} of analytic functions from \mathbb{C} to \mathbb{C} such that for each $z \in \mathbb{C}$, $\{f(z) : f \in \mathcal{F}\}$ has size less than continuum?

In the same paper, answering a question of Wetzel, he showed that CH is equivalent to the following: There is an uncountable family \mathcal{F} of analytic functions from \mathbb{C} to \mathbb{C} such that for each $z \in \mathbb{C}$, $\{f(z) : f \in \mathcal{F}\}$ is countable. We show here that the answer to Question 1.1 is undecidable in ZFC plus the negation of CH.

Acknowledgment: We are grateful to the referee for several corrections and simplifications.

^{*2010} Mathematics Subject Classification: Primary 03E35; Secondary 03E75. Key words and phrases: Forcing, Entire functions

[†]Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel; email: akumar@math.huji.ac.il; Supported by a Postdoctoral Fellowship at the Einstein Institute of Mathematics funded by European Research Council grant 338821

[‡]Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel and Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA; email: shelah@math.huji.ac.il; Partially supported by European Research Council grant 338821; Publication no. 1078

2 No such family in the Cohen real model

The following theorem implies that there is no such family in the Cohen real model which is obtained by adding \aleph_2 Cohen reals to L.

Theorem 2.1. Suppose $V \models \mathfrak{c} = \lambda \geq cf(\lambda) > \kappa = \omega_1$. Let \mathbb{P} add κ Cohen reals. Then in $V^{\mathbb{P}}$, whenever \mathcal{F} is a continuum sized family of pairwise distinct entire functions, there exists $z \in \mathbb{C}$ such that $|\{f(z) : f \in \mathcal{F}\}| = \mathfrak{c}$.

Proof of Theorem 2.1: Let $r \in {}^{\kappa}2$ be the Cohen generic sequence added by \mathbb{P} . Clearly, $V[r] \models \mathfrak{c} = \lambda$. Suppose $\langle f_{\alpha} : \alpha < \lambda \rangle$ is a sequence of pairwise distinct entire functions in V[r]. Note that each f_{α} is coded in $V[r \upharpoonright \xi_{\alpha}]$ for some $\xi_{\alpha} < \kappa$. As $cf(\lambda) > \kappa$, we can choose $X \in [\lambda]^{\lambda}$, $\xi_{\star} < \kappa$ such that for each $\alpha \in X$, f_{α} is coded in $V[r \upharpoonright \xi_{\star}]$. Let $z_{\star} \in \mathbb{C}$ be Cohen over $V[r \upharpoonright \xi_{\star}]$ so that it avoids every meager subset of the complex plane coded in $V[r \upharpoonright \xi_{\star}]$. Since two distinct entire functions only agree on a countable set, it follows that $\langle f_{\alpha}(z_{\star}) : \alpha \in X \rangle$ are pairwise distinct.

3 Consistency with failure of CH

We now show that a positive answer to 1.1 is also consistent with the failure of CH.

Theorem 3.1. It is consistent with ZFC plus the negation of CH that there is a family \mathcal{F} of entire functions such that $|\mathcal{F}| = \mathfrak{c}$ and for every $z \in \mathbb{C}$, $|\{f(z) : z \in \mathbb{C}\}| < \mathfrak{c}$.

Before we begin the proof of Theorem 3.1, let us recall Erdös' construction in [2] under CH. Let $\{z_i : i < \omega_1\} = \mathbb{C}$. Inductively construct $\langle f_i : i < \omega_1 \rangle$ such that each $f_i : \mathbb{C} \to \mathbb{C}$ is entire and for every $j < i < \omega_1$, $f_i \neq f_j$ and $f_i(z_j)$ is a rational complex number. This is possible because for every countable $X \subseteq \mathbb{C}$, there is a non constant entire function sending X into the set of rational complex numbers.

We adopt a slightly different strategy that exploits the singularity of continuum as follows. Starting with a model where $\mathfrak{c} = \omega_{\omega_1}$, we perform a finite support iteration $\langle \mathbb{P}_i, \mathbb{Q}_i : i < \omega_1 \rangle$ such that, at each stage $i < \omega_1$, via a ccc forcing \mathbb{Q}_i of size ω_{i+1} , we add a family \mathcal{F}_i of entire functions such that $|\mathcal{F}_i| = \omega_{i+1}$ and for every $j \leq i$, letting W_j be the set of first ω_{j+1} members of $V^{\mathbb{P}_i} \cap \mathbb{C}$ in some fixed enumeration, we have that $(\forall z \in W_j)(|\{f(z) : f \in \mathcal{F}_i\}| \leq \omega_{j+1})$. So $\mathcal{F} = \bigcup \{\mathcal{F}_i : i < \omega_1\}$ will be the required

family in $V^{\mathbb{P}}$. The possible set of values for $\{f(z): f \in \mathcal{F}_i\}$ is not fixed beforehand but added generically together with \mathcal{F} - This is the major point of difference with Erdös' construction. The main problem then is to ensure that \mathbb{Q}_i is ccc. We do this by requiring that the finite approximations to members of $\{f(z): z \in W_i\}$ can be chosen quite independently of those for $\{g(z): z \in W_i\}$, for $f \neq g \in \mathcal{F}_i$. This is materialized by using strongly almost disjoint families in $[\omega_{i+1}]^{\omega_{i+1}}$. The next lemma says that such families can consistently exist.

Lemma 3.2. The following is consistent.

