Avoiding equal distances*

Ashutosh Kumar ${ }^{\dagger}$ Saharon Shelah ${ }^{\ddagger}$

Abstract

We show that it is consistent that there is a non meager set of reals each of whose non meager subsets contains equal distances.

1 Introduction

In [1], Erdős and Kakutani showed that the continuum hypothesis (CH) is equivalent to the following statement: There is a partition of the set of reals \mathbb{R} into countably many rationally independent sets. It follows that, under CH, every non meager set of reals contains a non meager (in fact, everywhere non meager) subset avoiding equal distances. The aim of this note is to show that CH is needed here.

Theorem 1.1. It is consistent that there is a non meager $X \subseteq \mathbb{R}$ such that for every non meager $Y \subseteq X$, there are $a<b<c<d \in Y$ such that $b-a=d-c$.

Note that, by a result of Rado (Theorem 3.2 in [2]), we cannot require Y to avoid arithmetic progressions of length 3 . Also by [1], X cannot have size \aleph_{1}. So we start by adding \aleph_{2} Cohen reals and consider the set X of their pairwise sums. We then make every small subset Y of X meager using a finite support product where Y is small if it avoids equal distances. To capture the new subsets of X that may appear later, we use a sigma ideal \mathcal{I}

[^0](see below). The rest of the work is in showing that X remains non meager in the final model. The dual problem for the null ideal will be dealt with in a forthcoming work.

2 Proof

On notation: We sometimes identify $x \in 2^{\omega}$ by a real whose binary expansion is x. Addition is always the usual addition in \mathbb{R}. We also sometimes interpret $y \in \mathbb{R}$ as a member of 2^{ω} which is the binary expansion of the fractional part of y. The relevant point here is that these transformations preserve meager sets.

Assume CH. Let $S_{\star}=\left[\omega_{2}\right]^{2}$. Let $\mathcal{I}=\left\{S \subseteq S_{\star}:(\exists c: S \rightarrow \omega)(\forall A \in\right.$ $\left.\left[\omega_{2}\right]^{\aleph_{1}}\right)\left([A]^{2} \subseteq S \Longrightarrow\left|c\left[[A]^{2}\right]\right| \geq 2\right)$. Note that, by Erdős-Rado theorem, \mathcal{I} is a proper sigma ideal over S_{\star}.

Let $\left\langle S_{\gamma}: \gamma<\gamma_{\star}\right\rangle$ be a one-one listing of \mathcal{I}. Let \mathbb{P} add \aleph_{2} Cohen reals $\left\langle x_{\alpha}: \alpha<\omega_{2}\right\rangle$. In $V^{\mathbb{P}}$, let $\mathbb{Q}=\prod\left\{\mathbb{Q}_{\gamma}: \gamma<\gamma_{\star}\right\}$ be the finite support product where $\mathbb{Q}_{\gamma}=\mathbb{Q}_{S_{\gamma}}$ is a sigma centered forcing making the set $\left\{x_{\alpha}+x_{\beta}\right.$: $\left.\{\alpha, \beta\} \in S_{\gamma}\right\}$ meager. For $S \subseteq S_{\star}, \mathbb{Q}_{S}$ is defined as follows: $p \in \mathbb{Q}_{S}$ iff
(1) $p=\left(F_{p}, \bar{n}_{p}, \bar{\sigma}_{p}, N_{p}\right)=(F, \bar{n}, \bar{\sigma}, N)$
(2) $F \subseteq[S]^{2}$ is finite
(3) $\bar{n}=\left\langle n_{k}: k \leq N\right\rangle$ is an increasing sequence of integers with $n_{0}=0$ and $n_{k+1}-n_{k}>2^{n_{k}-n_{k-1}}$
(4) $\bar{\sigma}=\left\langle\sigma_{k}: k<N\right\rangle$ where each $\sigma_{k} \in\left[n_{k}, n_{k+1}\right) 2$
$p \leq q$ iff $F_{p} \subseteq F_{q}, \bar{n}_{p} \preceq \bar{n}_{q}, \bar{\sigma}_{p} \preceq \bar{\sigma}_{q}$ and for every $N_{p} \leq k<N_{q}$, for every $\{\alpha, \beta\} \in F_{p}, x_{\alpha}+x_{\beta} \upharpoonright\left[n_{q, k}, n_{q, k+1}\right) \neq \sigma_{q, k+1}$. It is clear that \mathbb{Q}_{S} is a sigma centered forcing adding a meager set covering $X_{S}=\left\{x_{\alpha}+x_{\beta}:\{\alpha, \beta\} \in S\right\}$. We write X for $X_{S_{\star}}$.

