
VIVE LA DIFFÉRENCE III

SAHARON SHELAH

Abstract. We show that, consistently, there is an ultrafilter F on ω
such that if N `

n = (P `n ∪ Q`n, P `n, Q`n, R`n) (for ` = 1, 2, n < ω), P `n ∪
Q`n ⊆ ω, and

∏
n<ω

N1
n/F ≡

∏
n<ω

N2
n/F are models of the canonical theory

tind of the strong independence property, then every isomorphism from∏
n<ω

N1
n/F onto

∏
n<ω

N2
n/F is a product isomorphism.

0. Introduction

In a previous paper [She92] we gave two constructions of models of set
theory in which the following isomorphism principle fails in various strong
respects:

(Iso 1): If M , N are countable elementarily equivalent structures and
F is a non-principal ultrafilter on ω, then the ultrapowers M∗, N∗

of M , N with respect to F are isomorphic.

As is well known, this principle is a consequence of the Continuum Hy-
pothesis. Recall that Keisler celebrated theorem (from [Kei67]) says that, if
2λ = λ+ then two models, M,N of cardinality at most λ+ (and vocabulary
of cardinality ≤ λ) are elementarily equivalent iff for some ultrafilter F on λ,
the ultrapowers Mλ/F , Nλ/F are isomorphic. This has given an algebraic
characterization of elementary equivalence.

In [She94b] our aim originally was to give a related example in connection
with the well-known isomorphism theorem of Ax and Kochen. In its general
formulation, that result states that a fairly broad class of Henselian fields
of characteristic zero satisfying a completeness (or saturation) condition are
classified up to isomorphism by the structure of their residue fields and their
value groups. That is, the statement that interest us in the second paper in
this series [She94b], was:

(Iso 2): If F is a non-principal ultrafilter on ω, then the ultraproducts∏
p
Zp/F and

∏
p
Fp[[t]]/F are isomorphic.

The answer we got was, more generally:

Key words and phrases. Forcing, ultrapowers, strong independence property, bigness
notions, definability.
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2 SAHARON SHELAH

Theorem 0.1 (See [She94b]). It is consistent with the axioms of set the-
ory that there is a non-principal ultrafilter F on ω such that for any two
sequences of discrete rank 1 valuation rings (Rin)n=1,2,... (i = 1, 2) having
countable residue fields, any isomorphism F :

∏
n
R1
n/F −→

∏
n
R2
n/F is an

ultraproduct of isomorphisms Fn : R1
n −→ R2

n (for a set of n’s contained in
F). In particular, for F–majority of the n, the valuation rings R1

n, R2
n are

isomorphic.

In the case of the rings Fp[[t]] and Zp, we see that (Iso 2) fails. For this
our main work was to show the following statement which actually from
model theoretic point of view is more basic and interesting.

Theorem 0.2 (See [She94b]). It is consistent with the axioms of set theory
that there is a non-principal ultrafilter F on ω such that for any two se-
quences of countable trees (T in)n=1,2,... for i = 1, 2, with each tree T in count-
able with ω levels, and with each node having at least two immediate suc-

cessors, if T i =
∏
n
T in/F , then for any isomorphism F : T 1 '−→ T 2 there is

an element a ∈ T 1 such that the restriction of F to the cone above a is the
restriction of an ultraproduct of maps Fn : T 1

n −→ T 2
n .

From a model theoretic point of view this still is not the right level of
generality for a problem of this type. There are two natural ways to pose
the problem. From now on

Convention 0.3. In the rest of §0 and §2,§3 models are countable with
countable vocabulary if not said otherwise, and we use M,N to denote
models. If we say a model may be uncountable we still assume its vocabulary
is countable if not said otherwise.

Problem 1. Characterize the pairs of countable models M , N which are
pseudo-isomorphic, where

Definition 0.4. We say that the countable modelsM,N are pseudo-isomorphic
if:

(a) if F is a non principal ultrafilter over ω then Mω/F , Nω/F are
isomorphic, and

(b) clause (a) continue to hold after forcing by any (set) forcing .

