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Abstract

We prove that the meager ideal and the null ideal could both be somewhere ℵ1-saturated.

1 Introduction

In [?], starting with a measurable cardinal, Komjáth constructed a model of ZFC in which there
is a non meager set of reals which cannot be partitioned into uncountably many non meager sets.
In [?], starting with a measurable cardinal, Shelah constructed a model of ZFC in which there is a
non null set of reals which cannot be partitioned into uncountably many non null sets. Our main
result is that the two consistency results can be combined.

Theorem 1.1. Suppose there is a measurable cardinal. Then there is a ccc forcing P such that in
V P, there is a set X ⊆ R such that X is neither null nor meager, X cannot be partitioned into
uncountably many non null sets and X cannot be partitioned into uncountably many non meager
sets.

Let us briefly point out why other boolean combinations are also possible. Ulam showed that
if there is an ℵ1-saturated sigma ideal I on some set X such that I contains every countable set,
then there is a weakly inaccessible cardinal below |X|. It follows that, under the continuum hy-
pothesis, every non meager (resp. non null) set of reals can be partitioned into uncountably many
non meager (resp. non null) sets.

Suppose X is a non meager set of reals that cannot be partitioned into uncountably many non
meager sets. Let P be the forcing for adding ℵ1 Cohen reals. Then in V P, X continues to be non
meager and it is easy to check that it still cannot be partitioned into uncountably many non meager
sets. Also, in V P, the real line can be covered by ℵ1 null sets. It follows that every non null set in
V P can be partitioned into uncountably many non null sets.

Similarly, if X is a non null set of reals that cannot be partitioned into uncountably many non
null sets, then adding ℵ1 random reals gives us a model where X remains non null, it cannot be
partitioned into uncountably many non null sets and every non meager set can be partitioned into
uncountably many non meager sets.
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On notation: A subset W ⊆ 2ω is fat if for every clopen set C, either W ∩ C = ∅ or
µ(W ∩ C) > 0. A subtree T ⊆ <ω2 is fat if [T ] = {x ∈ 2ω : (∀n < ω)(x � n ∈ T )} is fat. For a
clopen subset C ⊆ 2ω, define supp(C) to be the smallest (finite) set F such that (∀x, y ∈ 2ω)((x �
F = y � F ) =⇒ (x ∈ C ⇐⇒ y ∈ C)). Random denotes the random real forcing. Note that
{[T ] : T ⊆ <ω2 is a fat tree} is dense in Random. Cohen denotes Cohen forcing. Its conditions are
members of <ωω ordered by end extension. In forcing we use the convention that a larger condition
is the stronger one; so p ≥ q means p extends q. If P,Q are forcing notions and Q ⊆ P, we write
Q l P if every maximal antichain in Q is also a maximal antichain in P. For x, y ∈ ωω, define
x⊕ y ∈ ωω by (x⊕ y)(2n) = x(n) and (x⊕ y)(2n+ 1) = y(n).

2 Eventually different forcing

Suppose Ȳ = 〈yi : i < θ〉 where each yi ∈ ωω. Define a forcing notion E = E(Ȳ ) as follows. p ∈ E iff
p = (σp, Fp) = (σ, F ) where σ ∈ <ωω and F ∈ [θ]<ℵ0 . For p, q ∈ E, p ≤ q iff σp � σq, Fp ⊆ Fq and
for every k ∈ [|σp|, |σq|), for every i ∈ Fp, σq(k) 6= yi(k). It is easy to see that E is a sigma-centered
forcing that makes the set {yi : i < θ} meager since it adds the real τE =

⋃
{σp : p ∈ GE} which

satisfies (∀i < θ)(∀∞k)(yi(k) 6= τE(k)). The following lemma is well known. We include a short
proof for completeness.

Lemma 2.1. Let Ȳ , E = E(Ȳ ) and τE be as above. Let x̊ ∈ 2ω∩V E. Then there is a Borel function
B : ωω → 2ω such that E B(τE) = x̊.

Proof of Lemma ??: For each n < ω and i < 2, choose Ai,n ⊆ E such that for every p ∈ Ai,n,
p  x̊(n) = i and A0,n ∪ A1,n is a maximal antichain in E. Define B : ωω → 2ω as follows. Given
z ∈ ωω and n < ω, look for unique i < 2 and (σ, F ) ∈ Ai,n such that σ ⊆ z and for every k ∈ [|σ|, ω)
and γ ∈ F , z(k) 6= yγ(k) and define B(z)(n) = i. If there are no such unique i and (σ, F ), define
B(z)(n) = 0. Note that if (σ0, F0), (σ1, F1) ∈ A0,n ∪ A1,n are incompatible, then either σ0 and σ1

are incomparable or (say) σ0 ≺ σ1 and for some k ∈ [|σ0|, |σ1|) and γ ∈ F0, we have σ1(k) 6= yγ(k).
Hence E B(τE) = x̊.

Note that if Y = ∅, then E(Y ) is Cohen forcing. We can think of E(Y ) as adding a “partial
Cohen” real with memory Y which becomes decreasingly Cohen-like with increasing memory.

3 Background ideas

Let us describe some of the ideas that led to the model witnessing Theorem ??. By a result of
Solovay, we must start with a measurable cardinal κ. Let I be a witnessing normal prime ideal.
We are going to construct a ccc forcing P that adds two sets of reals X = {xα : α < κ} and
Y = {yα : α < κ} such that (??) and (??) below hold. Let J = {W ⊆ κ : (∃W ′ ∈ I)(W ⊆ W ′)}
be the ideal generated by I in V P. Since P is ccc, J is an ℵ1-saturated κ-additive ideal on κ. We
would like to have for every W ⊆ κ,

W ∈ J ⇐⇒ {xα : α ∈W} is meager (A)

W ∈ J ⇐⇒ {yα : α ∈W} is null (B)
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This would suffice for Theorem ?? since if N is a dense Gδ null subset of R, then the set
(N ∩ X) ∪ ((R \ N) ∩ Y ) is both non meager and non null and it cannot be partitioned into un-
countably many non meager or non null sets.

In [?], Komjáth starts by adding κ Cohen reals X = {xα : α < κ}. So every meager subset of
X is currently countable. Using a finite support product, he then makes every subset of X of the
form {xα : α ∈ W} (where W ∈ I) meager. He finally invokes the properties of product forcing
to show that X remains non meager in the final model. Note that the analogous construction fails
for the null ideal: If we start by adding a set Y of κ random reals and then, using a finite support
iteration (for ccc), add null sets containing some subsets of Y , then we inevitably add Cohen reals
at stages of cofinality ω which makes all of Y null. To get around this difficulty, Shelah [?] proceeds
as follows. Let 〈Xα : α < λ〉 be a list where each member of I occurs λ = 2κ times. First add
λ Cohen reals 〈cα : α < λ〉. Each cα codes a null Gδ-set Nα in a natural way. We now do a
finite support iteration of length κ adding a “partial random” yξ at stage ξ < κ whose memory is
V1 = V [〈cα : ξ /∈ Xα〉][〈yη : η < ξ〉]. This means that yξ is RandomV1-generic. The expectation is
that if ξ ∈ Xα, then yξ ∈ Nα (although showing this requires some work) and that Y = {yξ : ξ < κ}
would be the desired set of reals in the final model.

To combine these two construction via a single forcing, we first reverse Komjáth construction
as follows. Let 〈Xα : α < λ〉 be the list mentioned above. First add λ Cohen reals 〈cα : α < λ〉.
Each cα codes an Fσ-meager set - namely, Mα = {y ∈ ωω : (∀∞k)(y(k) 6= cα(k))}. Now do a
finite support iteration of length κ adding a “partial Cohen” real xξ at stage ξ < κ with memory
Cξ = {cα : ξ ∈ Xα}. This means that xξ is E(Cξ)-generic. Note that if ξ ∈ Xα, then xξ ∈ Mα. It
is not difficult to check that X = {xξ : ξ < κ} is a non meager set on which the meager ideal is
ℵ1-saturated.

The next section begins by describing iterations P̄λ = 〈Pα,Qα : α < λ + κ〉 for λ0 ≤ λ < λ+ω
0

(where λ0 = 2κ) which combine partial Cohen and partial random reals. The reason behind
considering P̄λ for various λ’s and not just for λ = λ0 will become clear during the proof of Lemma
?? where we use automorphisms of Pλ+κ for λ > λ0 to construct certain finitely additive measures
on P(ω) ∩ V Pλ0+ξ for ξ < κ.

