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Saturated null and meager ideal

Ashutosh Kumar? Saharon Shelah’

Abstract

We prove that the meager ideal and the null ideal could both be somewhere X;-saturated.

1 Introduction

In [?], starting with a measurable cardinal, Komjath constructed a model of ZFC in which there
is a non meager set of reals which cannot be partitioned into uncountably many non meager sets.
In [?], starting with a measurable cardinal, Shelah constructed a model of ZFC in which there is a
non null set of reals which cannot be partitioned into uncountably many non null sets. Our main
result is that the two consistency results can be combined.

Theorem 1.1. Suppose there is a measurable cardinal. Then there is a ccc forcing P such that in
VP there is a set X C R such that X is neither null nor meager, X cannot be partitioned into
uncountably many non null sets and X cannot be partitioned into uncountably many non meager
sets.

Let us briefly point out why other boolean combinations are also possible. Ulam showed that
if there is an Wj-saturated sigma ideal Z on some set X such that Z contains every countable set,
then there is a weakly inaccessible cardinal below |X|. It follows that, under the continuum hy-
pothesis, every non meager (resp. non null) set of reals can be partitioned into uncountably many
non meager (resp. non null) sets.

Suppose X is a non meager set of reals that cannot be partitioned into uncountably many non
meager sets. Let P be the forcing for adding 8; Cohen reals. Then in V¥, X continues to be non
meager and it is easy to check that it still cannot be partitioned into uncountably many non meager
sets. Also, in V¥, the real line can be covered by N; null sets. It follows that every non null set in
VP can be partitioned into uncountably many non null sets.

Similarly, if X is a non null set of reals that cannot be partitioned into uncountably many non
null sets, then adding 8; random reals gives us a model where X remains non null, it cannot be
partitioned into uncountably many non null sets and every non meager set can be partitioned into
uncountably many non meager sets.
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On notation: A subset W C 2¢ is fat if for every clopen set C, either W N C = () or
pu(WnC)>0. Asubtree T C <“2is fat if [T] = {x € 2¥: (Vn <w)(z | n € T)} is fat. For a
clopen subset C' C 2%, define supp(C') to be the smallest (finite) set F' such that (Va,y € 2¢)((x |
F=y|F) = (xe€C <= yeC)). Random denotes the random real forcing. Note that
{[T] : T C <“2is a fat tree} is dense in Random. Cohen denotes Cohen forcing. Its conditions are
members of <“w ordered by end extension. In forcing we use the convention that a larger condition
is the stronger one; so p > ¢ means p extends ¢g. If P,Q are forcing notions and Q C P, we write
Q < P if every maximal antichain in Q is also a maximal antichain in P. For z,y € w“, define
z@y€w by (z@y)(2n) =x(n) and (xS y)(2n +1) = y(n).

2 Eventually different forcing

Suppose Y = (y; : i < 6) where each y; € w*. Define a forcing notion E = E(Y) as follows. p € E iff
p = (0, F,) = (0, F) where 0 € <“w and F € [f]<®. For p,q € E, p < q iff 6, < 0,, F, C F, and
for every k € [|opl, |oq]), for every i € F),, o4(k) # yi(k). It is easy to see that E is a sigma-centered
forcing that makes the set {y; : i < 0} meager since it adds the real 7z = (J{o}, : p € Gg} which
satisfies (Vi < 6)(V°k)(yi(k) # me(k)). The following lemma is well known. We include a short
proof for completeness.

Lemma 2.1. Let Y, E = E(Y) and 75 be as above. Let & € 2°NVE. Then there is a Borel function
B :w¥ — 2¥ such that IFg B(g) = .

Proof of Lemma ?7?: For each n < w and ¢ < 2, choose A;,, C E such that for every p € A; ,,
p - &(n) =i and Ag, U Aj, is a maximal antichain in E. Define B : w¥ — 2% as follows. Given
z € w¥ and n < w, look for unique i < 2 and (o, F') € A;,, such that o C z and for every k € [|o|,w)
and v € F, z(k) # y(k) and define B(z)(n) = 4. If there are no such unique i and (o, F'), define
B(z)(n) = 0. Note that if (00, Fy), (01, F1) € Aon U A1y are incompatible, then either oy and o4
are incomparable or (say) og < o1 and for some k € [|og|, |01]) and v € Fy, we have o1 (k) # y- (k).
Hence IFg B(mg) = <. O

Note that if Y = (), then E(Y) is Cohen forcing. We can think of E(Y) as adding a “partial
Cohen” real with memory Y which becomes decreasingly Cohen-like with increasing memory.

3 Background ideas

Let us describe some of the ideas that led to the model witnessing Theorem ??7. By a result of
Solovay, we must start with a measurable cardinal x. Let Z be a witnessing normal prime ideal.
We are going to construct a ccc forcing P that adds two sets of reals X = {z, : @ < k} and
Y = {ya : @ < k} such that (??) and (??) below hold. Let 7 ={W C x: (AW € Z)(W C W)}
be the ideal generated by Z in V. Since P is ccc, J is an Rj-saturated x-additive ideal on x. We
would like to have for every W C &,

WeJ < {zq:a € W} is meager (A)

WeJ <= {ya:aecW}isnull (B)



Paper Sh:1104, version 2018-09-11_11. See https://shelah.logic.at/papers/1104/ for possible updates.

This would suffice for Theorem ?7 since if N is a dense G null subset of R, then the set
(NNX)U((R\N)NY) is both non meager and non null and it cannot be partitioned into un-
countably many non meager or non null sets.

In [?], Komjath starts by adding x Cohen reals X = {z, : @ < k}. So every meager subset of
X is currently countable. Using a finite support product, he then makes every subset of X of the
form {z, : o € W} (where W € 7) meager. He finally invokes the properties of product forcing
to show that X remains non meager in the final model. Note that the analogous construction fails
for the null ideal: If we start by adding a set Y of k random reals and then, using a finite support
iteration (for ccc), add null sets containing some subsets of Y, then we inevitably add Cohen reals
at stages of cofinality w which makes all of Y null. To get around this difficulty, Shelah [?] proceeds
as follows. Let (X, : @ < A) be a list where each member of Z occurs A = 2% times. First add
A Cohen reals (¢, : @ < A). Each ¢, codes a null Gs-set N, in a natural way. We now do a
finite support iteration of length x adding a “partial random” y¢ at stage { < k whose memory is
Vi =V{{ca : € ¢ Xa)[{yy : m < €)]. This means that ye is Random"?-generic. The expectation is
that if £ € X, then y¢ € N, (although showing this requires some work) and that Y = {y¢ : { < s}
would be the desired set of reals in the final model.