- (a) $\mathfrak{c} = \omega_{\omega_1}$
- (b) There is a family $\{A_{\alpha} : \alpha < \omega_{\omega_1}\}$ such that each $A_{\alpha} \in [\omega_{\omega_1}]^{\omega_{\omega_1}}$
- (c) For every $\alpha < \beta < \omega_{\omega_1}$, $A_{\alpha} \cap A_{\beta}$ is finite
- (d) For every $i < \omega_1$ and $\alpha < \omega_{\omega_1}$, $|A_{\alpha} \cap \omega_{i+1}| = \omega_{i+1}$

Proof of Lemma 3.2: We use Baumgartner's thinning out forcing - See Theorem 6.1 in [1]. Let $V \models GCH$. Put $\lambda = \omega_{\omega_1}$ and $\lambda_i = \omega_{i+1}$. For each $1 \leq i < \omega_1$, define \mathbb{P}_i as follows. Let $K_i = \{ \nu \in [\omega_2, \lambda_i] : \nu = cf(\nu) \}$. $p \in \mathbb{P}_i$ iff

- (i) $p = \langle p_{\nu} : \nu \in K_i \rangle$
- (ii) Each p_{ν} is a function with $dom(p_{\nu}) \in [\lambda]^{<\nu}$
- (iii) For each $\alpha \in \text{dom}(p_{\nu}), p_{\nu}(\alpha) \in [\lambda_i]^{<\nu}$
- (iv) If $\nu < \nu'$, then $dom(p_{\nu}) \subseteq dom(p_{\nu'})$ and for each $\alpha \in dom(p_{\nu})$, $p_{\nu}(\alpha) \subseteq p_{\nu'}(\alpha)$

For $p, q \in \mathbb{P}_i$, write $p \leq_i q$ iff

- (a) For each $\nu \in K_i$, $dom(p_{\nu}) \subseteq dom(q_{\nu})$
- (b) For each $\alpha, \beta \in \text{dom}(p_{\nu}), p_{\nu}(\alpha) \subseteq q_{\nu}(\alpha)$ and if $\alpha \neq \beta$, then $p_{\nu}(\alpha) \cap p_{\nu}(\beta) = q_{\nu}(\alpha) \cap q_{\nu}(\beta)$

Let $\mathbb{P} = \prod \{ \mathbb{P}_i : i < \kappa \}$ be the full support product of $\{ \mathbb{P}_i : i < \kappa \}$. So $p \in \mathbb{P}$ iff $p = \langle p(i) : i < \kappa \rangle$ and for every $i < \kappa$, $p(i) \in \mathbb{P}_i$. For $p, q \in \mathbb{P}$, $p \leq q$ iff for every $i < \kappa$, $p(i) \leq_i q(i)$.

Claim 3.3. \mathbb{P} preserves all regular cardinals below λ .

Proof of Claim 3.3: The proof is almost identical to that of Lemma 6.6 in [1] but we provide a sketch. Let G be \mathbb{P} -generic over V. Let $\tau < \lambda$ be a regular cardinal in V and suppose $V[G] \models \tau > \mathrm{cf}(\tau) = \mu$. Note that \mathbb{P} is ω_2 -closed so $\mu \geq \omega_2$. Fix $1 \leq i_{\star} < \omega_1$ such that $\mu = \lambda_{i_{\star}}$.

Let $\mathbb{Q} = \{\langle p(i) \upharpoonright [\lambda_{i_{\star}+1}, \infty) : i < \omega_1 \rangle : p \in \mathbb{P} \}$ and $H = \{\langle p(i) \upharpoonright [\lambda_{i_{\star}+1}, \infty) : i < \omega_1 \rangle : p \in G \}$. Then \mathbb{Q} is $\lambda_{i_{\star}+1}$ -closed and H is \mathbb{Q} -generic over V. In V[H], for $i_{\star} < i < \omega_1$ and $\alpha < \lambda$, let $E_{i,\alpha} = \bigcup \{p(i)(\lambda_{i_{\star}+1})(\alpha) : p \in H \}$ and for $i \leq i_{\star}$, $\alpha < \lambda$, let $E_{i,\alpha} = \lambda_i$. Let $\mathbb{Q}' = \{\langle p(i) \upharpoonright [0, \lambda_{i_{\star}}] : i < \omega_1 \rangle : p \in \mathbb{P} \land (\forall \alpha \in \text{dom}(p(i)(\lambda_{i_{\star}})))p_i(\lambda_{i_{\star}})(\alpha) \subseteq E_{i,\alpha} \}$ and $K = \{\langle p(i) \upharpoonright [0, \lambda_{i_{\star}}] : i < \omega_1 \rangle : p \in G \}$. Then it is easily verified that K is \mathbb{Q}' -generic over V[H] and V[G] = V[H][K]. As \mathbb{Q} is $\lambda_{i_{\star}+1}$ -closed, $\text{cf}(\tau) \geq \lambda_{i_{\star}+1}$ in V[H]. Since $\lambda_{i_{\star}} \geq \omega_2$, a Δ -system argument shows that $V[H] \models \mathbb{Q}'$ satisfies $\lambda_{i_{\star}+1}$ -c.c. (see Lemma 6.3 in [1]) hence $V[G] = V[H][K] \models \text{cf}(\tau) \geq \lambda_{i_{\star}+1} > \mu$: A contradiction.