4 Forcing

Suppose κ is measurable and I is a normal prime ideal on κ. Put λ0 = 2κ. For λ0 ≤ λ < λ+ω
0 ,

define the following.

(1) 〈Xα : α < λ+ω
0 〉 is a sequence of members of I.

(2) For every n < ω and X ∈ I, |{α < λ+n
0 : Xα = X}| = λ+n

0 .

(3) For ξ < κ, Cλλ+ξ = Cλ+ξ = {α < λ : ξ ∈ Xα}. This is the memory of the partial Cohen real
to be added at stage λ+ ξ (see item (7) below).

(4) For ξ < κ, Aλλ+ξ = Aλ+ξ = {α < λ : ξ /∈ Xα} ∪ [λ, λ + ξ). This is the memory of the partial
random real to be added at stage λ+ ξ (see item (7) below).

(5) P̄λ = 〈Pλ,α,Qλ,α : α < λ + κ〉 is a finite support iteration with limit Pλ,λ+κ. In the contexts
where the value of λ is constant, we drop the λ in the subscript and just write Pα and Qα.
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(6) For α < λ, Qα = Cohen with generic real τα ∈ ωω.

(7) For ξ < κ, Qλ+ξ = Q1
λ+ξ × Q2

λ+ξ where Q1
λ+ξ = (Random)V [〈τi:i∈Aλ+ξ〉] with generic partial

random τ1
λ+ξ ∈ 2ω and Q2

λ+ξ = E(〈τα : α ∈ Cλ+ξ〉) with generic τ2
λ+ξ ∈ ωω. Let τλ+ξ =

τ1
λ+ξ ⊕ τ2

λ+ξ.

(8) Define P = Pλ0,λ0+κ.

The model for Theorem ?? will be V P. The verification of this will conclude with the proof of
Lemma ??. In the remainder of this section, we establish some basic facts about these iterations.

The following claim is easily proved by induction on ξ ≤ κ using Lemma ?? and the standard
properties of Cohen and random forcings.

Claim 4.1. For every ξ ≤ κ, x̊ ∈ 2ω ∩ V Pλ+ξ , there are a Borel function B : ωω → 2ω and
〈(nk, γk) : k < ω〉 such that every γk < λ+ ξ and nk < ω, and P x̊ = B(〈τγk(nk) : k < ω〉).

Definition 4.2. Let P′λ,λ+κ = P′λ+κ be the set of conditions p ∈ Pλ+κ satisfying the following
requirements.

(a) For each α ∈ λ ∩ dom(p), p(α) = σα ∈ <ωω. In this case, define supp(p(α)) = ∅.

(b) For every α ∈ dom(p) ∩ [λ, λ+ κ), letting p(α) = (p(α)(1), p(α)(2)), we have the following.

(i) There exist 〈(nk, γk) : k < ω〉, ρ ∈ <ω2 and a Borel function B such that for every k,
nk < ω, γk ∈ Aα, the range of B consists of fat trees in <ω2 and Pα p(α)(1) = [B(〈τγk(nk) :
k < ω〉)] is a subset of [ρ] of relative measure more than 1− 2−(n−j+10) where n = |dom(p) ∩
[λ, λ+ κ)| and j = |dom(p) ∩ [λ, α)|. Recall that for X ⊆ Y ⊆ 2ω, the relative measure of X
in Y is µ(X)/µ(Y ).

(ii) Pα p(α)(2) = (ν, F ) where F ∈ [Cα]<ℵ0, ν ∈ <ωω, F ⊆ dom(p) and for each β ∈ F ,
|σβ| ≥ |ν|.

(iii) In this case, define supp(p(α)) = {γk : k < ω} ∪ F .

(c) Define supp(p) = dom(p) ∪
⋃
{supp(p(α)) : α ∈ dom(p)}.

For ξ < κ, P′λ,λ+ξ = P′λ+ξ ⊆ Pλ+ξ is defined analogously.

Using Claim ?? and the Lebesgue density theorem, it is easily checked that P′λ+ξ is dense in
Pλ+ξ for every ξ ≤ κ.

Suppose λ0 ≤ λ < λ+ω
0 and ξ? ≤ κ. Let h : λ + ξ? → λ + ξ? be a bijection satisfying the

following.

(1) h � [λ, λ+ ξ?) is the identity.

(2) For every ξ < ξ? and α < λ, α ∈ Aλ+ξ iff h(α) ∈ Aλ+ξ (equivalently, α ∈ Cλ+ξ iff h(α) ∈
Cλ+ξ).

Define ĥ : P′λ+ξ?
→ P′λ+ξ?

as follows. For p ∈ P′λ+ξ?
, put ĥ(p) = p′ where

(a) dom(p′) = {h(α) : α ∈ dom(p)},

4

Paper Sh:1104, version 2018-09-11 11. See https://shelah.logic.at/papers/1104/ for possible updates.



(b) for α ∈ dom(p) ∩ λ, p′(h(α)) = p(α) and

(c) for α ∈ dom(p)∩ [λ, λ+ξ?), put p′(α)(1) = B(〈τh(γk)(nk) : k < ω〉) where B, 〈(nk, γk) : k < ω〉
are as in Definition ??(b)(i) for αth coordinate of p and p′(α)(2) = (ν, h[F ]) where (ν, F ) =
p(α)(2).

Claim 4.3. ĥ is an automorphism of P′λ+ξ?
.

Proof: By induction on ξ?.

Definition 4.4. For λ0 ≤ λ < λ+ω
0 and A ⊆ λ+ κ, define P′λ,A = P′A = {p ∈ P′λ+κ : supp(p) ⊆ A}.

The following lemma describes a sufficient condition on A ⊆ λ+ ξ for ensuring that P′AlPλ+ξ.
It is used in the proofs of Corollary ?? and Claim ??.

Lemma 4.5. Let ξ? ≤ κ, A ⊆ λ + ξ? and [λ, λ + ξ?) ⊆ A. Suppose for every countable B ⊆ λ,
there is a bijection h : λ+ ξ? → λ+ ξ? such that

(a) h � ((B ∩A) ∪ [λ, λ+ ξ?)) is the identity,

(b) for every ξ < ξ? and α < λ, α ∈ Aλ+ξ iff h(α) ∈ Aλ+ξ,

(c) h[B] ⊆ A and

(d) h[B ∩Aλ+ξ? ] ⊆ A ∩Aλ+ξ?.

Then P′A l P′λ+ξ?
.

Proof of Lemma ??: By induction on ξ?. If ξ? = 0 or limit this is clear. So assume ξ? = ξ + 1
and put α = λ + ξ. By inductive hypothesis, P′A∩α l P′α so it suffices to check the following: If
{pn : n < ω} ⊆ P′A, p ∈ P′A∩α and p P′A∩α {pn(α) : n < ω, pn � α ∈ GP′A∩α} is predense in

(Random)V [〈τβ :β∈A∩Aα〉] × E(〈τβ : β ∈ A ∩ Cα〉), then p P′α {pn(α) : n < ω, pn � α ∈ GP′α} is

predense in (Random)V [〈τβ :β∈Aα〉] × E(〈τβ : β ∈ Cα〉).

Suppose this fails for some {pn : n < ω} ⊆ P′A and p ∈ P′A∩α. Choose q ∈ P′α, ν, F , D,
〈(nk, γk) : k < ω〉 such that

• q ≥ p,

• ν ∈ <ωω, F ∈ [Cα]<ℵ0 , D is a Borel function on ωω whose range consists of fat trees, each
γk ∈ Aα and

• q P′α r = [D(〈τγk(nk) : k < ω〉)] ∧ (r, (ν, F )) is incompatible with every member of {pn(α) :
n < ω, pn � α ∈ GP′α}.

Let W be the union of the following sets: dom(q), supp(q), supp(p),
⋃
{dom(pn) : n < ω},⋃

{supp(pn) : n < ω} and {γk : k < ω} ∪ F . Using the hypothesis on A, we can find a bijection
h : α→ α such that

• h � ((B ∩A) ∪ [λ, α)) is the identity,

• (∀η < ξ)(∀β < λ)(β ∈ Aλ+η ⇐⇒ h(β) ∈ Aλ+η),
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• h[B] ⊆ A and

• h[B ∩Aα] ⊆ A ∩Aα.

