Avoiding equal distances*

Ashutosh Kumar[†], Saharon Shelah[‡]

Abstract

We show that it is consistent that there is a non meager set of reals each of whose non meager subsets contains equal distances.

1 Introduction

In [1], Erdős and Kakutani showed that the continuum hypothesis (CH) is equivalent to the following statement: There is a partition of the set of reals \mathbb{R} into countably many rationally independent sets. It follows that, under CH, every non meager set of reals contains a non meager (in fact, everywhere non meager) subset avoiding equal distances. The aim of this note is to show that CH is needed here.

Theorem 1.1. It is consistent that there is a non meager $X \subseteq \mathbb{R}$ such that for every non meager $Y \subseteq X$, there are $a < b < c < d \in Y$ such that b-a=d-c.

Note that, by a result of Rado (Theorem 3.2 in [2]), we cannot require Y to avoid arithmetic progressions of length 3. Also by [1], X cannot have size \aleph_1 . So we start by adding \aleph_2 Cohen reals and consider the set X of their pairwise sums. We then make every small subset Y of X meager using a finite support product where Y is small if it avoids equal distances. To capture the new subsets of X that may appear later, we use a sigma ideal \mathcal{I}

^{*2010} Mathematics Subject Classification: Primary 03E35; Secondary 03E75. Key words and phrases: Forcing, Baire category

[†]Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel; email: akumar@math.huji.ac.il; Supported by a Postdoctoral Fellowship at the Einstein Institute of Mathematics funded by European Research Council grant 338821

[‡]Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel and Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA; email: shelah@math.huji.ac.il; Partially supported by European Research Council grant 338821; Publication no. 1079

2

(see below). The rest of the work is in showing that X remains non meager in the final model. The dual problem for the null ideal will be dealt with in a forthcoming work.

2 Proof

On notation: We sometimes identify $x \in 2^{\omega}$ by a real whose binary expansion is x. Addition is always the usual addition in \mathbb{R} . We also sometimes interpret $y \in \mathbb{R}$ as a member of 2^{ω} which is the binary expansion of the fractional part of y. The relevant point here is that these transformations preserve meager sets.

Assume CH. Let $S_{\star} = [\omega_2]^2$. Let $\mathcal{I} = \{S \subseteq S_{\star} : (\exists c : S \to \omega)(\forall A \in [\omega_2]^{\aleph_1})([A]^2 \subseteq S \implies |c[[A]^2]| \geq 2)$. Note that, by Erdős-Rado theorem, \mathcal{I} is a proper sigma ideal over S_{\star} .

Let $\langle S_{\gamma} : \gamma < \gamma_{\star} \rangle$ be a one-one listing of \mathcal{I} . Let \mathbb{P} add \aleph_2 Cohen reals $\langle x_{\alpha} : \alpha < \omega_2 \rangle$. In $V^{\mathbb{P}}$, let $\mathbb{Q} = \prod \{ \mathbb{Q}_{\gamma} : \gamma < \gamma_{\star} \}$ be the finite support product where $\mathbb{Q}_{\gamma} = \mathbb{Q}_{S_{\gamma}}$ is a sigma centered forcing making the set $\{x_{\alpha} + x_{\beta} : \{\alpha, \beta\} \in S_{\gamma}\}$ meager. For $S \subseteq S_{\star}$, \mathbb{Q}_S is defined as follows: $p \in \mathbb{Q}_S$ iff

- (1) $p = (F_p, \bar{n}_p, \bar{\sigma}_p, N_p) = (F, \bar{n}, \bar{\sigma}, N)$
- (2) $F \subseteq [S]^2$ is finite
- (3) $\bar{n} = \langle n_k : k \leq N \rangle$ is an increasing sequence of integers with $n_0 = 0$ and $n_{k+1} n_k > 2^{n_k n_{k-1}}$
- (4) $\bar{\sigma} = \langle \sigma_k : k < N \rangle$ where each $\sigma_k \in [n_k, n_{k+1})2$

 $p \leq q$ iff $F_p \subseteq F_q$, $\bar{n}_p \preceq \bar{n}_q$, $\bar{\sigma}_p \preceq \bar{\sigma}_q$ and for every $N_p \leq k < N_q$, for every $\{\alpha, \beta\} \in F_p$, $x_\alpha + x_\beta \upharpoonright [n_{q,k}, n_{q,k+1}) \neq \sigma_{q,k+1}$. It is clear that \mathbb{Q}_S is a sigma centered forcing adding a meager set covering $X_S = \{x_\alpha + x_\beta : \{\alpha, \beta\} \in S\}$. We write X for X_{S_*} .