Let G be P-generic over V and $V_1 = V[G]$. In V_1 , for $\alpha < \lambda$, let $F_{\alpha} =$ $\bigcup \{F_{i,\alpha} \cap [\omega_i, \omega_{i+1}) : i < \omega_1\} \text{ where } F_{i,\alpha} = \bigcup \{q_{\omega_2}(\alpha) : (\exists p \in G)(q = p(i))\}.$ Then each F_{α} is unbounded in ω_{i+1} for $1 \leq i < \omega_1$ and their pairwise intersections have sizes $\leq \omega_1$. In V_1 , define \mathbb{P}_1 by $p \in \mathbb{P}_1$ iff p is a function, $\operatorname{dom}(p) \in [\lambda]^{<\aleph_1}$ and for each $\alpha \in \operatorname{dom}(p), p(\alpha) \in [F_\alpha \cup \omega_1]^{<\aleph_1}$. For $p, q \in \mathbb{P}_1$, $p \leq q$ iff $dom(p) \subseteq dom(q)$ and for all $\alpha, \beta \in dom(p), p(\alpha) \subseteq q(\alpha)$ and if $\alpha \neq \beta$, then $p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. As CH holds in V_1 , a Δ -system argument shows that \mathbb{P}_1 satisfies \aleph_2 -cc. Since it is also countably closed, all cofinalities from V_1 are preserved. Let G_1 be \mathbb{P}_1 -generic over V_1 and $V_2 = V_1[G_1]$. For $\alpha < \lambda$, put $F'_{\alpha} = \bigcup \{p(\alpha) : p \in G_1\}$. Then each F'_{α} is unbounded in ω_{i+1} for $i < \omega_1$ and their pairwise intersections are countable. In V_2 , define \mathbb{P}_2 by $p \in \mathbb{P}_2$ iff p is a function, $dom(p) \in [\lambda]^{<\aleph_0}$ and for each $\alpha \in dom(p)$, $p(\alpha) \in [F'_{\alpha}]^{<\aleph_0}$. For $p,q \in \mathbb{P}_1$, $p \leq q$ iff $dom(p) \subseteq dom(q)$ and for all $\alpha, \beta \in \text{dom}(p), p(\alpha) \subseteq q(\alpha) \text{ and if } \alpha \neq \beta, \text{ then } p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta).$ A Δ -system argument shows that \mathbb{P}_2 satisfies ccc so all cofinalities are preserved. Let G_2 be \mathbb{P}_2 -generic over V_2 and $V_3 = V_2[G_2]$. For $\alpha < \lambda$, put $A_{\alpha} = \bigcup \{p(\alpha) : p \in G_2\}$. Then each A_{α} is unbounded below ω_{i+1} for each $i < \omega_1$ and their pairwise intersections are finite. As $\{A_\alpha \cap \omega_1 : \alpha < \lambda\}$ is a mod finite almost disjoint family, $V_3 \models \mathfrak{c} \geq \lambda$. The other inequality follows from a name counting argument using $V_2 \models \lambda^{\aleph_0} = \lambda$.

Proof of Theorem 3.1: Let V be a model satisfying the clauses of Claim 3.2. We'll construct a finite support iteration $\langle \mathbb{P}_i, \mathbb{Q}_i : i < \omega_1 \rangle$ of ccc

On a question about families of entire functions

5

forcings with limit \mathbb{P} satisfying the following.

- (1) $|\mathbb{P}| = \omega_{\omega_1}$
- (2) $\Vdash_{\mathbb{P}_i} \langle \mathring{z}_{i,\alpha} : \alpha < \omega_{\omega_1} \rangle$ lists \mathbb{C} and $\mathring{Z}_i = \{\mathring{z}_{j,\alpha} : j \leq i, \alpha < \omega_{i+1}\}$
- (3) $\langle \mathring{y}_{\alpha} : \alpha < \omega_{i+1} \rangle \in V^{\mathbb{P}_i}$ is such that $\Vdash_{\mathbb{P}_i} \langle \mathring{y}_{\alpha} : \alpha < \omega_{i+1} \rangle$ is a one-one listing of \mathring{Z}_i So $\{\mathring{y}_{\alpha} : \alpha < \omega_{\omega_1}\} = \mathbb{C} \cap V^{\mathbb{P}}$
- (4) In $V^{\mathbb{P}_i}$, \mathbb{Q}_i is a ccc forcing of size λ_i that adds a family \mathcal{F}_i of entire functions of size ω_{i+1} such that for every $j \leq i$, $\Vdash_{\mathbb{Q}_i} |\{f(y_\alpha) : \alpha < \omega_{j+1}\}| \leq \omega_{j+1}$

Put $\mathcal{F} = \bigcup_{i < \omega_1} \mathcal{F}_i$. If $\mathring{z} \in V^{\mathbb{P}} \cap \mathbb{C}$, then for some $i_{\star} < \omega_1$ and $\alpha < \omega_{i_{\star}+1}$, $\mathring{z} = y_{\alpha}$. Hence $|\{f(\mathring{z}) : f \in \mathcal{F}\}| \leq |\bigcup_{i < i_{\star}} \{f(\mathring{z}) : f \in \mathcal{F}_i\}| + |\bigcup_{i > i_{\star}} \{f(y_{\alpha}) : f \in \mathcal{F}_i\}| \leq \omega_{i_{\star}+1} + \omega_1 \cdot \omega_{i_{\star}+1} = \omega_{i_{\star}+1} < \mathfrak{c}$. The following lemma shows that \mathbb{Q}_i 's can be constructed.

Lemma 3.4. Suppose κ is regular uncountable. Let $\langle A_{\alpha} : \alpha < \kappa \rangle$ be such that for every $\alpha < \beta < \kappa$ and uncountable cardinal $\mu \leq \kappa$, $A_{\alpha} \cap \mu \in [\mu]^{\mu}$ and $A_{\alpha} \cap A_{\beta}$ is finite (so $\kappa \leq \mathfrak{c}$). Let $\langle y_{\alpha} : \alpha < \kappa \rangle$ be a sequence of distinct complex numbers. Then there exists a ccc forcing \mathbb{Q} of size κ such that the following hold in $V^{\mathbb{Q}}$.