To combine these two construction via a single forcing, we first reverse Komjath construction
as follows. Let (X, : @ < A) be the list mentioned above. First add A\ Cohen reals (¢, : o < A).
Each ¢, codes an F,-meager set - namely, M, = {y € w¥ : (V°k)(y(k) # ca(k))}. Now do a
finite support iteration of length x adding a “partial Cohen” real x¢ at stage £ < xk with memory
Ce = {ca : £ € Xo}. This means that x¢ is E(C¢)-generic. Note that if £ € X, then x¢ € M. It
is not difficult to check that X = {x¢ : { < k} is a non meager set on which the meager ideal is
N;-saturated.

The next section begins by describing iterations Py = (Py,Qq : o < A+ &) for g < A < )\(J{ “
(where A\g = 2") which combine partial Cohen and partial random reals. The reason behind
considering Py for various \’s and not just for A = Ay will become clear during the proof of Lemma
7?7 where we use automorphisms of Py, for A > Ag to construct certain finitely additive measures
on P(w) N VEr+e for € < k.

4 Forcing

Suppose k is measurable and Z is a normal prime ideal on k. Put A\g = 2%. For \g < A < )\g @
define the following.

(1) (Xa:a < AJY) is a sequence of members of Z.
(2) Forevery n <w and X € Z, [{a < A\J™: X, = X} =A™

(3) For £ < g, C/)\\+§ = Cri¢ = {ao < X : € € X, }. This is the memory of the partial Cohen real
to be added at stage A + & (see item (7) below).

(4) For & < &, A§+§ =Ayvie={a<A: ¢ XoUN A+ E). This is the memory of the partial
random real to be added at stage A + £ (see item (7) below).

(5) Py = (PrasQra : @ < A+ k) is a finite support iteration with limit P ;.. In the contexts
where the value of A is constant, we drop the A in the subscript and just write P, and Q.
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(6) For a < A, Qn = Cohen with generic real 7, € w®.
(7) For £ < K, Qaqe = Q}\+£ X Q§+§ where Q}H_g = (Random)V[{m#€Ax+6)] with generic partial
random T/{Jrg € 2% and Q%\H = E((7a : @ € Chq¢)) with generic T§+§ € w¥. Let Thp¢ =
1 2
Tate D Thge:
(8) Define P = Py xg4x-

The model for Theorem ?? will be VF. The verification of this will conclude with the proof of
Lemma ?77. In the remainder of this section, we establish some basic facts about these iterations.

The following claim is easily proved by induction on £ < k using Lemma 77 and the standard
properties of Cohen and random forcings.

Claim 4.1. For every £ < k, & € 2% N VP, there are a Borel function B : w* — 2% and
(g, V) = k < w) such that every v, < A+ & and ny < w, and IFp & = B((7y, (ng) : k < w)).

Definition 4.2. Let IP”)\’AJFH = IP”)\+H be the set of conditions p € Pyi, satisfying the following
requirements.

(a) For each a € AN dom(p), p(a) = 0o € ““w. In this case, define supp(p(a)) = 0.

(b) For every o € dom(p) N[\, A+ k), letting p(a) = (p()(1), p()(2)), we have the following.

(i) There exist ((ng, Vi) : k < w), p € <“2 and a Borel function B such that for every k,
ng < w, Yk € Aq, the range of B consists of fat trees in <“2 and IFp,, p(a)(1) = [B({7y, (ng) :
k < w))] is a subset of [p] of relative measure more than 1 — 2~ (=3+10) where n = |dom(p) N
A, A+ k)| and j = |dom(p) N[\, &)|. Recall that for X CY C 2%, the relative measure of X
inY is w(X)/p(Y).

(ii) IFp,, p(a)(2) = (v, F) where F € [C,]<N, v € <“w, F C dom(p) and for each 3 € F,
o8l = [vl.

(ii1) In this case, define supp(p(a)) = {y : k <w}UF.
(¢) Define supp(p) = dom(p) U |J{supp(p(c)) : a € dom(p)}.
For & <w, P\ \ =P\, CPri¢ is defined analogously.

Using Claim ?? and the Lebesgue density theorem, it is easily checked that P +¢ Is dense in
Pyi¢ for every § < k.

Suppose A\g < A < AJ¥ and & < k. Let h : A+ & — X + & be a bijection satisfying the
following.

(1) AT [A A+ &) is the identity.

(2) For every £ < & and o < A, o € Ayye iff h(o) € Axye (equivalently, o € Cyyg iff h(a) €
Che)-

Define h : Phye, = Py, as follows. For p € P\, , put h(p) = p' where

(a) dom(p) = {h(a) : a € dom(p)},
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(b) for a € dom(p) N A, p'(h()) = p(«) and

(c) for a € dom(p)N[A, A+&), put p'(a)(1) = B((Th(y,) (k) : k < w)) where B, ((ng, &) : k < w)
are as in Definition ??(b)(i) for ath coordinate of p and p'(«)(2) = (v, h[F]) where (v, F) =
p(a)(2).

Claim 4.3. h is an automorphism of IP)’/\+£*.

Proof: By induction on &,. O

Definition 4.4. For \g < A < A\{“ and A C A + k, define Pha=Py={peP\,, :supp(p) C A}.

The following lemma describes a sufficient condition on A C A+ ¢ for ensuring that P’y <Py .
It is used in the proofs of Corollary 7?7 and Claim ?7?.

Lemma 4.5. Let § < k, A C A+ & and [\ A+ &) C A. Suppose for every countable B C A,
there is a bijection h : A+ & — X+ & such that

(a) h [ (BNA)U[NA+E)) is the identity,
(b) for every & < & and a < X\, v € Axye iff h(ov) € Axge,
(c) h|B] C A and
(d) h[B N Ayre,] © AN Aye..
Then Py <P\ .

Proof of Lemma ?7: By induction on &,. If & = 0 or limit this is clear. So assume &, = £+ 1
and put a = A + £. By inductive hypothesis, P, , <P, so it suffices to check the following: If
{pn :n<w}CP,, pelP,, and p I, {pn(a) :n < w,p, | a € GP/AM} is predense in
(Random)V [(ma:B€4N4a)] o E({rg : B € ANCy)), then p IFpr {pp(a) : n < w,py [ a € Gp } is
predense in (Random)VI(7s:8€4a)] » E((75: 8 € C,)).

