
ZERO ONE LAWS FOR GRAPHS WITH EDGE

PROBABILITIES DECAYING WITH DISTANCE. PART I

SAHARON SHELAH

Abstract. The work prepares the abstract frame for analyzing the
following problem. Let Gn be the random graph on [n] = {1, . . . , n}
with the possible edge {i, j} having probability being p|i−j| = 1/|i−j|α,
α ∈ (0, 1) irrational. We prove that the zero one law (for first order
logic) holds.

0. Introduction

On 0–1 laws see expository papers e.g., Spencer [Spe93]. In  Luczak,
Shelah [S L95] the following probabilistic context was investigated. Let p̄ =
〈pi : i ∈ N〉 be a sequence of probabilities, i.e. real numbers in the interval

[0, 1]R. For each n we draw a graph Gn,p̄ with set of nodes [n]
def
= {1, . . . , n};

for this we make the following independent drawing:

• for each (unordered) pair {i, j} of numbers from [n] we draw yes/no
with probabilities p|i−j|/ 1− p|i−j|, and let

Rn = {{i, j} : i, j are in [n] and we draw yes}.

We consider Rn a symmetric irreflexive 2-place relation. So we have gotten
a random model M0

n,p̄ = ([n], Rn) (i.e. a graph), but we also consider

the graph expanded by the successor relation M1
n,p̄ = ([n], S,Rn) where

S = {(`, `+1) : ` ∈ N}, (more exactly we use Sn = S � [n]), and we may also
consider the graph expanded by the natural order on the natural numbers
M2

n,p̄ = ([n], <,Rn). (Here we will give a little background on this structure
below. But the question whether 0 − 1 law holds is not discussed here).
Though we shall start dealing generally with random models, the reader
can restrict himself to the case of graphs without losing comprehensibility.

In [S L95] much information was gotten, on when the 0-1 law holds (see
Definition 1.1(1)) and when the convergence law holds (see Definition 1.1(2)),
depending on conditions such as

∑
i∈N

pi <∞ and
∑
i∈N

ipi <∞.

The sequences p̄ considered in [S L95] were allowed to be quite chaotic,
and in those circumstances the theorems were shown to be the best possible,
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ZERO ONE LAWS FOR GRAPHS... PART I 1

e.g. counterexamples were gotten by replacing p̄ by p̄′ where for some fast

increasing sequence 〈ik : k ∈ N〉 we let p′j =

{
pk j = ik
0 (∀k)j 6= ik.

In [She96a] a new version of the 0-1 law was introduced, the very weak
zero one law (see 0.1(3), the h variant says that the difference between the
probabilities for n and for mn when |n − mn| ≤ h(n), converges to zero)
and it was proved for M2

n,p̄ when
∑
i
pi < ∞ (we omit h when h(n) = 1,

mn = n + 1 and investigate only the very weak 0-1 law). In [She96b] the
very weak zero one law was proved for models with a random two place
function and for ordered graphs; Boppana and Spencer [BS97b] continue
this determining the best h for which this holds.

Naturally arise the question what occurs if the pi’s are “well behaved”. As
in Shelah, Spencer [SS88] this leads to considering pi = 1/iα (independently
of n). By the results of [S L95], and (essentially) [SS88], the “real” cases are
(on the definition of M`

n,p̄ see above):

(A) M0
n,p̄ where pi = 1/iα for i > 1, α ∈ (0, 1)R irrational and p1 = p2

(B) M1
n,p̄ where pi = 1/iα, α ∈ (0, 1)R irrational

(C) M2
n,p̄ where pi = 1/iα, α ∈ (1, 2)R

The main aim of this work is to show that in the case (A) we have the
0-1 law, also in case (B) we prove the convergence law but at present we
do not know the answer to problem (C) (actually analysis indicates that
the problem is whether there is a formula ϕ(x) which holds in M2

n for x
small enough and fails for n− x, x small enough). Here we didn’t consider
linear order case. For external reasons the work is divided to two parts, the
second is [She05]. Note: if we let pi = 1/iα for i ≥ 1, surely {`, `+ 1} is an
edge, so it is fine, just case (A) becomes similar to case (B). To preserve
the distinction between (A) and (B) we set p1 = 1/2α in case (A). This is
one of many ways to preserve this distinction; the choice does not matter.
Main and original context
Random graph on [n], with pi = 1/iα for i > 1 and p1 = p2; i.e. probability
of the edge {i, j} is p|i−j| and α ∈ (0, 1)R \Q i.e. is irrational.

But the proofs apply to wider family of cases. We can make a case such
that both [SS88] and [S L95] are particular cases: the probability for {i, j}
being an edge of Mn for i, j ∈ [n] is pni,j . So in [SS88], pni,j = pn and in

[S L95], pni,j = p|i−j|. We can consider pni,j = pn|i−j|. We hope to show in

another paper that we shall get the same theory as in case (A) above in
the limit, while simplifying the probabilistic arguments, if we change the
context to:
Second context
for Mn (graph on {1, . . . , n}) with probability of {i, j} being an edge is
pni,j = 1

nα + 1
2|i−j|

.
So the probability basically has two parts
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2 SAHARON SHELAH

1) ( 1
2|i−j|

): Depends only on the distance, but decays fast, so the average
valency it contributes is bounded.

2) ( 1
nα ): Does not depend on the distance, locally is negligible (i.e. for any

particular {i, j}) but has “large integral”. Its contribution for the valency
of a node i is on the average “huge” (still � n).

We can think of this as two kinds of edges. The edges of the sort n−α are
as in the paper [SS88]. The other ones still give large probability for some
i to have valency with no a priori bound (though not compared to n, e.g.
log n). In this second context the probability arguments are simpler (getting
the same model theory), but we shall not deal with it here.
Note: If we look at all the intervals [i, i + k), and want to get some graph
there (i.e. see on H below) and the probability depends only on k (or at
least has a lower bound > 0 depending only on k), then the chance that for
some i we get this graph (by “second kind edges”) is ∼ 1, essentially this
behavior stops where k ≈ (log(n))b for some appropriate b > 0 (there is no
real need here to calculate it). Now for any graph H on [k] the probability
that for a particular i < [n− k] the mapping ` 7→ i+ ` embeds H into Mn

is ≥ ( 1
kα )(

k
2) but is ≤ ( 1

(k/3)α )(k/3)2
(exactly

∏
{`,m}∈J1

( 1
|l−m|α )·

∏
{`,m}∈J2

(1− 1
|l−m|α )·p|{`:(`,`+1) is an edge}|

1 ·(1−p1)|{`:(`,`+1) is not an edge}|

where `,m ≤ k and J1 = { {`,m}: (`,m) is an edge and |`−m| > 1}, J2 = {
{`,m}: (`,m) is not an edge and |`−m| > 1}). Hence the probability that
for no i < bn/kc the mapping ` 7→ (k · i + `) does embed H into Mn

is ≤
(

1 −
(

1
kα

)(k2))n/k. Hence if βkα·(
k
2) = n/k that is β = ( n

k
α·(k2)+1

)

then this probability is ≤ e−β. This is because e−β ∼
(

1 − (βn)

)n
. We

obtain (kβn ) ≤ ( 1

k
α·(k2)

). So the probability is small, i.e. β large if k ≥ ( 2
α

log n)1/2; note that the bound for the other direction has the same order
of magnitude. So with parameters, we can interpret, using a sequence of
formulas ϕ̄ and parameter ā, quite long initial segment of the arithmetic
(see definition below). This is very unlike [SS88], the irrational case, where
first order formula ϕ(x̄) really says little on x̄: normally it says just that

the clk–closure of x̄ is x̄ itself or something on the few elements which are
in clk(x̄) (so the first order sentences say not little on the model, but inside
a model the first order formula says little). So this sound more like the
α rational case of [SS88]. This had seemed like a sure sign of failure of
the 0-1 law, but if one goes in this direction one finds it problematic to
define ā0 such that ϕ̄ with the parameter ā0 defines a maximal such initial
segment of arithmetic, or at least find ψ(ȳ) such that for random enough
Mn, there is ā0 satisfying ψ(ȳ) and if ā0 satisfies ψ(ȳ) then ϕ with such
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ZERO ONE LAWS FOR GRAPHS... PART I 3

parameter define an initial segment of arithmetic of size, say, > log log log n.
To interpret an initial segment of arithmetic of size k in Mn for ϕ̄ and
ā0, mean that ϕ̄ = 〈ϕ0(x, ȳ0), ϕ1(x̄0, ȳ), ϕ2(x̄1, ȳ), ϕ3(x̄2, ȳ)〉 is a sequence of
(first order) formulas, and ā0 is a sequence of length `g(ȳ) such that: the
set {x :Mn |= ϕ0(x, ā0)} has k elements, say {b0, . . . , bk−1}, satisfying:

Mn |= ϕ1(x0, x1, ā0)⇔
∨

`<m<k

(x0, x1) = (b`, bm),

Mn |= ϕ2(x0, x1, x2, ā0)⇔
∨

`0,`1,`2<k
`2=`0+`1

(x0, x1, x2) = (b`0 , b`1 , b`2),

Mn |= ϕ3(x0, x1, x2, ā0)⇔
∨

`0,`1,`2<k
`2=`0`1

(x0, x1, x2) = (b`0 , b`1 , b`2).

But it is not a priori clear whether our first order formulas distinguish
between large size and small size in such interpretation.
Note: all this does not show why the 0 − 1 law holds, just explain the
situation, and show we cannot prove the theory is too nice (as in [SS88]) on
the one hand but that this is not sufficient for failure of 0 − 1 law on the
other hand. Still what we say applies to both contexts, which shows that
results are robust. A nice result would be if we can characterize 〈pi : i ∈ N〉
such that Prob{i, j} = pi ⇒ 0− 1 holds (see below).

Our idea (to show the 0 − 1 law) is that though the “algebraic closure”
(suitably defined) is not bounded, it is small and we can show that a first
order formula ϕ(x̄) is equivalent (in the limit case) to one speaking on the
algebraic closure of x̄.

Model theoretically we do not get in the limit a first order theory which
is stable and generally “low in the stability hierarchy”, see Baldwin, Shelah
[BS97a], for cases with probability ∼ n−α (the reason is of course that
restricted to “small” formulas in some cases there is a definable linear order
(or worse)). However we get a variant of stability over a predicate: on
“small” definable sets the theory is complicated, but for types with no small
formulas we are in the stable situation. In fact the model theoretic setting
is similar to the one in [She96a] but we shall not pursue this.

Note that Baldwin, Shelah [BS97a] deal with random models with more

relations R with probabilities nα(R) (satisfying the parallel to irrationality of
α). There, the almost sure theory is stable. In [Shea] we define a family of
0-1 contexts where further drawings of relations give us a new context in this
family and in all such contexts, elimination of quantifiers to the algebraic
closure (as in [SS88], [BS97a]) holds, but the context is possibly “almost
nice” not nice, i.e. we allow that every ā has a nontrivial closure, as in the
case in which we have the successor function. Here this is dealt within the
general treatment of the elimination, but not used in the main case M0

n.
We could deal with abstract version allowing further drawing as in [Shea]
also here.
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4 SAHARON SHELAH

See more [Bal96], [Sheb].
We have chosen here quite extreme interpretation of “p̄ is simple, simply

defined”. It seems desirable to investigate the problem under more lenient
conditions. A natural such family of p̄’s is the family of monotonic ones.
Can we in this family characterize

{p̄ : p̄ monotone sequence, M0
n,p̄ satisfies the 0− 1 law}?

This will be addressed and solved in [Shec].
The two cases considered above are protypes of some families with the 0-1

law, but there are some others, for example with the value of the exponent
α “in the appropriate neighbourhood” of a rational (and some degenerate
ones of course).

Let us review the paper.
Note: in §1 – §3 we deal with general contexts. In these three sections suffi-
cient conditions are proven for the 0-1 law to hold in 0-1 context; for nota-
tional simplicity we restrict ourselves to vocabulary which contains finitely
many predicate relations (not only a symmetric irreflexive 2-place relation).
The proof is based on elimination of quantifiers by the help of the closure
without using probability arguments. Note that in the application we have
in mind, the closure has order of magnitude up to ∼ log|Mn|. In [SS88] cl
is bounded i.e. |cl(A)| has a bound depending on |A| (and α of course) only
while here is not bounded. In the second part, §4 – §6 deal with M0

n and
§7 deal with M1

n.
In §1 we give the basic definitions, including A <i B (intended to mean:

B is the algebraic closure of A but this closure has no a priori bound). The
restriction to: Mn has set of elements [n] (rather than some finite set) is
not important for the proof. In §1, A <i B and A <s B are defined in terms
of the number of embeddings of A into Mn in a sufficiently random model,
and from <i we define clk(A,M).

In §2 a fundamental relation (i.e. given a priori) on structures M is clk.
From it notions of A <i B and A <s B are defined in terms of embeddings
f ⊆ g of A,B into a sufficiently randomMn and the relations between g(B)

and clkMn
(f(A),Mn). Then these definitions are reconciled with those in

§1, when the closure is chosen as in §1. Two axiomatic frameworks for an
abstract elimination of quantifiers argument are presented. (This generalizes

[BS97a].) These frameworks and further conditions on clk provide sufficient
conditions for 0− 1 laws and convergence laws.
Note: in §2 we retain using “relation free amalgamation” (as in [BS97a], but
in [Shea] we will use more general one). However we waive “random A has
no non-trivial closure”, hence use “almost nice” rather than nice (and also
waive the a priori bounds on closure).

In §3 we deal with the case where the natural elimination of quantifiers
is to monadic logic. This seems natural, although it is not used later.

We now proceed to describe part II, the main point of §4 is to introduce
a notion of weight w(A,B, λ) which depends on an equivalence relation λ
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ZERO ONE LAWS FOR GRAPHS... PART I 5

on B \ A. (Eventually such λ will be defined in terms of the “closeness” of
images of points in B under embeddings into Mn.) Relations A ≤∗i B and
A ≤∗s B are defined in terms of w. The intension is that ≤∗i is ≤i etc, thus
we will have direct characterization of the later.
§5 contains the major probability estimates. The appropriate λ is defined

and thus the interpretations of <∗i and <∗s in the first context (M0
n, pi = 1

iα ).
Several proofs are analogous to those in [SS88] and [BS97a], so we treat them
only briefly. The new point is the dependence on distance, and hence the
equivalence relations λ.

In §6 it is shown that the <∗i and <∗s of §5 agree with the <i and <s of §1.

Further, if clk is defined from the weight function in §4, these agree with <i,
<s as in §2 and we prove the “simple almost niceness” of Definition 2.12,
so the ’elimination of quantifiers modulo quantification on (our) algebraic
closure’ result applies. This completes the proof of the 0−1 law for the first
context. The model theoretic considerations in the proof of this version of
niceness (e.g. the compactness) were less easy than I expect.
§7 deals with the changes needed for M1

n,p̄ where only the convergence
law is proved.
Note: our choice “Mn has set of element [n]” is just for simplicity (and
tradition), we could have Mn has set of elements a finite set (not even
fixed) and replace nε by ‖Mn‖ε as long as “for each k for every random
enough Mn we have ‖Mn‖ > k”. Also the choice of nε in Definition 1.2 is
the most natural but not unique case. The paper is essentially self contained,
assuming only basic knowledge of first order logics and probability.