So ĥ is an automorphism of P′α. As h[B] ⊆ A, ĥ(q) ∈ P′A∩α. Since h � (B ∩A) is the identity, it

follows that ĥ(p) = p and for every n < ω, ĥ(pn) = pn. Since {γk : k < ω}∪F ⊆W and h[B∩Aα] ⊆
A ∩ Aα, we have that P′α r′ = ĥ(r) = [D(〈τh(γk)(nk) : k < ω〉)] ∈ (Random)V [〈τβ :β∈A∩Aα〉] and

P′α (ν, h[F ]) ∈ E[〈τβ : β ∈ A ∩ Cα〉]. It follows that ĥ(q) P′α (r′, (ν, h[F ])) is incompatible
with every condition in {pn(α) : n < ω, pn � α ∈ GP′α}. Since P ′A∩α l P ′α, we also get that

ĥ(q) P′A∩α (r′, (ν, h[F ])) is incompatible with every condition in
{
pn(α) : n < ω, pn � α ∈ GP′A∩α

}
.

But since p = ĥ(p) ≤ ĥ(q) and p P′A∩α {pn(α) : n < ω, pn � α ∈ GP′A∩α} is predense in

(Random)V [〈τβ :β∈A∩Aα〉] × E(〈τβ : β ∈ A ∩ Cα〉), we get a contradiction.

Corollary 4.6. For every ξ? < κ, P′Aλ+ξ? l P′λ+ξ?
.

Proof of Corollary ??: Let B ⊆ λ be countable. By Lemma ?? clauses (a)-(d), it suffices to
construct a bijection h : λ + ξ? → λ + ξ? such that h � ((B ∩ Aλ+ξ?) ∪ [λ, λ + ξ?)) is identity,
(∀ξ < ξ?)(∀α < λ)(α ∈ Aλ+ξ ⇐⇒ h(α) ∈ Aλ+ξ) and h[B] ⊆ Aλ+ξ? . For each x ⊆ ξ?, let
Wx = {α < λ : Xα ∩ ξ? = x}. Let Wx,0 = {α ∈ Wx : ξ? /∈ Xα} and Wx,1 = {α ∈ Wx : ξ? ∈ Xα} so
Wx = Wx,0 tWx,1. Note that for every x ⊆ ξ?, |Wx,0| = |Wx,1| = λ. So for each x ⊆ ξ?, we can
choose a bijection hx : Wx → Wx such that hx[Wx,0 ∩ B] ⊆ Wx,1 and hx � (Wx,1 ∩ B) is identity.
Put h � λ =

⋃
{hx : x ⊆ ξ?}.

5 Meager ideal

Recall that P = Pλ0,λ0+κ. Throughout this section and the next, we fix λ = λ0 = 2κ. In V P, let
J = {Y ⊆ κ : (∃X ∈ I)(Y ⊆ X)} be the ideal generated by I. Since P is ccc, J is an ℵ1-saturated
κ-additive ideal over κ. The next lemma says that the meager ideal restricted to {τ2

λ+ξ : ξ < κ} is
isomorphic to J and is, therefore, ℵ1-saturated. Its proof will conclude at the end of Section ??.

Lemma 5.1. In V P, for every Y ⊆ κ, {τ2
λ+ξ : ξ ∈ Y } is meager iff Y ∈ J .

Proof of Lemma ??: Suppose Y̊ ∈ J . Since P is ccc, we can find X ∈ I such that  Y̊ ⊆ X.
Choose α < λ such that X = Xα. Note that  (∀ξ ∈ Xα)(∀∞k)(τ2

λ+ξ(k) 6= τα(k)). Hence

{τ2
λ+ξ : ξ ∈ Y̊ } is meager in V P.

Next suppose Y̊ /∈ J . Towards a contradiction, WLOG, suppose p ∈ P′ forces that {τ2
λ+ξ : ξ ∈

Y̊ } is nowhere dense in ωω. Let T̊ ⊆ <ωω be a nowhere dense subtree such that p  {τ2
λ+ξ : ξ ∈

Y̊ } ⊆ [T̊ ]. For each σ ∈ <ωω, let Aσ be a maximal antichain of conditions in P′ deciding σ ∈ T̊ .
Put W =

⋃
{supp(p) : p ∈ Aσ, p ∈ Aσ}.

Choose ξ < κ and p′ ∈ P′ such that p′ ≥ p, ξ /∈
⋃
{Xα : α ∈ W ∩ λ}, λ + ξ > sup(W ) and

p′  ξ ∈ Y̊ and hence p′  τ2
λ+ξ ∈ [T̊ ]. By extending p′, we can assume that λ + ξ ∈ dom(p′). Let

q ∈ P′ be such that dom(q) = dom(p′)∩ (λ+ ξ + 1), q � (λ+ ξ) = p′ � (λ+ ξ), q(λ+ ξ)(1) = 2ω and
q(λ+ ξ)(2) = (∅, ∅). Since T̊ ∈ V Pλ+ξ , q Pλ+ξ+1

τ2
λ+ξ ∈ [T̊ ].
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Put dom(q)∩λ = {αj : j < m?}t{βj : j < r?} where {βj : j < r?} = {β ∈ dom(q)∩λ : ξ /∈ Xβ}
and αj ’s and βj ’s are increasing with j. Note that W ∩{αj : j < m?} = ∅. Put dom(q)∩ [λ, λ+ξ) =
{λ + ξj : j < n?} where ξj ’s are increasing with j. For j < r?, let q(βj) = ηj . For j < n?, let
q(λ + ξj)(2) = (νj , Fj) and let ρj ∈ <ω2 be such that Pλ+ξj q(λ + ξj)(1) is a fat subset of [ρj ] of

relative measure more than 1− 2−(n?−j+10). By extending q, we can also assume that

• q(λ+ ξ)(2) = (ν?, F?) where ν? ∈ l?ω,

• F? = {αj : j < m?} is non empty,

• for every j < m?, q(αj) = σj ∈ l?ω; so |σj | = |ν?| and

• for each j < n?, νj ∈ l?ω.

To produce such a q, first extend each q(α) for α ∈ dom(q)∩λ such that they all have the same
sufficiently large length l?. Let K ⊆ ω be the finite set of values these q(α)’s take. Next for each
j < n?, extend each νj to a member of l?ω with new values from ω \K. Finally extend q(λ+ ξ)(2)
to (ν?, F?) where ν? ∈ l?ω and F? = {αj : j < m?}. This is permissible because ξ ∈ Xαj for every
j < m?.

For α < λ, define S̊ν?,α = {ν ∈ <ωω : (ν? � ν) ∧ (∀k ∈ [|ν?|, |ν|)(ν(k) 6= τα(k))}.

Claim 5.2. q � (λ+ ξ) Pλ+ξ T̊ ⊇
⋂
j<m?

S̊ν?,αj

Proof of Claim ??: Suppose not. Choose q � (λ + ξ) ≤ q1 ∈ P′λ+ξ, ν? � ν1 ∈ <ωω such that

q1 Pλ+ξ ν1 ∈
⋂
j<m?

S̊ν?,αj∧ν1 /∈ T̊ . Let q2 ≥ q1, q2 ∈ P′λ+ξ+1 be such that q2 � (λ+ξ) = q1 � (λ+ξ)

and q2(λ + ξ)(2) = (ν1, F?). Then q2 ≥ q and q2 Pλ+ξ+1
ν1 ⊆ τ2

λ+ξ. Hence q2 Pλ+ξ+1
τ2
λ+ξ /∈ T̊ :

Contradiction.

Choose 〈αi,j : i < λ, j < m?〉 such that the following hold.

• For every i < λ and j < m?, αi,j ∈ λ \ (W ∪ dom(q)).

• For every i1, i2 < λ and j1, j2 < m?, αi1,j1 = αi2,j2 iff (i1, j1) = (i2, j2).

• For every i < λ and j < m?, Xαi,j = Xαj .

For i < λ, the map hi : λ+ ξ → λ+ ξ defined by

hi(α) =


αi,j if j < m? and α = αj

αj if j < m? and α = αi,j

α otherwise

induces an automorphism ĥi of P′λ+ξ that fixes T̊ . Let qi = ĥi(q � (λ+ ξ)). Then for each i < λ,
we have the following.