Note that the set of conditions $p = (p(0), p(1)) \in \mathbb{P} \star \mathbb{Q}$ such that for each $\gamma \in \text{dom}(p(1))$, p(0) forces an actual value $p(1)(\gamma)$ and for every $\{\alpha, \beta\} \in F_{p(1)(\gamma)}$, $\{\alpha, \beta\} \subseteq \text{dom}(p(0))$ is dense in $\mathbb{P} \star \mathbb{Q}$. We will always assume that our conditions have this form.

Claim 2.1. In $V^{\mathbb{P} \times \mathbb{Q}}$, whenever $Y \subseteq X$ is non meager, there are $y_1 < y_2 < y_3 < y_4$ in Y such that $y_2 - y_1 = y_4 - y_3$.

Proof of Claim 2.1: Choose $S \subseteq S_{\star}$ such that $Y = X_S$ is non meager and suppose p forces this. Let $S_1 = \{\{\alpha, \beta\} : (\exists p_{\alpha,\beta} \geq p)(p_{\alpha,\beta} \vdash \{\alpha, \beta\} \in \mathring{S})\}$. So $S_1 \in \mathcal{I}^+$. Define an equivalence relation E on S_1 as follows: $\{\alpha_0, \beta_0\} E\{\alpha_1, \beta_1\}$ iff

- (a) $|\operatorname{dom}(p_{\alpha_0,\beta_0}(i))| = |\operatorname{dom}(p_{\alpha_1,\beta_1}(i))| = l_i \text{ for } i \in \{0,1\}. \text{ Let } \{\gamma^i_{\alpha_j,\beta_j,k} : k < l_i\} \text{ list } \operatorname{dom}(p_{\alpha_i,\beta_j}(i)) \text{ in increasing order for } i,j \in \{0,1\}$
- (b) $p_{\alpha_0,\beta_0}(0)(\gamma_{\alpha_0,\beta_0,k}^0) = p_{\alpha_1,\beta_1}(0)(\gamma_{\alpha_1,\beta_1,k}^0)$ for each $k < l_0$.
- (c) $p_{\alpha_0,\beta_0}(1)(\gamma^1_{\alpha_0,\beta_0,k})$ and $p_{\alpha_1,\beta_1}(0)(\gamma^1_{\alpha_1,\beta_1,k})$ have the same $\bar{n}, \bar{\sigma}, N$ (but not necessarily F), for each $k < l_1$.

It is clear that E is an equivalence relation on S_1 with countably many equivalence classes. Since $S_1 \in \mathcal{I}^+$, we can choose $A \in [\omega_2]^{\aleph_1}$ such that $[A]^2 \subseteq S_1$ and for every $\{\alpha_0, \beta_0\}, \{\alpha_1, \beta_1\} \in [A]^2, \{\alpha_0, \beta_0\} E\{\alpha_1, \beta_1\}$. Let l_0, l_1 be the corresponding domain sizes. By Ramsey theorem, there is an infinite $A_1 \subseteq A$ such that whenever $\alpha_0 < \beta_0, \alpha_1 < \beta_1$ are from A_1 , for every $i \in \{0,1\}$ and $k_0, k_1 < l_i$, the truth value of $\gamma^i_{\alpha_0,\beta_0,k_0} = \gamma^i_{\alpha_1,\beta_1,k_1}$ depends only on the order type of $\langle \alpha_0, \beta_0, \alpha_1, \beta_1 \rangle$. Choose $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 \in A_1$ such that A_1 has at least two members between any two α_i 's. It is easy to check that the conditions $p_{\alpha_1,\alpha_3}, p_{\alpha_1,\alpha_4}, p_{\alpha_2,\alpha_3}, p_{\alpha_2,\alpha_4}$ have a least common extension q. For example, to see that p_{α_1,α_3} and p_{α_2,α_3} have a least common extension, choose some $\beta \in A_1 \cap (\alpha_2, \alpha_3)$ and use the fact that $\langle \alpha_1, \alpha_3, \beta, \alpha_3 \rangle$, $\langle \alpha_2, \alpha_3, \beta, \alpha_3 \rangle$ and $\langle \alpha_1, \alpha_3, \alpha_2, \alpha_3 \rangle$ have the same order type. Similarly, for p_{α_2,α_3} and p_{α_1,α_4} , choose $\beta_1 < \beta_2$ from $(\alpha_2,\alpha_3) \cap A_1$ and use that fact that $\langle \alpha_1, \alpha_4, \beta_1, \beta_2 \rangle$, $\langle \alpha_2, \alpha_3, \beta_1, \beta_2 \rangle$ and $\langle \alpha_1, \alpha_4, \alpha_2, \alpha_3 \rangle$ have the same order type. Now q forces that $x_{\alpha_1} + x_{\alpha_3}$, $x_{\alpha_1} + x_{\alpha_4}$, $x_{\alpha_2} + x_{\alpha_3}$ and $x_{\alpha_1} + x_{\alpha_4}$ are in Y and $(x_{\alpha_1} + x_{\alpha_3}) + (x_{\alpha_2} + x_{\alpha_4}) = (x_{\alpha_1} + x_{\alpha_4}) + (x_{\alpha_2} + x_{\alpha_3}).$