Notation 0.1. • N is the set of natural numbers ({0, 1, 2, . . .})
• R is the set of reals
• Q is the set of rationals
• i, j, k, `,m, n, r, s, t are natural numbers and
• p, q are probabilities
• α, β, γ, δ are reals
• ε, ζ, ξ are positive reals (usually quite small) and also c (for constant

in inequalities)
• λ is an equivalence relation
• M,N,A,B,C,D are graphs or more generally models (that is struc-

tures, finite of fixed finite vocabulary, for notational simplicity with
predicates only, if not said otherwise; the reader can restrict himself
to graphs)
• |M | is the set of nodes or elements of M , so ‖M‖ is the number of

elements.
• M denotes a random model,
• µ denotes a distribution (in the probability sense),
• [n] is {1, . . . , n}
• A ⊆ B means A is a submodel of B i.e. A is B restricted to the set

of elements of A (for graphs: induced subgraph)
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6 SAHARON SHELAH

We shall not always distinguish strictly between a model and its set
of elements. If X is a set of elements of M , M � X is M restricted
to X.
• a, b, c, d are nodes of graphs / elements of models
• ā, b̄, c̄, d̄ are finite sequences of nodes / elements
• x, y, z variables
• x̄, ȳ, z̄ are finite sequences of variables
• X, Y , Z are sets of elements
• τ is a vocabulary for simplicity with predicates only (we may restrict

a predicate to being symmetric and/or irreflexive (as for graphs)),
• K is a family of models of fixed vocabulary, usually τ = τK
• the vocabulary of a model M is τM ,
• āˆb̄ or āb̄ is the concatenation of the two sequences, āˆb or āb is āˆ〈b〉
• the extensions g1, g2 of f are disjoint if x1 ∈ dom(g`) \ dom(f),
x2 ∈ dom(g3−`)⇒ x1 6= x2.

Acknowledgements: We thank John Baldwin and Shmuel Lifsches and
Çiğdem Gencer and Alon Siton for helping in various ways and stages to
make the paper more user friendly.

1. Weakly nice classes

We interpret here “few” by: “for each ε for every random enough Mn,
there are (for each parameter) < nε”. We could use other functions as well.

General Context 1.1. (i) Let τ be fixed vocabulary which for simplicity
having only predicates, i.e. symbols for relations.

(ii) K be a class of finite τ -models closed under isomorphism and sub-
models. For n ∈ N, Kn is a set of τ -models which usually have universe
[n] = {1, ..., n} (just for notational simplicity).

(iii) Let Mn be a random model in a fixed vocabulary τ which is an
element of Kn, that is we have µn a function such that µn : Kn → [0, 1]R
and

∑
{µn(M) : M ∈ Kn} = 1, so µn is called a distribution and Mn the

random model for µn, so we restrict ourselves to finite or countable Kn. We
omit µn when clear from the context.

(iv) We call (K, 〈(Kn, µn) : n < ω〉) a 0 − 1 context and denote it by K
and usually consider it fixed; we may ’forget’ to mention K. So

(v) The probability of Mn |= ϕ; Prob(Mn |= ϕ) is∑
{µn(M) :M∈ Kn,M |= ϕ}.

(vi) The meaning of “for every random enough Mn we have Ψ” is

〈Prob(Mn |= Ψ) : n < ω〉 converges to 1;

alternatively, we may write “almost surely Mn |= Ψ”.
(vii) We call K a 0− 1 context if it is as above.
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Definition 1.2. (1) The 0 − 1 law (for K) says: whenever ϕ is a f.o.
(=first order) sentence in vocabulary τ ,

〈Prob(Mn |= ϕ) : n < ω〉n < ω〉 converges to 0 or to 1.

(2) The convergence law says: whenever ϕ is a f.o. sentence in τ ,

〈Prob(Mn |= ϕ) : n < ω〉 is a convergent sequence.

(3) The very weak 0− 1 law says: whenever ϕ is a f.o. sentence in τ ,

lim
n

[Prob(Mn+1 |= ϕ)− Prob(Mn |= ϕ)] = 0.

(4) The h-very weak 0− 1 law for h : N→ N \ {0} says: whenever ϕ is
a f.o. sentence in τ ,

0 = lim
n

max
`,k∈[0,h(n)]

|Prob(Mn+k |= ϕ)− Prob(Mn+` |= ϕ)|

Notation 1.3. f : A ↪→ B means: f is an embedding of A into B (in the
model theoretic sense, for graphs: isomorphism onto the induced subgraph).

Definition 1.4. (1) Let

K∞ =
{
A : A is a finite τ -model

0 < lim
n

sup[Prob((∃f)(f : A ↪→Mn))]
}

recall (1.1(v)) that Prob((∃f)(f : A ↪→Mn)) =
∑
{µn(Mn) :Mn ∈

Kn and there is an embedding f : A ↪→Mn}, n < ω.
Also let T∞ =df {ϕ : ϕ is a f.o. sentence in the vocabulary of K

such that every random enough Mn satisfies it}.
(2) A ≤ B means: A,B ∈ K∞ and A is a submodel of B; of course

A < B means A ≤ B and A 6= B, similarly for others below.
(3) A ≤i B means: A ≤ B and for each ε ∈ R+ we have:

1 = lim
n

Prob

 if f0 : A ↪→Mn

then the number of f1 satisfying
f0 ⊆ f1 : B ↪→Mn is ≤ nε.


Also let ex(f0, B,M) = ex(f0, A,B,M) =df {f : f is an embedding
of B into M extending f0}.

(4) A ≤s B means: A ≤ B and there is no C with A <i C ≤ B.
(5) A <pr B means: A <s B and there is no C with A <s C <s B (pr

abbreviates primitive).
(6) A <a B means that A ≤ B and, for every ε ∈ R+ for every random

enough Mn, for no f : A ↪→ Mn do we have nε pairwise disjoint
extensions g of f satisfying g : B ↪→Mn.

(7) A ≤sm B means A ⊆ B are from K and for every X ⊆ B with ≤ m
elements, we have A � (A ∩X) ≤s (B � X).

(8) A ≤ik,m B means A ⊆ B are from K and for every X ⊆ B with
≤ k elements there is Y , X ⊆ Y ⊆ B with ≤ m elements such that
A � (A ∩ Y ) ≤i (B � Y ).
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8 SAHARON SHELAH

(9) For h : N × R+ → R+, we define A ≤hi B as in part (3) replacing
nε by h(n, ε), and similarly A ≤ha B (in part (6)), hence A ≤hs B,

A ≤hpr B, A <ha B, A ≤s,hm B, A ≤i,hk,m B.

Remark 1.5. (1) In these circumstances the original notion of algebraic
closure is not well behaved. A ≤i B provides a reasonable substitute
for A ⊆ B ⊆ acl(A).

(2) Note: for ≤hi to be transitive we need: for every ε1 > 0 for some
ε2 > 0 for every n large enough h(n, ε2)× h(n, ε2) ≤ h(n, ε1).

(3) Why do we restrict ourselves to K∞ (in 1.4(1)-(6))? The relations
in 1.4(1)-(6) describe situation in the limit. So why in 1.4(7), (8) do
we not restrict ourselves to A,B ∈ K∞? As for A ∈ K∞, for quite
random Mn, and f : A ↪→Mn the set clk(f(A),Mn) may be quite
large, say with log(n) elements, so it (more exactly the restriction of
Mn to it) is not necessarily in K∞; this is a major point here.

Let us expand.
If A ∈ K has a copy in a random enough Mn and we have 0 − 1 law then
T∞(see 1.4(1)) says that copies of A occur. But ifMn is random enough, and

for example A = {a1, a2, a3} ≤ Mn, and B = Mn � clk({a1, a2, a3},Mn)
has, say, log(n) elements then it does not follow that T∞ |=“a copy of B
occurs”, as Mn may not be random enough for B. Still for the statements
like

(∃x1, x2, x3)(clk({x1, x2, x3}) |= ϕ)

the modelMn may be random enough. The point is that the size of B could
be computed only after we have Mn.
Another way to look at it: models M∞ of T∞ are very random in a sense,
but cl({a1, a2, a3},M∞) is infinite, may even be uncountable, so randomness
concerning it becomes meaningless.

Definition 1.6. For A ⊆M and k < ω define

(a) clk(A,M) =
⋃
{B : B ⊆M, B ∩A ≤i B, and |B| ≤ k},

(b) clk,0(A,M) = A,

(c) clk,m+1(A,M) = clk(clk,m(A,M),M).

Observation 1.7. 1) For all `, k ∈ N and ε ∈ R+ we have

1 = lim
n

[
Prob

(
A ⊆Mn, |A| ≤ `⇒ |clk(A,Mn)| < nε

)]
.

2) Moreover, for every k ∈ N and ε ∈ R+ for some ζ ∈ R+ (actually, any
ζ < ε/(k + 1) will do) we have

1 = lim
n

[
Prob(A ⊆Mn, |A| ≤ nζ ⇒ |clk(A,Mn)| < nε)

]
.

Remark 1.8. 1.7 is true for clk,m too, but we can use claim 1.16 instead.

Paper Sh:467, version 2008-08-02 11. See https://shelah.logic.at/papers/467/ for possible updates.



ZERO ONE LAWS FOR GRAPHS... PART I 9

Definition 1.9. K = 〈Mn : n < ω〉 is weakly nice if whenever A <s B (so
A 6= B), there is ε ∈ R+ with

1 = lim
n

Prob

 if f0 : A ↪→Mn then there is F with |F | ≥ nε and
(i) f ∈ F ⇒ f0 ⊆ f : B ↪→Mn

(ii) f ′ 6= f ′′ ∈ F ⇒ Rang(f ′) ∩ Rang(f ′′) = Rang(f0)

 .
If clause (ii) holds we say the f ∈ F are pairwise disjoint over f0 or over A.
In such circumstances we say that ε witnesses A <s B.

Remark 1.10. Being weakly nice means there is a gap between being pseudo
algebraic and non-pseudo algebraic (both in our sense), so we have a strong
dichotomy.

Fact 1.11. For every A,B,C in K∞:

(1) A ≤i A,
(2) A ≤i B, B ≤i C ⇒ A ≤i C,
(3) A ≤s A,
(4) if A1 ≤ B1, A2 ≤ B2, A1 ≤ A2, B1 ≤ B2, B1 \ A1 = B2 \ A2 then

A2 ≤s B2 ⇒ A1 ≤s B1 and A1 ≤i B1 ⇒ A2 ≤i B2,
(5) A <i B iff for every C we have A ≤ C < B ⇒ C <a B.

Proof Easy (e.g. 1.11(5) by the ∆-system argument (for fixed size of
the sets and many of them); note |B| is constant). 1.11

Claim 1.12. If A <s B <s C then A <s C

Proof First proof:
If not, then for some B′ we have A <i B

′ ≤ C. If B′ ⊆ B we get
contradiction to A <s B, so assume B′ * B. By 1.13(1) below we have (B′∩
B) <i B

′ so by 1.11(4) we have B <i (B ∪ B′), hence we get contradiction
to B <s C.
Second proof: (Assuming K is weakly nice i.e. if we define <s by 1.9.) Let
ε > 0 witness A <s B in Definition 1.9 and let ζ > 0 witness B <s C
in Definition 1.9. Choose ξ = min{ε/2, ζ/2}; (actually just ξ < ε ∧ ξ < ζ
suffice). Let n be large enough; in particular nε > |C| and let f0 : A ↪→Mn.
So we have (almost surely) {f i1 : i < i∗}, where i∗ ≥ nε, and f0 ⊆ f i1 and
f i1 : B ↪→Mn and the f i1’s are pairwise disjoint over A.

Now, almost surely for every i we have {f i,j2 : j < j∗i } with f i1 ⊆ f i,j2

and f i,j2 : C ↪→Mn and, fixing i, the f i,j2 ’s are pairwise disjoint over B and
j∗i ≥ nζ .
Clearly (when the above holds) for `∗ = nξ we can find {jk : k ≤ `∗} such

that {fk,jk2 : k < `∗} are pairwise disjoint over A (just choose jk by induction

on k such that: Rang(fk,jk2 � (C \B)) is disjoint to⋃
{Rang(f i1 � (B \A)) : i < `∗} ∪

⋃
{Rang(f i,ji2 � (C \B)) : i < k};
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at stage k, the number of inappropriate j < nζ is

≤ |C \B| × k + |B \A| × `∗ ≤ |C| × `∗ = |C| × nξ).

1.12

Fact 1.13. Suppose A ≤ B ≤ C.

(1) If A ≤i C then B ≤i C.
(2) If A ≤s C then A ≤s B.
(3) If A <pr C and A ≤s B ≤s C then either B = A or B = C.

Proof Reread the definitions.

Fact 1.14. (1) If A ≤s B then there is some n < ω and a sequence
〈Al : l ≤ n〉 such that A = A0 <pr A1 <pr . . . <pr An = B (possibly
n = 0).

(2) If A <pr C and A < B < C then B <i C

Proof For proving (2), choose a maximal B′ such that B ≤i B′ ≤ C, it
exists as C is finite (being in K∞), and as B ≤i B (by 1.11(1)). It follows

that if B′ < B
′′ ≤ C then ¬B′ ≤i B

′′
(by 1.11(2)). Hence B′ ≤s C. But

A <pr C hence by the Definition 1.4(5) we have A <s C so by 1.13(2)
A <s B

′; so by the definition of <pr we have B′ = C, so B ≤i B′ = C as
required. Part (1) is clear as B is finite (being in K∞) and the definition of
≤pr. 1.14

Claim 1.15. K is weakly nice iff whenever A <pr B there is ε ∈ R+ such
that

1 = lim
n

[
Prob

(
if f0 : A ↪→Mn then there is F with |F | ≥ nε and

f1 ∈ F ⇒ f0 ⊆ f1 : B ↪→Mn

)]
Proof ⇒ is obvious (as A <pr B implies A <s B).

Let us prove ⇐: we have A ≤s B and by fact 1.14(1) there is a sequence
A = A0 <pr A1 <pr · · · <pr Ak = B. The proof is by induction on k. The
induction step for k > 1 is by the second proof of 1.12 and k = 0 is 1.11(3).
So assume k = 1, hence A <pr B. By fact 1.14(2) if A < B′ ≤ B then
B′ ≤i B. Fix p ∈ (0, 1)R. If n is large enough then the probability of having
both

(a) for every f0 : A ↪→Mn there are at least nε different extensions f i1
satisfying f0 ⊆ f i1 : B ↪→Mn and

(b) for every a ∈ B \A and f+
0 : A ∪ {a} ↪→Mn there are at most nε/2

different extensions f i2 satisfying f+
0 ⊆ f i2 : B ↪→Mn

is ≥ 1− p (for clause (b) use A ∪ {a} <i B for every a ∈ B \A which holds

by 1.14(2)). Let f0 : A ↪→ Mn, and let 〈f j1 : j < j∗〉 be a maximal family
of pairwise disjoint extensions of f0 to an embedding of B into Mn. Let
F = {f : f is an embedding of B into Mn extending f0}. By (b) we have

nε ≤ |F | ≤ j∗ × |B \A| × |B \A| × nε/2.
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Hence if n is large enough, j∗ > nε/3 (with probability ≥ 1− p), and this is
enough. 1.15

Claim 1.16. clk,m(A,M) ⊆ clk
∗
(A,M) where k∗ = km.

Proof For ` ≤ m let k(`) = k`. For ` ≤ m define A` = clk,`(A,M). Now
if x ∈ Am then there is some ` < m such that x ∈ A`+1 \ A`. Let us prove

by induction on ` ≤ m that x ∈ A` ⇒ x ∈ clk(`)(A,M). For ` = 0 and ` = 1
this is clear. If x ∈ A`+1 \A` then there is C with |C| ≤ k such that x ∈ C
and C ∩ A` <i C. By the induction hypothesis, for y ∈ C ∩ A` we have
y ∈ clk(`)(A,M) hence there is Cy with |Cy| ≤ k(`) such that y ∈ Cy and
Cy ∩ A <i Cy. Let C0 =

⋃
y∈C∩A`

Cy ∩ A, C1 =
⋃

y∈C∩A`
Cy and C2 = C1 ∪ C.