Suppose this fails for some {p, : n < w} C Py and p € P/;,. Choose ¢ € P, v, F, D,
((ng, k) © B < w) such that

® qg=>p,

e v € Wy, F € [C,]<M, D is a Borel function on w* whose range consists of fat trees, each
Y € A, and

o qlbp 7= [D((Ty,(nx) : k <w))] A (r,(v, F)) is incompatible with every member of {p, () :
n<w,pp | acGp}.

Let W be the union of the following sets: dom(q), supp(q), supp(p), U{dom(p,) : n < w},
U{supp(pn) : n < w} and {yx : k < w} U F. Using the hypothesis on A, we can find a bijection
h : a — «a such that

o h [ ((BNA)U][A «)) is the identity,

o (Vn <&(VB <A)(B € Aryy = h(B) € Axin),

5
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e h[B] C A and
e h[BNA, C AN A,.

So h is an automorphism of P,. As h[B] C A, h(q) € P;,. Since h | (BN A) is the identity, it
follows that h(p) = p and for every n < w, h(pn) = pp. Since {y; : k < w}UF C W and h[BNA4] C
AN Ay, we have that IFp 7" = h(r) = [D((They,)(nr) + & < w))] € (Random)V [{7s:8€AN4a)] and
IFp, (v, h[F]) € E[{(ms : B € ANCy)]. It follows that h(q) lFpr (', (v, h[F])) is incompatible
with every condition in {p,(a) : n < w,p, [ @ € Gp, }. Since Pl < P/, we also get that
ﬁ(q) Fe, (r', (v, h[FY])) is incompatible with every condition in {pn(a) n<w,pp | aé€ G[p;ma}.
But since p = fL(p) < ﬁ(q) and p lkp {pn(a) i n < w,p, | @ € GP'Ama} is predense in

(Random)V{7s:8€ANA4a)] » E((75: B € AN C,)), we get a contradiction. O

Corollary 4.6. For every &, < K, Pf‘ng* <P,

Proof of Corollary ??: Let B C A be countable. By Lemma ?? clauses (a)-(d), it suffices to
construct a bijection h : A + & — A+ & such that b | (BN Axye,) U N A+ &) is identity,
(V€ < &)(Va < N)(a € Aype <= h(a) € Axi¢) and h[B] C Ayye,. For each z C &, let
We={a<A: XoN& =a}. Let Woo={ae W, :& ¢ Xofand Wy ={a e W, : & € Xy} so
Wy = Wy oUW, 1. Note that for every « C &, [Wyo| = |[Wy1| = A So for each x C &, we can
choose a bijection hy, : W, — W, such that hy[W, 0N B] € W, 1 and hy [ (Wy1 N B) is identity.
Put h [ A= U{hs : z C &} O

5 Meager ideal

Recall that P = Py y,+x. Throughout this section and the next, we fix A = A\g = 2%. In VF let
J={Y Ck:(3X €I)(Y C X)} be the ideal generated by Z. Since P is ccc, J is an R;-saturated
k-additive ideal over k. The next lemma says that the meager ideal restricted to {7’/% e £ < k}is
isomorphic to J and is, therefore, Nq-saturated. Its proof will conclude at the end of Section ?77.

Lemma 5.1. In VP, for every Y C &, {T§+£ :&€Y} is meager iff Y € J.

Proof of Lemma ?7: Suppose Y € J. Since P is cce, we can find X € 7 such that |- Y C X.
Choose o < A such that X = X,. Note that I (V¢ € Xa)(vook)(ﬁ%(k) # 7Ta(k)). Hence

{T)Q\Jr& : £ €Y} is meager in VE,

Next suppose Y ¢ J. Towards a contradiction, WLOG, suppose p € P’ forces that {T)Q\ e €€
Y} is nowhere dense in w*”. Let T' C <“w be a nowhere dense subtree such that p I+ {7'>2\ et ¢ e

Y} C [T]. For each o € <“w, let A, be a maximal antichain of conditions in P’ deciding o € T".
Put W = J{supp(p) : p € As,p € As}.

Choose £ < k and p' € P such that p’ > p, £ ¢ U{X0 : @ € WN A} A+ & > sup(W) and
P IF € €Y and hence p/ I T/%Jrg € [T]. By extending p/, we can assume that A + & € dom(p/). Let
g € P be such that dom(q) = dom(p') N(A+&+1), g [ (A+&) =p [ (A+E), ¢ A+§)(1) =2 and
gA+€)(2) = (0,0). Since T € VPite g Py e s T/%Jrg € [T].
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Put dom(¢)NA = {a; : j <m, }U{B;:j <ri} where {5 :j <r.} ={8 €dom(qg)NA: & ¢ X3}
and «;’s and f3;’s are increasing with j. Note that WN{e; : j < m,} = 0. Put dom(g)N[A\, A +§) =
{AN+& 1 j < ne} where ’s are increasing with j. For j < ry, let ¢(8;) = n;. For j < ny, let
g(A+&5)(2) = (vj, F;) and let p; € <“2 be such that H—png g(A+&;)(1) is a fat subset of [p;] of

relative measure more than 1 — 2-("+=7+10) By extending ¢, we can also assume that

g\ +€)(2) = (vy, Fy) where v, € w,

e F, ={aj:j < m,} is non empty,

for every j < my, q(aj) = 0j € bw; so |oj| = |vi| and

for each j < ny, v; € bew.

To produce such a g, first extend each g(«) for a € dom(g) N A such that they all have the same
sufficiently large length [,. Let K C w be the finite set of values these g(«)’s take. Next for each
j < n4, extend each v; to a member of w with new values from w\ K. Finally extend g(\ + £)(2)
to (v, Fy) where v, € bkw and F, = {aj : j < my,}. This is permissible because £ € Xq, for every
G < my.

For o < ), define S,, o = {v € <“w : (1, V) A (Vk € [|vil, V) (0(K) # Ta(k))}.

Claim 5.2. ¢ [ (A +¢&) IFp, T2 ﬂ gl/a”aj

J<mx
Proof of Claim ??: Suppose not. Choose ¢ [ (A +§) < ¢ € IP”A%, vy < 11 € “Yw such that

qlp, 11 € ﬂj<m* So'l,haj/\yl ¢ T. Let g > q, g2 € IF”/\+§+1 be such that g2 | (A+&) =q1 | (A+E)

and ga(\ + £)(2) = (v1, Fy). Then g2 > ¢ and ¢ IFpyen v1 C T§+5. Hence g2 IFp, ., T)%Jré ¢ T
Contradiction. ]

Choose (o ;j 11 < A, j < my) such that the following hold.

e For every i < X and j < my, a;; € A\ (W Udom(q)).

e For every ii,ip < A and ji, jo < My, 4, j; = i, j, iff (i1, j1) = (i2, J2).
e For every i < A and j < my, Xo, ; = Xao;-

For i < A, the map h; : A+ & = A+ £ defined by

a;; if j <my and o = q;
hi(a) =S a; if j <my and a =

o otherwise

induces an automorphism £; of IPV)\JF5 that fixes 7. Let ¢; = lAzz(q [ (A+&)). Then for each i < A,
we have the following.