(1) dom(qi) = {αi,j : j < m?} t {βj : j < r?} t {λ+ ξj : j < n?}.

(2) For every j < m?, qi(αi,j) = q(αj) = σj ∈ l?ω.
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(3) For every j < r?, qi(βj) = q(βj) = ηj .

(4) For every j < n?, Pλ+ξj qi(λ+ ξj)(1) is a fat subset of [ρj ] of fractional measure more than

1− 2−(n?−j+10).

(5) For every j < n?, qi(λ+ ξj)(2) = (νj , Fi,j) where νj ∈ l?ω and Fi,j = hi[Fj ].

(6) qi Pλ+ξ T̊ ⊇
⋂
j<m?

S̊ν?,αi,j .

Since λ is uncountable, by a ∆-system argument we can further assume that for some 〈F ?j : j <
n?〉, for every j < n?, 〈Fi,j : i < ω〉 forms a ∆-system with root F ?j .

For i < ω, define g(i) : [l?, l? + i)→ ω such that for every k ∈ dom(g(i)), g(i)(k) = i.

Definition 5.3. For each i < ω define q?i ∈ P′λ+ξ by dom(q?i ) = dom(qi) and

q?i (α) =

{
σj ∪ g(i) if j < m? and α = αi,j ,

qi(α) otherwise.

Let q̄? = 〈q?i : i < ω〉.

The next claim provides a sufficient condition to complete the proof of Lemma ??.

Claim 5.4. Suppose there exists q? ∈ P such that

q?  (∃∞i)(q?i ∈ GP).

Then q?  [T̊ ] has non empty interior.

Proof of Claim ??: Let G be P-generic over V with q? ∈ G. Suppose ν? � ν ∈ <ωω. Choose
i < ω such that (∀k ∈ dom(ν))(ν(k) < i) and q?i ∈ G. Since q?i (αi,j) = σj ∪ g(i) for every j < m?,
it follows that ν ∈

⋂
j<m?

S̊ν?,αi,j . By Claim ??, it follows that ν ∈ T̊ . Hence q?  [ν?] ⊆ [T̊ ].

So to complete the proof of Lemma ??, it is sufficient to construct q? ∈ P satisfying the
hypothesis of Claim ??. This will be done in Section ??.

6 Null ideal

Definition 6.1. For each n < ω, let 〈Cnk : k < ω〉 be a one-one listing of all clopen subsets of 2ω

of measure 2−n. For α < λ, define N̊α =
⋂
k

⋃
n>k C

n
τα(n). So N̊α is a null Gδ-set coded by τα.

The next claim says that the null ideal restricted to {τ1
λ+ξ : ξ < κ} is isomorphic to J and is,

therefore, ℵ1-saturated. Its proof will be completed at the end of Section ??.

Lemma 6.2. In V P, for every Y ⊆ κ, {τ1
λ+ξ : ξ ∈ Y } is null iff Y ∈ J .

Proof of Lemma ??: Towards a contradiction, suppose p  Y̊ /∈ J ∧ {τ1
λ+ξ : ξ ∈ Y̊ } is null.

Let N̊ be a null Borel set in V P such that p  N̊ ⊇ {τ1
λ+ξ : ξ ∈ Y̊ }. Choose a Borel function

B coded in V , and 〈(nk, γk) : k < ω〉 such that for every k < ω, γk < λ + κ, nk < ω and
 B(〈τγk(nk) : k < ω〉) = N̊ . Let A =

⋃
{Xγk : k < ω ∧ γk < λ}. Then A ∈ I. Choose q ≥ p and
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ξ < κ such that q  ξ ∈ Y̊ \A and λ+ξ > sup({γk : k < ω}). Since N̊ is coded in V [〈τα : α ∈ Aλ+ξ〉]
(as {γk : k < ω} ⊆ Aλ+ξ), it follows that q  τ1

λ+ξ /∈ N̊ : Contradiction.

Next suppose Y̊ ∈ J . Since P is ccc, we can find X ∈ I such that  Y̊ ⊆ X. We’d like to show
that {τ1

λ+ξ : ξ ∈ X} is null. Choose α < λ such that X = Xα. It is clearly enough to show that

for every ξ ∈ Xα, Pλ+ξ+1
τ1
λ+ξ ∈ N̊α. Suppose this fails and fix ξ ∈ Xα, p ∈ P′λ+ξ+1 and k? < ω

such that p  (∀k ≥ k?)(τ
1
λ+ξ /∈ Ckτα(k)). We can assume that α ∈ dom(p) and p(α) = σ? ∈ l?ω

for some l? > k?. Choose a Borel function B and 〈(nj , γj) : j < ω〉 such that γj ∈ Aλ+ξ, range of

B consists of fat trees and Pλ+ξ B(〈τγj (nj) : j < ω〉) = T̊ and [T̊ ] = p(λ + ξ)(1). It follows that

p � (λ+ ξ) Pλ+ξ (∀k ≥ k?)([T̊ ] ∩ Ckτα(k) = ∅). Let W = {γj : j < ω} and note that α /∈W .

Put dom(p) ∩ λ = {α} t {βj : j < r?} and dom(p) ∩ [λ, λ + ξ) = {λ + ξj : j < n?} where βj
and ξj are increasing with j. For j < r?, let p(βj) = ηj . For j < n?, let p(λ+ ξj)(2) = (νj , Fj) and
let ρj ∈ <ω2 be such that Pλ+ξj p(λ + ξj)(1) is a fat subset of [ρj ] of relative measure more than

1 − 2−(n?−j+10). By possibly extending p, we can assume that for every j < n?, νj ∈ l?ω. Choose
〈αi : i < λ〉 such that the following hold.

• For all i < j < λ, αi < αj < λ.

• Xαi = Xα (so αi /∈W ).

• αi /∈ supp(p).

For i < λ, the map hi : λ+ ξ → λ+ ξ defined by

hi(γ) =


α if γ = αi

αi if γ = α

γ otherwise

induces an automorphism ĥi of P′λ+ξ that fixes T̊ . Let pi = ĥi(p � (λ+ ξ)). Then for each i < λ,
we have the following.

(1) dom(pi) = {αi} t {βj : j < r?} t {λ+ ξj : j < n?}.

(2) pi(αi) = p(α) = σ? ∈ l?ω.

(3) For every j < r?, pi(βj) = p(βj) = ηj .

(4) For every j < n?, Pλ+ξj pi(λ+ ξj)(1) is a fat subset of [ρj ] of fractional measure more than

1− 2−(n?−j+10).

(5) For every j < n?, pi(λ+ ξj)(2) = (νj , Fi,j) where νj ∈ l?ω Fi,j = hi[Fj ].

(6) pi Pλ+ξ (∀k ≥ k?)([T̊ ] ∩ Ckταi (k) = ∅).

As before, by thinning out we can assume that for some 〈F ?j : j < n?〉, for every j < n?,
〈Fi,j : i < ω〉 forms a ∆-system with root F ?j .

For each i < ω, we’ll extend pi on the αith coordinate to get p′i as follows.
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Definition 6.3. For each n < ω, let Kn = {k < ω : supp(C l?k ) ⊆ n}. Note that for all n ≥ l?,

|Kn| =
(

2n

2n−l?

)
. Define k̄ = 〈kn : n < ω〉 by: k0 = 0, kn+1 − kn =

(
2n

2n−l?

)
. Let f : ω → ω be such

that f [[kn, kn+1)] = Kn. For each i < ω, γ ∈ dom(pi) define

p′i(γ) =

{
pi(γ) if γ 6= αi

σ? ∪ {(l?, f(i))} if γ = αi

Lemma 6.4. Suppose K < ω, F ⊆ [λ, λ+κ) is finite, 〈ρθ : θ ∈ F 〉 is a sequence in <ω2, 〈aθ : θ ∈ F 〉
is a sequence in (1/2, 1) and 〈qj : j < K〉 is a sequence of conditions in P′ such that for every j < K,
dom(qj) = F , for each θ ∈ F , Pθ qj(θ)(1) is a subset of [ρθ] of relative measure ≥ aθ and qj(θ)(2)
is the empty condition. Then there exists q? ∈ P′ with dom(q?) = F such that for every θ ∈ F ,
Pθ q

?(θ)(1) is a fat subset of [ρθ] of relative measure ≥ 2aθ−1 and q?(θ)(2) is the empty condition
and

q? P |{j < K : qj ∈ GP}| ≥ K2−|F |
∏
θ∈F

aθ.