Of course this is not isomorphism (see below on models of a stable theory).
A related problem is

Problem 2. Characterize the pairs of countable models M , N with non-
isomorphic ultrapowers modulo any non-principal ultrafilter F , Mω/F , Nω/F
in some forcing extension. (I.e., the negation is: such that for every forc-
ing extension there is a non-principal ultrafilter F on ω we have Mω/F '
Nω/F .)

There are two variants of the second problem: the ultrapowers may be
formed either using one ultrafilter twice (called 2(A)), or may consider using
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VIVA III 3

any two ultrafilters (called 2(B)), but see below. As when the continuum
hypothesis holds is too easy ask:

Problem 3. Characterize the pairs M,N of countable models such that
in some forcing extension failing in continuum hypothesis, for every non-
principal ultrafilter F on ω, Mω/F ∼= Nω/F

Problem 4. Let us write M ≤ N whenever in every forcing extension, if
F is an ultrafilter on ω such that Nω/F is saturated, then Mω/F is also
saturated. Characterize this relation.

This is related to the Keisler order (see Keisler [Kei67], or [She78a], or
[She90, Chapter VI]), but does not depend on the fact that the ultrafilter is
regular, so some of the results there apply to Problem 4, this in turn implies
results on Problem 2(A). By [She90, VI] we know the following. Let D be
a non-principle ultrafilter on ω, and M (countable) model (with countable
vocabulary). If Th(M) is stable then Mω/D is saturated. We can replace
ℵ0 here by any cardinal κ satisfying κ<κ = κ using regular ultrafilter on κ.

Now, by [She71], there is an ultrafilter D on 2ℵ0 such that for countable
models (with countable vocabulary) M,N

M ≡ N ⇒ M2ℵ0
/D ∼= N2ℵ0

/D.

and we can add “Mω/D is κ-saturated” for every κ such that 2<κ = 22ℵ0 .
Also, if 2ℵ0 = ℵ1, F is a non-principal ultrafilter on ω and M1 ≡ M2 are
countable, then Mω

1 /F ∼= Mω
2 /F (as they are saturated); similarly if M `

n are
countable models (for ` = 1, 2, n < ω), M` =

∏
n<ω

M `
n/F`, and F` are non-

principal ultrafilters on ω, then M1 ≡M2 ⇒ M1
∼= M2. On the other hand,

if 2ℵ0 > ℵ1, then by [She90, Ch VI] for every regular cardinal θ, ℵ1 ≤ θ < 2ℵ0

there is a non-principal ultrafilter Fθ on ω such that the downward cofinality
of (ω,<)ω/Fθ above ω is θ so θ1 6= θ2 ⇒ (ω,<)ω/Fθ1 � (ω,<)ω/Fθ2 . This
gives negative results on Problem 2(B) above. If Th(M) is unstable then
some such D,Mω/D is not ℵ2-saturated. Why? We can choose ϕ(x̄, ȳ)
which has the order property, lg(x̄) = m choose ān,i ∈ mM(i < n < ω)
be such that M |= ϕ[ān,i, ān,j ] iff i < j < n. Let Pn = {ān,i : i < ω},
<n= {(ān,i, ān,j) : i < j < n}. Consider (N,P ) :=

∏
n<ω

(M,Pn, <n) \D, now

use a “cut” of
∏
n<ω

(Pn, <n)/D with cofinality (ℵ0,ℵ1). So for Problem 4, the

stable theories are minimal.
More general problem is

Problem 5. For which quadruples (M1, N1,M2, N2) of countable models,
in some forcing extension for some ultrafilter F on ω, Mω

1 /F ∼= Nω
1 /F but

Mω
2 /F � Nω

2 /F? (and other variants as above).

We can also replace above the countable model M by the first order theory
Th(M) e.g. we can define: T1 ≤ T2 iff (T1, T2 are countable theories such
that) for every countable model M1 of T1 there is a countable model M2 of

Paper Sh:509, version 2006-06-19 11. See https://shelah.logic.at/papers/509/ for possible updates.



4 SAHARON SHELAH

T2 such that M1 ≤ M2. The present paper is dedicated to sheding some
further light.