- (a) There is a family \mathcal{F} of entire functions of size κ
- (b) For every uncountable cardinal $\mu \leq \kappa$, $|\{f(y_{\alpha}) : \alpha < \mu, f \in \mathcal{F}\}| = \mu$

Proof of Lemma 3.4: For $\xi < \kappa$, let $h_{\xi} : \kappa \to A_{\xi}$ be such that $h_{\xi}(\alpha)$ is the α th member of A_{ξ} . Note that for every regular uncountable $\mu < \kappa$, $h_{\xi}[\mu] = A_{\xi} \cap \mu$. Define \mathbb{Q} as follows: $p \in \mathbb{Q}$ iff

 $p = (n_p, m_p, u_p, v_p, w_p, \langle m_{\xi,\alpha}^p : \xi \in u_p, \alpha \in v_p \rangle, \langle f_{\xi}^p : \xi \in u_p \rangle, \langle B_{\gamma,m}^p : \gamma \in w_p, m < m_p \rangle)$ where

- $(1) 1 \le n_p < \omega, 1 \le m_p < \omega$
- (2) $u_p, v_p, w_p \in [\kappa]^{<\aleph_0}$ and for every $\alpha \in v_p, |y_{\alpha}| < n_p$
- (3) $w_p \supseteq \{h_{\xi}(\alpha) : \xi \in u_p, \alpha \in v_p\}$
- (4) $m_{\xi,\alpha}^p < m_p$ for every $\xi \in u_p, \alpha \in v_p$

- 6
- (5) For each $\xi \in u_p$, $f_{\xi}^p = f_{\xi}^p(x, x'_{\alpha}, x''_{\alpha})_{\alpha \in v_p}$ is a rational function in the $2|v_p| + 1$ variables $\{x\} \cup \{x'_{\alpha}, x''_{\alpha} : \alpha \in v_p\}$ over the rational complex field which can be expressed as a polynomial in x whose coefficients are rational functions of $\{x'_{\alpha}, x''_{\alpha} : \alpha \in v_p\}$ that satisfies: For every $\beta \in v_p$, $f_{\xi}^p(x'_{\beta}, x'_{\alpha}, x''_{\alpha})_{\alpha \in v_p} = x''_{\beta}$
- (6) For every $\gamma \in w_p$ and $m < m_p$, $B^p_{\gamma,m}$ is a closed disk in complex plane with rational complex center and rational radius that satisfies: If $z_{\alpha,\xi,m} \in B^p_{h_{\xi}(\alpha),m}$, for $\xi \in u_p$, $\alpha \in v_p$ and $m < m_p$, then $f_{\xi}(x, y_{\alpha}, z_{\alpha,\xi,m^p_{\xi,\alpha}})_{\alpha \in v_p}$ is well defined (no vanishing denominators).

Informally, p promises that for $\xi \in u_p$, the ξ th entire function \mathring{f}_{ξ} added by \mathbb{Q} is approximated by $f_{\xi}^p(x, y_{\alpha}, z_{\alpha})_{\alpha \in v_p}$ uniformly on the disk $\{x \in \mathbb{C} : |x| \leq n_p\}$ with an error $\leq 2^{-n_p}$ where z_{α} is an arbitrary point in $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^p}^p$. It also promises that \mathring{f}_{ξ} will map y_{α} (for $\alpha \in v_p$) into $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^p}^p$. The parameter m in $B_{\gamma,m}^p$ allows us a countable amount of freedom to choose $\mathring{f}_{\xi}(y_{\alpha})$ (this is useful to increase v_p , see Claim 3.5(c) below).

For $p, q \in \mathbb{Q}$, define p < q iff

- (6) $n_p \leq n_q, m_p \leq m_q$
- (7) $u_p \subseteq u_q, v_p \subseteq v_q$ and $w_p \subseteq w_q$
- (8) If $\xi \in u_p, \alpha \in v_p$, then $m_{\xi,\alpha}^q = m_{\xi,\alpha}^p$
- (9) $B_{\gamma,m}^q \subseteq B_{\gamma,m}^p$ for every $\gamma \in w_p$ and $m < m_p$
- (10) Whenever $|z| < n_p$, $\xi \in u_p$, $z_{\xi,\alpha} \in B^q_{h_{\xi}(\alpha),m^q_{\xi,\alpha}}$ for $\alpha \in v_q$, we have $|f^p_{\xi}(z,y_{\alpha},z_{\xi,\alpha})_{\alpha \in v_p} f^q_{\xi}(z,y_{\alpha},z_{\xi,\alpha})_{\alpha \in v_q}| \le 1/2^{n_p} 1/2^{n_q}$

Claim 3.5. The following are dense in \mathbb{Q}

- (a) $\{p \in \mathbb{Q} : \xi \in u_p\}$ for $\xi < \kappa$
- (b) $\{p \in \mathbb{Q} : (\gamma \in w_p) \land (n_p, m_p \ge N)\}$ for $N < \omega$ and $\gamma < \kappa$
- (c) $\{p \in \mathbb{Q} : \beta \in v_p\}$ for $\beta < \kappa$
- (d) $\{p \in \mathbb{Q} : (\forall m < m_p)(\forall \gamma \in w_p)(\operatorname{diam}(B^p_{\gamma,m}) < 2^{-N})\}\ for\ N < \omega$
- (e) $\{p \in \mathbb{Q} : (\forall \gamma_1, \gamma_2 \in w_p)(\forall m_1, m_2 < m_p)((\gamma_1, n_1) \neq (\gamma_2, n_2) \implies B^p_{\gamma_1, m_1} \cap B^p_{\gamma_2, m_2} = \phi)\}$

Proof of Claim 3.5: Clauses (b), (d) and (e) should be clear. Let us check (a) and (c).