Proof of Lemma ??: By induction on |F |. Suppose F = {θ}. Work in V Pθ . Define φ =∑
j<K 1qj(θ)(1) where 1qj(θ)(1) is the characteristic function of qj(θ)(1). Put A = {x ∈ [ρθ] : φ(x) ≥

Kaθ
2 }. It suffices to show that µ(A) > µ([ρθ])(2aθ − 1). We have

Kaθµ([ρθ]) ≤
∫
φdµ =

∫
A
φdµ+

∫
2ω\A

φdµ ≤ Kµ(A) + (µ([ρθ])− µ(A))
Kaθ

2
.

Solving gives
µ(A)

µ([ρθ])
≥ aθ

2− aθ
> 2aθ − 1.

Now suppose |F | ≥ 2 and β is the largest member of F . Let F ′ = F \ {β}, q′j = q � F ′. Choose
q′ ∈ P′ with domain F ′ such that for every θ ∈ F ′, Pθ q

′(θ)(1) is a subset of [ρθ] of relative measure
≥ 2aθ − 1, q′(θ)(2) is the empty condition and q′ P |{j < K : q′j ∈ GP}| ≥ K2−|F

′|∏
θ∈F ′ aθ. Let

W̊ = {j < K : q′j ∈ GP}. Let {Wi : i < N} list all subsets of K of size ≥ K2−|F
′|∏

θ∈F ′ aθ. Choose

a maximal antichain {ri : i < N} in P′β above q′ such that each ri P W̊ = Wi. Work in V Pβ . For

each i < N , arguing as above, we can get a condition si ∈ Q1
β such that ri Pβ µ(si) ≥ 2aβ − 1 and

si Qβ |{j ∈ Wi : qj(β)(1) ∈ GQ1
β
}| ≥

|Wi|aβ
2

. Choose q? such that q?(θ) = q′(θ) if θ ∈ F ′ and for

each i < N , ri Pβ q
?(β)(1) = si.

For i < ω, let p′′i be defined by dom(p′′i ) = {λ+ξj : j < n?} and for every j < n?, p
′′
i (λ+ξj)(1) =

p′i(λ+ ξj)(1) and p′′i (λ+ ξj)(2) is the empty condition. Note that p′′i ∈ P′λ+ξ. For each n < ω, apply
Lemma ?? to the sequence 〈p′′i : i ∈ [kn, kn+1)〉 to obtain q?n such that the following hold.

Definition 6.5. (a) q?n ∈ P′λ+ξ and dom(q?n) = {λ+ ξj : j < n?}.

(b) For every j < n?, Pλ+ξj q
?
n(λ+ξj) is a subset of [ρj ] of relative measure ≥ 2(1−2−(n?−j+10))−

1 = 1− 2−(n?−j+9).

(c) q?n Pλ+ξ |{i ∈ [kn, kn+1) : p′′i ∈ GPλ+ξ}| ≥ (kn+1 − kn)2−n?
∏
j<n?

(1− 2−(n?−j+10)) > (kn+1 −
kn)4−n?.
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Definition 6.6. For each n < ω and i ∈ [kn, kn+1) define p?i ∈ P′λ+ξ by dom(p?i ) = dom(pi) and

p?i (α) =


σ? ∪ {(l?, f(i))} ∪ {(k, i) : k ∈ [l? + 1, i+ l? + 1)} if α = αi

p′i(βj) = ηj if j < r? and α = βj

(p′i(α)(1) ∩ q?n(α)(1), (νj , Fi,j)) if j < n? and α = λ+ ξj

Let p̄? = 〈p?i : i < ω〉.

Note that for every j < n?, Pλ+ξj p
?
i (λ+ξj)(1) is a subset of [ρj ] of relative measure more than

1− 2−(n?−j+8). The next claim provides a sufficient condition to complete the proof of Lemma ??.

Claim 6.7. Suppose for some p? ∈ P and ε > 0,

p?  (∃∞n)
|{i ∈ [kn, kn+1) : p?i ∈ GP}|

kn+1 − kn
≥ ε.

Then, p?  [T̊ ] is finite.

Proof of Claim ??: For n < ω, let W̊n = {i ∈ [kn, kn+1) : p?i ∈ GP} and ån = |T̊ ∩ n2|.
Note that p?  (∀i ∈ W̊n)(∀σ ∈ T̊ ∩ n2)(C l?f(i) ∩ [σ] = ∅) because l? > k?, p

?
i (αi)(l?) = f(i) and

p?i  (∀k ≥ k?)(Ckταi (k) ∩ [T̊ ] = ∅). It follows that |W̊n| ≤
(2n−ån

2n−l?

)
. Hence

|W̊n|
kn+1 − kn

≤
(2n−ån

2n−l?

)(
2n

2n−l?

) =

ån∏
j=1

(
1− 2n−l?

2n − ån + j

)
≤
(

1− 2n−l?

2n

)ån
.

Therefore

|W̊n|
kn+1 − kn

≤ (1− 2−l?)ån .

As ån is increasing with n, it follows that p? forces that limn ån < ∞ and hence that [T̊ ] is
finite.

To complete the proof of Theorem ??, it suffices to construct conditions q?, p? satisfying the
hypotheses of Claims ?? and ??. Let us try to illustrate the main difficulty in doing this for p̄?.

Let
Å = {i < ω : (∃n < ω)(i ∈ [kn, kn+1) ∧ (∀k ∈ [kn, kn+1))(p?k � λ ∈ GP))}

and for each ξ < κ, let
B̊ξ = {i < ω : p?i � (λ+ ξ) ∈ GP}.

Put dom(p?) = {βj : j < r?} t {λ+ ξj : j < n?} and p? � {βj : j < r?} = p?i � {βj : j < r?} (this
doesn’t depend on i < ω). For j < n?, define p?(λ+ ξj)(2) = (νj , F

?
j ).

Note that p? � λ  Å is infinite. It is clearly necessary to choose the random coordinates
p?(λ + ξj)(1) for j < n? such that p?  Å ∩ B̊ξn?−1+1 is infinite. Suppose we have constructed

p? � (λ+ ξj) such that p? � (λ+ ξj)  Å∩ B̊ξj is infinite and we would like to choose p?(λ+ ξj)(1) ∈
Random

V [〈τα:α∈Aλ+ξj 〉] (recall that p?(λ + ξj)(2) = (νj , F
?
j )) such that p? � (λ + ξj+1)  Å ∩ B̊ξj+1
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is infinite. The problem is that we do not have access to B̊ξj ∈ V
Pλ+ξj in V [〈τα : α ∈ Aλ+ξj 〉] and

hence it is unclear how to proceed.

To get around this difficulty, we will construct an auxiliary finitely additive measure m̊ on
P(ω)∩V P which carries enough information about the partial randoms appearing at stages {λ+ξj :
j < n?} to allow us to choose appropriate p?(λ + ξj)(1)’s. Definition ?? lists a sufficient set of
requirements on m̊ for this. The construction of m̊ in Lemma ?? is inductive and uses Lemma ??
to code enough information about the partial randoms to allow the inductive step to proceed. The
class of blueprints in Definition ?? is general enough to allow a Lowenheim-Skolem type argument
(Claim ??) in the proof of Lemma ??.

7 Measures and blueprints

An algebra A is a family of subsets of ω that contains all finite subsets of ω and is closed under
complementation and finite union. A finitely additive measure on an algebra A is a function
m : A → [0, 1] that satisfies the following.

• For every finite F ⊆ ω, m(F ) = 0.

• m(ω) = 1.

• If A1, A2 ∈ A and A1 ∩A2 = ∅, then m(A1 ∪A2) = m(A1) + m(A2).

Suppose m : P(ω)→ [0, 1] is a finitely additive measure and f : ω → [0, 1]. Following Lebesgue,
define ∫

fdm = lim
n→∞

2n∑
k=0

kak
2n

where ak = m({n < ω : k/2n ≤ f(n) < (k + 1)/2n}).

The following is a standard application of the Hahn-Banach theorem.