As |C| ≤ k, we get

|C2| ≤ k(`) · |C ∩A`|+ |C \A`| ≤ k(`) · k ≤ k(`+ 1),

so (as x ∈ C2) it suffices to show that C0 ≤i C2 and by transitivity (i.e.
by 1.11(2)) it suffices to show that C0 ≤i C1 and that C1 ≤i C2. Why
C1 ≤i C2? Because C ∩ A` ≤i C and C ∩ A` ⊆ C1 ⊆ A` and hence
C1 ≤i C1 ∪ C = C2 by 1.11(4). Why C0 ≤i C1? Let C ∩A` = {ys : s < r}.
Now C0 ≤i C0 ∪ Cy0 by 1.11(4) because A ∩ Cy0 ≤i Cy0 and A ∩ Cy0 ⊆ C0

and similarly by induction

C0 ≤i C0 ∪ Cy0 ≤i C0 ∪ Cy0 ∪ Cy1 ≤i . . . ≤i C0 ∪
⋃
s<r

Cys = C1.

So as ≤i is transitive (1.11(2)) we are done. 1.16

Claim 1.17. For every ε ∈ R+ and `, k,m we have

1 = lim
n

[
Prob

(
if A ∈ K∞, |A| ≤ ` and f : A ↪→Mn

then |clk,m(f(A),Mn)| < nε

)]
.

Proof By the previous claim 1.16, w.l.o.g. m = 1. This holds by
Definition 1.4(3) and Definition 1.6. 1.17

Fact 1.18. (1) For every A and m, k, for any M ∈ K if f : A ↪→ M
then
(α) clk,m(f(A),M) ≤i1,k clk,m+1(f(A),M),

(β) for some m′ = m′(k,m) we have

f(A) ≤ik,m′ clk,m(f(A),M)

(we can get more),

(γ) f(A) ≤i clk,m(f(A),Mn) or the second is not in K∞.
(2) For every m, k, ` for some r we have:

for any A ∈ K∞,

1 = lim
n

[
Prob

(
if f : A ↪→Mn then f(A) ≤i`,r clk,m(f(A),Mn)

)]
.
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Remark 1.19. In our main case K = K∞.
Recall for 1.18(1)(γ) that clk,m(f(A),Mn) is in general not necessarily in
K∞.

Proof 1) We leave the proof of (α) and (β) to the reader. For proving

clause (γ), let A0 = f(A) and for ` ≤ m let A` = clk,`(f(A),M), and assume
Am ∈ K∞. So for ` < m we have A`+1 = A` ∪

⋃
j<m`

C`,j with |C`,j | ≤ k

and A`+1 ∩C`,j ≤i C`,j . It follows by 1.11(4) that 〈A` ∪
⋃
i<j

C`,i : j ≤ m`〉 is

≤i-increasing and A` ≤i A`+1. By induction we get A0 ≤i Am which is the
desired conclusion.
2) Read the proofs of 1.18(1) + 1.16. 1.18

Remark 1.20. In a more general context the previous conclusion is part of

the definition of “K is nice” and also
⋃

of 1.23 below is a basic property (on

the later see [Shea]).

Fact 1.21. K∞ is closed under isomorphisms and taking submodels.

Fact 1.22. For every `, k,m there is a first order formula ϕ(y, x0, . . . , x`−1)
such that for every M ∈ K and b, a0, . . . , a`−1 in M

M |= ϕ(b, a0, · · · , a`−1) iff b ∈ clk,m({a0, · · · , a`−1},M).

Proof By finiteness of τ (as τK is having no function symbols); or see
proof of clause (β) of 2.6.

Definition 1.23. C1

D⋃
B
C2 means: they are all submodels of D ∈ K, and

C1 ∩ C2 ⊆ B and for every relation symbol R in τ , if ā ⊆ C1 ∪ B ∪ C2 and
R(ā) holds then ā ⊆ C1 ∪B or ā ⊆ C2 ∪B (possibly both).

When D is clear from the context we may omit it.

2. Abstract Closure Context

Here we are inside the 0-1-context but without the ≤i and ≤s as defined in
§1, however clk is given. The main result is a sufficient condition for having
0-1 law or at least convergence. We have here some amount of freedom, so
we give two variants of the main result of this section: 2.16, 2.17, we shall use
2.17. Thus on a reading one may skip Definitions 2.8 (“possible”), 2.9 and
2.10, Remark 2.11 and Lemma 2.16 in favour of the alternative development
in Definitions 2.12, 2.13 and 2.17. Lemma 2.15 is needed in both cases and
we have made the two independent at the price of some repetition. We
want to “eliminate quantifiers” in a restricted sense: in the simple form we
quantify only on the closure so each ϕ(x̄) is equivalent to some ψϕ in which

quantifiers are over clk,m(x̄); all this is for a random enough model where

clk,m is “small”, still it is not necessarily “tiny”. The closure does not need

Paper Sh:467, version 2008-08-02 11. See https://shelah.logic.at/papers/467/ for possible updates.



ZERO ONE LAWS FOR GRAPHS... PART I 13

to be in K∞ (though in our application it is). The quantifier elimination
result generalizes the result of [BS97a]. The chief additional ingredient in
the proof here is the use of the addition (= Feferman–Vaught) theorem to
analyze a pair of models in stable amalgamation; this is necessary as we
do not have a priori bound on the size of the closure, whereas there we
have. Moreover, the argument in [BS97a] is simpler because <i is defined
concretely from a dimension function and moreover it deals with the “nice”
rather than almost nice case.

Note that the “simply∗” version (2.20 – 2.24) is used in §7.
Note that in this section we can forget about the probability distribution:

just deal with elimination of quantifiers. Note that the assumption “cl is
f.o. definable” (2.2 clause (d)) is not serious: if it fails all we have to do is

to allow “y ∈ clk(x̄)” as atomic formulas in ψϕ.

Context 2.1. In this context in addition to K (defined in 1.1) we have an
additional basic operation cl which is a closure operation for K (see 2.2), so
cl is in general not defined by Definition 1.6 and ≤i, ≤s, ≤a are defined by
Definition 2.5 and in general are not the ones defined in Definition 1.4. How-

ever, we use K∞ (from 1.4(1)). Lastly
⋃

is as in 1.23 (can be axiomatized

too and moreover generalize to the case of non–uniqueness, as in [Shea]).
For simplicity assume τK (the vocabulary of K) is finite with no function
symbols. In later sections (§4 – §7 but not §3) saying K means cl is from §1.

Definition 2.2. 1) We say cl is a closure operation for K if for M ∈ K and

k ∈ N the operation clk(X,M) is defined if and only if X ⊆ M and the
operation satisfies:

(a) X ⊆ clk(X,M) ⊆M , and X ⊆ Y ⊆M ⇒ clk(X,M) ⊆ clk(Y,M) ⊆
M ,

(b) (i) if clk(X,M) ⊆ N ⊆M then clk(X,N) = clk(X,M),

(ii) If X ⊆ N ⊆M then clk(X,N) ⊆ clk(X,M)

(c) for k ≤ `, clk(X,M) ⊆ cl`(X,M).

(d) the relation “b ∈ clk(A,M)” is preserved by isomorphism.

2) We say that the closure operation cl is f.o. definable if (e) below is true
(and we assume this when not said otherwise)

(e) the assertion “b ∈ clk({a0, . . . al−1},M)” is f.o. definable in K that
is there is a formula ψ(y, x0, ..., xl−1) such that if M ∈ K and
b, a0, ..., al−1 ∈M then b ∈ clk({a0, ..., al−1},M) iffM |= ψ[y, x0, ..., xl−1].

3) We say cl is transitive if for every k for some m, for every X ⊆ M ∈ K
we have clk(clk(X,M),M) ⊆ clm(X,M).

Definition 2.3. (1) For X ⊆ M and k,m ∈ N we define clk,m(X,M)
by induction on m:

clk,0(X,M) = X

clk,1(X,M) = clk(X,M)
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clk,m+1(X,M) = clk,1(clk,m(X,M),M)

(if we write clk,m−1(X,M) and m = 0 we mean clk,0(X,M) = X).

(2) We say the closure operation clk is (`, r)-local when:

for M ∈ K, X ⊆ M and Z ⊆ M if Z ⊆ clk(X,M), |Z| ≤ ` then

for some Y we have Z ⊆ Y , |Y | ≤ r and clk(Y ∩X,M � Y ) = Y .

(3) We say the closure operation cl is local if for every k, for some r, clk

is (1, r)-local. We say that cl is simply local if clk is (1, k)-local for
every k.

Remark 2.4. (1) Concerning “possible in K”(from Definition 2.8 below),
in the main case M0

n,p̄, it is degenerate, i.e. if ā ⊆ N ∈ K∞, B ⊆ N
then (N,B, ā, k,m) is possible. But for the case with the successor
relation it has a real role.

(2) Note: if clk is (1, r)-local and “y ∈ clk({x1, . . . , xr},M)” is f.o. de-

finable then for every m, s we have “y ∈ clk,m({x1, . . . , xs},M)” is
f.o. definable.

(3) Clearly clk,m1(clk,m2(X,M)) = clk,m1+m2(X,M) and k1 ≤ k2∧m1 ≤
m2 ⇒ clk1,m1(A,M) ⊆ clk2,m2(A,M).

(4) Note that if clk is (`1, r1)-local and r2 ≥ mr1 and `2 ≤ m`1 then clk

is (`2, r2)–local.

Definition 2.5 (For our 0-1 context (K, cl) with cl as a basic operation).

(1) A ≤i B if and only if A ⊆ B ∈ K∞ and for some k,m ∈ N and every
random enough Mn and for every embedding g : B ↪→Mn we have
g(B) ⊆ clk,m(g(A),Mn).

(2) A <s B if and only if A ⊆ B ∈ K∞ and for every k,m ∈ N and
random enough Mn and f : A ↪→ Mn there is g such that f ⊆ g,
and g : B ↪→ Mn with g(B) ∩ clk,m(f(A),Mn) = f(A). We define
≤pr, ≤sm,≤ik,m as in 1.4(5), (7), (8) respectively and A <a B means

A < B and ¬(A <s B).
(3) (K, cl) is weakly nice if for every A ⊆ C ∈ K∞, for some B we have

A ≤i B ≤s C.
(4) We say K (more exactly (K, cl)) is smooth1 when:

if A ⊆ B ⊆ N ∈ K∞, A ⊆ C ⊆ N , B
N⋃
A
C,

then B <i B ∪ C ⇔ A <i C
(note that ⇐ is always true).

(5) We say that clk is r-transparent if

A ≤i B & |B| ≤ r ⇒ clk(A,B) = B.

We say that cl is transparent if for every r for some k we have: clk

is r-transparent. We say that cl is simply transparent if for every k,
clk is k-transparent.

1 Smoothness is not used in [Shea], but the closure there has a priori bound, so the
definitions there will be problematic here. See more in [S+].
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Fact 2.6. Assume K is a 0 − 1 context (see 1.1) and cl is defined in 1.6
then

(α) cl is a closure operation for K∞ (see Def.2.2(1)),
(β) cl is f.o. definable (for K),

(γ) clk,m as defined in 1.6(c) and as defined 2.3 are equal,
(δ) cl is transitive,
(ε) cl is simply local (see Def.2.3(2),(3)),
(ζ) cl is transparent, in fact simply transparent,
(η) ≤i as defined in 2.5(1) and in 1.4 are equal,
(θ) If in §1, K is weakly nice (see Def.1.9) then (K∞, cl) is weakly nice

by Def.2.5(3); if so then ≤s as defined in 2.5(2) and 1.4(4) are the
same and <a as defined in 2.5(2) and in 1.4(6) are equal.

PROOF. (α) We have to show that (K∞, cl) from §1 satisfies clauses
(a), (b), (c), (d) from Def. 2.2(1).

(a) By the Def. 1.6 of (K∞, cl) the following holds: triviallyX ⊆ clk(X,M) ⊆
M . Assume X ⊆ Y ⊆ M . If b ∈ clk(X,M) then for some B, |B| ≤ k and
b ∈ B, X ∩ B ≤i B by Def.1.6. As X ⊆ Y and X ∩ B ≤i B we obtain
Y ∩B ≤i B by Fact 1.11(4). So B ⊆ clk(Y,M) witnessing that b ∈ clk(Y,M).
Hence clk(X,M) ⊆ clk(Y,M).

(b) (i) First, let’s show clk(X,N) ⊆ clk(X,M). If b ∈ clk(X,N) then let
B witness it and we have b ∈ B, B ⊆ N , B ∩X ≤i B, |B| ≤ k. As N ⊆M
the witness B is in M , B ∩X ≤i B so b ∈ clk(X,M). Second we will show

that clk(X,M) ⊆ clk(X,N): if b ∈ clk(X,M) then there is B witnessing it

such that b ∈ B ⊆ M ,B ∩ X ≤i B, |B| ≤ k. Now clearly B ⊆ clk(X,M)
hence by assumption B ⊆ N so b ∈ B ⊆ N , B ∩X ≤i B, |B| ≤ k and so B

witnesses b ∈ clk(X,N). So we get the result.

(ii) Included in the proof of clause (i).
(c) It follows immediately that (K, cl) holds by Def.1.6.
(d) Easy.

(β) We show that (K, cl) is f.o. definable. By Def.2.2(d) this means
that for each `, there is a formula ψ(y, x0, ..., x`−1) such that if M ∈ K and

b, a0, ...a`−1 ∈ M then: b ∈ clk({a0, ..., a`−1},M) iff M |= ψ(b, ..., a`−1). It
suffice to restrict ourselves to the case 〈b0, ..., b`−1〉 is with no repetition.

Let B = {(B, b̄) : B ∈ K∞ has ≤ `+ 1 elements, b̄ is a sequence of length
≤ ` + 1 listing the elements of B without repetitions}. On B the relation
∼= (isom.) is defined. We say (B′, b̄′) ∼= (B′′, b̄′′) if there is an isomorphism
h from B′ onto B′′ mapping b̄′ onto b̄′′. Now ∼= is an equivalence relation
on B. B/ ∼= is finite. So let {(Bi, b̄i) : i < i∗} be a set of representatives.
Now i∗ is finite as τ is finite (actually locally finite suffice). Let when
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ki = |Bi| = lg(b̄i)− 1

ϕi(x0, ..., xk) =∧
{θ(x0, ..., xk) : θ is a basic formula (possibly with dummy variables) and

Bi |= θ[b0, ..., bk]}.

Lastly

ψ(y, x0, ..., x`−1) =
∨
m<`

y = xm∨∨
{(∃z0, . . . , zk−1)(

∧
m<`

∨
t<k

xm = zt ∧ ϕi(z0, ..., zk−1, y)) :

Bi has exactly k + 1 members and Bi � {bit : t < `} ≤i Bi}

(γ) Trivial.
(δ) By 1.16.
(ε) Now, we will show that (K∞, cl) is simply local. For this we have

to show that clk is (1, k)-local for every k. Let X ⊆ M ∈ K∞ be given

and Z ⊆ clk(X,M) such that |Z| ≤ 1. If Z = ∅ let Y = ∅. So assume

Z = {y}. As y ∈ Z ⊆ clk(X,M) there is a witness set Y for y ∈ clk(X,M)

so Y ∩ X ≤i Y , |Y | ≤ k. As Y ∩ X ≤i Y , clearly clk(X ∩ Y, Y ) = Y and
Z = {y} ⊆ Y and |Y | ≤ k so we are done.
(ζ) Trivial by the definition of cl (Def.1.6) and of transparency (Def.2.5(5)).
(η) First assume A ≤i B by Def. 2.5 and we shall prove that A ≤i B by
Def. 1.4. So for some k,m we have:

(∗) for every random enough Mn and embedding g : B ↪→Mn we have

g(B) ⊆ clk,m(g(A),Mn).