Note that the set of conditions $p=(p(0), p(1)) \in \mathbb{P} \star \mathbb{Q}$ such that for each $\gamma \in \operatorname{dom}(p(1)), p(0)$ forces an actual value $p(1)(\gamma)$ and for every $\{\alpha, \beta\} \in$ $F_{p(1)(\gamma)},\{\alpha, \beta\} \subseteq \operatorname{dom}(p(0))$ is dense in $\mathbb{P} \star \mathbb{Q}$. We will always assume that our conditions have this form.

Claim 2.1. In $V^{\mathbb{P} \not \subset \mathbb{Q}}$, whenever $Y \subseteq X$ is non meager, there are $y_{1}<y_{2}<$ $y_{3}<y_{4}$ in Y such that $y_{2}-y_{1}=y_{4}-y_{3}$.

Proof of Claim 2.1: Choose $S \subseteq S_{\star}$ such that $Y=X_{S}$ is non meager and suppose p forces this. Let $S_{1}=\left\{\{\alpha, \beta\}:\left(\exists p_{\alpha, \beta} \geq p\right)\left(p_{\alpha, \beta} \Vdash\right.\right.$ $\{\alpha, \beta\} \in \stackrel{\circ}{S})\}$. So $S_{1} \in \mathcal{I}^{+}$. Define an equivalence relation E on S_{1} as follows: $\left\{\alpha_{0}, \beta_{0}\right\} E\left\{\alpha_{1}, \beta_{1}\right\}$ iff
(a) $\left|\operatorname{dom}\left(p_{\alpha_{0}, \beta_{0}}(i)\right)\right|=\left|\operatorname{dom}\left(p_{\alpha_{1}, \beta_{1}}(i)\right)\right|=l_{i}$ for $i \in\{0,1\}$. Let $\left\{\gamma_{\alpha_{j}, \beta_{j}, k}^{i}\right.$: $\left.k<l_{i}\right\}$ list $\operatorname{dom}\left(p_{\alpha_{j}, \beta_{j}}(i)\right)$ in increasing order for $i, j \in\{0,1\}$
(b) $p_{\alpha_{0}, \beta_{0}}(0)\left(\gamma_{\alpha_{0}, \beta_{0}, k}^{0}\right)=p_{\alpha_{1}, \beta_{1}}(0)\left(\gamma_{\alpha_{1}, \beta_{1}, k}^{0}\right)$ for each $k<l_{0}$.
(c) $p_{\alpha_{0}, \beta_{0}}(1)\left(\gamma_{\alpha_{0}, \beta_{0}, k}^{1}\right)$ and $p_{\alpha_{1}, \beta_{1}}(0)\left(\gamma_{\alpha_{1}, \beta_{1}, k}^{1}\right)$ have the same $\bar{n}, \bar{\sigma}, N$ (but not necessarily F), for each $k<l_{1}$.