Problem 6. We may be more interested in the ultrafilter, so define the order
on the family of ultrafilters on ω but here our focus is on model theory. More
specifically, we may ask to investigate ≤uf where F1 ≤uf F2 iff F1,F2 are
non-principal ultrafilter on ω such that for every countable model M , if
Mω/F1 is saturated then Mω/F2 is saturated.

Working on [She94b] we had hoped to continue it sometime. However,
we actually began only when Jarden asked:

(∗) Suppose that F `n are finite fields (for n < ω, ` = 1, 2) satisfying
F 1
n � F 2

n . Can we have (a universe and) an ultrafilter F on ω such
that

∏
n<ω

F 1
n/F and

∏
n<ω

F 2
n/F are elementarily equivalent but not

isomorphic?

That was not an arbitrary question: he knew that many such pairs of
ultraproducts are elementarily equivalent, because the first order theory of
a field F which is isomorphic to an ultraproduct of finite fields is determined
by its characteristic and its subfield of algebraic elements. Hence we can find
an equivalence relation Ek on the family of finite fields for k < ω each with
finitely many equivalence classes of the form: an equation from ∆n has a
solution in one iff it has a solution in the other with ∆n finite, and such
that if F 1

n , F
2
n are finite fields for n < ω and F is a non-principal ultrafilter

on ω and for each k the set {n < ω : (F 1
n)Ek(F

2
n)} belongs to F then the

respective ultraproducts are elementarily equivalent.
When Jarden asked me, I inquired whether it has the strong independence

property and told him what it is, he said yes. Cherlin gave me the reference
to the strong independence property for finite fields: Duret [Dur80, pp.
136–157].

Here we continue [She92, §3], [She94b, §1]. To give an affirmative answer
to (∗), we show that after adding ℵ3 Cohen reals to a suitable ground model,
one gets a universe with an ultrafilter F on ω and a sequence of models
〈Mn : n < ω〉 on ω such that

(∗∗) if N `
n = (P `n ∪ Q`n, P `n, Q`n, R`n) (for ` = 1, 2, n < ω), P `n ∪ Q`n ⊆ ω,

and
∏
n<ω

N1
n/F ≡

∏
n<ω

N2
n/F are models of the canonical theory tind

of the strong independence property (see Definition 1.5 below), then:
� every isomorphism from

∏
n<ω

N1
n/F onto

∏
n<ω

N2
n/F is (first order)

definable in
∏
n<ω

Mn/F for some models Mn with universe ω

or what is equivalent but hopefully more transparent

�′ if F is an isomorphism fromN1 =
∏
n<ω

N1
n/F ontoN2 =

∏
n<ω

N2
n/F

then we can find unary functions Fn from N1
n into N2

n for every n < ω
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VIVA III 5

such that the set of n for which Fn is an isomorphism from N1
n onto

N2
n belongs to the ultrafilter and

∏
n<ω

(N1
n, N

2
n, Fn)/F is (N1, N2, F ).

Our forcing is adding ℵ3 Cohen reals, but we need that our model of
set theory, i.e. the universe over which we force, satisfies some conditions.
There are two ways to get a “suitable” ground model. The first way involves
taking any ground model which satisfies a relevant portion of the GCH, and
extending it by an appropriate preliminary forcing, which generically adds
the name for an ultrafilter which will appear after addition of the Cohen
reals. The alternative approach, which we consider more model–theoretic,
is to start with an L–like ground model and use instances of diamond (or
related weaker principles) to prove that a sufficiently generic name already
exists in the ground model. We will fully present the first approach - the
second one should be then an easy modification of the arguments presented
in [She94b, §1].

Our presentation is somewhat more general than needed for (**). By
allowing more what we call ”bigness” properties to be involved in the def-
inition of App, we leave room for getting analogs of (**) for more classes
of models (getting the conclusion for all of them at once, or possibly only
for some) - as long as the respective bigness notions are as in Definition
1.4. This, we hope, would be helpful in connection with the Problems above
(particularly problem 2 and 5). For the problem on fields only the case as-
sociated with the strong independence property is needed; general bigness
notions appear for possible general treatment.