Claim 2.2. X is non meager in $V^{\mathbb{P} \star \mathbb{Q}}$.

Proof of Claim 2.2: Suppose not. Let p_{\star} , $\langle \mathring{T}_m : m < \omega \rangle$ be such that $p_{\star} \Vdash (\forall m)(\mathring{T}_m \subseteq {}^{<\omega}2 \text{ is nowhere dense subtree}) \wedge \mathring{X} \subseteq \bigcup_m [\mathring{T}_m]$. Since $\mathbb{P} \star \mathbb{Q}$ is ccc, we can assume that each \mathring{T}_m is in $V^{\mathbb{P} \star \prod_{k \geq 1} \mathbb{Q}_k}$ where $\mathbb{Q}_k = \mathbb{Q}_{S_k}$ for some $S_k \in \mathcal{I}$. For each $\{\alpha, \beta\} \in S_{\star}$, choose $p_{\alpha,\beta}$, $m(\alpha,\beta)$, $k(\alpha,\beta)$, $v(\alpha,\beta)$, $l(\alpha,\beta)$, $n(\alpha,\beta)$ etc. such that the following hold.

- (a) $p_{\alpha,\beta} \ge p_{\star}, p_{\alpha,\beta} \Vdash (\mathring{x}_{\alpha} + \mathring{x}_{\beta}) \in [\mathring{T}_{m(\alpha,\beta)}]$
- (b) $p_{\alpha,\beta} = \langle p_{\alpha,\beta}(k) : k \leq k(\alpha,\beta) \rangle$ where $p_{\alpha,\beta}(0)$ is the Cohen part and $p_{\alpha,\beta}(k) \in \mathbb{Q}_k$

A. Kumar and S. Shelah

(c) $\operatorname{dom}(p_{\alpha,\beta}(0)) = v(\alpha,\beta), |v(\alpha,\beta)| = l(\alpha,\beta) \text{ and } \alpha,\beta \in v(\alpha,\beta)$

- (c) For each $\gamma \in v(\alpha, \beta), p_{\alpha,\beta}(0)(\gamma) \in {}^{n(\alpha,\beta)}2$
- (d) For each $1 \leq k \leq k(\alpha, \beta)$, $p_{\alpha,\beta}(k) = (F_{\alpha,\beta,k}, \bar{n}_{\alpha,\beta,k}, \bar{\sigma}_{\alpha,\beta,k}, N_{\alpha,\beta,k})$ where $F_{\alpha,\beta,k} \subseteq [v_{\alpha,\beta}]^2 \cap [S_k]^2$ and $n_{N_{\alpha,\beta,k}} = n(\alpha,\beta)$ does not depend on k

Let $\{\gamma_{\alpha,\beta,l}: l < l(\alpha,\beta)\}$ list $v(\alpha,\beta)$ in increasing order. Since $S_{\star} \in \mathcal{I}^+$, as before, we can choose $A \in [\omega_2]^{\aleph_0}$ such that for every $\alpha < \beta$ from A the following hold.