(a) Suppose $q \in \mathbb{Q}$ with $\xi_{\star} \in \kappa \setminus u_q$. If $v_q = \phi$, then we can add ξ_{\star} to u_q and set $f_{\xi_{\star}}^q(x) = 0$. So assume $v_q = \{\alpha_i : 1 \leq i \leq k\}$. Define $g_i = g_i(x, x'_{\alpha_j}, x''_{\alpha_j})_{1 \leq j \leq i}$ for $1 \leq i \leq k$ recursively as follows

$$g_1 = x + x''_{\alpha_1} - x'_{\alpha_1}$$

$$g_{i+1} = g_i + \left(\prod_{1 \le j \le i} (x - x'_{\alpha_j})\right) \left(\frac{x''_{\alpha_{i+1}} - g_i(x'_{\alpha_{i+1}}, x'_{\alpha_j}, x''_{\alpha_j})_{1 \le j \le i}}{\prod_{1 \le j \le i} (x'_{\alpha_{i+1}} - x'_{\alpha_j})}\right)$$

Define $p \geq q$ as follows. Put $n_p = n_q$, $m_p = m_q$, $u_p = u_q \cup \{\xi_{\star}\}$, $v_p = v_q$, $w_p = w_q \cup \{h_{\xi_{\star}}(\alpha) : \alpha \in v_q\}$, $f_{\xi_{\star}}^p = g_k$ and $f_{\xi}^p = f_{\xi}^q$ for $\xi \in u_q$. Set $m_{\xi,\alpha}^p = m_{\xi,\alpha}^q$ and $B_{\gamma,m}^p = B_{\gamma,m}^q$ if already defined otherwise choose them arbitrarily.

(c) Suppose $q \in \mathbb{Q}$ and $\beta \in \kappa \setminus v_q$. By increasing n_q , we can assume $|y_{\beta}| < n_q$. For each $\xi \in u_q$, define f_{ξ}^p by

$$f_{\xi}^{p} = f_{\xi}^{q} + \left(\prod_{\alpha \in v_{q}} (x - x_{\alpha}')\right) \left(\frac{x_{\beta}'' - f_{\xi}^{q}(x_{\beta}', x_{\alpha}', x_{\alpha}'')_{\alpha \in v_{q}}}{\prod_{\alpha \in v_{q}} (x_{\beta}' - x_{\alpha}')}\right)$$

where, we take a product over the empty index set to be 1.

Let $\varepsilon = \min\{|y_{\beta} - y_{\alpha}| : \alpha \in v_q\}$ if $v_q \neq \phi$ and $\varepsilon = 1$ otherwise. Put $u_p = u_q, \ v_p = v_q \cup \{\beta\}, \ w_p = w_q \cup \{h_{\xi}(\beta) : \xi \in u_q\}, \ n_p = n_q + 1,$ $m_p = m_q + |u_q|$. For each $\xi \in u_q$, choose $m_{\xi,\beta}^p \geq m_q$ such that $\xi_1 \neq \xi_2$ implies $m_{\xi_1,\beta}^p \neq m_{\xi_2,\beta}^p$. We need to choose $B_{\gamma,m}^p$'s such that whenever $|z| < n_q, \ \xi \in u_q$ and $z_{\xi,\alpha} \in B_{h_{\xi}(\alpha),m_{\xi,\alpha}^p}^p$ for $\alpha \in v_p$,

$$\left| \left(\prod_{\alpha \in v_q} (z - y_\alpha) \right) \left(\frac{z_{\xi,\beta} - f_{\xi}^q(y_\beta, y_\alpha, z_{\xi,\alpha})_{\alpha \in v_q}}{\prod_{\alpha \in v_q} (y_\beta - y_\alpha)} \right) \right| \le \frac{1}{2^{n_q}} - \frac{1}{2^{n_q+1}}$$

For this it is enough to have

$$\left|z_{\xi,\beta} - f_{\xi}^{q}(y_{\beta}, y_{\alpha}, z_{\xi,\alpha})_{\alpha \in v_{q}}\right| \le \frac{\varepsilon^{k}}{(2n_{q})^{k}(2^{n_{q}+1})}$$

8

where $k=|v_q|$. But this is easily arranged by first shrinking $B^q_{h_\xi(\alpha),m^q_{\xi,\alpha}}$'s for $\alpha\in v_q$ and then choosing $B^p_{h_\xi(\beta),m^p_{\xi,\beta}}$ accordingly.

Let G be \mathbb{Q} -generic over V. For $\gamma < \kappa$ and $m < \omega$, let $a_{\gamma,m}$ be the unique member of $\bigcap \{B_{\gamma,m}^p : p \in G\}$.