Let ε > 0. Let Mn be random enough and f : A ↪→ Mn. By (*)
and 1.16 if g is an embedding of B into Mn extending f then we have
g(B) ⊆ clk

m
(g(A),Mn), hence

|ex(f,B,Mn)| ≤ |clk
m

(g(A),Mn)||B\A|. Let ζ = ε/(|B \ A| + 1), now if
Mn is random enough, then by 1.17 for every g : B ↪→ Mn we have
|clk

m
(g(A),Mn)||B\A| ≤ nζ , hence ex(f,B,Mn)| ≤ |nζ ||B\A| ≤ nε. As ε > 0

was arbitrary, we have proved that A ≤i B by Def.1.4.
Next assume A ≤i B by Def. 1.4 and we shall prove that A ≤i B

by Def.2.5. Choose k = |B| and m = 1, so clk,m = clk. So let Mn be

random enough, and g : B ↪→ Mn. Recall that clk(g(A),Mn) = ∪{C :
C ⊆ Mn, |C| ≤ k and C ∩ g(A) ≤i C}, so g(B) can serve such C, hence

g(B) ⊆ clk(g(A),Mn).
(θ) We shall use clause (η) freely. First assume that K is weakly nice
by Def.1.9 and we shall prove that (K, cl) is weakly nice by Def.2.5(3). So
assume A ≤ B. We can find C such that A ≤i C ≤ B and for no C ′,
A ≤i C ′ ≤ B, C ⊂ C ′;C ′ exist as A ≤i A ≤ B and B is finite. By 1.11(2)
for no C ′, do we have C <i C

′ ≤ B hence C ≤s B by Def.1.4, so it is enough
to prove that C ≤s B by Def.2.5(2), and w.l.o.g. C 6= B so C <s B. Let
k,m be given. As we are assuming that K is weakly nice by Def.1.9 and
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C <s B by Def.1.4(4) we have that there is an ε ∈ R+ such that

1 = lim
n

Prob

 if f0 : A ↪→Mn then there is F with |F | ≥ nε and
(i) f ∈ F ⇒ f0 ⊆ f : B ↪→Mn

(ii) f ′ 6= f ′′ ∈ F ⇒ Rang(f ′) ∩ Rang(f ′′) = Rang(f0)

 .
AsMn is random enough and f : A ↪→Mn, there is F as above for B with
|F | ≥ nε; but by 1.16 also

|clk,m(f(A),Mn)| ≤ |cl`(f(A),Mn)|

for l = km and by 1.7 we have

|clk
m

(f(A),Mn)| < nε

so |clk,m(f(A),Mn)| < nε.
As the sequence 〈Rang(g) \ Rang(f) : g ∈ F 〉 list a family of ≥ nε >

|clk,m(f(A),Mn)| pairwise disjoint subsets ofMn, for some g ∈ F , we have:

Rang(g) ∩ Rang(f) is disjoint to clk,m(f(A),Mn). So g is as required in
Def.2.5(2); so we have finished by proving C ≤s B by Def.2.5, hence we
have finished proving (K∞, cl) is weakly nice according to Def.2.5(3).
So we have proved the implication between the two version of weakly nice.
Second, assuming K is weakly nice by Def.1.9, we still have to say why
the two version of ≤s (by Def.1.4(4) and by 2.5(2)) are equivalent. Now if
C ≤s B by Def.1.4(4) then C ≤s B by Def.2.5(2) has been proved inside
the proof above that K weakly nice; by Def.1.4(3) implies (K, cl) is weakly
nice by Def.2.5(3). Lastly assume A ≤s B by Def.2.5(2), now if A <i C ≤ B
we get a contradiction directly from Def.2.5(2): but this confirm A ≤s B
according to Def.1.4(4).

Lastly we leave the statement on <a to the reader. 2.6

Remark 2.7. (1) Note that the assumption “K is weakly nice” is very
natural in the applications we have in mind.

(2) Why have we not prove the equivalence of the two versions of weakly
nice in 2.6(θ)? We can define the following 0− 1 context K: let Mn

be M0
n,p̄ if n is even with pn = 1/nα, α ∈ (0, 1)R irrational (except

p1 = 1/2α) and Mn is the random graph with probability 1/2 if n
is odd. Now in §1, K∞ is the family of finite graphs, and A ≤i B
iff A = B (using the odd n-s). Hence clk(A,M) = A so clearly
A < B ⇒ A <s B according to 1.4 hence weakly niceness by 2.5(3)
holds trivially but weakly niceness by Def.1.9 fails.

(3) Note that in Definitions 2.8, 2.9, 2.12 below, the “universal” demand
speak on a given situation in random enough Mn whereas the “ex-
istential demand” implicit in goodness deal with extensions of an
embedding into Mn.

(4) We would like to show that for every formula ϕ(x̄) (f.o. in the vo-
cabulary τK) there are (f.o.) ψϕ(x̄) and k = kϕ, m = mϕ such that

(∗)ϕ for every random enough Mn and ā ∈ lg(x̄)Mn we have
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K |= ϕ[ā]⇔Mn � clk,m(ā,Mn) |= ψϕ(x̄).
Naturally enough we shall do it by induction on the quantifier depth
of ϕ and the non-trivial case is ϕ(x̄) = (∃y)ϕ1(x̄, y), and we as-
sume ψϕ1(x̄, y), kϕ1 , mϕ1 are well defined. So we should analyze the

situation: Mn is random enough, ā ∈ lg(x̄)(Mn), Mn |= ϕ[ā] so
there is b ∈ Mn such that Mn |= ϕ1[ā, b], and we split it to two
cases according to the satisfaction of a suitable statement on a suit-
able neighbourhood of ā i.e., clk

′,m′(ā,Mn). If b belongs to a small
enough neighbourhood of ā this should be clear. If not we would
like to find a suitable situation (really a set of possible situation,
with a bound on their number depending just on ϕ) to guaran-

tee the existence of an element b with clkϕ1 ,mϕ1 (āb,Mn) satisfying

ψϕ1(ā, b). Now in general the clkϕ1 ,mϕ1 can be of large cardinality
(for ϕ, i.e. depending on Mn). In the nice case we are analyzing,
to find such a witness b outside a small neighbourhood of ā it will
suffice to look at clkϕ,mϕ(āb,Mn) essentially with small cardinality.

Why only essentially? As may be clkϕ1 ,mϕ2 (ā,Mn) is already large,

so what we should have is something is like: clkϕ1 ,mϕ1 (āb,Mn) \
clkϕ1,m2 (ā,Mn) can be replaced by a set of small cardinality. For

this we need
⋃

(the relation free amalgamation) to hold, possibly

replacing clkϕ1 ,m2(ā,Mn) by a subset (in §3 we can make it arbi-
trary, here quite definable) and the amalgamation base has an a
priori bound. By the addition theorem we may replace (B∗, b)b∈B
by similar enough (B′, b)b∈B (in particular when B∗ ∈ K∞ so we
need to express in such situation something like B∗ exists over B
(we can say such B exists by clause (b) of 2.8(4) using quantifiers

on clk,m(ā,Mn)). Well, B ≤s B∗ is a good approximation. But this
does not say that cl(āb,Mn) is suitable. So we need to say first that
the closure of āb in essentially B∗ ∪B2 where B2 = clkϕ1 ,m2(ā,Mn),
obeys a version of the addition theorem, and secondly that B∗ sit
in Mn in a way where the closure is right. All this is carried out
in Def.2.8(4) (of good saying: we have a tuple in a situation which
exist whenever a copy of B as above exist) and 2.9 (when there are
B etc. as above). The proof is carried out in 2.16.

(5) Defining good, by demanding the existence of the embedding g :
B∗ ↪→ Mn extending f : B ↪→ Mn, we demand on f only lit-
tle: it is an embedding. We may impose requirements of the form
clki,mi(f(Bi),Mn) ⊆ f(B) or clki,mi(f(Bi),Mn)∩ f(B) = f(Ci) for
some Bi,Ci ⊆ B. This make it easier for a tuple to be good. Thus
giving a version of almost nice covering more cases. In other pos-
sible strengthening we do not replace B∗ by B′ ∈ K∞ of bounded
cardinality but look at it as a family of possible ones all similar in
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the relevant sense. On the other hand we may like simpler version
which are pursued in 2.13, 2.17.

(6) Note that if clk is r-transparent and A ⊆ M ∈ K then clk(A,M) ⊇
∪{C ⊆M : C ∩A ≤i C and |C| ≤ r}. [Why? if C ⊆M , C ∩A ≤i C
and |C| ≤ r then : first clk(C ∩ A,C) = C as clk is r-transparent;

second clk(C ∩ A,C) ⊆ clk(C ∩ A,M) by (b)(ii) of Def. 2.2 (1),

third clk(C ∩ A,M) ⊆ clk(A,M) as C ∩ A ⊆ M by clause (a) of

Def.2.2(1); together we are done]. Note that if clk is (1, r)-local we
can prove the other inclusion. So obviously if (K, cl) is simply local
and simply transparent (and τK is finite or at least locally finite
of course), then cl is f.o. definable. If we omit the simple we can
eliminate the assumption cl is f.o. definable in 2.16, 2.17.

Definition 2.8. (1) We say (N,B, B̄, k) is possible for (K, cl) if:

(a) B̄ = 〈Bi : i < lg(B̄)〉, Bi ⊆ N ∈ K∞, B ⊆ N and clk(Bi, N) ⊆
Bi+1 for i < `g(B̄)− 1

(b) it is not true that:
for every random enoughMn, for no embedding f : N ↪→Mn,
do we have:

for i < `g(B̄)− 1, clk(f(Bi),Mn) ⊆ f(clk(Bi), N) ∪ clk(f(B),Mn).

(2) If we write (N,C,B, k) we mean (N,C, 〈B, clk(B,N)〉, k).
(3) We say (N,B, ā, k,m) is possible for K if (N,B, B̄, k) is possible for

K where B̄ = 〈clk,i(ā, N) : i ≤ m〉.
(4) We say that the tuple (B∗, B,B0, B1, k,m1,m2) is good for (K, cl) if

(a) B ≤ B∗ ∈ K∞ and, B0 ≤ B1 ≤ B∗ ∈ K∞
(b) for every random enough Mn we have: if f : B ↪→ Mn then

there is an extension g of f satisfying g : B∗ ↪→Mn and
(α) g(B∗) ∩ clk,m2(f(B),Mn) = f(B),

(β) clk,m1(g(B0),Mn) ⊆ g(B1) ∪ clk,m2(g(B),Mn)))

(γ) Mn � g(B∗)
Mn⋃

Mn � f(B)
Mn � clk,m2(f(B),Mn).

Definition 2.9. The 0-1 context K with closure cl (or the pair (K, cl) or K
when cl is understood) is almost nice if it is weakly nice and

(A) the universal demand:
for every k,m0 and `, `′ there are

m∗ = m∗(k,m0, `, `
′) > m0, k

∗ = k∗(k,m0, `, `
′) ≥ k and t = t(k,m0, `, `

′)

such that, for every random enough Mn we have:
if ā ∈ `|Mn| and b ∈Mn \ clk

∗,m∗(ā,Mn)
then there are m2 ∈ [m0,m

∗] and m1 ≤ m∗ − m2 and B ⊆
clk,m1(ā,Mn) and B∗ ⊆Mn such that:

(α) |B| ≤ t and ā ⊆ B,

Paper Sh:467, version 2008-08-02 11. See https://shelah.logic.at/papers/467/ for possible updates.



20 SAHARON SHELAH

(β) B∗ = [clk,m0(āb,Mn) \ clk,m2(B,Mn)]∪B so necessarily b ∈ B∗ and
ā ⊆ B∗, (see 2.11 below)

(γ) B <s B
∗ or at least:

for every first order formula ϕ = ϕ(. . . , xa, . . .)a∈B of quantifier depth
≤ `′ there is B′ such that B <s B

′ (so B′ ∈ K∞) and

B∗ |= ϕ(. . . , a, . . .)a∈B iff B′ |= ϕ(. . . , a, . . .)a∈B,

(δ) Mn � B∗
Mn⋃
Mn � B

Mn � clk,m2(B,Mn),

(ε) (B∗, B, āb, B∗ ∩ clk,m0(āb,Mn)), k,m0,m2) is good for (K, cl) or at
least for some B′, B′′ we have2

(i) (B′, B, āb, B′′, k,m1,m2) is good for (K, cl)
(ii) (B∗, clk,m0(āb,Mn) ∩B∗), b, c)c∈B ≡`′ (B′, B′′, b, c)c∈B,
(ζ) for m ≤ m0 we have

clk,m(āb, B∗) = B∗ ∩ clk,m(āb,Mn).

Definition 2.10. If in Def 2.9 above, k∗ = k in clause (A) then we add
“k–preserving”.

Remark 2.11. (1) Note that if K = K∞ and cl is local (or just clk is
(lk, rk)-local for each k) (which holds in the cases we are interested
in) then in clauses (γ), (ε) of (A) in Def.2.9 above the two possibilities
are close.

(2) Why in 2.9(A)(β) we have “necessarily b ∈ B∗”? Because

b ∈ Rang(āb) ⊆ clk,m0(āb,Mn) and

clk,m2(B,Mn) ⊆ clk,m2(clk,m1(ā,Mn),Mn) ⊆ clk,m1+m2(ā,Mn)

⊆ clk,m
∗
(ā,Mn) ⊆ clk

∗,m∗(ā,Mn)

and b does not belong to the later.
(3) Why do we use clk,m2(B,Mn)? Part of our needs is that this set is

definable from B without b.
(4) In clause (γ), Definition 2.9 clause (A), there is one B′ for all such

ϕ (Why? As the set of f.o. formulas of quantifier depth ` is closed
under Boolean combinations) so for some B′ ∈ K∞ we have B ≤s B′,
and (B′, c)c∈B ≡` (B∗, c)c∈B. So we could have phased clause (ii) of
(A)(ε) in the same way as clause (γ).

In our main case, also the following variant of the property applies (see
2.18 below).

Definition 2.12. 1) We say that the quadruple (N,B, 〈B0, B1〉, k) is simply
good for (K, cl) if (B, B0, B1 ≤ N ∈ K∞ and) for every random enoughMn,
for every embedding f : B ↪→ Mn there is an extension g of f satisfying
g : N ↪→Mn such that:

2M1 ≡`′ M2 means; M1,M2 satisfy the same f.o. sentences of quantifier depth ≤ `′

Paper Sh:467, version 2008-08-02 11. See https://shelah.logic.at/papers/467/ for possible updates.



ZERO ONE LAWS FOR GRAPHS... PART I 21

(i) g(N) ∩ clk(f(B),Mn) = f(B),

(ii) g(N)
⋃

f(B)
clk(f(B),Mn),

(iii) clk(g(B0),Mn) ⊆ g(B1) ∪ clk(g(B),Mn)

(natural but not used is clk(g(B0),Mn)∩g(N) = g(clk(B0, N))). If we write
B0 instead of 〈B0, B1〉, we mean B1 = N .
2) We say that (N,B, 〈B0, B1〉, k, k′) is simply good if part (1) holds replacing
(iii) by

(iii)′ clk(g(B0),Mn) ⊆ g(B1) ∪ clk
′
(g(B),Mn).