- (1) $\{\alpha, \beta\} \notin \bigcup_{k>1} S_k$
- (2) $m(\alpha, \beta) = m_{\star}, k(\alpha, \beta) = k_{\star}, l(\alpha, \beta) = l_{\star}, n(\alpha, \beta) = n_{\star}$
- (3) For each $l < l_{\star}$, $p_{\alpha,\beta}(0)(\gamma_{\alpha,\beta,l}) = \eta_{\star}^{l} \in {}^{n_{\star}}2$
- (4) For each $1 \leq k \leq k_{\star}$, $\bar{n}_{\alpha,\beta,k} = \bar{n}_{\star}^{k}$, $\bar{\sigma}_{\alpha,\beta,k} = \bar{\sigma}_{\star}^{k}$, $N_{\alpha,\beta,k} = N_{\star}^{k}$
- (5) For all $\alpha_1 < \alpha_2$ and $\beta_1 < \beta_2$ from A and $l_1, l_2 < l_{\star}$, the truth value of $\gamma_{\alpha_1,\beta_1,l_1} = \gamma_{\alpha_2,\beta_2,l_2}$ depends only on the order type of $\langle \alpha_1, \alpha_2, \beta_1, \beta_2 \rangle$

Let $\langle \alpha_i : i < \omega \rangle$ be increasing members of A. Choose $n_{\star\star} > n_{\star} + (k_{\star} + l_{\star} + 10)!$. Choose $q_1 \geq p_{\alpha_0,\alpha_1}$ such that

- $(i) \ q_1 = \langle q_1(k) : k \le k_{\star} \rangle$
- (ii) $dom(q_1(0)) = dom(p_{\alpha_0,\alpha_1})$ and for each $l < l_{\star}, q_1(0)(l) = \eta_{\star}^{l} \cap 0^{n_{\star\star}-n_{\star}}$
- (iii) For each $1 \le k \le k_{\star}$, $q_1(k) = (F_{\alpha_{\star},\beta_{\star},k}, \bar{n}_{\star}^{k} n_{\star\star}, \bar{\sigma}_{\star}^{k} 1^{n_{\star\star}-n_{\star}-2}0, N_{\star}^{k} + 1)$

Since p_{\star} forces that $[\mathring{T}_{m_{\star}}]$ is nowhere dense, we can find $n_{\star\star\star} > n_{\star\star}$, $q_2 \geq q_1$ and $\rho \in [n_{\star\star}, n_{\star\star\star})$ such that the following hold.

- (a) $q_2 = \langle q_2(k) : k \leq K \rangle$ for some $k_* \leq K < \omega$
- (b) For $1 \le k \le k_{\star}$, if $q_2(k) = (F_k, \bar{n}_k, \bar{\sigma}_k, N_k)$, then $n_{\star\star\star} < n_{k,N_k}$
- (c) $q_2 \Vdash (\forall x \in [\mathring{T}_{m_{\star}}])(x \upharpoonright [n_{\star\star}, n_{\star\star\star}) \neq \rho)$

4

For $j \geq 2$, consider the set $s_j = \{l < l_\star : (\exists l' < l_\star)(\gamma_{\alpha_0,\alpha_1,l} = \gamma_{\alpha_j,\alpha_{j+1},l'})\}$. We claim that $s_j = s_\star$ is constant. To see this, suppose $2 \leq j_1 < j_2$. Choose j_3 much larger than j_2 and use the fact that the order types of $\langle \alpha_0, \alpha_1, \alpha_{j_i}, \alpha_{j_{i+1}} \rangle$, $\langle \alpha_0, \alpha_1, \alpha_{j_3}, \alpha_{j_{3+1}} \rangle$ and $\langle \alpha_{j_i}, \alpha_{j_{i+1}}, \alpha_{j_3}, \alpha_{j_{3+1}} \rangle$ are the same for $i \in \{1, 2\}$. It also follows that whenever $2 \leq j_1 < j_2 - 1$, $\{\gamma_{\alpha_{j_1}, \alpha_{j_1+1}, l} : l \in l_\star \setminus s_\star\} \cap \{\gamma_{\alpha_{j_2}, \alpha_{j_2+1}, l} : l \in l_\star \setminus s_\star\} = \phi$. So we can choose j large enough such that $(\text{dom}(q_2(0)) \cup \bigcup_{k \leq K} F_{q_2(k)}) \cap (\{\gamma_{\alpha_j, \alpha_{j+1}, l} : l \in l_\star \setminus s_\star\} \cup \{\alpha_j, \alpha_{j+1}\}) = \phi$. The next claim gives us the desired contradiction.

Claim 2.3. For some $q_3, q_3 \geq q_2, q_3 \geq p_{\alpha_j, \alpha_{j+1}}$ and $q_3 \Vdash \rho \subseteq \mathring{x}_{\alpha_j} + \mathring{x}_{\alpha_{j+1}}$

Proof of Claim 2.3: Put $q_3 = \langle q_3(k) : k \leq K \rangle$ and $dom(q_3(0)) = dom(q_2(0)) \cup \{\gamma_{\alpha_j,\alpha_{j+1},l} : l \in l_{\star} \setminus s_{\star}\}$. For each $l \in l_{\star} \setminus s_{\star}$, we would like to find $\eta_{\star\star}^l \succeq \eta_{\star}^l$ such that the following hold.