Lemma 7.1. Suppose m : A → [0, 1] is a finitely additive measure on an algebra A and X ⊆ ω.
Let a ∈ [0, 1] be such that for every A,B ∈ A, if A ⊆ X ⊆ B, then m(A) ≤ a ≤ m(B). Then, there
exists a finitely additive measure m′ : P(ω)→ [0, 1] that extends m and m′(X) = a.

The proofs of the next two lemmas can be found in [?].

Lemma 7.2. Suppose m : P(ω) → [0, 1] is a finitely additive measure. For i ∈ {1, 2}, let Ri be
a forcing notion and m̊i ∈ V Ri be such that Ri m̊i : P(ω) → [0, 1] is a finitely additive measure
extending m. Then, there exists m̊3 ∈ V R1×R2 such that R1×R2 m̊3 : P(ω) → [0, 1] is a finitely
additive measure extending both m̊1 and m̊2.

Lemma 7.3. Suppose that m : P(ω) → [0, 1] is a finitely additive measure. Let B = Random,
r ∈ B. Define m̊r ∈ V B as follows. For X̊ ∈ P(ω) ∩ V B, define

m̊r(X̊) = sup

{
inf

{∫
µ(q ∩ [[n ∈ X̊]]B

µ(q)
dm : q ≥ p

}
: p ≥ r, p ∈ GB

}
.

Then, the following hold.
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(1) r  m̊r : P(ω)→ [0, 1] is a finitely additive measure extending m.

(2) If X̊ ∈ P(ω)∩ V B and a > 0 satisfy for every n < ω,
µ(r ∩ [[n ∈ X̊]]B)

µ(r)
≥ a, then there exists

s ≥ r such that s  m̊r(X̊) ≥ a.

The next definition introduces blueprints. Their role is clarified in Claim ??. Note the return
of variable λ0 ≤ λ < λ+ω

0 here.

Definition 7.4. For λ0 ≤ λ < λ+ω
0 , let Tλ be the set of tuples

t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n, ρ̄, ν̄, F̄ , l, ε̄) = (ᾱt,mt, σ̄t, β̄t, rt, η̄t, ξ̄t, nt, ρ̄t, ν̄t, F̄ t, lt, ε̄t)

where

(i) l,m, n, r < ω,

(ii) ᾱ = 〈αi,j : i < ω, j < m〉 where each αi,j < λ,

(iii) for every i1, i2 < ω and j1, j2 < m, αi1,j1 = αi2,j2 iff (i1, j1) = (i2, j2),

(iv) σ̄ = 〈σi,j : i < ω, j < m〉 where each σi,j ∈ <ωω,

(v) β̄ = 〈βj : j < r〉 is a sequence of pairwise distinct member of λ \ {αi,j : i < ω, j < m},

(vi) η̄ = 〈ηj : j < r〉 where each ηj ∈ <ωω,

(vii) ξ̄ = 〈ξj : j < n〉 is an increasing sequence in κ,

(viii) ρ̄ = 〈ρj : j < n〉 where each ρj ∈ <ω2,

(ix) ν̄ = 〈νj : j < n〉 where each νj ∈ lω,

(x) F̄ = 〈Fi,j : i < ω, j < n〉 where each Fi,j ∈ [Cλ+ξj ]
<ℵ0 and for every j < n, 〈Fi,j : i < ω〉

forms a ∆-system with root Fj and

(xi) ε̄ = 〈εj : j < n〉, where εn−1 ∈ (0, 2−8) and 2εj ≤ εj+1 for every j < n− 1.

We call members of Tλ blueprints. They are intended to code information about certain se-
quences of conditions in P′λ that look like q̄? and p̄? from Definitions ??, ?? in the following sense.

Definition 7.5. Suppose t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n, ρ̄, ν̄, F̄ , l, ε̄) ∈ Tλ and p̄ = 〈pi : i < ω〉 is a
sequence in P′λ. We say that p̄ is of type t if the following hold.

(a) For every i < ω, dom(pi) = {αi,j : j < m} t {βj : j < r} t {λ+ ξj : j < n}.

(b) For every i < ω and j < m, pi(αi,j) = σi,j.

(c) For every i < ω and j < r, pi(βj) = ηj.

(c) For every i < ω and j < n, Pλ+ξj pi(λ + ξj)(1) is a subset of [ρj ] of relative measure more

than 1− εj.

(d) For every i < ω and j < n, Pλ+ξj pi(λ+ ξj)(2) = (νj , Fi,j).
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Definition 7.6. Let λ0 ≤ λ < λ+ω
0 and t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n, ρ̄, ν̄, F̄ , l, ε̄) ∈ Tλ.

(1) We say that t is q-like for every i < ω and j < m, |σi,j | = l+i and (∀k ∈ [l, l+i))(σi,j(k) = i).

(2) We say that t is p-like if for every n < ω, i ∈ [kn, kn+1) and j < m, |σi,j | = l + 1 + i,
〈σi,j(l) : i ∈ [kn, kn+1)〉 are pairwise distinct and (∀k ∈ [l + 1, l + 1 + i))(σi,j(k) = i) where
〈kn : n < ω〉 is as in Definition ??.

Note that if q̄? is of type t, then t is q-like and if p̄? is of type t, then t is p-like.

For t ∈ Tλ, ξ < κ, we write t � ξ for the blueprint which is obtained by restricting the sequence
ξ̄t to ordinals below ξ and modifying ρ̄t, ν̄t, F̄ t, ε̄t and nt accordingly. The next definition relates
finitely additive measures in V Pλ+κ and blueprints in Tλ.

Definition 7.7. Suppose t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n, ρ̄, ν̄, F̄ , l, ε̄) ∈ Tλ, k̄ = 〈kn : n < ω〉 is an
increasing sequence in ω with k0 = 0, ξn−1 < ξ ≤ κ and m̊ ∈ V Pλ+ξ . We say that m̊ satisfies (t, k̄)
if the following hold.

(1) Pλ+ξ m̊ : P(ω)→ [0, 1] is a finitely additive measure.

(2) For every j < n, letting Vj = V [〈τα : α ∈ Aλ+ξj 〉], we have Pλ+ξ m̊ � (P(ω) ∩ Vj) ∈ Vj.

(3) For every p̄ = 〈pi : i < ω〉 of type t, there exists pp̄ ∈ P′λ+ξ such that the following hold.

(a) dom(pp̄) = {βj : j < r} t {λ+ ξj : j < n}.
(b) For every j < r, pp̄(βj) = ηj.

(c) For every X ∈ P(ω) ∩ V that satisfies (∀n < ω)(|X ∩ [kn, kn+1)| ≤ 1), we have

pp̄ � λ Pλ+ξ m̊(X) = 0.

(d) pp̄ � λ Pλ+ξ m̊(Åp̄,k̄) = 1 where

Åp̄,k̄ = {i < ω : (∃n < ω)(i ∈ [kn, kn+1) ∧ (∀k ∈ [kn, kn+1))(pk � λ ∈ GP))} .

(e) For every j < n, Pλ+ξj pp̄(λ+ ξj)(1) ⊆ [ρj ] and pp̄(λ+ ξj)(2) = (νj , Fj).

(f) For every j < n, pp̄ Pλ+ξ m̊(Y̊p̄,k̄,j) = 1 where i ∈ Y̊p̄,k̄,j iff letting N < ω be such that
i ∈ [kN , kN+1), we have pi(λ+ ξj)(2) ∈ GQ2

λ+ξj

and

|{i′ ∈ [kN , kN+1) : pi′(λ+ ξj)(2) ∈ GQ2
λ+ξj

}| ≥ kN+1 − kN −mt.

(g) For every j < n, pp̄ Pλ+ξ m̊(X̊p̄,j) ≥ 1− 2εj > 0 where

X̊p̄,j = {i < ω : pi � [λ, λ+ ξj + 1) ∈ GP}.

The next claim provides a sufficient condition for the existence of q? and p? satisfying the
hypotheses of Claims ?? and ?? respectively.