Let us comment on our general point of view. In this paper we try to
advance in Problems 1+2(A) and for this, it seemed, we can take the max-
imal Γ

˜
, i.e., allow all ℵ0-bigness notions. However, concerning Problem 4

(investigating the partial order ≤ on models), for showing M � N , the
construction causes Nω/F to be almost always non ℵ3–saturated. We need
finer tools for them e.g. using some bigness notion but not others.

The two previous papers benefited from Gregory Cherlin, the present one
benefited from Andrzej Ros lanowski, thank you!

We continue those investigations in [Shec].

Notation 0.5. Our notation is standard and compatible with that of classical
textbooks (like Hodges [Hod93] Chang and Keisler [?] and Jech [Jec03]). In
forcing we keep the older convention that a stronger condition is the larger
one.

(1) We will use two forcing notions denoted by Cℵ3 and App (see Defini-
tions 2.1 and 2.4, respectively). Conditions in these forcing notions
will be called p, q, r (with possible sub/super-scripts). Note that the
product App× Cℵ3 is a dense subset of the composition App ∗ Cℵ3

(2) All names for objects in forcing extensions will be denoted with a
tilde below (e.g., a

˜
, p
˜

).

Paper Sh:509, version 2006-06-19 11. See https://shelah.logic.at/papers/509/ for possible updates.



6 SAHARON SHELAH

(3) The letter τ (with possible sub/super-scripts) stands for a vocabu-
lary of a first order language; we may also write τ(M), τ(T ) for a
model M or theory T with the obvious meaning. We will use the
letters p, q (with sub/super-scripts) to denote types.

(4) The universe of a model M will be denoted |M |, but we will often
abuse this notation and write, e.g., a ∈M . The cardinality of a set
A will be denoted ‖A‖, and, for a model M , ‖M‖ will stand for the
cardinality of its universe.

Comment: Why the ℵ3 ? We like to have a preliminary forcing notion App
which for some κ, is κ-complete, κ+-c.c., κ<κ = κ; so that every cardinal
is preserved. But for κ = ℵ1, A ⊆ κ+ countable the number of conditions
with this domains (i.e. the number of names of ultrafilters on ω as above) is
more than κ hence in the natural choice the κ-c.c may fail, we may remedy
this but it is easier to use a cardinal κ such that µ < κ⇒ µℵ0 < κ.

1. Bigness notions

In this section we will quote relevant definitions and results from [Shear,
Chapters X, XI] (=[Shea], [Sheb]), but we somewhat restrict ourselves here.
The reader interested in the field case only and/or finding Definition 1.1
obscure, may jump directly to Definition 1.5.

Definition 1.1 (See [Shear, Chapter XI, §1]). Let T be a complete first
order theory (in a vocabulary τ), and K = KT be a class of models of T
(normally: all models of T ) partially ordered by the relation ≺ of being
elementary submodel. Also let t be a first order theory with a countable
vocabulary τ(t) (including equality, treating function symbols as predicates).

(1) We say that K′ is an A–place in K if
(a) K′ ⊆ K,
(b) if M ∈ K′, then A ⊆M ,
(c) if M ≺ N are from K and A ⊆M , then (M ∈ K′) ⇔ (N ∈ K′),
(d) if M ∈ K and A ⊆ N ∈ K and M,N are isomorphic over A,

then M ∈ K′ ⇔ N ∈ K′.
(1A) A place is an A-place for some A (alternatively use only M ≺ C of

cardinality < κ̄, where C is κ̄-saturated model of T , as in [She90]).
(2) For A ⊆M ∈ K we let K′ = KA,M be the class

{N ∈ K : A ⊆ N and ā ∈ ω>A ⇒ tp(ā, ∅,M) = tp(ā, ∅, N) }.
We call it the (A,M)–place.