For $\xi < \lambda$, define $f_{\xi} : \mathbb{C} \to \mathbb{C}$ as follows. Choose $\{p_k : k < \omega\} \subseteq G$ such that $\xi \in u_{p_k}$ and $n_{p_k} \geq k$ for every $k < \omega$, and put $f_{\xi}(z) = \lim_{k} f_{\xi}^{p_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_k}})_{\alpha \in v_{p_k}}$. Since we have uniform convergence on compact sets, f_{ξ} is analytic. Note that the definition of f_{ξ} is independent of the choice of $\{p_k : k < \omega\} \subseteq G$. For suppose $\{q_k : k < \omega\} \subseteq G$ is such that $\xi \in u_{q_k}$ and $n_{q_k} \geq k$ for every $k < \omega$. Let $r_k \in G$ be a common extension of p_k, q_k . Then, for every $z \in \mathbb{C}$ with |z| < k, we have $|f_{\xi}^{p_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_k}})_{\alpha \in v_{p_k}} - f_{\xi}^{q_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{p_k}})_{\alpha \in v_{p_k}} - f_{\xi}^{r_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{r_k}})_{\alpha \in v_{r_k}}|$ and $|f_{\xi}^{q_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q_k}})_{\alpha \in v_{q_k}} - f_{\xi}^{r_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{r_k}})_{\alpha \in v_{r_k}}|$ and $|f_{\xi}^{q_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{q_k}})_{\alpha \in v_{q_k}} - f_{\xi}^{r_k}(z, y_{\alpha}, a_{h_{\xi}(\alpha), m_{\xi, \alpha}^{r_k}})_{\alpha \in v_{r_k}}|$ and hence the two limits must be the same.

Put $\mathcal{F} = \{f_{\xi} : \xi < \kappa\}$. For $\xi, \alpha < \kappa$, let $m_{\xi,\alpha}$ be such that for some $p \in G$, $\xi \in u_p$, $\alpha \in v_p$ and $m_{\xi,\alpha}^p = m_{\xi,\alpha}$. Note that, for every $\xi, \alpha < \kappa$, by considering a sequence $\{p_k : k < \omega\} \subseteq G$ with $\alpha \in v_{p_k}$, we can infer that $f_{\xi}(y_{\alpha}) = a_{h_{\xi}(\alpha),m_{\xi,\alpha}}$. Next suppose $\xi_1 < \xi_2 < \kappa$. Choose $\alpha < \kappa$ such that $h_{\xi_1}(\alpha) \neq h_{\xi_2}(\alpha)$. Then $f_{\xi_1}(y_{\alpha}) = a_{h_{\xi_1}(\alpha),m_{\xi_1,\alpha}} \neq a_{h_{\xi_2}(\alpha),m_{\xi_2,\alpha}} = f_{\xi_2}(y_{\alpha})$. So f_{ξ} 's are pairwise distinct. Finally, for every uncountable $\mu \leq \kappa$, we have $|\{f_{\xi}(y_{\alpha}) : \alpha < \mu, \xi < \kappa\}| \leq |\{a_{h_{\xi}(\alpha),m_{\xi,\alpha}} : \xi < \kappa, \alpha < \mu\}| \leq |\{a_{\gamma,m} : \gamma < \mu, m < \omega\}| = \mu$.

So it suffices to show that \mathbb{Q} is ccc. Suppose $A \subseteq \mathbb{Q}$ is uncountable. Choose $S \subseteq A$ uncountable such that the following hold.

- (1) $n_p = n_{\star}$, $m_p = m_{\star}$, $|u_p| = n_{\star}^1$ and $|v_p| = n_{\star}^2$ do not depend on $p \in S$
- (2) $\langle u_p : p \in S \rangle$ is a Δ -system with root u_{\star} and $\langle v_p : p \in S \rangle$ is a Δ -system with root v_{\star}
- (3) If $\xi_1 \neq \xi_2$ are from u_* and $h_{\xi_1}(\alpha_1) = h_{\xi_2}(\alpha_2)$, then $\{\alpha_1, \alpha_2\} \cap (v_p \setminus v_*) = \phi$ for every $p \in S$ This uses the fact that $A_{\xi_1} \cap A_{\xi_2}$ is finite (countable suffices)
- (4) By possibly extending $p \in S$, we can assume $1 \le |v_{\star}| < n_{\star}^2$ (so v_p and $v_p \setminus v_{\star} \ne \phi$)

On a question about families of entire functions

- (5) $u_p = \{\xi_{p,j} : j < n_{\star}^1\}, v_p = \{\alpha_{p,k} : k < n_{\star}^2\}$ list members in increasing order and $r_{\star}^1 \subseteq n_{\star}^1$, $r_{\star}^2 \subseteq n_{\star}^2$ are such that $u_{\star} = \{\xi_{p,k} : j \in r_{\star}^1\}$ and $v_{\star} = \{\alpha_{p,k} : k \in r_{\star}^2\}$
- (6) For every $j < n_{\star}^{1}$, $k < n_{\star}^{2}$ and $m < m_{\star}$, we have $f_{\xi_{p,j}}^{p} = f_{j}(x, x'_{\alpha_{p,k}}, x''_{\alpha_{p,k}})_{k < n_{\star}^{2}}$, $m_{\xi_{p,j},\alpha_{p,k}}^{p} = m_{j,k}$ and $B_{h_{\xi_{p,j}}(\alpha_{p,k}),m}^{p} = B_{j,k,m}$ where f_{j} , $m_{j,k}$, $B_{j,k,m}$ do not depend on $p \in S$,
- (7) $0 < \varepsilon_1 < 2^{-(n_{\star}+1)}$, ε_1 is smaller than the radius of every $B_{j,k,m}$, and for every $p \in S$, for every $k_1 < k_2 < n_{\star}^2$, $|y_{\alpha_{p,k_1}} y_{\alpha_{p,k_2}}| > \varepsilon_1$
- (8) Each point of $X = \{\langle y_{\alpha_{p,k}} : k < n_{\star}^2 \rangle : p \in S\}$ is a condensation point of $X \subset \mathbb{C}^{n_{\star}^2}$

Suppose $p, p' \in S$ and we would like to find a common extension q. This boils down to constructing f_{ξ}^q for $\xi \in u_p \cup u_{p'}$. For $\xi \in (u_p \cup u_{p'}) \setminus u_{\star}$, this is similar to the proof of Claim 3.5(c). To construct f_{ξ}^q for $\xi \in u_{\star}$, we'll make use of the following lemma.