Claim 7.8. Suppose for every t ∈ Tλ, if t is either q-like or p-like, then there are ξtn−1 < ξ < κ
and m̊ ∈ V Pλ+ξ such that m̊ satisfies (t, k̄) where k̄ is as in Definition ??. Then there exist q? and
p? satisfying the hypotheses of Claims ?? and ?? respectively.
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Proof of Claim ??: Choose t ∈ Tλ such that q̄? from Definition ?? is of type t. Choose
ξn?−1 < ξ < κ and m̊ ∈ V Pλ+ξ such that m̊ satisfies (t, k̄). Let q? = pq̄? be as in Clause (3) of
Definition ??. Let X̊q̄?,n?−1 = {i < ω : q?i � [λ, λ+ ξ) ∈ GP} and let

Åq̄?,k̄ = {i < ω : (∃n < ω)(i ∈ [kn, kn+1) ∧ (∀k ∈ [kn, kn+1))(q?k � λ ∈ GP))}

Then q? forces that m̊(X̊q̄?,n?−1) > 0 and m̊(Åq̄?,k̄) = 1 and hence that Åq̄?,k̄ ∩ X̊q̄?,n?−1 is
infinite. It follows that q?  (∃∞i)(q?i ∈ GP). Hence q? satisfies the hypothesis of Claim ??.

Next choose t ∈ Tλ such that p̄? from Definition ?? is of type t. Choose ξn?−1 < ξ < κ and
m̊ ∈ V Pλ+ξ such that m̊ satisfies (t, k̄). Let p? = pp̄? be as in Clause (3) of Definition ??.

Let X̊p̄?,n?−1 = {i < ω : p?i � [λ, λ+ ξ) ∈ GP}. For j < n?, let Y̊p̄?,k̄,j be defined by i ∈ Y̊p̄?,k̄,j iff
p?i (λ+ ξj)(2) ∈ GQ2

λ+ξj

and for some N < ω, i ∈ [kN , kN+1) and |{i′ ∈ [kN , kN+1) : p?i′(λ+ ξj)(2) ∈
GQ2

λ+ξj

}| ≥ kN+1 − kN − 1 (recalling mt = 1 for the blueprint of p̄?). Finally let

Åp̄?,k̄ = {i < ω : (∃n < ω)(i ∈ [kn, kn+1) ∧ (∀k ∈ [kn, kn+1))(p?k � λ ∈ GP))}

Then p? forces that m̊(Åp̄?,k̄) = 1, m̊(X̊p̄?,n?−1) > 0 and for every j < n?, m̊(Y̊p̄?,k̄,j) = 1. Hence
it also forces that

Åp̄?,k̄ ∩ X̊p̄?,n?−1 ∩
⋂
j<n?

Y̊p̄?,k̄,j

is infinite. Let i be member of this set and fix n such that i ∈ [kn, kn+1). The set {i′ ∈ [kn, kn+1) :
p?i′ /∈ GP} has size at most n?+ (kn+1−kn)(1−4−n?). The first contribution comes from Definition
??(3)(f) (noting mt = 1) and the second comes from the partial random coordinates (see Definitions
?? and ??(c)). It follows that

p?  (∃∞n)
|{i ∈ [kn, kn+1) : p?i ∈ GP}|

kn+1 − kn
≥ 4−(n?+1)

Hence p? satisfies the hypothesis of Claim ??.

The following lemma finishes the proof of Theorem ??.

Lemma 7.9. Suppose λ0 ≤ λ < λ+ω
0 , t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n, ρ̄, ν̄, F̄ , l, ε̄) ∈ Tλ, ξn−1 < ξ < κ and

k̄ = 〈kn : n < ω〉 is as in Definition ??. Assume that t is either q-like or p-like. Then there exists
m̊ ∈ V Pλ+ξ such that m̊ satisfies (t, k̄).

Proof of Lemma ??: By induction on n = nt = |ξ̄|.

Suppose n = 0. Fix ξ < κ. Since n = 0, there is a unique p̄ of type t. Put pp̄ = {(βj , ηj) :
j < r}. Define X̊p̄ = {i : (∃n < ω)(i ∈ [kn, kn+1) ∧ (∀k ∈ [kn, kn+1))(pk ∈ GPλ+ξ))}. Let
W = {X : X ∈ P(ω) ∩ V ∧ (∀n < ω)(|X ∩ [kn, kn+1)| ≤ 1)}. Since limn(kn+1 − kn) =∞, it follows
that for every finite F ⊆ W, pp̄ Pλ X̊p̄ \

⋃
F is infinite. Hence we can choose m̊ ∈ V Pλ+ξ such that

Pλ+ξ m̊ : P(ω)→ [0, 1] is a finitely additive measure and for every X ∈ F , pp̄ Pλ+ξ m̊(X̊p̄\X) = 1.
It follows that m̊ satisfies (t, k̄).

Next fix λ0 ≤ λ < λ+ω
0 and t = (ᾱ,m, σ̄, β̄, r, η̄, ξ̄, n + 1, ρ̄, ν̄, F̄ , l, ε̄) ∈ Tλ such that t is ei-

ther q-like or p-like. It suffices to construct m̊ ∈ V Pλ+ξn+1 such that m̊ satisfies (t, k̄). Let
T ′λ+ = {t′ ∈ Tλ+ : t′ = (ᾱt

′
,m, σ̄, β̄t

′
, r, η̄, ξ̄ � n, n, ρ̄ � n, ν̄ � n, 〈Fi,j : i < ω, j < n〉, l, ε̄ � n)}.
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By inductive assumption, for every t′ ∈ T ′λ+ , there exists m̊t′ ∈ V Pλ+,λ++ξn such that m̊t′ satisfies

(t′, k̄). Fix such a map t′ 7→ m̊t′ on T ′λ+ .

Claim 7.10. There exists m̊ ∈ V P′λ,λ+ξn that satisfies (t � ξn+1, k̄) where t � ξn+1 = (α, σ, β̄, r, ξ̄ �
n, n, σ̄, ρ̄ � n, ν̄ � n, 〈Fi,j : i < ω, j < n〉, l, ε̄ � n) and P′λ,λ+ξn

m̊ � (P(ω) ∩ V P′λ,A) ∈ V P′λ,A where

A = Aλλ+ξn
.

Proof of Claim ??: Let χ be sufficiently large. Choose M0,M1 elementary submodels of (Hχ,∈
, <χ) such that M0 ∈M1, |M0| = |M1| = λ, and for l ∈ {0, 1}, P̄λ+ , T ′λ+ and the map t′ 7→ m̊t′ are
in Ml, λ + 1 ⊆ Ml and ≤κMl ⊆ Ml. Note that if Bj ∈ {λ ∩ Aλλ+ξj

, λ \ Aλλ+ξj
} for j < n + 1, then

|
⋂
j<n+1Bj | = λ. Also, if Dj ∈ {λ+∩Aλ+λ++ξj

, λ+\Aλ+λ++ξj
} for j < n+1, then |M0∩

⋂
j<n+1Dj | = λ

and |(M1 \M0) ∩
⋂
j<n+1Dj | = λ. So we can choose a bijection h : λ+ ξn →M1 ∩ (λ+ + ξn) such

that

(i) For every ξ < ξn, h(λ+ ξ) = λ+ + ξ

(ii) For every j < n and α < λ, α ∈ Aλλ+ξj
iff h(α) ∈ Aλ+λ++ξj

; hence also α ∈ Cλλ+ξj
iff h(α) ∈

Cλ
+

λ++ξj

(iii) For every α < λ, α ∈ Aλλ+ξn
iff h(α) ∈M0

Let t′ = (〈h(αi,j) : i < ω, j < m〉,m, σ̄, 〈h(βj) : j < r〉, r, η̄, ξ̄ � n, n, ρ̄ � n, ν̄ � n, 〈h[Fi,j ] : i <
ω, j < n〉, l, ε̄ � n). As ωM1 ⊆M1, t′ ∈M1. Hence also m̊t′ ∈M1.

Define ĥ : P′λ,λ+ξn
→ P′λ+,(λ++ξn)∩M1

as follows: ĥ(p) = p′ where dom(p′) = {h(α) : α ∈
dom(p)}. If α ∈ dom(p) ∩ λ, then p′(h(α)) = p(α). If α ∈ dom(p) ∩ [λ, λ + ξn), then p′(α)(1) =
B(〈τh(γk)(nk) : k < ω〉) where B, 〈(nk, γk) : k < ω〉 are as in Definition ??(b)(i) for coordinate α
and p′(α)(2) = (ν, h[F ]) where (ν, F ) = p(α)(2).

Subclaim 7.11. The following hold.