(1) A local bigness notion Γ for K (without parameters, in one variable
x) is a function with domain K which for every model M ∈ K gives

Γ−M = Γ−(M) ⊆ {ϕ(x, ā) : ϕ ∈ L(τ) & ā ⊆M},
Γ+
M = Γ+(M) = {ϕ(x, ā) : ϕ ∈ L(τ) & ā ⊆M} \ Γ−M

such that
(a) Γ−M is preserved by automorphisms of M ,
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VIVA III 7

(b) Γ−M is a proper ideal, i.e., Γ+
M 6= ∅ and

(α) if M |= (∀x)(ϕ(x, ā) → ψ(x, b̄)) and ψ(x, b̄) ∈ Γ−M , then

ϕ(x, ā) ∈ Γ−M ,

(β) if ϕ1(x, ā1), ϕ2(x, ā2) ∈ Γ−M , then ϕ1(x, ā1) ∨ ϕ(x, ā2) ∈
Γ−M .

Elements of Γ−M are called Γ–small in M , members of Γ+
M are Γ–big.

A local bigness notion Γ for K with parameters1 from A is defined
similarly but Dom(Γ) is an A–place K′ in K and in clause (a) the
automorphisms are over A.

(2) We say that a local bigness notion Γ is invariant for K (or for an
A-place K′) if for M ≺ N from K (or from the A-place K′) we have
Γ−M ⊆ Γ−N and Γ+

M ⊆ Γ+
N .

(3) A Γ–big type p(x) in M is a set of formulas ψ(x, ā) all of whose finite
conjunctions are Γ–big in M .

(4) A pre t–bigness notion scheme Ω is a sentence ψΩ (in possibly in-
finitary logic) in the vocabulary τ(t) ∪ {P ∗}, where P ∗ is a unary
predicate, we may say “using P ∗”.

(5) An interpretation with parameters of t in a model M ∈ K is ϕ̄ =
〈ϕR(ȳR, āR) : R ∈ τ(t)〉, where ϕR ∈ L(τ) and āR is a sequence of
appropriate length of elements of M . So a predicate R from τ(t) is
interpreted as

{b̄ : M |= ϕR(b̄, āR), lg(b̄) = lg(ȳR) (= the arity of R) }.

The interpreted model is called M [ϕ̄] or M [ϕ̄] and we demand that
it is a model of t; so in particular M [ϕ̄] is a τ(t)-model and its
universe is {b ∈ M : M |= ϕ=(b, b, ā=)} defined by ϕ=(x, y, ā=)
which we demand is an equivalence relation; here usually equality
on its domains, so we may write just ϕ=(x, ā=) or just ϕ(x, ā); of
course we could use k-tuples for elements and then lg(ȳR) = kn for
R an n-place predicate from τ(t)

(6) For a pre t–bigness notion scheme Ω = ψΩ and an interpretation
ϕ̄ of t in M ∈ K with parameters from A ⊆ M , we define the ϕ̄–
derived local pre-bigness notion Γ = Γψ,ϕ̄ = Γψ[ϕ̄] with parameters
from A ⊆M (in the A-place KA,M ) as follows:
Given M ′ ∈ KA,M , a formula ϑ(x, b̄) in L(τ) (with parameters from
M ′ of course) is Γψ[ϕ̄]–big in M ′ if for any quite saturated N∗,
M ′ ≺ N∗, letting

P ∗ = {a ∈ N∗[ϕ̄] : N∗ |= ϑ[a, b̄]}

we have (N∗[ϕ̄], P ∗) |= ψ.
In full we may write Γ = Γ(ψ,t,ϕ̄) and even Γ = Γ(ψ,t,ϕ̄,M,A).

1Alternatively use the monster model.
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(7) We say ψ is a t-bigness notion (for T ) if for every interpretation ϕ̄ of
t in some A-place K′ ⊆ K, Γt,ψ,ϕ̄ is an invariant2 local bigness notion
for our fixed K. If there is no T mentioned or understood we mean
“for every T”. So it is enough in (6) above if we define ΓM ′ when
M ≺M ′.

Proposition 1.2. (1) If Γ is a local bigness notion for K with parame-
ters in A, M ∈ KA,M ′ and p(x) is a Γ–big type in M , then it can be
extended to Γ–big type q in M which is a complete type over M .

(2) Assume t, ψ, ϕ̄,M,A are as in Definition 1.1(6). The truth value of
“ϑ(y, ā) is Γ(t,ψ,ϕ̄)-big” depends just on (M � τ ′, ā, c)c∈A whenever
the formulas in ϕ̄ and ϑ belong to L(τ ′).