It is clear that E is an equivalence relation on S_{1} with countably many equivalence classes. Since $S_{1} \in \mathcal{I}^{+}$, we can choose $A \in\left[\omega_{2}\right]^{\aleph_{1}}$ such that $[A]^{2} \subseteq S_{1}$ and for every $\left\{\alpha_{0}, \beta_{0}\right\},\left\{\alpha_{1}, \beta_{1}\right\} \in[A]^{2},\left\{\alpha_{0}, \beta_{0}\right\} E\left\{\alpha_{1}, \beta_{1}\right\}$. Let l_{0}, l_{1} be the corresponding domain sizes. By Ramsey theorem, there is an infinite $A_{1} \subseteq A$ such that whenever $\alpha_{0}<\beta_{0}, \alpha_{1}<\beta_{1}$ are from A_{1}, for every $i \in\{0,1\}$ and $k_{0}, k_{1}<l_{i}$, the truth value of $\gamma_{\alpha_{0}, \beta_{0}, k_{0}}^{i}=\gamma_{\alpha_{1}, \beta_{1}, k_{1}}^{i}$ depends only on the order type of $\left\langle\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}\right\rangle$. Choose $\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4} \in A_{1}$ such that A_{1} has at least two members between any two α_{i} 's. It is easy to check that the conditions $p_{\alpha_{1}, \alpha_{3}}, p_{\alpha_{1}, \alpha_{4}}, p_{\alpha_{2}, \alpha_{3}}, p_{\alpha_{2}, \alpha_{4}}$ have a least common extension q. For example, to see that $p_{\alpha_{1}, \alpha_{3}}$ and $p_{\alpha_{2}, \alpha_{3}}$ have a least common extension, choose some $\beta \in A_{1} \cap\left(\alpha_{2}, \alpha_{3}\right)$ and use the fact that $\left\langle\alpha_{1}, \alpha_{3}, \beta, \alpha_{3}\right\rangle$, $\left\langle\alpha_{2}, \alpha_{3}, \beta, \alpha_{3}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{3}, \alpha_{2}, \alpha_{3}\right\rangle$ have the same order type. Similarly, for $p_{\alpha_{2}, \alpha_{3}}$ and $p_{\alpha_{1}, \alpha_{4}}$, choose $\beta_{1}<\beta_{2}$ from $\left(\alpha_{2}, \alpha_{3}\right) \cap A_{1}$ and use that fact that $\left\langle\alpha_{1}, \alpha_{4}, \beta_{1}, \beta_{2}\right\rangle,\left\langle\alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{4}, \alpha_{2}, \alpha_{3}\right\rangle$ have the same order type. Now q forces that $x_{\alpha_{1}}+x_{\alpha_{3}}, x_{\alpha_{1}}+x_{\alpha_{4}}, x_{\alpha_{2}}+x_{\alpha_{3}}$ and $x_{\alpha_{1}}+x_{\alpha_{4}}$ are in Y and $\left(x_{\alpha_{1}}+x_{\alpha_{3}}\right)+\left(x_{\alpha_{2}}+x_{\alpha_{4}}\right)=\left(x_{\alpha_{1}}+x_{\alpha_{4}}\right)+\left(x_{\alpha_{2}}+x_{\alpha_{3}}\right)$.

Claim 2.2. X is non meager in $V^{\mathbb{P} * \mathbb{Q}}$.
Proof of Claim 2.2: Suppose not. Let $p_{\star},\left\langle\stackrel{\circ}{T}_{m}: m<\omega\right\rangle$ be such that $p_{\star} \Vdash(\forall m)\left({ }^{\circ}{ }_{m} \subseteq{ }^{<\omega} 2\right.$ is nowhere dense subtree $) \wedge \stackrel{\circ}{X} \subseteq \bigcup_{m}\left[\dot{T}_{m}\right]$. Since $\mathbb{P} \star \mathbb{Q}$ is ccc, we can assume that each $\stackrel{\circ}{T}_{m}$ is in $V^{\mathbb{P} * \prod_{k \geq 1} \mathbb{Q}_{k}}$ where $\mathbb{Q}_{k}=\mathbb{Q}_{S_{k}}$ for some $S_{k} \in \mathcal{I}$. For each $\{\alpha, \beta\} \in S_{\star}$, choose $p_{\alpha, \beta}, m(\alpha, \beta), k(\alpha, \beta), v(\alpha, \beta)$, $l(\alpha, \beta), n(\alpha, \beta)$ etc. such that the following hold.
(a) $p_{\alpha, \beta} \geq p_{\star}, p_{\alpha, \beta} \Vdash\left(\stackrel{\circ}{x}_{\alpha}+\dot{x}_{\beta}\right) \in\left[\stackrel{\circ}{T}_{m(\alpha, \beta)}\right]$
(b) $p_{\alpha, \beta}=\left\langle p_{\alpha, \beta}(k): k \leq k(\alpha, \beta)\right\rangle$ where $p_{\alpha, \beta}(0)$ is the Cohen part and $p_{\alpha, \beta}(k) \in \mathbb{Q}_{k}$
(c) $\operatorname{dom}\left(p_{\alpha, \beta}(0)\right)=v(\alpha, \beta),|v(\alpha, \beta)|=l(\alpha, \beta)$ and $\alpha, \beta \in v(\alpha, \beta)$
(c) For each $\gamma \in v(\alpha, \beta), p_{\alpha, \beta}(0)(\gamma) \in{ }^{n(\alpha, \beta)} 2$
(d) For each $1 \leq k \leq k(\alpha, \beta), p_{\alpha, \beta}(k)=\left(F_{\alpha, \beta, k}, \bar{n}_{\alpha, \beta, k}, \bar{\sigma}_{\alpha, \beta, k}, N_{\alpha, \beta, k}\right)$ where $F_{\alpha, \beta, k} \subseteq\left[v_{\alpha, \beta}\right]^{2} \cap\left[S_{k}\right]^{2}$ and $n_{N_{\alpha, \beta, k}}=n(\alpha, \beta)$ does not depend on k