Definition 2.13. 1) The 0-1 context with closure (K, cl) is simply almost
nice if it is weakly nice and

(A) the universal demand:
for every k and `, `′ there are

m∗ = m∗(k, `, `′), k∗ = k∗(k, `, `′) ≥ k and t = t(k, `, `′)

such that for every random enough Mn we have:
if ā ∈ `|Mn| and b ∈Mn \ clk

∗,m∗(ā,Mn)

then there are B ⊆ clk
∗,m∗(ā,Mn) and B∗ ⊆Mn such that:

(α) |B| ≤ t and ā ⊆ B and clk(B,Mn) ⊆ clk
∗,m∗(ā,Mn),

(β) B∗ = [clk(āb,Mn) \ clk(B,Mn)] ∪B
(or at least B∗ ⊇ [clk(āb,Mn) \ clk(B,Mn)] ∪B),

(γ) B <s B
∗ (so B∗ ∈ K∞) or at least for every first order formula

ϕ = ϕ(xb, . . . , xa, . . .)a∈B of quantifier depth ≤ `′ there is B′

such that B <s B
′ (so B′ ∈ K∞) and:

B∗ |= ϕ(b, . . . , c, . . .)c∈B iff B′ |= ϕ(b, . . . , c, . . .)c∈B

(or even , but actually equivalently, (B∗, b, . . . , c, . . .)c∈B ≡`′
(B′, b, . . . , c, . . .)c∈B),

(δ) Mn � B∗
Mn⋃
Mn � B

Mn � clk(B,Mn)

(ε) B∗ ∈ K∞ and (Mn � B∗, B, āb, k) is simply good for (K, cl) or
at least for some B′, b′ we have:

(i) (B′, B, āb′, k) is simply good for (K, cl) and
(ii) (B∗, b, . . . , c, . . .)c∈B ≡`′ (B′, b′, . . . , c, . . .)c∈B.

2) If above always k∗ = k we say: K is simply almost nice depth preserving.
3) We say that (K, cl) is simply nice (i.e. omitting the almost) if 2.13(1)
holds but we omit clause (ε) and add

(B) if B <s B
∗ and k ∈ N then (B∗, B,B∗, k) is simply good.

(C) K∞ = K (or at least if A ∈ K∞ and k,m ∈ N then for any random

enough Mn for any f : A ↪→Mn, clk,m(A,Mn) ∈ K∞.

Similarly in Definition 2.9 for “nice”.
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Remark 2.14. 1) In 2.13(1) we can weaken the demands (and call (K, cl)
simply⊗ almost nice): get also k⊗ = k⊗(k, `, `′) ∈ N replace in clause (β)

clk(B,Mn) by clk
⊗

(B,Mn) and replace (ε) by

(ε′) (B′, B, āb, k, k⊗) is simply good for (K, cl) (see 2.12(2)) or at least
for some B′, b′ we have:

(i) (B′, B, āb′, k, k⊗) is simply⊗ good
(ii) (B∗, b, . . . , c, . . .)c∈B ≡`′ (B′, b′, . . . , c, . . .)c∈B

The parallel change in 2.13(3) (that is defining simply⊗ nice) is

(B)′ for every k, ` ∈ N for some k⊗ = k⊗(k, `) ∈ N we have: if B <s B
∗

and |B| ≤ `, then (B∗, B,B∗, k, k⊗) is simply good.

This does not change the conclusions i.e (2.13, 2.17, 2.18, 2.19).
2) We can change Definition 2.9 as we have changed Definition 2.13(1) in
2.13(3) and/or in 2.14(1).
3) If c` is transparent we can without loss of generality demand in 2.13(1)(A)

that m∗(k, `, `′) = 1 at the expense of increasing k∗, as if clk
∗∗

(ā,M) ⊇
clk
∗,m∗(ā,M) whenever ā ∈ `|M |, M ∈ K then k∗∗ will do.

4) We can omit clause (γ) in Def.2.13(1), but it is natural. Similarly in
Def.2.9 (i.e. those omitting do not change the later claims).

Lemma 2.15 below (the addition theorem, see [?] or [Gur85] and see more
[She96a]) is an immediate a corollary of the well known addition theorem;

this is the point where
⋃

is used.

Lemma 2.15. For finite vocabulary τ and f.o. formula (in τ) ψ(z̄, z̄1, z̄2),
z̄ = 〈z1, . . . , zs〉, there are i∗ ∈ N and τ - formulas θ1

i (z̄, z̄
1) = θ1

i,ψ(z̄, z̄1),

θ2
i (z̄, z̄

2) = θ2
i,ψ(z̄, z̄2) for i < i∗, each of quantifier depth at most that of ψ

such that:

if N is τ -model, N1

N⋃
N0

N2, N1 ∩N2 = N0, N1 ∪N2 = N and

the set of elements of N0 is {c1, . . . , cs}, c̄ = 〈c1, . . . , cs〉 and

c̄1 ∈ `gz̄1
(N1) and c̄2 ∈ `gz̄2

(N2)
then:

N |= ψ[c̄, c̄1, c̄2] iff for some i < i∗, N1 |= θ1
i [c̄, c̄

1] and N2 |= θ2
i [c̄, c̄

2].

Main Lemma 2.16 (Context as above). Assume (K, cl) is almost nice and
cl is f.o. definable.
1) Let ϕ(x̄) be a f.o. formula in the vocabulary τK. Then for some mϕ ∈ N
and k = kϕ ≥ `g(x̄) + q.d.(ϕ(x̄)) and for some f.o. ψϕ(x̄) we have:

(∗)ϕ for every random enough Mn and ā ∈ `g(x̄)|Mn| we have

(∗∗) Mn |= ϕ(ā) if and only if Mn � clkϕ,mϕ(ā,Mn) |= ψϕ(ā).

2) Moreover, if for simplicity we will consider “y ∈ clk,m(x̄,M)” as an
atomic formula when computing the q.d.3 of ψϕ then we can demand: the

3 q.d stand for quantifier depth
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number of alternation of quantifiers of ψϕ is ≤ those of ϕ, more fully if ϕ
is a Πn (or Σn) then so is ψϕ.

Proof We shall ignore (2), (which is not used and is obvious if we un-
derstand the proof below). We prove the statement in part (1) by induction
on r = q.d.(ϕ(x̄)) and first note (by clause (e) of Def.2.2 as “y ∈ clk,m(x̄)”
is f.o. definable in K) that (∗)ϕ implies

(∗)+
ϕ in (∗)ϕ, possibly changing ψϕ one can replace Mn � clkϕ,mϕ(ā,Mn)

by any N with clkϕ,mϕ(ā,Mn) ⊆ N ⊆Mn.

Case 1 ϕ atomic. Trivial [Proof of Case 1: If ϕ(x̄) is an atomic formula we let

mϕ = 0, kϕ = 0 or whatever. So clkϕ,mϕ(ā,Mn) = ā for our kϕ, mϕ. Assume

Mn |= ϕ(ā) and we let ψϕ = ϕ. Now as ā ⊆ Mn � clkϕ,mϕ(ā,Mn) ⊆ Mn

we have Mn |= ϕ(ā) iff clkϕ,mϕ(ā,Mn) |= ψϕ(ā) as required].

Case 2: ϕ is a Boolean combination of atomic formulas and the formulas of
the form ∃xϕ′(x, ȳ) with q.d.(ϕ′) < r. Clearly follows by case 3 and case 1.
Case 3: r > 0 and ϕ(x̄) = (∃y)ϕ1(x̄, y). Let

(∗)1 m∗ = m∗(kϕ1 ,mϕ1 , `g(x̄), `′), kϕ = k∗(kϕ1 ,mϕ1 , `g(x̄), `′),
t = t(kϕ1 ,mϕ1 , `g(x̄), `′)

be as guaranteed in Def.2.9 with `′ suitable (see its use below) and let
mϕ := m∗+mϕ1 . Let ψ1

ϕ1
be such that it witness (∗)ϕ1 , and let ψ2

ϕ1
be such

that it witness (∗)+
ϕ1

.
So it is enough to prove the following two statements:

Statement 1: There is ψ1
ϕ(x̄) (f.o) such that:

(�)1 for every random enough Mn, for every ā ∈ `g(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn � clkϕ,mϕ(ā,Mn) |= ψ1
ϕ(ā)

(β)1 Mn |= “there is b ∈ clkϕ,m
∗
(ā,Mn) such that ϕ1(ā, b) holds”

(i.e. b belongs to a small enough neighbourhood of ā).

Statement 2: There is ψ2
ϕ(x̄) (f.o) such that:

(�)2 for every random enough Mn and for every ā ∈ `g(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn � clkϕ,m
∗
(ā,Mn) |= ψ2

ϕ(ā)

(β)2 Mn |= “there is b ∈ Mn \ clkϕ,m
∗
(ā,Mn) such that ϕ1(ā, b)

holds” (i.e. b is far from ā)

(note: (β)1, (β)2 are complementary, but it is enough that always at least
one of them holds).

Note that as “y ∈ clkϕ,m
∗
(x̄)” is f.o definable and mϕ = m∗+mϕ1 ≥ m∗, by

2.2 and clause (e), we can in (α)2 replace m∗ by mϕ, changing ψ2
ϕ to ψ2.5

ϕ .

Clearly these two statements are enough and ψ1
ϕ(x̄)∨ψ2.5

ϕ (x̄) is as required.

Paper Sh:467, version 2008-08-02 11. See https://shelah.logic.at/papers/467/ for possible updates.



24 SAHARON SHELAH

Proof of statement 1:
Easy, recalling that kϕ = k∗ ≥ kϕ1 by clause (A) of Def.2.9, by the induction

hypothesis as (assuming b ∈ c`kϕ1 ,m
∗
(ā,Mn))

clkϕ1 ,mϕ1 (āb,Mn) ⊆ clkϕ,m
∗+mϕ1 (ā,Mn) = clkϕ,mϕ(ā,Mn)

and by the fact that the closure is sufficiently definable.

Proof of statement 2:
We will use a series of equivalent statements ⊗`.
⊗1 is (β)2

⊗2 there are m2 ∈ [mϕ1 ,m
∗], m1 ≤ m∗−m2, b, B, B∗ and B′ such that:

(α) b ∈Mn, b /∈ clkϕ,m
∗
(ā,Mn), ā ⊆ B ⊆ clkϕ1 ,m1(ā,Mn), |B| ≤ t,

(β) B∗ = B ∪ [clkϕ1 ,mϕ1 (āb,Mn) \ clkϕ1 ,m2(B,Mn)] [hence B = B∗ ∩
clkϕ1 ,m2(B,Mn)] and

(γ) B ≤s B′ ∈ K∞ and B′ = B∗ or at least (B∗, b, c)c∈B ≡`′ (B′, b, c)c∈B
(see 2.11(4)) and

(δ)

B∗
Mn⋃
B

clkϕ1 ,m2(B,Mn)

(ε) (B′, B, āb, B∗ ∩ clkϕ1 ,m0(āb,Mn), kϕ1 ,m0,m2) is good,

(ζ) for m ≤ mϕ1 we have clkϕ1 ,m(āb, B∗) = B∗ ∩ clkϕ1 ,m(āb,Mn)

and

⊕2 Mn |= ϕ1(ā, b)

(∗)2 ⊗1 ⇔ ⊗2

Why? The implication ⇐ is trivial as ⊕2 is included in ⊗2, the impli-
cation ⇒ holds by clause (A) in the definition of almost nice 2.9, except
b /∈ clkϕ,m∗(ā,Mn) which is explicitly demanded in (β)2.

⊗3 like ⊗2 but replacing ⊕2 by
⊕3 Mn � clkϕ1 ,mϕ1 (āb,Mn) |= ψ1

ϕ1
(ā, b).

(∗)3 ⊗2 ⇔ ⊗3

Why? By the induction hypothesis.

⊗4 like ⊗3 replacing ⊕3 by
⊕4 Mn � [B∗ ∪ clkϕ1 ,m2(B,Mn)] |= ψ2

ϕ1
(ā, b).

(∗)4 ⊗3 ⇔ ⊗4

Why? By (∗)+
ϕ1

in the beginning of the proof, the definition of B∗ and

the choice of ψ2
ϕ1

(Let ⊗3 be true. As by the choice of B∗, B above,

clkϕ1 ,mϕ1 (āb,Mn)∪clkϕ1 ,m2(B,Mn) ⊆ B∗∪clkϕ1 ,m2(B,Mn) ⊆Mn we have
Mn |= ϕ1(ā, b) iff

B∗ ∪ clkϕ1 ,m2(B,Mn) |= ψ2
ϕ1

(āb) by (∗)+
ϕ1

). So (∗)4 holds.)
For notational simplicity we assume B 6= ∅, and similarly assume ā is

with no repetition and we shall apply the lemma 2.15 several times.
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First, for m ≤ mϕ1 we apply 2.15 to the case s = t, z̄ = 〈z1, . . . , zt〉, z̄1 =

〈z1
1 , z

1
2〉, z̄2 empty and the formula “z1

2 ∈ clkϕ1 ,m(z̄, z1
1)” and get i∗1,m ∈ N

and formulas θ1
1,m,i(z̄, z

1
1 , z

1
2) and θ2

1,m,i(z̄) for i < i∗1,m. Let

u∗1 = {(m, i) : m ≤ mϕ1 , i < i∗1,m}.

Second for m ≤ mϕ1 we apply 2.15 to the case s = t, z̄2 = 〈z2
1〉, z̄1 = 〈z1

1〉,
z̄ = 〈z1, . . . , zt〉 and the formula “z2

1 ∈ clkϕ1 ,m(z̄, z1
1)” and get i∗2,m ∈ N and

formulas θ1
2,m,i(z̄, z̄

1) and θ2
2,m,i(z̄, z

2
1), for i < i∗2,m.

Let τ ′ = τK ∪ {P1, P2}, with P1, P2 new unary predicates: for θ ∈ L[τ ′]

let θ[P`] be θ restricting the quantifiers to P`. Let ψ∗ = ψ∗1 ∧ ψ∗2 ∧ ψ∗3 where

ψ∗1 =: ψ2
ϕ1

(z1, . . . , z`g(x̄), z
1
1)

ψ∗2 =:
∧

m≤mϕ1

(∀y)
[
y ∈ clkϕ1 ,mϕ1 ({z1, . . . , z`g(x̄), z

1
1})

≡
(
ψ∗,12,m(z1, . . . , zt, z

1
1 , y) ∨ ψ∗,22,m(z1, . . . , zt, z

1
1 , y)

)]
,

where

ψ∗,12,m(z1, . . . , zt, z
1
1 , y) =:

∨
i<i∗1,m

(θ1
1,m,i(z1, . . . , zt, z

1
1 , y)[P1]∧θ2

1,m,i(z1, . . . , zt)
[P2])

ψ∗,22,m(z1, . . . , zt, z
1
1 , y) =:

∨
i<i∗2,m

(θ2
1,m,i(z1, . . . , zt, z

1
1)[P1]∧θ2

2,m,i(z1, . . . , zt, y)[P2])

and let

ψ∗3 =: (∀y)
(
P1(y) ≡ [

t∨
`=1

y = z`∨

(y ∈ clkϕ1 ,mϕ1 ({z1, . . . , z`g(x̄), z
1
1})

∧ y /∈ clkϕ1,m2 ({z1, ..., zlg(x̄)}))]
)
.