Proposition 1.3. For T,K = KT and t as in 1.1,

(�) if N ≺ M are from K, and ϕ̄ = 〈ϕR(ȳR, āR) : R ∈ τ(t)〉 is an
interpretation of t in N , then ϕ̄ is an interpretation of t in M (i.e.,
M [ϕ̄] |= t) and moreover N [ϕ̄] ≺M [ϕ̄].

The following definition is crucial in our application, the proofs give some
amount of definability, “a local version” and we need to deduce from it a
global one. This is a good property criterion for closing the gap which have
in fact been used for tind, see more systematically in [Shec].

Definition 1.4. Let t be a first order theory in a vocabulary τ(t). Suppose
that ψ is a t–bigness notion scheme, using P ∈ τ(t), a unary predicate,
and ϑ(y, x) is a τ(t)–formula. We say that ψ is (ℵ2,ℵ1)–(P, ϑ)–separative

whenever the following condition (~)P,ϑΓ holds and for simplicity we assume

ϕ=(x, y, ā=) is equality on its domain3.

(~)P,ϑΓ For every ℵ2– compact4 τ–model M and every interpretation ϕ̄ =
〈ϕR(ȳR, āR) : R ∈ τ(t)〉 of t in M and a set X ⊆ |M | of cardinality
at most ℵ1, including all parameters of ϕ̄ we have:

if N ≺M , X ⊆ |N |, ‖N‖ ≤ ℵ1, and p(x) is a Γψ[ϕ̄]–big type over
N , ‖p(x)‖ ≤ ℵ1, and a1, a2 are distinct members of |M | \ |N |
with (recalling 1.1(5))

M |= ϕP [a1, āP ] ∧ ϕP [a2, āP ]

then the type p(x) ∪ {ϑ(a1, x)↔ ¬ϑ(a2, x)} is Γψ[ϕ̄]–big.

We now define the main bigness notion used

Definition 1.5 (See [Shear, Def. 3.4, 3.5, Chapter XI]). (1) tind = tind
0

is the first order theory in vocabulary τ(tind) = {P,Q,R}, where

2the “invariant” really follows
3Otherwise we should inside (~)P,ϑΓ , demands further that for any c ∈ N we have

M |= ¬ϕ=(c, a1, ā=) ∧ ¬ϕ=(c, a2, ā=) ∧ ¬ϕ=(a1, a2, ā=).
4 A model M is called κ-compact if every type over it of cardinality < κ is realized; if

we omit κ we mean the cardinality of the model
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VIVA III 9

P,Q are unary predicates and R is a binary predicate, including
sentences

(∀x)(∀y)(x R y → P (x) ∧ Q(y)), and
(∀x)(P (x) ∨Q(x))

and saying that for each n < ω and any pairwise distinct elements
a1, . . . , a2n ∈ P , there is c ∈ Q such that

ai R c if and only if i ≤ n.
tind
1 is tind

0 plus

(∀x)(∀y)(∃z)
(
Q(x) ∧ Q(y) ∧ x 6= y → P (z) ∧ (z R x ≡ ¬z R y)

)
.

(2) We define a pre tind–bigness notion scheme Γind as follows. The
sentence ψind says that P ∗ ⊆ Q and (P,Q,R, P ∗) satisfies:

for every n < ω, there is a finite set A ⊆ P such that
for every distinct a1, . . . , a2n ∈ P \ A there is c ∈ P ∗
satisfying

a` R c for ` ≤ n, and ¬(a` R c) for n < ` ≤ 2n.

(So ψind is not first order.)
(3) We say that a first order theory T has the strong independence

property if some5 formula ϑ(x, y) defines a two place relation which
is a model of tind

1 with P,Q chosen as the whole model i.e. for M |= T

define the τtind
1

-model M ′, |M ′| = |M | = PM
′

= QM
′
, RM

′
= {(a, b) :

M |= ϑ(a, b)}
In such case we may also say “ϑ(x, y) has the strong independence prop-

erties (for τ)”

Plainly,

Proposition 1.6. (1) For a model M of tind
1 , an automorphism π of

M is determined by π � PM (i.e., if π1, π2 ∈ Aut(M) are such that
π1 � PM = π2 � PM , then π1 = π2).