Let $\left\{\gamma_{\alpha, \beta, l}: l<l(\alpha, \beta)\right\}$ list $v(\alpha, \beta)$ in increasing order. Since $S_{\star} \in \mathcal{I}^{+}$, as before, we can choose $A \in\left[\omega_{2}\right]^{\aleph_{0}}$ such that for every $\alpha<\beta$ from A the following hold.
(1) $\{\alpha, \beta\} \notin \bigcup_{k \geq 1} S_{k}$
(2) $m(\alpha, \beta)=m_{\star}, k(\alpha, \beta)=k_{\star}, l(\alpha, \beta)=l_{\star}, n(\alpha, \beta)=n_{\star}$
(3) For each $l<l_{\star}, p_{\alpha, \beta}(0)\left(\gamma_{\alpha, \beta, l}\right)=\eta_{\star}^{l} \in{ }^{n_{\star}} 2$
(4) For each $1 \leq k \leq k_{\star}, \bar{n}_{\alpha, \beta, k}=\bar{n}_{\star}^{k}, \bar{\sigma}_{\alpha, \beta, k}=\bar{\sigma}_{\star}^{k}, N_{\alpha, \beta, k}=N_{\star}^{k}$
(5) For all $\alpha_{1}<\alpha_{2}$ and $\beta_{1}<\beta_{2}$ from A and $l_{1}, l_{2}<l_{\star}$, the truth value of $\gamma_{\alpha_{1}, \beta_{1}, l_{1}}=\gamma_{\alpha_{2}, \beta_{2}, l_{2}}$ depends only on the order type of $\left\langle\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\rangle$

Let $\left\langle\alpha_{i}: i<\omega\right\rangle$ be increasing members of A. Choose $n_{\star \star}>n_{\star}+\left(k_{\star}+\right.$ $\left.l_{\star}+10\right)!$. Choose $q_{1} \geq p_{\alpha_{0}, \alpha_{1}}$ such that
(i) $q_{1}=\left\langle q_{1}(k): k \leq k_{\star}\right\rangle$
(ii) $\operatorname{dom}\left(q_{1}(0)\right)=\operatorname{dom}\left(p_{\alpha_{0}, \alpha_{1}}\right)$ and for each $l<l_{\star}, q_{1}(0)(l)=\eta_{\star}^{l \frown} 0^{n_{\star \star}-n_{\star}}$
(iii) For each $1 \leq k \leq k_{\star}, q_{1}(k)=\left(F_{\alpha_{\star}, \beta_{\star}, k}, \bar{n}_{\star}^{k \frown} n_{\star \star}, \bar{\sigma}_{\star}^{k} 01^{n_{\star \star}-n_{\star}-2} 0, N_{\star}^{k}+\right.$ 1)