So we have defined ψ∗. Now we apply 2.15 the third time, with the
vocabulary τK ∪ {P1, P2} to the case s = t, z̄2 empty, z̄1 = 〈z1

1〉, z̄ =
〈z1, . . . , z`〉, and ψ(z̄, z̄1, z̄2) = ψ(z̄, z1

1) = ψ∗(〈z1, . . . , z`g(̄x̄)〉, z1
1) and get i∗,

θ1
3,i(z̄, z̄

1) and θ2
3,i(z̄, z̄

2) as there. Let

⊗5 like ⊗4 but replacing ⊕4 by
⊕5 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , c`g(x̄)〉 = ā and letting

P ∗1 = B∗ and P ∗2 = clkϕ1 ,m2({c1, . . . , ct},Mn)

we have
(∗) (Mn � (P ∗1 ∪P ∗2 ), P ∗1 , P

∗
2 ) |= ψ∗[c1, . . . , ct, b] (the model is

a τ ′-model).

Now
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(∗)5 ⊗4 ⇔ ⊗5.

Why? Look at what the statements mean recalling Mn � P ∗1
Mn⋃
B
Mn � P ∗2 .

Next let

⊗6 like ⊗5 but replacing ⊕5 by
⊕6 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , c`g(x̄)〉 = ā and letting

P ∗1 = B∗ and P ∗2 = clkϕ2 ,m1({c1, . . . , ct},Mn)

there is i < i∗ such that:
(i) (Mn � P ∗1 , P

∗
1 , P

∗
2 ∩ P ∗1 ) |= θ1

3,i[〈c1, . . . , ct〉, b],
(ii) (Mn � P ∗2 , P

∗
1 ∩ P ∗2 , P ∗2 ) |= θ2

3,i[〈c1, . . . , ct〉].
Now

(∗)6 ⊗5 ⇔ ⊗6

Why? By the choice of θ1
3,i, θ

2
3,i (i < i∗).

However in the two τ ′-models appearing in ⊕6, the predicates P1, P2

are interpreted in a trivial way: as the whole universe of the model or as
{c1, . . . , ct}.

So let:

(a) θ1
4,i(z1, . . . , zt, y) be θ1

3,i(z1, . . . , zt, y) with each atomic formula of

the form P1(σ) or P2(σ) being replaced by σ = σ or
∨t
r=1 σ = zr

respectively,
(b) θ2

4,i(z1, . . . , zt) be θ2
3,i(z1, . . . , zt) with each atomic formula of the form

P1(σ) or P2(σ) being replaced by
∨t
r=1 σ = zr or σ = σ respectively.

So let (recall B′ is mentioned in ⊗2, a “replacement” to B∗)

⊗7 like ⊗6 but replacing ⊕6 by
⊕7 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , c`g(x̄)〉 = ā, there is i < i∗ such that

(i) Mn � B′ |= θ1
4,i[〈c1, . . . , ct〉, b] and

(ii) Mn � clkϕ1 ,m2(〈c1, . . . , ct〉,Mn) |= θ2
4,i(〈c1, . . . , ct〉).

(∗)7 ⊗6 ⇔ ⊗7

Why? By the choice of the θ1
4,i, θ

2
4,i and the property of B′ (stated in ⊗2).

Let P = {(N, c1, . . . , ct) : N ∈ K∞, with the set of elements {c1, . . . , ct}}.
Let {(Nj , c

j
1, . . . , c

j
t ) : j < j∗} list the members of P up to isomorphism,

so with no two isomorphic. For every j < j∗ and i < i∗ choose if possible

(Nj,i, c
j
1, . . . , c

j
t , b

j
i ) such that:

(i) Nj ≤s Nj,i (in K∞),

(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
4,i(〈c

j
1, . . . , c

j
t 〉, b

j
i ) and

(iv) (Nj,i, B, {cji : i = 1, . . . , `g(x̄)} ∪ {bji}, k,m0,m2) is good for K.
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Let

w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c
j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let

⊗8 there are m2 ≤ m∗, m1 ≤ m∗ −m2, such that m2 ≥ mϕ1 and, there
are b, B such that:
ā ⊆ B ⊆ clk

∗,m2(ā,Mn), |B| ≤ t(kϕ1 ,mϕ1 , `g(x̄)), b /∈ clk
∗,m∗(ā,Mn),

b ∈Mn, and
⊕8 for some c1, . . . , ct listing B such that ā = 〈c1, . . . , c`gx̄〉 there

are i < i∗, j < j∗ such that (i, j) ∈ w and:

(i) (Mn � B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t ) i.e. the mapping

cj1 7→ c1, cj2 7→ c2 embed Nj into Mn,

(ii) Mn � clkϕ1 ,m2(B,Mn) |= θ2
4,i(〈c1, . . . , ct〉)

(∗)8 ⊗7 ⇔ ⊗8

Why? For proving ⊗7 ⇒ ⊗8 let c1, . . . , ct as well as i < i∗ be as in ⊕7, let

j < j∗ be such that (Mn � B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t ). The main point

is that B′ exemplifies that (i, j) ∈ w.
For proving ⊗8 ⇒ ⊗7 use the definition of goodness in clause (ε) (see ⊗2

and Def. in 2.8(4).
We now have finished as ⊗8 can be expressed as a f.o formula straightfor-

wardly. So we have carried the induction hypothesis on the quantifier depth
thus finishing the proof. 2.16

Lemma 2.17. 1) Assume (K, cl) is simply almost nice and cl is f.o. defin-
able. Let ϕ(x̄) be a f.o. formula in the vocabulary τK. Then for some k = kϕ
and f.o. formula ψϕ(x̄) we have:

(∗) for every random enough Mn and ā ∈ `g(x̄)|Mn|
(∗∗) Mn |= ϕ(ā) if and only if Mn � clkϕ(ā,Mn) |= ψϕ(ā)

2) The number of alternation of quantifiers of ψϕ in (1) is ≤ the number of

alternation of quantifiers of ϕ if we consider “y ∈ clk,m(x̄,M)” as atomic.
More fully, if ϕ is Πn (or Σn) then ψϕ is.

Remark 2.18. (1) Of course we do not need to assume that closure op-
eration is definable, it is enough if there is a variant cl∗ which is
definable and for every k,m there are k1,m1, k2,m2 such that al-

ways clk,m(A,M) ⊆ clk
1,m1

∗ (A,M) ⊆ clk
2,m2

(A,M).
(2) Similarly in 2.16 (using Def.2.10).
(3) We can weaken “simply almost nice” as in Remark 2.14(1) and still

part (1) is true, with essentially the same proof.
(4) The proof of 2.17 is somewhat simpler than the proof of 2.16.

Proof 1) We prove the statement by induction on r = q.d.(ϕ(x̄)). First
note (by clause (e) of 2.2)
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(∗)+
ϕ in (∗) (of 2.17, possibly changing ψϕ) one can replaceMn � clkϕ(ā,Mn)

by any N with clkϕ(ā,Mn) ⊆ N ⊆Mn.

Case 1: Let ϕ be atomic. Trivial.

Case 2: ϕ a Boolean combination of atomic formulas and formulas of the
form ∃xϕ′(xȳ) with q.d.(`′) < r. Clearly follows by case 3 and case 1.
Trivial.

Case 3: r > 0 and ϕ(x̄) = (∃y)ϕ1(x̄, y). Let (the functions are from 2.13(1))

m∗ = m∗(kϕ1 , `g(x̄), `′), k∗ = k∗(kϕ1 , `g(x̄), `′), t = t(kϕ1 , `g(x̄), `′)

with `′ suitable (just the quantifier depth of ψ2
ϕ1

defined below) and let kϕ
be4 such that:

(∗)1 |A| ≤ `g(x̄)+1 &A ⊆ N ∈ K ⇒ clkϕ1 (clk
∗,m∗(A,N), N) ⊆ clkϕ(A,N).

Let ψ1
ϕ1

(x̄, y) be such that it witness (∗)ϕ1 holds, and let ψ2
ϕ1

(x̄, y) be such

that it witness (∗)+
ϕ1

.
It is enough to prove the following two statements (see below):

Statement 1: There is ψ1
ϕ(x̄) (f.o.) such that:

(�)1 for every random enough Mn, for every ā ∈ `g(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn � clkϕ(ā,Mn) |= ψ1
ϕ(ā)

(β)1 Mn |= “there is b ∈ clk
∗,m∗(ā,Mn) such that ϕ1(ā, b) holds.”

Statement 2: There is ψ2
ϕ(x̄) (f.o) such that:

(�)2 for every random enough Mn and for every ā ∈ `g(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn � clk
∗,m∗(ā,Mn) |= ψ2

ϕ(ā)

(β)2 Mn |= “there is b ∈ Mn \ clk
∗,m∗(ā,Mn) such that ϕ1(ā, b)

holds”

(note: (β)1, (β)2 are complementary, but it is enough that always at least
one holds).

Note that as “y ∈ clk
∗,m∗(x̄)” is f.o. definable, by 2.2, clause (e) and the

choice of kϕ we can in (α)2 replace clk
∗,m∗ by clkϕ , changing ψ2

ϕ to ψ2.5
ϕ ; (just

as from (∗) we have deduced (∗)+
ϕ ).

Clearly these two statements are enough as ψ1
ϕ(x̄) ∨ ψ2.5

ϕ (x̄) is as required.

Proof of statement 1:

4if we change clause (A) of 2.13(1) a little, kϕ = k∗ will be O.K.: instead of assuming b /∈
clk
∗,m∗(ā,Mn) assume just clk(āb,Mn) 6⊆ clk

∗,m∗(ā,Mn). Allowing to increase m∗, the
two versions are equivalent. m∗∗ = m∗∗(k, `, `′) = m∗(k, `, `′) + k. Now by 2.4(3) we have

b ∈ clk
∗,m∗(ā,Mn) and c ∈ clk(āb,Mn)⇒ c ∈ clm

∗+k(ā,Mn) = clm
∗∗

(ā,Mn) hence b ∈
clk
∗,m∗(ā,Mn) ⇒ clk(āb,Mn) ⊆ clk,m

∗∗
(ā,Mn) hence clk(āb,Mn) * clk,m

∗∗
(ā,Mn) ⇒

b /∈ clk
∗,m∗(ā,Mn), so our new assumption for m∗∗ implies our old for m∗. Of course our

new assumption for m∗ implies the old for m∗. See section 3 where this is done.
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Easily, by the induction hypothesis as

clkϕ1 (āb,Mn) ⊆ clkϕ1 (clk
∗,m∗(ā,Mn),Mn) ⊆ clkϕ(ā,Mn)

and by the fact that the closure is sufficiently definable. So in this case
ψϕ(ā) can be chosen as (∃y)ψ2

ϕ1
(ā, y).

Proof of statement 2:
We will use a series of equivalent statements ⊗`.
⊗1 is (β)2

⊗2 there are b, B and B∗, B′ such that:
(α) b ∈Mn, b /∈ clk

∗,m∗(ā,Mn),

(β) ā ⊆ B ⊆ clk
∗,m∗(ā,Mn), moreover clkϕ1 (B,Mn) ⊆ clk

∗,m∗(ā,Mn),
and |B| ≤ t,

(γ) B∗ ⊇ B ∪ [clkϕ1 (āb,Mn) \ clkϕ1 (B,Mn)] and
(δ) B ≤s B′ ∈ K∞ and: B′ = B∗ or just (B∗, b, c)c∈B ≡`′ (B′, b, c)c∈B

(see 2.11(4)) and

(ε) B∗
Mn⋃
B

clkϕ1 (B,Mn) (and so B = B∗ ∩ clkϕ1 (B,Mn)) and

(ζ) (B′, B, āb, kϕ1) is simply good

(η) clkϕ1 (āb, B∗) \B = B∗ ∩ clkϕ1 (āb,Mn) \ clkϕ1 (B,Mn), actually this
follows from clauses (ε), (β), and

⊕2 Mn |= ϕ1(ā, b)

(∗)2 ⊗1 ⇔ ⊗2

Why? The implication ⇐ is trivial as ⊕2 is included in ⊗2, the implication
⇒ holds by clause (A) in the definition 2.13 of simply almost nice.

⊗3 like ⊗2 but replacing ⊕2 by
⊕3 Mn � clkϕ1 (āb,Mn) |= ψ1

ϕ1
(ā, b).

(∗)3 ⊗2 ⇔ ⊗3

Why? By the induction hypothesis and our choices.

⊗4 like ⊗3 replacing ⊕3 by
⊕4 Mn � [B∗ ∪ clkϕ1 (B,Mn)] |= ψ2

ϕ1
(ā, b).

(∗)4 ⊗3 ⇔ ⊗4

Why? By (∗)+
ϕ1

in the beginning of the proof, the requirements on B∗ and

the choice of ψ2
ϕ1

.
For notational simplicity we assume B 6= ∅, and similarly assume ā has

no repetitions and apply the lemma 2.15 with the vocabulary τK to the case
s = t, z̄2 empty, z̄1 = 〈z1

1〉, z̄ = 〈z1, . . . , zt〉, and ψ(z̄, z̄1, z̄2) = ψ(z̄, z1
1) =

ψ2
ϕ1

(〈z1, . . . , z`g(x̄)〉, z1
1) and get i∗, θ1

i (z̄, z̄
1) and θ2

i (z̄) for i < i∗ as there; in

particular the quantifier depth of θ1
i , θ

2
i for i < i∗ is at most the quantifier

depth of ψ2
ϕ1

.
Next let

⊗5 like ⊗4 but replacing ⊕4 by
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⊕5 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , c`g(x̄)〉 = ā, i < i∗ such that:

(i) B∗ |= θ1
i [〈c1, . . . , ct〉, b]

(ii) clkϕ1 (B,Mn) |= θ2
i [〈c1, . . . , ct〉]

Now

(∗)5 ⊗4 ⇔ ⊗5

Why? By the choice of θ1
i , θ

2
i for i < i∗, so by lemma 2.15.

Let P = {(N, c1, . . . , ct) : N ∈ K∞, with the set of elements {c1, . . . , ct}}.
Let {(Nj , c

j
1, . . . , c

j
t ) : j < j∗} list the members of P up to isomorphism,

so with no two isomorphic. For every j < j∗ and i < i∗ choose if possible

(Nj,i, c
j
1, . . . , c

j
t , b

j
i ) such that:

(i) Nj ≤s Nj,i (in K∞),

(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
i (〈c

j
1, . . . , c

j
t 〉, b

j
i ) and

(iv) (Nj,i, {cj1, . . . , c
j
t}, {c

j
1, . . . , c

j
`g(x̄), b

j
i}, kϕ1) is simply good for K.

w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c
j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let
⊗6 like ⊗5 replacing ⊕5 by
⊕6 like ⊕5 adding

(iii) for some j, (i, j) ∈ w and (B, c1, ..., ct) ∼= Nj,i

(∗)6 ⊗5 ⇔ ⊗6

Why? By the definition of w.
Let

⊗7 there isB such that: b ∈Mn, ā ⊆ B ⊆ clk
∗,m∗(ā,Mn), clkϕ1 (B,Mn) ⊆

clk
∗,m∗(ā,Mn), |B| ≤ t, and
⊕7 for some c1, . . . , ct listing B such that ā = 〈c1, . . . , c`g(x̄)〉

there are i < i∗, j < j∗ such that (i, j) ∈ w and:

(i) (Mn � B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t ) i.e. the mapping

cj1 7→ c1, cj2 7→ c2 embeds Nj into Mn,

(ii) Mn � clkϕ1 (B,Mn) |= θ2
i (〈c1, . . . , ct〉)

(∗)7 ⊗6 ⇔ ⊗7

Why? For proving ⊗6 ⇒ ⊗7 let c1, . . . , ct as well as i < i∗, j < j∗ be as

in ⊕6, let j < j∗ be such that (Mn � B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t ). The

main point is that B′ exemplifies that (i, j) ∈ w (remember: B′ is from ⊗2,
and if B∗ ∈ K∞, we normally could have chosen B′ = B∗).
For proving ⊗7 ⇒ ⊗6 use definition of simply good tuples in Definition
2.12(1).