Lemma 3.6. Suppose

- (i) $1 \le n_{\star} < \omega, \ 0 < \varepsilon_1 < 0.5$
- (ii) $f = f(z, x_k, y_k)_{k < k_\star}$ is a rational function in the variables $\{z\} \cup \{x_k, y_k : k < k_\star\}$ over the rational complex field which can be expressed as a polynomial in z whose coefficients are rational functions of x_k, y_k for $k < k_\star$ over the rational complex field, satisfying $f(x_l, x_k, y_k)_{k < k_\star} = y_l$ for every $l < k_\star$
- (iii) $a_k, b_k \in \mathbb{C}$ for $k < k_{\star}$, for each $k < k_{\star}$, $|a_k| < n_{\star}$ and for every $k_1 < k_2 < k_{\star}$, $|a_{k_1} a_{k_2}| > \varepsilon_1$
- (iv) If $|a'_k a_k| < \varepsilon_1$ and $|b'_k b_k| < \varepsilon_1$ for $k < k_{\star}$, then $f(z, a'_k, b'_k)_{k < k_{\star}}$ is well defined (no vanishing denominators)
- $(v) \ v_{\star} \subseteq k_{\star}, \ v_{\star} \notin \{\phi, k_{\star}\}$

Then there exist $0 < \varepsilon_2 < \varepsilon_1/8$ and $g = g(z, x_l, y_l, x_k^1, x_k^2, y_k^1, y_k^2)_{l \in v_\star, k \in k_\star \setminus v_\star}$ such that whenever $|a_k^2 - a_k| < \varepsilon_2$ for $k \in k_\star \setminus v_\star$, letting $b_k^2 = f(a_k^2, a_j, b_j)_{j < k_\star}$ we have $|b_k^2 - b_k| < \varepsilon_1 - 2\varepsilon_2$ for $k \in k_\star \setminus v_\star$ and the following hold.

(a) g is a polynomial in z whose coefficients are rational functions of the other variables over the rational complex field satisfying $z = x_l$ implies $g = y_l$ for $l \in v_*$ and $z = x_k^j$ implies $g = y_k^j$ for j = 1, 2 and $k \in k_* \setminus v_*$

(b) Letting $a_k^1 = a_k$, $b_k^1 = b_k$ for $k \in k_{\star} \setminus v_{\star}$ we have the following. For every c_l , c_k^j satisfying $|c_l - b_l| < \varepsilon_2$, $|c_k^j - b_k^j| < \varepsilon_2$ for $l \in v_{\star}$, j = 1, 2, $k \in k_{\star} \setminus v_{\star}$, for every $|z| < n_{\star}$ and j = 1, 2, we have

$$\left| f(z, a_l, a_k^j, c_l, c_k^j)_{l \in v_{\star}, k \in k_{\star} \setminus v_{\star}} - g(z, a_l, c_l, a_k^1, a_k^2, c_k^1, c_k^2)_{l \in v_{\star}, k \in k_{\star} \setminus v_{\star}} \right| < \varepsilon_1$$

Proof of Lemma 3.6: Put

$$g = f(z, x_l, x_k^1, y_l, y_k^1)_{l \in v_{\star}, k \in k_{\star} \setminus v_{\star}} + \sum_{j \in k_{\star} \setminus v_{\star}} G_j$$

where

$$G_j = \frac{F_j(z)[y_j^2 - f(x_j^2, x_l, x_k^1, y_l, y_k^1)_{l \in v_*, k \in k_* \setminus v_*}]}{F_j(x_j^2)}$$

where

$$F_j(z) = \prod_{k \in k_{\star} \setminus v_{\star}}^{k \neq j} (z - x_k^2) \prod_{l \in v_{\star}} (z - x_l) \prod_{k \in k_{\star} \setminus v_{\star}} (z - x_k^1)$$

Clause (a) is easily verified. We need to find $0 < \varepsilon_2 < \varepsilon_1/8$ such that clause (b) holds. Note that for all sufficiently small $\varepsilon_2 < \varepsilon_1/8$, if $|a_j^2 - a_j| < \varepsilon_2$, then $|b_j^2 - b_j| = |f(a_j^2, a_k, b_k)_{k < k_{\star}} - f(a_j, a_k, b_k)_{k < k_{\star}}| < 3\varepsilon_1/4 < \varepsilon_1 - 2\varepsilon_2$. Fix c_l, c_k^j as in clause (b) and consider

$$|f(z, a_l, a_k^j, c_l, c_k^j)_{l \in v_\star, k \in k_\star \setminus v_\star} - g(z, a_l, c_l, a_k^1, a_k^2, c_k^1, c_k^2)_{l \in v_\star, k \in k_\star \setminus v_\star}|$$

This is at most the sum of

$$\left| f(z, a_l, a_k^1, c_l, c_k^1)_{l \in v_\star, k \in k_\star \setminus v_\star} - f(z, a_l, a_k^2, c_l, c_k^2)_{l \in v_\star, k \in k_\star \setminus v_\star} \right|$$

and

$$\sum_{j \in k_{\star} \setminus v_{\star}} \left| G_j(z, a_l, c_l, a_k^1, a_k^2, c_k^1, c_k^2)_{l \in v_{\star}, k \in k_{\star} \setminus v_{\star}} \right|$$

The former term is easily bounded by $\varepsilon_1/2$ by choosing sufficiently small ε_2 . For the latter, notice that

$$\left| \frac{F_j(z)}{F_j(a_j^2)} \right| < \left(\frac{4n_\star}{\varepsilon_1} \right)^{2k_\star}$$