(1) dom(q;) ={cuj:j <mfU{B;:j<rfU{A+E J<ng}.

(2) For every j < my, ¢i(ai ;) = q(a;) = 0; € bw.
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(3) For every j <74, ¢i(B5) = q(B5) = nj;.

(4) For every j < ny, H—]png ¢i(A+&5)(1) is a fat subset of [p;] of fractional measure more than
1 — 2~ (nx—j+10)

(5) For every j < ny, ¢i(A+&;)(2) = (v;, Fij) where v; € "w and F;; = h;[Fj].

(6) q; ||_[p>/\+£ j.—‘ D) ﬂ éy*’ai,j.

j<m*

Since A is uncountable, by a A-system argument we can further assume that for some <FJ* 17 <
ny), for every j <mny, (Fj; :i < w) forms a A-system with root F7.

For i < w, define g() : [lx,lx + i) — w such that for every k € dom(g(7)), g(i)(k) = 1.
Definition 5.3. For each i < w define qf € P’>\+£ by dom(q}) = dom(q;) and

ojUg(i) if j <my and o = ay 5,
g () =1" - "
gi(@) otherwise.

Let ¢ = (qf 1 i < w).
The next claim provides a sufficient condition to complete the proof of Lemma ?7.
Claim 5.4. Suppose there exists qx € P such that
g b (3%0)(qi € Gp).
Then g, IF [T] has non empty interior.

Proof of Claim ??: Let G be P-generic over V with ¢, € G. Suppose v, < v € <“w. Choose
i < w such that (Vk € dom(v))(v(k) < i) and ¢F € G. Since ¢ (i ;) = 0; U g(i) for every j < m,,
it follows that v € ;. Sv.,a;,;- By Claim 77, it follows that v € T. Hence g, I [v,| C [T]. O

So to complete the proof of Lemma 77, it is sufficient to construct ¢, € P satisfying the
hypothesis of Claim ??. This will be done in Section ?77.

6 Null ideal

Definition 6.1. For each n < w, let (C}} : k < w) be a one-one listing of all clopen subsets of 2
of measure 27", For a < A, define Ny = Mk Unsi C’:fa(n). So Ny, is a null Gs-set coded by T,

The next claim says that the null ideal restricted to {7} e < k} is isomorphic to J and is,
therefore, Nj-saturated. Its proof will be completed at the end of Section 77.

Lemma 6.2. In VP, for every Y C &, {7'/@rf &eYisnulliff Y € J.

Proof of Lemma ??: Towards a contradiction, suppose p IF Y ¢ J N {7'%_5 1€ e Y} is null.
Let N be a null Borel set in VF such that p I+ N D {7')1\Jr£ . £ € Y}. Choose a Borel function
B coded in V, and ((ng,7%) : k¥ < w) such that for every k¥ < w, v < A+ K, nx < w and
- B((1y,(nk) : k <w)) =N. Let A=J{X,, : kK <wAr; <A}. Then A € Z. Choose ¢ > p and
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€ < ksuch that ¢ IF € € Y\ A and A4+£ > sup({yx : k < w}). Since N is coded in V[(7, : o € Axie)l
(as {7k : k <w} € Axqg), it follows that ¢ IF 7'>1\Jrg ¢ N: Contradiction.

Next suppose Y € J. Since P is cce, we can find X € 7 such that IF Y C X. We'd like to show
that {T/%Jrg : & € X}is null. Choose oo < A such that X = X,,. It is clearly enough to show that

for every £ € Xo, IFp, ., T){% € Na. Suppose this fails and fix £ € X4, p € P’/\+§+1 and k, < w
such that p IF (Vk > k*)(Ti_% ¢ Cfa(k))‘ We can assume that o € dom(p) and p(a) = o, € bw
for some I, > k,. Choose a Borel function B and ((n;,v;) : j < w) such that v; € Ayi¢, range of
B consists of fat trees and ||_]P>)\+§ B((T.YJ (nj) :j <w))=Tand [T] = p(A +&)(1). It follows that
pl (A+8) ke, (V> k)(T]N C’k =0). Let W = {v; : j <w} and note that oo ¢ W.

Put dom(p) N A = {a} U{B; : j < r} and dom(p) N [A, A +&) = {A+ & : j < n.} where §;
and ; are increasing with j. For j < ry, let p(5;) = n;. For j < ny, let p(A +&;)(2) = (v}, F;) and
let p; € <“2 be such that II—pH&j p(A+&5)(1) is a fat subset of [p;] of relative measure more than

1 — 2~ (m=3+10) By possibly extending p, we can assume that for every j < n,, v; € bw. Choose
(o =1 < A) such that the following hold.

e Foralli <j< A\ oy <aj <A
o X, =Xq (soa; ¢ W).
e a; ¢ supp(p).
For i < A, the map h; : A + & — A + & defined by
a ify=o

hi(v) = {ai ify=a
v otherwise

induces an automorphism h; of P +¢ that fixes T'. Let p; = h; (p [ (A+&)). Then for each i < A,
we have the following.

(1) dom(ps) = {ai} U{B; : J < U{A+ &1 J <}
(2) pi(ew) = pla) = o, € bw.

(3) For every j <1, pi(Bj) = p(Bj) = ;-

(4)

4) For every j < ny, |l_]p>>\+§ pi(A+&;)(1) is a fat subset of [p;] of fractional measure more than
1 — 92— (nx—j+10)

(5) For every j < n., pi(A+&;)(2) = (v, Fi j) where v; € by F; j = hi[F}).

(6) pi L (Vk = k([T ] N Ck (k) = =0).

As before, by thinning out we can assume that for some <FJ* 0 J < ny), for every j < ny,
(Fij i <w) forms a A-system with root F}".