- (a) If $l_1 < l_2 \in l_{\star} \setminus s_{\star}$, $1 \le k \le k_{\star}$, $\{\gamma_{\alpha_j,\alpha_{j+1},l_1}, \gamma_{\alpha_j,\alpha_{j+1},l_2}\} \in S_k$ and $N_{\star}^k \le i < N_{q_2(k)}$ then $(\eta_{\star\star}^{l_1} + \eta_{\star\star}^{l_2}) \upharpoonright [n_{q_2(k),i}, n_{q_2(k),i+1}) \ne \sigma_{q_2(k),i}$
- (b) If $l \in s_{\star}, l' \in l_{\star} \setminus s_{\star}, 1 \leq k \leq k_{\star}$ and $N_{\star}^{k} \leq i < N_{q_{2}(k)}$ then $(q_{2}(0)(\gamma_{\alpha_{0},\alpha_{1},l}) + \eta_{\star\star}^{l'}) \upharpoonright [n_{q_{2}(k),i}, n_{q_{2}(k),i+1}) \neq \sigma_{q_{2}(k),i}$
- (c) If $\gamma_{\alpha_j,\alpha_{j+1},l_1} = \alpha_j$, $\gamma_{\alpha_j,\alpha_{j+1},l_2} = \alpha_{j+1}$ (so $l_1, l_2 \in l_{\star} \setminus s_{\star}$), then $(\eta_{\star\star}^{l_1} + \eta_{\star\star}^{l_2}) \upharpoonright [n_{\star\star}, n_{\star\star\star}) = \rho$

Here, for $\sigma, \tau \in 2^{<\omega}$, $m < n < \omega$ and $\rho : [m, n) \to 2$, by $(\sigma + \tau) \upharpoonright [m, n) \neq \rho$ we mean the following: For every $x \in [\sigma]$ and $y \in [\tau]$, $(x+y) \upharpoonright [m, n) \neq \rho$. This would suffice since then we can let $q_3(0) = q_2(0) \cup \{(\gamma_{\alpha_j,\alpha_{j+1},l},\eta_{\star\star}^l): l \in l_\star \backslash s_\star\}$ and for $1 \le k \le K$, $q_3(k) = (F_{q_2(k)} \cup F_{p_{\alpha_j,\alpha_{j+1}}(k)}, \bar{n}_{q_2(k)}, \bar{\sigma}_{q_2(k)}, N_{q_2(k)})$. First put $\eta_{\star\star}^l \upharpoonright [n_\star, n_{\star\star}) = 0^{n_{\star\star}-n_\star}$ for every $l \in l_\star \backslash s_\star$. Next let $W = \{(k,i): 1 \le k \le k_\star, N_\star^k + 1 \le i < N_{q_2(k)}\}$. Note that for $(k,i) \in W$, $n_{q_2(k),i+1} - n_{q_2(k),i} > 2^{i-N_\star^k}(n_{\star\star} - n_\star) > 2^{i-N_\star^k}(k_\star + l_\star + 10)!$.

Inductively choose pairwise disjoint intervals $\langle I_{k,i} : (k,i) \in W \rangle$ such that each $I_{k,i} = [m_{k,i}, m_{k,i} + (l_{\star} + 5)!) \subseteq [n_{q_2(k),i}, n_{q_2(k),i+1})$. We claim that for each $(k,i) \in W$, we can choose $\langle \eta_{\star\star}^l \upharpoonright I_{k,i} : l \in l_{\star} \backslash s_{\star} \rangle$ such that the (k,i)-th instance of requirements (a), (b) are met. To see this, note that we have at most $\binom{l_{\star}-|s_{\star}|}{2} + |s_{\star}|(l_{\star}-|s_{\star}|)$ inequalities (coming from (a) and (b)) and one equality from (c) to satisfy and since $\{\alpha_j, \alpha_{j+1}\} \notin \bigcup \{S_k : k \geq 1\}$, there is no conflict between requirements (a) and (c).

A. Kumar and S. Shelah

References

- [1] P. Erdős, S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc., Vol. 49, Number 6 (1943), 457-461
- [2] P. Komjáth, Set theoretic constructions in Euclidean spaces, New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer, 1993, 303-325

6