So it suffices to ensure that

On a question about families of entire functions

$$\left| c_j^2 - f(a_j^2, a_l, a_k^1, c_l, c_k^1)_{l \in v_\star, k \in k_\star \setminus v_\star} \right| < \frac{\varepsilon_1^{2k_\star + 1}}{k_\star (4n_\star)^{2k_\star}}$$

The expression on the left side is at most

$$|c_j^2 - b_j^2| + |b_j^2 - f(a_j^2, a_l, a_k^1, c_l, c_k^1)_{l \in v_\star, k \in k_\star \setminus v_\star}|$$

Recalling our choice of b_i^2 , this is bounded by

$$\varepsilon_2 + \left| f(a_j^2, a_l, a_k^1, b_l, b_k^1)_{l \in v_\star, k \in k_\star \setminus v_\star} - f(a_j^2, a_l, a_k^1, c_l, c_k^1)_{l \in v_\star, k \in k_\star \setminus v_\star} \right|$$

It is clear that this can be made arbitrarily small by choosing sufficiently small ε_2 .

Fix $p \in S$. For each $j \in r^1_{\star}$, using Lemma 3.6, get $\varepsilon_2 = \varepsilon_{2,j}$ and $g = g_j$ w.r.t. $f = f_j$, $a_k = y_{\alpha_{p,k}}$, b_k = the center of $B_{j,k,m_{j,k}}$ and $v_{\star} = r^2_{\star}$. Let $\varepsilon_3 = \min\{\varepsilon_{2,j} : j \in r^1_{\star}\}$. Choose $p' \neq p$ from S such that for each $k < n^2_{\star}$, $|y_{\alpha_{p,k}} - y_{\alpha_{p',k}}| < \varepsilon_3$. We'll construct a common extension q of p, p'.

Put $n_q = n_{\star} + 1$, $m_q = m_{\star} + n_{\star}^1 n_{\star}^2$, $u_q = u_p \cup u_{p'}$, $v_q = v_p \cup v_{p'}$ and $w_q = w_p \cup w_{p'} \cup \{h_{\xi}(\alpha) : \xi \in u_q, \alpha \in v_q\}$. Choose $m_{\xi,\alpha}^q$'s such that $\{m_{\xi,\alpha}^q : (\xi \in u_p \setminus u_{\star} \land \alpha \in v_p \setminus v_{\star}) \text{ or } (\xi \in u_{p'} \setminus u_{\star} \land \alpha \in v_{p'} \setminus v_{\star})\}$ are pairwise distinct integers in $[m_{\star}, m_p)$. Next choose f_{ξ}^q , $B_{\gamma,m}^q$ for $\xi \in u_q$, $\gamma \in w_q$ and $m < m_q$ as follows.

- (1) If $\xi \in u_p \setminus u_{\star}$, let f_{ξ}^q be as in the proof of Claim 3.5(c) applying the process $|v_{p'} v_{\star}|$ times. Define $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^q}^q$ for $\alpha \in v_p$ by shrinking $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^p}^p$ and choose $B_{h_{\xi}(\alpha), m_{\xi, \alpha}^q}^q$ for $\alpha \in v_{p'} \setminus v_{\star}$ accordingly.
- (2) If $\xi \in u_{p'} \setminus u_{\star}$, we define f_{ξ}^q and $B_{h_{\xi}(\alpha),m_{\xi,\alpha}^q}^q$ analogously.
- (3) If $\xi \in u_{\star}$, choose $j \in r_{\star}^{1}$ such that $\xi_{p,j} = \xi$ and put $f_{\xi}^{q} = g_{j}$. Obtain b_{k}^{2} for $k \in n_{\star}^{2} \setminus r_{\star}^{2}$ as in Lemma 3.6 w.r.t. $a_{k}^{2} = y_{\alpha_{p',k}}$. For $k \in n_{\star}^{2}$, choose $B_{h_{\xi}(\alpha_{p,k}),m_{j,k}}^{q}$ to be a rational disk contained in $B_{j,k,m_{j,k}}$ with center b_{k} and radius less than ε_{3} . For $k \in n_{\star}^{2} \setminus r_{\star}^{2}$, choose $B_{h_{\xi}(\alpha_{p',k}),m_{j,k}}^{q}$ to be a rational disk with center b_{k}^{2} and radius less than ε_{3} (so it is contained in $B_{j,k,m_{j,k}}$). Notice that if $\xi_{1} \neq \xi_{2}$ are from u_{\star} and $\{\alpha_{1},\alpha_{2}\} \cap (v_{q} \setminus v_{\star}) \neq \phi$, then $h_{\xi_{1}}(\alpha_{1}) \neq h_{\xi_{2}}(\alpha_{2})$ so there is no conflict in doing this. \square

4 Regular continuum

We conclude with the following.

Question 4.1. Is a positive answer to Question 1.1 consistent with $2^{\aleph_0} = \aleph_2$?

One way to get this would be to construct a model where $2^{\aleph_0} = \aleph_2$ and for some $A \in [\mathbb{C}]^{\aleph_1}$, for every $X \in [\mathbb{C}]^{\aleph_1}$, there is a non constant entire function sending X into A. We do not know if this is possible.

References

- [1] J. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Annals of Math. Logic 10 (1976), 401-439
- [2] P. Erdös, An interpolation problem associated with the continuum hypothesis, Michigan Math J. 11 (1964), 9-10
- [3] S. Garcia, A. Shoemaker, Wetzel's problem, Paul Erdös and the continuum hypothesis: A mathematical mystery, Notices Amer. Math. Soc. 62 (2015), No. 3, 243-247