We now have finished as ⊗7 can be expressed as a f.o. formula straight-
forwardly. So we have carried the induction hypothesis on the quantifier
depth thus finishing the proof.
2) Similar 2.17
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Conclusion 2.19. (1) Assume (K, cl) is almost nice or simply almost
nice and cl is f.o. definable.

Then: K satisfies the 0-1 law iff for any k, m we have
(∗)k,m 〈Mn � clk,m(∅,Mn) : n < ω〉 satisfies the 0-1 law.

(2) Similarly with convergence and the very weak 0− 1 law.

Proof 1) We first prove the “only if”. There is a f.o. formula θ(x) such

that for every random enoughMn, θ(x) define clk,m(∅,Mn). Hence for every
f.o. sentence ϕ there is a f.o. sentence ψϕ which is the relativization of ϕ to
θ(x); hence, for every model M ∈ K, M |= ψϕ ⇔ M � {a : M |= θ[a]} |= ϕ.
Now for every random enough Mn we have a ∈ Mn ⇒Mn |= θ[a] ⇔ a ∈
clk,m(∅,Mn), hence together

Mn |= ψϕ ⇔Mn � clk,m(∅,Mn) |= ϕ.

As we are assuming that K satisfies the 0-1 law, for some truth value t for
every random enough Mn

Mn |= “ψϕ ≡ t”

hence (as required)

Mn � clk,m(∅,Mn) |= “ϕ = t”.

The other direction is similar by the main lemma 2.16 when (K, cl) is almost
nice, 2.17 when (K, cl) is simply almost nice.
2) Similar, so left to the reader. 2.19

Definition 2.20. (1) The tuple (N, b̄, ψ(x̄), 〈B0, B1〉, k, k1) is simply∗

good for (K, cl) if: B0, B1 ≤ N ∈ K∞, clk(B0, N) ⊆ B1, b̄ ∈ `g(x̄)N ,
ψ(x̄) a f.o. formula and k, k1 ∈ N and for every random enough

Mn, for every b̄′ ∈ `g(x̄)(Mn) such that Mn � clk1(b̄′,Mn) |= ψ(b̄′),
letting B′ =Mn � Rang(b̄′), there is an embedding g of N into Mn

such that
(i) g(b̄) = b̄′

(ii) g(N) ∩ clk1(b̄′,Mn) = B′

(iii) g(N)
⋃
B′

clk1(b̄′,Mn)

(iv) clk(g(B0),Mn) ⊆ g(B1) ∪ clk1(B′,Mn).
(2) We may write B0 instead 〈B0, B1〉 if B1 = N .
(3) We say “normally simply∗ good” if (iv) is replaced by

(iv)’ clk1(B′,Mn) = g(clk(B0, N)) \B.

Definition 2.21. The 0-1 context with closure (K, cl) is (normally) simply∗

almost nice if:

(A) for every k, `, `′ there are m∗ = m∗(k, `, `′), k∗ = k∗(k, `, `′), t =
t(k, `, `′), k0 = k0(k, `, `′), k1 = k1(k, `, `′) such that for every random
enough Mn we have
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if ā ∈ `|Mn| and b ∈ Mn \ clk
∗,m∗(ā,Mn) then there are B ⊆

clk
∗,m∗(ā,Mn) and B∗ ⊆Mn such that

(α) |B| ≤ t, ā ⊆ B, clk1(B,Mn) ⊆ clk
∗,m∗(ā,Mn) and

(β) B∗ ⊇ B ∪ [clk(āb,Mn) \ clk1(B,Mn)]
(γ) B <s B

∗ (so B∗ ∈ K∞) or at least there is B′ such that B <s B
′,

(B′, b, c̄) ≡`′ (B∗, b, c̄)

(δ) Mn � B∗
Mn⋃
B∗
Mn � clk1(B,Mn)

(ε) letting c̄ list the element of B and

ψ(x̄) =
∧
{ϕ(x̄) :Mn � clk1(c̄,Mn) |= ϕ(x̄) and q.d.(ϕ(x̄)) ≤ k0}

we have (Mn � B∗, c̄, ψ(x̄), āb, k, k1) is (normally) simply∗ good
or at least for some B′, b′ we have

(i) (B′, c̄, ψ(x̄), āb, k, k1) is (normally) simply∗ good
(ii) (B∗, b, c̄) ≡`′ (B′, b, c̄)

Remark 2.22. We may restrict ψ e.g. demand that it is in Π1 (most natural
in the cases we have.

Claim 2.23. In 2.17 we can replace simply by simply∗, i.e.
1) Assume (K, cl) is simply∗ almost nice. Let ϕ(x̄) be a f.o. formula. Then
for some k = kϕ and first order formula ψϕ(x̄) we have:

for every random enough Mn and ā ∈ `g(x̄)|Mn|
(∗) Mn |= ϕ(ā) if and only if Mn � clkϕ(ā,Mn) |= ψϕ(ā).

2) We have [ϕ ∈ Πn ⇒ ψϕ ∈ Πn], [ϕ ∈ Σn ⇒ ψϕ ∈ Σn].

Conclusion 2.24. (1) Assume that the 0-1 context with closure (K, cl)
is (normally) simply∗ almost nice. Then K satisfies the 0-1 law iff

for any k, m we have 〈Mn � clk,m(∅,Mn) : n < ω〉 satisfies the 0-1
law.

(2) Assume (K, cl) is simply∗ almost nice. Then K has convergence (re-

spectively very weak 0−1) low iff for every k, m 〈Mn � clk,m(∅,Mn) :
n < ω〉 satisfies convergence (resp. very weak 0− 1) low.

3. Further abstract closure context

The context below is not used later so it can be skipped but it seems
natural. In this section we are lead to deal with the 0 − 1 law holding for
monadic second order logic (i.e. we quantify over the sets). For this aim
we will use similar tools to those of §2. Looking again at Definition 2.9 or
2.12(2), clause (A), we note that there is an asymmetry: we try to represent

clk,m(āb,Mn) and some C ⊆ clk
∗,m∗(ā,Mn) as free amalgamation over some

B, small enough (with a priori bound depending on `g(ā) and k only, there

C = clk(B,Mn)). Now this basis, B, of free amalgamation is included in

clk
∗,m∗(ā,Mn) so it is without elements from clk,m(āb,Mn)\clk

∗,m∗(ā,Mn).
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Suppose we allow this and first we deal with the caseMn is a graph. Hence
a member d of clk,m(āb,Mn) may code a subset of clk

∗,m∗(ā,Mn): the set

{c ∈ clk∗,m∗(ā,Mn) : the pair {c, d} is an edge}.
So though we are interested in f.o. formulas ϕ(x̄) speaking on Mn, we

are drawn into having ψϕ(x̄), the formula speaking on clkϕ,mϕ(x̄), being a
monadic formula. Once we allow also three place relations and more, we
have to use second order logic (still we can say which quantifiers we need
because the witnesses for the elimination will come from the extensions of
the clk,m(ā,Mn)). For this elimination, thinking of an Mn, we need that

any possible kind of extension of clk,m(ā,Mn) occurs; so in the most natural

cases, |clk,m+1(ā,Mn)| may be with 2|clk,m(ā,Mn)| elements, so in the natural
case which we expect to be able to understand the situation is when there
clk,m(ā,Mn) < log∗(|Mn|). Still possibly clk,m+1(ā,Mn) is not larger than

clk,m(ā,Mn).
However there is a big difference between the monadic (e.g. graph where

the relations coded on clk
∗,m∗(ā,Mn) by members of clk(āb,Mn) are monadic)

case and the more general case. For monadic logic addition theorems like
2.15 are known, but those are false for second order logic.

So we have good enough reason to separate the two cases. For readability
we choose here to generalize the “simply almost nice with K = K∞” case
only.

Context 3.1. As in §2 for (K, cl).

Definition 3.2. 1) The 0-1 context with a closure operation, (K, cl) is s.m.a.
(simply monadically almost) nice if it is weakly nice, K = K∞, cl is transitive
smooth local transparent (see Definitions 2.3(3),2.5(2),(3) and 2.9(4),(5))
and

(A) for every k and `, there are r = r(k, `), k∗ = k∗(k, `) and t1 = t1(k, `),
t2 = t2(k, `) such that:

for every Mn random enough we have:
if ā ∈ `(Mn), b ∈Mn, clk(āb,Mn) * clk

∗
(ā,Mn)

then there are B∗, B1, B2 such that:
(α) ā ⊆ B1 and clr(B1,Mn) ⊆ clk

∗
(ā,Mn) and |B1| ≤ t1,

(β) B1 ⊆ B2, B2 ∩ clr(B1,Mn) = B1, |B2| ≤ t2, b ∈ B2,

(γ) B∗ ⊇ [clk(āb,Mn) \ clr(B1,Mn)] ∪ B2, and B1 ≤S B∗ and

clk(āb,Mn) ⊆ B∗ (hence clk(āb, B∗) = clk(āb,Mn)),

(δ) Mn � B∗
Mn⋃

Mn � B2
Mn � (B2∪ clr(B1,Mn)) (also here

⋃
is the

relation of being in free amalgamation),
(ε) ifQ is a predicate from τK andMn |= Q(c̄), Rang(c̄) ⊆ clr(B1,Mn)∪

B2 then: Rang(c̄) ∩ B2 ⊆ B1 or Rang(c̄) \ B2 has at most one
member; if this holds we say B2 is monadic over clr(B1,Mn)
inside Mn,
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(ζ) (B∗, B1, B2, ā, b, k, r) is m.good (see below, m stands for monad-
ically), so clearly B ∈ K∞.

2) We say (B∗, B1, B2, ā, b, k, r) is m.good when: B∗, B1, B2 ∈ K∞ and
B1 ≤ B2 ≤ B∗, ā ⊆ B1, b ∈ B2 and for every random enough Mn, and
f : B1 ↪→ Mn, and C1 ∈ K∞ such that Mn � clr(f(B1),Mn) ⊆ C1,
and f+ : B2 ↪→ C1 extending f such that C1 = f+(B2) ∪ clr(f(B1),Mn)
and f+(B2) is monadic over clr(f(B1),Mn) inside C1 (see above, but not
necessarily C1 ⊆ Mn) there are g+ : C1 ↪→ Mn and g : B∗ ↪→ Mn such
that g � B2 = (g+ ◦ f+) � B2 and

g(B∗)
⋃

g(B2)

g+(C1) and clk(g(āb),Mn) ⊆ g(B∗) ∪ clr(g(B1),Mn).

3) Assume E ⊆ {(C,B1, B2) : B1 ≤ B2 ≤ C ∈ K} is closed under iso-
morphism. We say B2 is E-over D inside N if B2 ≤ N ∈ K, D ≤ N and
(N � (B2 ∪D), B2 ∩D,B2) ∈ E.
4) We say (B∗, B1, B2, ā, b, k, r) is E-good when B∗, B1, B2 ∈ K∞ and B1 ≤
B2 ≤ B∗, ā ⊆ B1, b ∈ B2 and for every random enough Mn and f : B1 ↪→
Mn and C1 ∈ K∞ such thatMn � c`r(f(B1),Mn) ⊆ C1 and f+ : B2 ↪→ C1

extending f such that C1 = f+(B2)∪ clr(f(B1),Mn) and f+(B2) is E-over
clr(f(B1),Mn) inside C1(see above but not necessarily C1 ⊆Mn) there are
g+ : C1 ↪→Mn and g : B∗ ↪→Mn such that g � B2 = (g+ ◦ f+) � B2 and

g(B∗)
⋃

g(B2)

g+(C1) and clk(g(āb),Mn) ⊆ g(B∗) ∪ clr(g(B1),Mn).

5) We say K is s.E.a nice if in 3.2(1) we replace clauses (ε), (ζ) by

(ε)′ B2 is E-over clr(B1,Mn) inside Mn

(ζ)′ (B∗, B1, B2, ā, b, k, r) is E-good.

6) We say E is monadic if it is as in part (3) and (C,B1, B2) ∈ E implies

(ā ∈ QC ⇒ Rang(ā) ∩B2 ⊆ B1) ∨ (|Rang(ā) \B2| ≤ 1).

7) We say E as in 3.2(3) is simply monadic if it is monadic and for any
B1 ≤ B2 ∈ K, letting

ΓB2 =
{
θ(y, b̄) : b̄ ⊆ B2 is with no repetition, θ(y, x̄) is an atomic formula,

each variable actually appearing
}

we have: the class{
(D,Rθ(y,b̄), c)θ(y,b̄)∈ΓB2 ,c∈B1 : D ∈ K,

B1 ≤ D, Rθ(y,b̄) is a subset of D \B1 and

there are C1, f such that:(C1, B1, B2) ∈ E
D ≤ C1 ∈ K, f : B2 ↪→ C1, f(B2) ∩D = B1,
f � B1 = idB1 , and for θ(y, b̄) ∈ Γ we have

Rθ(y,b̄) = {d ∈ D \B1 : C1 |= θ[d, f(b̄)]}
}
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is definable by a monadic formula5.
8) We say that cl is monadically definable for K if for each k, letting x̄ =

〈x` : ` < k〉 some monadic formula Θk(y, x) we have y ∈ clk(x̄,Mn) ⇐⇒
Mn � clk(x̄,Mn) |= Θk(x̄, y) holds for every random enough Mn.
9) We say that E is trivial if it is {(C,B1, B2) : C

⋃
B1

B2, B1 ≤ B2 ≤ C}.

Lemma 3.3. Assume (K, cl) is s.E.a. nice and E is simply monadic and
cl is f.o. definable or at least monadically definable (see 3.2(8)). Then for
every f.o. formula ϕ(x̄) there are k and a monadic formula ψϕ(x̄) such that:

(∗)ϕ(x̄) for every random enough Mn, for every ā ∈ `g(x̄)|Mn| we have

Mn |= ϕ(ā) ⇔ Mn � clk(ā,Mn) |= ψϕ(ā).

Discussion 3.4. Some of the assumptions of 3.3 are open to manipulations;
others are essential.
1) As said above, the “monadic” is needed in order to use an addition theo-
rem (see 3.5), the price of removing it is high: essentially above we need that

after finding the copy g(B2) realizing the required type over clk(B2,Mn),
we need to find g(B∗), or a replacement like B′ in the proofs in §2 but only
the holding of some formula ϕ(. . . , b, . . .)b∈B2 in B∗ is important. Now what
if the requirements on the type of g(B2) over clr(B1,Mn) are not coded by
some subsets of clr(B1,Mn) but e.g. by two place relations on clr(B1,Mn)?
So naturally we allow quantification over two place relations in the formulas
ψϕ(x̄). But then even though

B∗
⋃
B2

clr(B1,Mn) ∪B2

not only the small formulas satisfied by (B2, b)b∈B1 are important but also
e.g. the answer to B∗ ∼= clr(B1,Mn).