Since p_{\star} forces that $\left[\stackrel{\circ}{T}_{m_{\star}}\right]$ is nowhere dense, we can find $n_{\star \star \star}>n_{\star \star}$, $q_{2} \geq q_{1}$ and $\rho \in{ }^{\left[n_{* \star}, n_{* * *}\right)} 2$ such that the following hold.
(a) $q_{2}=\left\langle q_{2}(k): k \leq K\right\rangle$ for some $k_{\star} \leq K<\omega$
(b) For $1 \leq k \leq k_{\star}$, if $q_{2}(k)=\left(F_{k}, \bar{n}_{k}, \bar{\sigma}_{k}, N_{k}\right)$, then $n_{\star \star \star}<n_{k, N_{k}}$
(c) $q_{2} \Vdash\left(\forall x \in\left[{\stackrel{\circ}{T_{*}}}_{m_{\star}}\right]\right)\left(x \upharpoonright\left[n_{\star \star}, n_{* \star \star}\right) \neq \rho\right)$

For $j \geq 2$, consider the set $s_{j}=\left\{l<l_{\star}:\left(\exists l^{\prime}<l_{\star}\right)\left(\gamma_{\alpha_{0}, \alpha_{1}, l}=\gamma_{\alpha_{j}, \alpha_{j+1}, l^{\prime}}\right)\right\}$. We claim that $s_{j}=s_{\star}$ is constant. To see this, suppose $2 \leq j_{1}<j_{2}$. Choose j_{3} much larger than j_{2} and use the fact that the order types of $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{j_{i}}, \alpha_{j_{i}+1}\right\rangle,\left\langle\alpha_{0}, \alpha_{1}, \alpha_{j_{3}}, \alpha_{j_{3}+1}\right\rangle$ and $\left\langle\alpha_{j_{i}}, \alpha_{j_{i}+1}, \alpha_{j_{3}}, \alpha_{j_{3}+1}\right\rangle$ are the same for $i \in\{1,2\}$. It also follows that whenever $2 \leq j_{1}<j_{2}-1,\left\{\gamma_{\alpha_{j_{1}}, \alpha_{j_{1}+1, l}}: l \in\right.$ $\left.l_{\star} \backslash s_{\star}\right\} \cap\left\{\gamma_{\alpha_{j_{2}}, \alpha_{j_{2}+1}, l}: l \in l_{\star} \backslash s_{\star}\right\}=\phi$. So we can choose j large enough such that $\left(\operatorname{dom}\left(q_{2}(0)\right) \cup \bigcup_{k \leq K} F_{q_{2}(k)}\right) \bigcap\left(\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l}: l \in l_{\star} \backslash s_{\star}\right\} \cup\left\{\alpha_{j}, \alpha_{j+1}\right\}\right)=$ ϕ. The next claim gives us the desired contradiction.

Claim 2.3. For some $q_{3}, q_{3} \geq q_{2}, q_{3} \geq p_{\alpha_{j}, \alpha_{j+1}}$ and $q_{3} \Vdash \rho \subseteq{\stackrel{\circ}{\alpha_{j}}}+{\stackrel{\circ}{\alpha_{\alpha_{j+1}}}}$

Proof of Claim 2.3: Put $q_{3}=\left\langle q_{3}(k): k \leq K\right\rangle$ and $\operatorname{dom}\left(q_{3}(0)\right)=$ $\operatorname{dom}\left(q_{2}(0)\right) \cup\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l}: l \in l_{\star} \backslash s_{\star}\right\}$. For each $l \in l_{\star} \backslash s_{\star}$, we would like to find $\eta_{\star \star}^{l} \succeq \eta_{\star}^{l}$ such that the following hold.
(a) If $l_{1}<l_{2} \in l_{\star} \backslash s_{\star}, 1 \leq k \leq k_{\star},\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l_{1}}, \gamma_{\alpha_{j}, \alpha_{j+1}, l_{2}}\right\} \in S_{k}$ and $N_{\star}^{k} \leq i<N_{q_{2}(k)}$ then $\left(\eta_{\star \star}^{l_{1}}+\eta_{\star \star}^{l_{2}}\right) \upharpoonright\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right) \neq \sigma_{q_{2}(k), i}$
(b) If $l \in s_{\star}, l^{\prime} \in l_{\star} \backslash s_{\star}, 1 \leq k \leq k_{\star}$ and $N_{\star}^{k} \leq i<N_{q_{2}(k)}$ then $\left(q_{2}(0)\left(\gamma_{\alpha_{0}, \alpha_{1}, l}\right)+\eta_{\star \star}^{l^{\prime}}\right) \upharpoonright\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right) \neq \sigma_{q_{2}(k), i}$
(c) If $\gamma_{\alpha_{j}, \alpha_{j+1}, l_{1}}=\alpha_{j}, \gamma_{\alpha_{j}, \alpha_{j+1}, l_{2}}=\alpha_{j+1}\left(\right.$ so $\left.l_{1}, l_{2} \in l_{\star} \backslash s_{\star}\right)$, then $\left(\eta_{\star \star}^{l_{1}}+\eta_{\star \star}^{l_{2}}\right) \upharpoonright$ $\left[n_{\star \star}, n_{\star \star \star}\right)=\rho$