(1) ĥ : P′λ,λ+ξn
→ P′λ+,(λ++ξn)∩M1

is an isomorphism

(2) P′λ+,(λ++ξn)∩M0
l P′λ+,(λ++ξn)∩M1

l P′λ+,λ++ξn

(3) For j < n, put Aj = Aλ
+

λ++ξj
∩M1. Then P′

λ+,λ++ξj

m̊t′ � (P(ω) ∩ V
P′
λ+,Aj ) ∈ V

P′
λ+,Aj

(4) For l ∈ {0, 1}, P′
λ+,λ++ξn

m̊t′ � (P(ω) ∩ V P′
λ+,(λ++ξn)∩Ml ) ∈ V P′

λ+,(λ++ξn)∩Ml

Proof of Subclaim ??: (1) and (4) should be clear. For (2), use Lemma ??. For (3), use the
fact that m̊t′ satisfies (t′, k̄).

Choose m̊′ ∈ V
P′
λ+,(λ++ξn)∩M1 such that P′

λ+,λ++ξn

m̊′ = m̊t′ � (P(ω) ∩ V P′
λ+,(λ++ξn)∩M1 ) and

define m̊ ∈ V P′λ,λ+ξn by ĥ(m̊) = m̊′.

By Subclaim ??, m̊ satisfies (t � ξn+1, k̄) where t � ξn+1 = (α, σ, β̄, r, ξ̄ � n, n, σ̄, ρ̄ � n, ν̄ � n, 〈Fi,j :

i < ω, j < n〉, l, ε̄ � n) and, moreover, P′λ,λ+ξn
m̊ � (P(ω) ∩ V P′λ,A) ∈ V P′λ,A where A = Aλλ+ξn

. This

completes the proof of Claim ??.
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To complete the proof of Lemma ??, we would like to extend m̊ to m̊1 ∈ V Pλ+ξn+1 such that m̊1

satisfies (t, k̄). We do this in two steps.

Let q = 〈(βj , ηj) : j < r〉. Note that for every X ∈ P(ω) ∩ V , if (∀n < ω)(|X ∩ [kn, kn+1)| ≤ 1),
then q Pλ+ξn m̊(X) = 0.

Claim 7.12. q forces that the following holds in V Pλ+ξn : Letting Q = Q2
λ+ξn

, there exists a Q-
name m̊2 such that Q m̊2 : P(ω) → [0, 1] is a finitely additive measure that extends m̊ and
(νn, Fn) Q m̊2(Y̊ ) = 1 where i ∈ Y̊ iff for some N < ω, i ∈ [kN , kN+1), (νn, Fi,n) ∈ GQ and

|{i′ ∈ [kN , kN+1) : (νn, Fi′,n) ∈ GQ}| ≥ kN+1 − kN −m

Proof of Claim ??: Work in V1 = V Pλ+ξn above q. By Lemma ??, it suffices to show that
for every A ∈ P(ω) ∩ V1 satisfying m̊(A) > 0, (νn, Fn) Q A ∩ Y̊ 6= ∅. Towards a contradiction,
suppose this fails. Choose (ν, F ) ∈ Q and A ∈ V1, such that (νn, Fn) ≤ (ν, F ), m̊(A) > 0 and
(ν, F ) Q A ∩ Y̊ = ∅. We can assume |ν| > |νn| = l. Choose q1 ∈ P′λ+ξn

, q1 ≥ q that forces this.

First suppose t is q-like. Then, for every i < ω and j < m, |σi,j | = l + i and (∀k ∈
[l, l+ i))(σi,j(k) = i). Let H be Pλ+ξn-generic over V with q1 ∈ H. Work in V [H]. Since m̊(A) > 0,
A is infinite. Choose N < ω and i ∈ [kN , kN+1)∩A such that kN > |ν|, (∀k ∈ dom(ν))(kN > ν(k))
and for every i′ ∈ [kN , kN+1), Fi′,n \ Fn ⊆ {αi′,j : j < m}. It follows that (ν, F ∪

⋃
k∈[kN ,kN+1) Fk,n)

extends (νn, Fi′,n) for every i′ ∈ [kN , kN+1) and hence (ν, F ∪
⋃
k∈[kN ,kN+1) Fk,n) Q i ∈ Y̊ ∩ A:

Contradiction.

Next suppose t is p-like. Then, for every N < ω, i ∈ [kN , kN+1) and j < m, |σi,j | = l + 1 + i,
〈σi,j(l) : i ∈ [kN , kN+1)〉 are pairwise distinct and (∀k ∈ [l + 1, l + 1 + i))(σi,j(k) = i). Let
X = {i < ω : (∃n < ω)(∃j < m)(i ∈ [kn, kn+1) ∧ ν(l) = σi,j(l))}. Then for every n < ω,
|X ∩ [kn, kn+1)| ≤ m hence q P′λ+ξn

m̊(X) = 0. Let H be Pλ+ξn-generic over V with q1 ∈ H. Work

in V [H]. Since m̊(A \X) > 0, A \X is infinite. Choose N < ω and i ∈ [kN , kN+1) ∩ (A \X) such
that kN > |ν|, (∀k ∈ dom(ν))(kN > ν(k)) and for every i ∈ [kN , kN+1), Fi,n \ Fn ⊆ {αi,j : j < m}.
It follows the set of i′ ∈ [kN , kN+1) for which (ν, F ∪

⋃
k∈[kN ,kN+1) Fk,n) does not extend (νn, Fi′,n)

has size at most m and hence (ν, F ∪
⋃
k∈[kN ,kN+1) Fk,n) Q i ∈ Y̊ ∩A: Contradiction.

Claim 7.13. The following holds in V Pλ+ξn : Let B = Q1
λ+ξn

. There exist s ∈ B and a B-name
m̊3 such that s ≥ [ρn], B m̊3 : P(ω) → [0, 1] is a finitely additive measure extending m̊ and
s B m̊3({i < ω : pi(λ+ ξn) ∈ GB}) ≥ 1− εn.

Proof of Claim ??: Put Vn = V
P′λ,Aλ+ξn so that B = (Random)Vn . Working in Vn, apply Lemma

?? to m̊ � (P(ω) ∩ Vn), with r = [ρn] to obtain the extension m̊r ∈ (Vn)B as defined there. By
Lemma ??(2), we can choose s ∈ B, s ≥ [ρn] such that s B m̊r({i < ω : pi(λ+ξn) ∈ GB}) ≥ 1−εn.

Since P′
λ,Aλλ+ξn

lP′λ+ξn
, we can write V P′λ+ξn = (Vn)R for some R ∈ Vn. By Lemma ??, it follows

that m̊r ∈ (Vn)B and m̊ ∈ (Vn)Q have a common extension m̊3 ∈ (Vn)Q×B = V Pλ+ξn?Q1
λ+ξn . So s

and m̊3 are as required.
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Since Pλ+ξn+1 = Pλ+ξn ? (Q1
λ+ξn

× Q2
λ+ξn

), using Lemma ?? again, we can find a common ex-

tension m̊1 ∈ V Pλ+ξn+1 of m̊2 and m̊3.

Let us check that m̊1 satisfies (t, k̄). So fix p̄ = 〈pj : j < ω〉 of type t and construct pp̄ as follows.
Put q̄ = 〈pj � (λ+ ξn) : j < ω〉. Since m̊ satisfies t � ξn+1, we can find pq̄ ∈ P′λ+ξn

satisfying clauses
(3)(a)-(f) in Defintion ?? for q̄.

Define pp̄ by pp̄ � (λ+ ξn) = pq̄, pp̄(λ+ ξn)(1) = s and pp̄(λ+ ξn)(2) = (νn, Fn).

For j ≤ n, put X̊p̄,j = {i < ω : pi � [λ, λ + ξj + 1) ∈ GP}. Clause (3)(f) in Defintion ??
follows from Claim ??. For clause (3)(g), we need to check that pp̄  m̊1(X̊p̄,n) ≥ 1 − 2εn. Since
pq̄  m̊(X̊p̄,n−1) ≥ 1− 2εn−1, εn ≥ 2εn−1 and pp̄  m̊1({i < ω : pi � {λ+ ξj} ∈ GP} ≥ 1− εn (using
Claims ?? and ??), it follows that pp̄  m̊1(X̊p̄,n) ≥ 1 − 2εn−1 − εn ≥ 1 − 2εn. Hence m̊1 satisfies
(t, k̄). This completes the proof of Lemma ?? and therefore of Theorem ??.
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