For each i < w, we'll extend p; on the a;th coordinate to get p) as follows.
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Definition 6.3. For each n < w, let K,, = {k < w : supp(C,lc*) C n}. Note that for all n > I,
| K| = (233*). Define k = (ky, :n < w) by: ko =0, kpy1 — kn = (233*). Let f:w — w be such
that fllkn, knt1)] = Kn. For each i < w, v € dom(p;) define

Pi(y) = {pi(V) if v # o
' o U{(le, f(0)} if v = i

Lemma 6.4. Suppose K < w, F C [\, \+k) is finite, (pg : 0 € F) is a sequence in <“2, {ag : § € F)
is a sequence in (1/2,1) and (q; : j < K) is a sequence of conditions in ' such that for every j < K,
dom(q;) = F, for each 0 € F, IFp, q;(0)(1) is a subset of [pg] of relative measure > ag and q;(0)(2)
is the empty condition. Then there exists ¢* € P with dom(q*) = F such that for every 6 € F,
IFp, ¢*(0)(1) is a fat subset of [pg] of relative measure > 2ag —1 and ¢*(6)(2) is the empty condition
and

¢ IFp |{j < K : g € Gp}| > K277 ] ao.
0cF

Proof of Lemma ??: By induction on |F|. Suppose F = {#}. Work in VF¢. Define ¢ =
> j<x Lg;0)(1) Where 1, )1y is the characteristic function of ¢;(0)(1). Put A = {z € [pg] : ¢(x) >
%} It suffices to show that p(A) > p([ps])(2ag — 1). We have

Kay

Kaop(lpo) < [ odu = [ oau+ | O S FRCA) o) (A

mA) o a
pllpel) — 2 —ag
Now suppose |F| > 2 and (3 is the largest member of F. Let F' = F\ {B}, q} =q | F'. Choose
¢’ € P’ with domain F” such that for every § € F’, IFp, ¢/(0)(1) is a subset of [pg] of relative measure
> 2ap — 1, ¢'(0)(2) is the empty condition and ¢’ IFp [{j < K : ¢} € Gp}| > K27 W1 g ag. Let
W={j<K: q; € Gp}. Let {W; 1 i < N} list all subsets of K of size > K2~ IF] [Iocr ag. Choose
a maximal antichain {r; : i < N} in P; above ¢’ such that each r; I-p W = W;. Work in VFs. For
each i < N, arguing as above, we can get a condition s; € Qé such that r; IFp, p(s;) > 2ag —1 and

Solving gives > 2ag — 1.

W;
si kg, Hi € Wi q;(B)(1) € GQ%H > ‘2|aﬂ. Choose ¢* such that ¢*(0) = ¢/(9) if # € F' and for
each t < N, r; ”_P/a q*(ﬁ)(l) = Si. O

For i < w, let p/ be defined by dom(p!) = {\+¢; : j < n,} and for every j < n., p/(A+&;)(1) =
Pi(A+&;)(1) and pi (A +&;)(2) is the empty condition. Note that p; € P\, .. For each n < w, apply
Lemma ?? to the sequence (p} : i € [ky, knt1)) to obtain ¢ such that the following hold.

Definition 6.5. (a) ¢} € P}, and dom(qy) = {A+&; : j < ny}.

(b) For every j < ny, ||_Ip>>\+€j g5 (A +E5) is a subset of [p;] of relative measure > 2(1—27(n+=7+10))
1=1—270749),

(¢) @y Wpsoe i € (ks kng1) s 0} € Gpy 3 > (kngr = kn)27™ [y, (1= 2707 H10) > (kg —
)47

10
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Definition 6.6. For each n <w and i € [ky, kn+1) define p; € P\ . by dom(p}) = dom(p;) and

o U{(ls, f(0))JU{(kyi) kel +1,i+ 1L+ 1)} ifa=q
pi () = pi(B)) = n; if j <reand a=B;
(Pi()(1) N gy (a)(1), (v;, Fij)) if j <ny, and oo = XA+ &

Let p* = (pf 11 < w).

Note that for every j < n,, ||_Ip>)\+€j pr(A+&5)(1) is a subset of [p;] of relative measure more than

1 — 2= (m=3+8)  The next claim provides a sufficient condition to complete the proof of Lemma ?7?.

Claim 6.7. Suppose for some p, € P and € > 0,

{7 € [kn, kni1) : P} € G} > e

D IF (F%n) P

Then, p, IF [T] is finite.

Proof of Claim ??: For n < w, let W, = {i € [kn,knt1) : p} € Gp} and 4, = |T'N"2].
Note that p, IF (Vi € W,,)(Vo € T'N "2)(0;*@) N [o] = 0) because I, > ky, pf(a;)(ls) = f(i) and
piIF (k> k)(CE o N [T] =0). Tt follows that [W,| < (3,7¢). Hence

|Wn| (227:1i?f) . i . ﬂ B 2n—l* an

2n—lx j=1

Therefore

Wl
kn—‘rl - kn

< (1—27h)n,

o

As a, is increasing with n, it follows that p, forces that lim, @, < oo and hence that [T is
finite. O

To complete the proof of Theorem 7?7, it suffices to construct conditions gy, p, satisfying the
hypotheses of Claims ?? and ??. Let us try to illustrate the main difficulty in doing this for p*.

Let
A= {i<w:(@n <w)(i € [kn, knt1) A (VEk € [kn, knt1)) (0 | X € Gp))}

and for each ¢ < &, let ]
Be={i<w:p; | (A+&) € Gp}.

Put dom(p,) ={B; : j <rfU{A+& :j<ntand pe [{Bj:7 <r}=pf [{Bj:j <r.} (this
doesn’t depend on i <w). For j < ny, define p.(A +&;)(2) = (v, F}).

Note that p, [ A IF A is infinite. It is clearly necessary to choose the random coordinates
pe(A +&;)(1) for j < n, such that p, IF AN Be, 41 is infinite. Suppose we have constructed
P | (A+&;) such that p, [ (A+&;) IF /iﬂégj is infinite and we would like to choose p,(A+¢&;)(1) €

Random" (7@ €n+g; )] (recall that p.(\ + &;)(2) = (v, F})) such that p, [ (A + &41) IF An éng

11
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is infinite. The problem is that we do not have access to égj € VI in V[(Ta : @ € Ayyg;)] and
hence it is unclear how to proceed.

To get around this difficulty, we will construct an auxiliary finitely additive measure m on
P(w)N VT which carries enough information about the partial randoms appearing at stages {A+¢:
Jj < n,} to allow us to choose appropriate p,(A + &;)(1)’s. Definition ?7 lists a sufficient set of
requirements on m for this. The construction of m in Lemma ?7 is inductive and uses Lemma 77
to code enough information about the partial randoms to allow the inductive step to proceed. The
class of blueprints in Definition 77 is general enough to allow a Lowenheim-Skolem type argument
(Claim ??) in the proof of Lemma ?7.