It is natural to demand that all possibilities for the set of small formulas
in second order logic satisfied by B∗∪clr(B1,Mn) occur so this may include

cases where B∗ has to be of cardinality much larger than clk(ā,Mn). So
we do not formulate such lemma. Of course some specific information may
help to control the situation. We may however consider adding (in 3.2), the
demand:

�s if Y ⊆ B∗ ∪ clr(B1,Mn) and Y ∩B∗ * B2, Y ∩ clr(B1,Mn) * B1,
then Y is not s-connected, that is for some Y1, Y2, we have Y = Y1∪
Y2, |Y1 ∩ Y2| ≤ s and Y1

⋃
Y1 ∩ Y2

Y2 (i.e. Mn � Y1
⋃

Mn � Y1 ∩ Y2

Mn �

Y2).

In this case we can allow e.g. quantification on 2-place relations R such that
Mn � Dom(R) is s-connected.

5We can restrict ourselves to the cases C = clk(B,C).
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2) If E is monadic but not simply monadic, not much is changed: we should
allow new quantifiers in ψϕ. Let C1 <E

B C2 if B ≤ C1 ≤ C2 and (C2, B,B∪
(C2 \ C1)) ∈ E. We want the quantifier to say for (C1, Rθ(y,b̄), c)θ(ȳ,b̄)∈Γ,c∈B
that it codes C2 with C1 ≤E

B C2 where Γ = ΓB∪(C2\C1), but then the logic
should be defined such that we would be able to iterate.

The situation is similar to the case that in §2, we have: cl is definable or
at least monadically definable.
3) In 3.3 we essentially demand

(∗) for each t, for random enough Mn, for every B ⊆ Mn, |B| ≤ t,

if Mn � clk(ā,Mn) <E
ā C then C is embeddable into Mn over

clk(ā,Mn).

Of course we need this just for a dense set of such C’s, dense in the sense
that a monadic sentence is satisfied, just like the use of B′ in 2.12. That is
we may replace clause (ζ) of Definition 3.2(1)(A) by

(ζ)′ there isB′ such that (B′, c, b)c∈B2 ≡′` (B∗, c, b)c∈B2 and (B′, B1, B2, ā, k)
is m. good (and `′ large enough e.g. quantifier depth of ψϕ1 in main
case).

4) As we have done in 2.16(2), 2.17(2), we can add that the number of
alternation of quantifiers of ϕ and the number of (possibly) alternation of
monadic quantifier of ψϕ are equal as long as the depth of the formulas
from “simply monadic” is not counted (Always we can trivially increase the
q.d. so we may ask about ψϕ with minimal number. But for a specific
〈Mn : n < ω〉 we may get better. We can though look at minimal q.d. on
all cases then it should be trivial.
5) Can we find a reasonable context where the situation from 3.3 and 3.4(1)
above holds? Suppose we draw edges as here in M0

n and redraw in the
neighborhood of each edge. Let us describe drawing fully, this for a model
on [n]. For each i < j from [n] we flip a coin Ei,j on whether we have (i, j)
as a pre-edge, with probability pni,j . If we succeed for Ei,j then for any pair

(i′, j′) from [n] we flip a coin Ei,j,i′,j′ with probability pni,j,i′,j′ . The flippings

are independent and finally for i′ < j′, (i′, j′) is an edge if and only if for
some i < j, (i, j) is a pre-edge, that is we succeed in Ei,j and we also succeed
in Ei,j,i′,j′ . For our case let (α ∈ (0, 1)R is irrational):

Distribution 1

pni,j = p|i−j| =

{
1/|i− j|α when |i− j| > 1
1/2α if |i− j| = 1

and pni,j,i′,j′ = 1
2|i−i′|+|j−j′|

;

Distribution 2
pni,j is as above and

pni,j,i′,j′ =

{ 1
2|i−i′|+|j−j′|

if i = i′ ∨ j = j′

0 if otherwise.
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Now distribution 2 seems to give us an example as in Lemma 3.3, distribution
1 fits the non-monadic case. Distribution 1 will give us, for some pre-edges
(i, j), a lot of edges in the neighbourhood of it; of course for the average
pre-edge there will be few. This give us a lot of ≤i extensions in that
neighbourhood. We may wonder whether actually the 0–1 law holds. It is
intuitively clear that for distribution 2 the answer is “yes”, for distribution
1 the answer is “no”.
6) Why in distribution 1 from (5) the 0–1 law should fail (in fact fails
badly)? It seems to me that for distribution 1 we can find A ⊆ B such
that for every random enough Mn, for some f : A ↪→ Mn, the number of
g : B ↪→ Mn extending f is quite large, and on the set of such g we can
interpret an initial segment Nf of arithmetic even with f(A) a segment,
Nf in its neighbourhood. The problem is to compare such Nf1 , Nf2 with
possibly distinct parameters, which can be done using a path of pre-edges
from f1(A) to f2(A). But this requires further thoughts.
The case of distribution 2 should be similar to this paper.

We intend to return to this.
7) If E is trivial, then the claim above becomes (a variant) of the main
claims in section 2 (the variant fulfill promises there).

Proof of 3.3:
This proof is similar to that of Lemma 2.16 and 2.17. We say in the

claim that ψϕ(x̄) or ψϕ(x̄), kϕ witness (∗)ϕ(x̄). We prove the statement by
induction on q.d.(ϕ(x̄)) and first note (by clause (d) of Definition 2.2) that
(∗)ϕ(x̄) =⇒ (∗)+

ϕ(x̄) where ψϕ(x̄) will be monadic logic.

(∗)+
ϕ(x̄) for every random enough Mn, for every ā ∈ lg(x̄)(Mn) and N if

Mn � clkϕ(ā,Mn) ⊆ N ⊆Mn then Mn |= ϕ[ā]⇐⇒ N |= ψϕ[ā].

Case 1: Let ϕ(x̄) be an atomic formula. Trivial.
Case 2: ϕ(x̄) a Boolean combination of atomic formulas and formulas ϕ(x̄)
of the form ∃yϕ′(x̄, y), ϕ′ of quantifier depth< r, such that (∗)∃yϕ′(x̄,y) holds.
Clearly follows by case 3 and case 1.
Case 3: ϕ(x̄) = (∃y)ϕ1(x̄, y). Let kϕ1 , ψϕ1 be a witness for (∗)ϕ(x̄) of

3.3 and let kϕ1 ψ
2
ϕ1

be witness for (∗)+
ϕ1(x̄) holds for it (for ϕ1). Let r =

r(kϕ1 , `g(x̄)), k∗ = k∗(kϕ1 , `g(x̄)), t1 = t1(kϕ1 , `g(x̄)) and t2 = t2(kϕ1 , `gx̄)
be as in Definition 3.2(1)(A), more exactly its 3.2(4) variant. Let kϕ be k∗.

It is enough to prove the following two statements:

Statement 1: There is ψ1
ϕ(x̄) a monadic formula such that:

(∗)1 for every random enough Mn, for every ā ∈ `g(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn � clk
∗
(ā,Mn) |= ψ1

ϕ(ā)

(β)1 Mn |=“there is b satisfying clkϕ1 (āb,Mn) ⊆ clk
∗
(ā,Mn) such

that ϕ1(ā, b) holds.”

Statement 2: There is ψ2
ϕ(x̄) a monadic formula such that:
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(∗)2 for every random enough Mn and for every ā ∈ `g(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn � clk
∗
(ā,Mn) |= ψ2

ϕ(ā)

(β)2 Mn |= “there is b satisfying clkϕ1 (āb,Mn) * clk
∗
(ā,Mn) such

that ϕ1(ā, b) holds”

(note: (β)1, (β)2 are complementary, but it is enough that always at least
one holds).

Note that as “y ∈ clk
∗
(x̄)” is monadically definable, by 3.2(8) and by the

choice of kϕ we can in (α)2 replace clk
∗

by clkϕ , changing ψ2
ϕ to ψ2.5

ϕ , and

similarly in (α)1 replace clk
∗

by clkϕ changing ψ1
ϕ to ψ1.5

ϕ .

Clearly these two statements are enough and ψ1.5
ϕ (x̄)∨ψ2.5

ϕ (x̄) is as required.

Proof of statement 1:
Easily, by the induction hypothesis and by the fact that the closure is suffi-
ciently definable.

Proof of statement 2:
We will use a series of equivalent statements ⊗`.
⊗1 is (β)2,
⊗2 there are b and B∗, B1, B2 such that:

b ∈Mn, clkϕ1 (āb,Mn) * clk
∗
(ā,Mn), ā ⊆ B1 ⊆ clk

∗
(ā,Mn),

clr(B1,Mn) ⊆ clk
∗
(ā,Mn), |B1| ≤ t1, |B2| ≤ t2, B1 ≤ B2 ≤ B∗,

b ∈ B∗, B∗ \ B2 disjoint to clr(B1,Mn) and 6 B1 ≤s B∗ ∈

K∞ and B∗
Mn⋃
B2

clr(B1,Mn) ∪ B2) and clkϕ1 (āb,Mn) ⊆ B∗ (hence

clkϕ1 (āb, B∗) = clkϕ1 (āb,Mn)) and
(B∗, B1, B2, ā, b, k, r) is E–good and
⊕2 Mn |= ϕ1(ā, b).

(∗)2 ⊗1 ⇔ ⊗2

Why? The implication ⇐ is trivial, the implication ⇒ holds by clause (A)
in the definition 3.2.

⊗3 like ⊗2 but replacing ⊕2 by
⊕3 Mn � clkϕ1 (āb,Mn) |= ψϕ1(ā, b).

(∗)3 ⊗2 ⇔ ⊗3

Why? By the induction hypothesis i.e. choice of kϕ1 ψϕ1 .

⊗4 like ⊗3 replacing ⊕3 by
⊕4 Mn � [B∗ ∪ clkϕ1 (B1,Mn)] |= ψ2

ϕ1
(ā, b).

(∗)4 ⊗3 ⇔ ⊗4

Why? By (∗)+
ϕ1

being witnessend by ψ2
ϕ1

, kϕ1 see the beginning of the proof,

the definition of B∗ and the choice of ψ2
ϕ1

.

6 the B′ does not appear for simplicity only
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For notational simplicity we assume B 6= ∅, and similarly assume ā is
with no repetition and apply Lemma 3.5 below with the vocabulary τK to
the case s = `, z̄2 empty, z̄1 = 〈z1

1〉, z̄ = 〈z1, . . . , z`〉, and ψ(z̄, z̄1, z̄2) =
ψ(z̄, z1

1) = ψ2
ϕ(〈z1, . . . , z`g(x̄)〉, z1

1) and get i∗, θ1
i (z̄, z̄

1) and θ2
i (z̄) for i < i∗ as

there.
Next let

⊗5 like ⊗4 but replacing ⊕5 by
⊕5 letting c1, . . . , ct2 list B2 possibly with repetitions but such that
{c1, . . . , ct1} = B1 and 〈c1, . . . , c`g(x̄)〉 = ā and there is i < i∗

such that:
(i) B∗ |= θ1

i [〈c1, . . . , ct2〉, b]
(ii) Mn � (B2 ∪ clk(B1,Mn)) |= θ2

i [〈c1, . . . , ct2〉].
Now

(∗)5 ⊗4 ⇔ ⊗5

Why? by the choice of θ1
i , θ

2
i (i < i∗).

Let P = {(N, c1, . . . , ct2) : N ∈ K∞, with the set of elements {c1, . . . , ct2}}.
Let {(Nj , c

j
1, . . . , c

j
t2

) : j < j∗} list the members of P up to isomorphism,
so with no two isomorphic. For every j < j∗ and i < i∗ choose if possible

(Nj,i, c
j
1, . . . , c

j
t2
, bji ) such that:

(i) Nj ≤s Nj,i (in K∞),

(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
i (〈c

j
1, . . . , c

j
t2
〉, bji ) and

(iv) (Nj,i, {cj1, . . . , c
j
t1
}, {cj1, . . . , c

j
t2
}, {cj1, . . . , c

j
`gx̄, b

j
i}, k) is E–good.

Let

w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c
j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let Γ = {θ(y, x̄) : θ is a basic formula, x̄ ⊆ {x1, . . . , xt2}}.
As E is simply monadic (see Definition 3.2(4)) we have: for some monadic

formula θ3
i such that

(*) if {d1, . . . , dt1} ≤ C ∈ K letting Γ =df {θ(y, . . . , xi(`), . . . )`<`(∗) : θ
an atomic formula for τK, every variable actually appear and i(`) ∈
{1, . . . , t2}} ;

the following are equivalent:
(a) there are subsets Rθ of C for θ ∈ Γ and there are C1, dt(t =

t1 + 1, . . . , t2) satisfying Rϕ(y,x̄) ⊆ C and C ≤ C1 ∈ K, C1 \ C =
{dt1+1, . . . , dt2}, and

Rθ(y,...,xi,...) = {e ∈ C : C1 |= θ[e, . . . , di, . . .]} for θ(y, . . . , xi, . . .) ∈ Γ

and C1 |= θ2
i [d1, . . . , dt2 ]

(b) C |= θ3
i [d1, . . . , dt1 ].

Let
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⊗6 there are b, B1 such that: b ∈Mn, clkϕ1 (āb,Mn) * clk
∗
(ā,Mn), ā ⊆

B1 ⊆ clk
∗
(ā,Mn), clr(B1,Mn) ⊆ clk

∗
(ā,Mn), |B1| ≤ t1(kϕ1 , `g(x̄)),

and
⊕6 for some c1, . . . , ct1 listing B1 such that ā = 〈c1, . . . , c`g(x̄)〉 there

are i < i∗, j < j∗ such that:

(i) (Mn � B1, c1, . . . , ct1) ∼= (Nj , c
j
1, . . . , c

j
t1

) i.e. the mapping

cj1 7→ c1, cj2 7→ c2 embeds Nj into Mn,

(ii) Mn � clkϕ1 (B1,Mn) |= θ3
i (〈c1, . . . , ct1〉).

(∗)6 ⊗5 ⇔ ⊗6.

Why? For proving ⊗5 ⇒ ⊗6 let c1, . . . , ct as well as i < i∗ be as in ⊕5, let

j < j∗ be such that (Mn � B1, c1, . . . , ct1) ∼= (Nj , c
j
1, . . . , c

j
t1

). A main point
is that B∗ exemplifies that (i, j) ∈ w.
For proving ⊗6 ⇒ ⊗5 use part (B) of Definition 2.9. [Mor: irrelevant
reference, Saharon check]

Now we have finished as ⊗6 can be expressed as a monadic formula
straightforwardly. So we have carried the induction hypothesis on the quan-
tifier depth thus finishing the proof. 3.3

The following is the parallel of 2.15 for monadic logic (see Gurevich
[Gur85], more [She96a]).

Lemma 3.5. For finite vocabulary τ and monadic formula (in the vocab-
ulary τ) ψ(z̄, z̄1, z̄2), z̄ = 〈z1, . . . , zs〉, there are i∗ ∈ N and monadic τ -
formulas θ1

i (z̄, z̄
1) = θ1

i,ψ(z̄, z̄1), θ2
i (x̄, z̄) = θ2

i,ψ(z̄, z̄2) for i < i∗ each of
quantifier depth at most that of ψ such that:

if N1

N⋃
N0

N2, N1 ∩ N2 = N0, N1 ∪ N2 = N and the set of

elements of N0 is {c1, . . . , cs}, c̄ = 〈c1, . . . , cs〉 and c̄1 ∈
`g(z̄1)(N1) and c̄2 ∈ `g(z̄2)(N2)
then

N |= ψ[c̄, c̄1, c̄2] iff for some i < i∗, N1 |= θ1
i [c̄, c̄

1] and N2 |= θ2
i [c̄, c̄

2].
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