Here, for $\sigma, \tau \in 2^{<\omega}, m<n<\omega$ and $\rho:[m, n) \rightarrow 2$, by $(\sigma+\tau) \upharpoonright[m, n) \neq$ ρ we mean the following: For every $x \in[\sigma]$ and $y \in[\tau],(x+y) \upharpoonright[m, n) \neq \rho$.

This would suffice since then we can let $q_{3}(0)=q_{2}(0) \cup\left\{\left(\gamma_{\alpha_{j}, \alpha_{j+1}, l}, \eta_{\star \star}^{l}\right)\right.$: $\left.l \in l_{\star} \backslash s_{\star}\right\}$ and for $1 \leq k \leq K, q_{3}(k)=\left(F_{q_{2}(k)} \cup F_{p_{\alpha_{j}, \alpha_{j+1}}(k)}, \bar{n}_{q_{2}(k)}, \bar{\sigma}_{q_{2}(k)}, N_{q_{2}(k)}\right)$.

First put $\eta_{\star \star}^{l} \upharpoonright\left[n_{\star}, n_{\star \star}\right)=0^{n_{\star \star}-n_{\star}}$ for every $l \in l_{\star} \backslash s_{\star}$. Next let $W=$ $\left\{(k, i): 1 \leq k \leq k_{\star}, N_{\star}^{k}+1 \leq i<N_{q_{2}(k)}\right\}$. Note that for $(k, i) \in W$, $n_{q_{2}(k), i+1}-n_{q_{2}(k), i}>2^{i-N_{\star}^{k}}\left(n_{\star \star}-n_{\star}\right)>2^{i-N_{\star}^{k}}\left(k_{\star}+l_{\star}+10\right)!$.

Inductively choose pairwise disjoint intervals $\left\langle I_{k, i}:(k, i) \in W\right\rangle$ such that each $I_{k, i}=\left[m_{k, i}, m_{k, i}+\left(l_{\star}+5\right)!\right) \subseteq\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right)$. We claim that for each $(k, i) \in W$, we can choose $\left\langle\eta_{\star \star}^{l} \upharpoonright I_{k, i}: l \in l_{\star} \backslash s_{\star}\right\rangle$ such that the (k, i)-th instance of requirements (a), (b) are met. To see this, note that we have at most $\binom{l_{\star}-\left|s_{\star}\right|}{2}+\left|s_{\star}\right|\left(l_{\star}-\left|s_{\star}\right|\right)$ inequalities (coming from (a) and (b)) and one equality from (c) to satisfy and since $\left\{\alpha_{j}, \alpha_{j+1}\right\} \notin \bigcup\left\{S_{k}: k \geq 1\right\}$, there is no conflict between requirements (a) and (c).

References

[1] P. Erdős, S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc., Vol. 49, Number 6 (1943), 457-461
[2] P. Komjáth, Set theoretic constructions in Euclidean spaces, New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer, 1993, 303-325

[^0]: *2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E75. Key words and phrases: Forcing, Baire category
 ${ }^{\dagger}$ Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel; email: akumar@math.huji.ac.il; Supported by a Postdoctoral Fellowship at the Einstein Insititute of Mathematics funded by European Research Council grant 338821
 ${ }^{\ddagger}$ Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel and Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA; email: shelah@math.huji.ac.il; Partially supported by European Research Council grant 338821; Publication no. 1079