7 Measures and blueprints

An algebra A is a family of subsets of w that contains all finite subsets of w and is closed under
complementation and finite union. A finitely additive measure on an algebra A is a function
m: A — [0, 1] that satisfies the following.

e For every finite F' C w, m(F) = 0.
o m(w) = 1.
o If A1, Ay € Aand A1 N Ay = (), then m(A1 U AQ) = m(Al) + m(Ag).

Suppose m : P(w) — [0, 1] is a finitely additive measure and f : w — [0, 1]. Following Lebesgue,
define

2" ka

L k

[ i = i 350
k=0

where ap = m({n <w:k/2" < f(n) < (k+1)/2"}).

The following is a standard application of the Hahn-Banach theorem.

Lemma 7.1. Suppose m : A — [0,1] is a finitely additive measure on an algebra A and X C w.
Let a € [0,1] be such that for every A,B € A, if AC X C B, then m(A) < a <m(B). Then, there
exists a finitely additive measure m’ : P(w) — [0, 1] that extends m and m'(X) = a.

The proofs of the next two lemmas can be found in [?].

Lemma 7.2. Suppose m : P(w) — [0,1] is a finitely additive measure. For i € {1,2}, let R; be
a forcing notion and w; € V& be such that IFg, m; : P(w) — [0,1] is a finitely additive measure
extending m. Then, there ewists mz € VRVR2 sych that IFg, g, ™3 : P(w) — [0,1] is a finitely
additive measure extending both my and ms.

Lemma 7.3. Suppose that m : P(w) — [0,1] is a finitely additive measure. Let B = Random,
r € B. Define m, € V® as follows. For X € P(w) N VE, define

ﬁl,«()z'):sup{inf{/ﬂ(qmg?q)e XHBdm:qZp} :er,pGGB}.

Then, the following hold.

12
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(1) rlFm, : P(w) — [0,1] is a finitely additive measure extending m.

. X
(2) If X € P(w)NVE and a > 0 satisfy for every n < w, pirn [Ezs Jle) > a, then there exists

s > r such that s |- ﬁ’lr()o() > q.

The next definition introduces blueprints. Their role is clarified in Claim ?7. Note the return
of variable \g < A\ < )\g “ here.

Definition 7.4. For \g < X\ < A\{¥, let Ty be the set of tuples
t=(a,m,a,B,r0,&n p,v, F,lE) = (a',m e Bt 0t & ntl, ot ot FPL T E)
where

(i) l,m,n,r < w,

(i) & = (o 11 <w,j < m) where each oy ; < A,

(111) for every iy, iz <w and ji,jo <M, 04, j; = Qiy jo iff (i1,71) = (i2, J2),

(i) & = (o

(v) B=(Bj:j<r)isasequence of pairwise distinct member of A\ {c;j i <w,j < m},
(vi) 1= (n; : j <r) where each n; € ““w,
(vii) €= (&;: j < n) is an increasing sequence in k,
(viii) p = (pj: j < n) where each p; € <“2,
(ix) U = (v; : j < n) where each v; € 'w,

(x) F = (Fj :i <w,j <n) where each F;j € [Cry¢,]< and for every j < n, (Fyj :i < w)
forms a A-system with root F; and

(zi) €= (gj : j < n), where e,—1 € (0,278) and 2¢; < 41 for every j <n — 1.

We call members of 7, blueprints. They are intended to code information about certain se-
quences of conditions in P\ that look like ¢* and p* from Definitions ??, ?? in the following sense.

Definition 7.5. Suppose t = (a,m, &, [,r,7,6,n,p,0, F,1,6) € Ty and p = (p; : i < w) is a
sequence in P\. We say that p is of type t if the following hold.

(a) For everyi < w, dom(p;) = {a;j:j<m}U{B;:j<r}U{A+¢&:j<n}.
(b) For everyi <w and j <m, pi(c; ;) = 0; ;.
(c) For everyi <w and j <7, pi(Bj) =n;.

(¢) For everyi < w and j < n, H—png pi(A+&5)(1) is a subset of [p;] of relative measure more
than 1 —¢;.

(d) For everyi < w and j < n, II—pHEj piA+&5)(2) = (v4, Fij).

13
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Definition 7.6. Let \g < A < \{“ and t = (&,m,a, B,r,7,&,n,p, v, F,1,&) € T,.
(1) We say thatt is q-like for everyi < w and j < m, |o; ;| = l+i and (Vk € [I,1+1))(0; ;(k) = 7).
(2) We say that t is p-like if for every n < w, i € [kn,knt1) and j < m, |o;;| = 1+ 141,
(0i(1) : i € [kn,knt1)) are pairwise distinct and (Vk € [l + 1,1+ 1+ ))(0;;(k) = i) where
(kn :n < w) is as in Definition 77.

Note that if ¢* is of type ¢, then t is g-like and if p* is of type ¢, then ¢t is p-like.

_ Fort eT), § <k, wewrite ¢ | £ for the blueprint which is obtained by restricting the sequence
€ to ordinals below ¢ and modifying pt, 7!, Ft, &t and n! accordingly. The next definition relates
finitely additive measures in V2 ++ and blueprints in 7.

Definition 7.7. Suppose t = (a,m,&,3,7,10,&,n,p,0,F,1,8) € Tx, k = (k, : n < w) is an
increasing sequence in w with kg = 0, &1 < € < Kk and m € VEre. We say that m satisfies (1, k)
if the following hold.

(1) IFpy, 0 :P(w) — [0,1] is a finitely additive measure.
(2) For every j <mn, letting Vj = V[(1o : @ € Axyg,)], we have lrp,  m [ (P(w)NVj) € V.

(3) For every p = (p; 1 i <w) of type t, there exists p; € Py, such that the following hold.
(a) dom(pp) = {B; : j <r}U{A+¢&:j <n}.
(b) For every j <r, pp(Bj) = n;.
(c) For every X € P(w) NV that satisfies (Vn < w)(|X N [kn, kny1)| < 1), we have

pp I AlFe,, m(X) =0.

(d) pp I A e, ﬁl(z‘im;) =1 where

Ajp={i<w:(@n <w)(i € [kn, kns1) A (Vk € [kn, knt1))(pr | X € Gp))}.
(e) For every j <mn, IFp, .. pp(A+&)(1) € [pj] and pp(X +&5)(2) = (v), F).

(f) For every j <mn, p;lFp, , m ( k) =1 wherei € Y. 5k, Uf letting N < w be such that
€ [kn, knt1), we have pi(A+&;)(2) € G and
J

’{’i/ € [kN;kN—f—l) :pi/()\ +§j)(2) e GQ2 }‘ > kN—i—l —ky — mt.
(9) For every j <mn, pplFp, (Xp]) 1 —2e; > 0 where
Xpj={i<w:pi [ [NA+& +1) € Gp}.

The next claim provides a sufficient condition for the existence of ¢, and p, satisfying the
hypotheses of Claims ?? and ?? respectively.

Claim 7.8. Suppose for every t € Ty, if t is either g-like or p-like, then there are & <E<k
and m € VPx+¢ such that w satisfies (t,k) where k is as in Definition ??. Then there exist q. and
s satisfying the hypotheses of Claims 77 and 77?7 respectively.

14
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Proof of Claim ??: Choose ¢t € 7 such that ¢* from Definition 77 is of type ¢{. Choose
€n,—1 < € < k and m € VPr+¢ such that m satisfies (¢,k). Let g, = pg be as in Clause (3) of
Definition ??7. Let Xgrpn,—1 ={i <w :q] [ \,A+§) € Gp} and let

Agpp={i<w:(3n <w)(i € [kn, kns1) A (VE € [kn, knt1)) (g5 | A € Gp))}

Then ¢, forces that ﬁl()o(q*,n*_l) > 0 and ﬁl(ﬁq*ﬁ) = 1 and hence that ﬁq*,,; N )o(q*,n*_l is
infinite. It follows that g, I- (3°°¢)(q; € Gp). Hence g, satisfies the hypothesis of Claim ?7?.

Next choose t € T, such that p* from Definition 77 is of type t. Choose ,,—1 < & < k and
m € VErx+é such that m satisfies (¢, k). Let p, = pp- be as in Clause (3) of Definition ?7?.

Let Xprpo 1= {i <w:p' | [\, A+€) € Gp}. For j < ny, let Y*k be deﬁnedbyzEY « g iff
Pr(A+&5)(2) € GQ§+ . and for some N < w, i € [ky, knyy1) and |{’L € [/{:N,k‘NH) (A +£])( ) €

GQ§+£ H > kny1 — ky — 1 (recalling m! =1 for the blueprint of p*). Finally let
i

Ay p={i<w:(@n <w)(i € [kn, kns1) A (Vk € [kn, kns1)) (0} | A € Gp))}

Then p, forces that ﬁl(z‘iﬁ*ﬁ) =1, ﬁl()"(ﬁ*,n*_l) > 0 and for every j < n,, 1101(}0/7*7%) = 1. Hence

it also forces that
Ap i N X1 0 () Yo
J<n«

is infinite. Let ¢ be member of this set and fix n such that i € [ky, kyr1). The set {i’ € [kn, knt1)
P} ¢ Gp} has size at most ny + (kpq1 — k) (1 —47"*). The first contribution comes from Definition
??(3)(f) (noting m! = 1) and the second comes from the partial random coordinates (see Definitions
?? and ??(c)). It follows that

€ |kn, kn
Dy - (Eloon) |{Z € [ +1) pz € GPH —(ns+1)
knJrl k
Hence p, satisfies the hypothesis of Claim ?77. 0

The following lemma finishes the proof of Theorem ?77.

Lemma 7.9. Suppose \g < A < \{¥, t = (&,m,5,B,r,7,&,n,p,0,F,1,8) € Ty, &1 < € < k and
k= (kn,:n < w) is as in Definition ?7. Assume that t is either q-like or p-like. Then there exists
m € VErx+e such that t satisfies (t, k).

Proof of Lemma ??: By induction on n = n! = |¢|.

Suppose n = 0. Fix £ < k. Since n = 0, there is a unique p of type t. Put py = {(5;,n;) :
j < r}. Define X5 = {i : (In < w)(i € [kn,knt1) A (Vk € [kn,knt1))(pr € Gr,,))}. Let
W={X:XePw)NVA({n<w)(X Nk, knt1)] < 1)}. Since limy(knt1 — kn) = oo, it follows
that for every finite 7 C W, p; IFp, X \ U F is infinite. Hence we can choose m € VPH& such that
IFp, . ™ P(w) = [0,1] is a finitely addltlve measure and for every X € F, pp Ibp, . m m(X;\X) = 1.
It follows that m satisfies (¢, k).

Next fix A\g < A < A\{* and t = (&,m,5,B,7,7,&,n + 1,p,0,F,1,&) € T, such that ¢ is ei-
ther g-like or p-like. It suffices to construct t € VFPr+én+1 such that m satisfies (¢,k). Let
={t' € Tt : t' = (@ ma, B rag€ [ nyn,p | o [ n,(Fij:i<wj<n)l,E]nl}
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By inductive assumption, for every ¢’ € Ty, , there exists mt' € VBt at+en such that m!’ satisfies
(t',k). Fix such a map t' — m* on T+

Claim 7.10. There exists th € VoA én that satisfies (t | &np1, k) where t | nyq = (a,0,B8,r,& |
n,n,o,p [ nv | n(Fj:i<wj<n)l,é]n)and “_]P>/)\)\+£ m [ (P(w)N VPX,A> c VA where

A
A=Ay,

Proof of Claim ?77: Let x be sufficiently large. Choose Mo, M elementary submodels of (Hy €

, <y) such that My € My, |[Mo| = |M;| = X, and for I € {0,1}, Py+, 7{; and the map t’ — m! are

in M;, A+ 1 C M, and <*M; C M,. Note that if B; € {)\ﬂA)\Jr€ )\\A§+£j} for j < n+ 1, then

|Mj<ns1 Bil = X Also, if D; € {)DLOA)\JH_;S ,)ﬁ“\A)\Jr+£ }for j < n+1, then [MoN(;.,0q Djl = A

and [(M1\ Mo) N(;<py1 Djl = A So we can choose a bijection h: A + &, — M1 N (A" +¢&,) such
that

(i) For every £ < &, h(A+&) = AT +&
(ii) For every j < n and a < A, a € A§+§j iff h(a) € AL

AT

Mg, hence also o € C§+£ iff h(a) €

(iii) For every a < A\, a € Aﬁ%n iff h(a) € My

Let ¢ = ((h(cij) 1 i < w,j < m),m,a,(h(B;):j <r),r,, & nyn,p | nv|n (hF, i<
w,j<n),l,& | n). As“M; C M, t' € M;. Hence also m* € M;.

Define h : P\aie, — IP”M,()\JF+§ yoar, as follows: h(p) = p' where dom(p') = {h(a) : a €
dom(p)}. If @ € dom(p) N A, then p'(h(«)) = p(«). If a € dom(p) N[\, A + &), then p'(a)(1 )
B({Th(y,)(nk) : k < w)) where B, ((ng, ) : k < w) are as in Definition ??(b)(i) for coordinate a
and p'(«)(2) = (v, h[F]) where (v, F) = p(a)(2).

Subclaim 7.11. The following hold.
(1) h: Phare, = Phs (e B8 an isomorphism
(2) P+ (O +E)NMy < P+ OF e < Pt vt e,

P P
ot A4 AT, A
(3) Forj <n, put A; = A/\++§ N M. Then ll_P/A+,A++5j mt | (P(w)NV eV J

o/ P’ P’
(4) Forl€{0,1}, Irp @ | (P(w) NV 0T+ € POt ok ennm

A AT +én

Proof of Subclaim ??: (1) and (4) should be clear. For (2), use Lemma ?7. For (3), use the
fact that ! satisfies (¢, k). O
Choose 1/ € VI 0H+emnin guch that I-pr w = mt | (Pw)N VP”’(”Janli) and

At At +én
define th € VEAx+en by h(m) = w'.

By Subclaim ?7, m satisfies (¢ | &,41, k) where t | &1 = (o, 0, 8,7, [ nyn,a,p [ n, v | n, (Fij:
aic m [ (Pw)n VPINA) € VP4 where A = A§+§n. This
completes the proof of Claim ?7. O

i <w,j<n),l,&|n)and, moreover, Iy
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To complete the proof of Lemma ??, we would like to extend m to m; € VP +en+1 such that my
satisfies (¢, k). We do this in two steps.

Let ¢ = ((8;,7n;) : 7 <r). Note that for every X € P(w) NV, if (Vn <w)(|X N [kn, kn1)] < 1),
then ¢ Ibp, . m(X)=0.

Claim 7.12. ¢ forces that the following holds in VP +en : Letting Q = Q§+§n, there exists a Q-
name my such that kg mg @ P(w) — [0,1] is a finitely additive measure that extends m and
(Un, Fy) kg ma(Y) = 1 where i € Y iff for some N < w, i € [kn,kn+1), (Vn, Fin) € Gg and

{i" € [kn, kn+1) : (Un, Fy ) € Go}| = kv — kv —m

Proof of Claim ??: Work in Vi = VFPr+é above ¢. By Lemma ??, it suffices to show that
for every A € P(w) N V; satisfying m(A4) > 0, (vn, F) kg ANY # (. Towards a contradiction,
suppose this fails. Choose (v, F) € Q and A € Vi, such that (v, F),) < (v, F), m(4) > 0 and
(v, F)lFg AN Y = (). We can assume |v| > |v,| = I. Choose ¢; € P\ t¢,» @1 > g that forces this.

First suppose t is g-like. Then, for every ¢ < w and j < m, |o;j| = [+ i and (Vk €
(l,1+1))(0s(k) =1). Let H be Py¢,-generic over V with ¢; € H. Work in V[H]. Since m(A) > 0,
A is infinite. Choose N < w and i € [kn, kn+1) N A such that ky > |v], (Vk € dom(v))(kn > v(k))
and for every i’ € [kn, kn+1), Fyrpn \ Fo € {airj 1 j <m}. It follows that (v, F'UUeppy knsr) Fin)
extends (v, Fy ) for every i' € [kn,kn4+1) and hence (v, F U Ukelbn on 1) Flm) IFg @ € Y N A:
Contradiction.

Next suppose t is p-like. Then, for every N < w, i € [kn,kn41) and j <m, |os ;| =1+ 1 +14,
(0i;() : i € [kn,kn41)) are pairwise distinct and (Vk € [l + 1,1 + 1 + 4))(0;(k) = 7). Let
X={i<w:@n <w@j <m@ e knknt1) ANv(l) = 0;;())}. Then for every n < w,
| X N[kn, kn+1)| < m hence ¢ II—P/M% m(X) = 0. Let H be Py ¢, -generic over V with ¢; € H. Work
in V[H]. Since m(A\ X) >0, A\ X is infinite. Choose N < w and i € [kn,kn+1) N (A\ X) such
that kn > |v|, (Vk € dom(v))(ky > v(k)) and for every i € [kn,knt1), Fin \ Fn C {asj 1 j < m}.
It follows the set of i’ € [kn, kn+1) for which (v, F'U Upgepiy oy ,1) Fhn) does not extend (vn, Fy )
has size at most m and hence (v, F' U Uke[kN,kNH) Fin)lFgi€ Y N A: Contradiction. O

Claim 7.13. The following holds in VFx+én: Let B = Q%\+£n. There exist s € B and a B-name
mg such that s > [pn], IFp m3 @ P(w) — [0,1] is a finitely additive measure extending m and
slkpma({i <w:pi(A+ &) € Gp}l) > 1 —¢y.

Proof of Claim ??: Put V,, = Vi ken g0 that B = (Random)". Working in V},, apply Lemma
?? tom [ (P(w) NV,), with 7 = [p,] to obtain the extension m, € (V,,)® as defined there. By
Lemma ??(2), we can choose s € B, s > [p,] such that s lFg m,({i < w : pi(A+&,) € Gg}) > 1—ep.

Since P\ ,» <P}, . we can write VE+en = (V)R for some R € V,,. By Lemma ??, it follows
A +En "

1
that 1, € (V,,)® and m € (V)@ have a common extension 73 € (V;,)@*B = VIen Que,  So s
and mg are as required. O
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Since Pyy¢,4+1 = Pate, * (Qiﬁn X Q§\+§n), using Lemma 77 again, we can find a common ex-
tension m; € VEréen+1 of my and ms.

Let us check that my satisfies (¢, k). So fix p = (p; : j < w) of type t and construct pj as follows.
Put ¢ = (p; | (A +&) : j <w). Since m satisfies ¢ | {y41, we can find p; € P} satisfying clauses
(3)(a)-(f) in Defintion ?? for q.

Define pp by pp | (A +&n) = pg, Pp(A + &) (1) = s and pp(A + £,)(2) = (v, Fr).

For j < n, put )o(p,j ={i<w:p [ [MNA+E& +1) € Gp}. Clause (3)(f) in Defintion 77
follows from Claim ??. For clause (3)(g), we need to check that pj I- m; (X:E,n) > 1 — 2e,. Since
pglF (Xpno1) > 1 =26, 1, en > 26,1 and pp -1 ({i <w :pi [ {A+ &} € Gp} > 1 —¢, (using
Claims ?? and ??), it follows that p; I- ﬁu()%@n) >1—2e,-1—¢cn > 1—2¢,. Hence 1 satisfies

(t,k). This completes the proof of Lemma ?? and therefore of Theorem ?7?. O
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