(2) Moreover, if ϕ̄ is an interpretation of tind
1 in M∗, M = M∗[ϕ̄],

π ∈ Aut(M) and π � PM is definable in M∗ (with parameters in
M∗), then so is π.

Proposition 1.7. (See [Shear, Chapter XI, §3] and [She83]) ψind is a tind–
bigness notion scheme. It is (ℵ2,ℵ1)–(P, ϑ)–separative where P ∈ τ(tind

0 ) is
given and we choose ϑ(y, x) := y R x.

Definition 1.8. A mapping F : N1 −→ N2 is a ∆–embedding from N1 to
N2 whenever ∆ is a set of formulas in Lω,ω(τ(N1) ∩ τ(N2)) and

if ϕ ∈ ∆ and N1 |= ϕ[a1, . . . , an],
then N2 |= ϕ[F (a1), . . . , F (an)].

[of course, if ∆ is closed under negation, then we have “if and only if”.]

5of course ϑ(x̄, ȳ), lg(x̄) = m = lg(ȳ) can serve as well
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2. The forcing notion App

As explained in the introduction, we work in a Cohen generic extension of
a suitable ground model. In this section we present how that suitable ground
model can be obtained: we start with V |= GCH and we force with the
forcing notion App defined in 2.4 below , the App comes for approximations,
as the members are approximations to a name for an ultrafilter as we desire.

Definition 2.1. (1) The Cohen forcing of adding ℵ3 Cohen reals is de-
noted by Cℵ3 . Thus a condition p in Cℵ3 is a finite partial function
from ℵ3 × ω to ω, and the order of Cℵ3 is the natural one. The
canonical Cℵ3–name for βth Cohen real will be called x

˜
β.

(2) Let A ⊆ ℵ3. For a condition p ∈ Cℵ3 , its restriction to A × ω is
called p � A, and we let Cℵ3 � A = CA = {p � A : p ∈ Cℵ3}. Also,

we let ω
˜
∗
A = (ωω)V

Cℵ3
�A

.
(3) For a sequence 〈An : n < ω〉 of non-empty sets (and A ⊆ ℵ3), we

define∏A

n<ω
An = {f ∈ VCℵ3

�A : f is a function with domain ω,

and such that f(n) ∈ An for every n },
and similarly for models.

(4) For A ⊆ ℵ3 and m < ω, let ImA be the set of all ω–sequences of
canonical CA–names for subsets of mω. Let Qs̄ (for s̄ ∈ ImA , m < ω)
be an m-ary predicate, Qs̄0 6= Qs̄1 whenever s̄0 6= s̄1 i.e. even when
they are forced to be equal they may be different as sequences of
names, and let

τA = {Qs̄ : s̄ ∈ ImA & m < ω}
(so because of the demand “canonical”, ‖τA‖ = ℵ1 · ‖A‖). Let
M
˜
n
A be a CA–name for the τA–model with universe ω such that if

s̄ = 〈s
˜
n : n < ω〉 ∈ ImA , then CA

(Qs̄)
M
˜
n
A = s

˜
n. So the vocabulary

τA is an object in V, not a name.
(5) If A1 ⊆ A2, and for ` = 1, 2 F

˜
` is a CA`

- name of an ultrafilter on
ω then F

˜
1 = F

˜
2 � A1 means that C�A2 F

˜
1 ⊆ F

˜
2, so F

˜
2 � A2 is

unique but not always well defined.6

In the definition below the reader can restrict himself to the case t =
tind, ψ

˜
= ψind, see Definition 1.5 (so we later in Definition 2.4 use only

Γ = Γind)

Definition 2.2. (1) A function G is called an (ℵ3,ℵ2)–bigness guide if
the domain Dom(G) of G is

{(A,F
˜

) : A ⊆ ℵ3, ‖A‖ ≤ ℵ1, and
F
˜

is a CA–name of a non principal ultrafilter on ω },

6as for CA1 -name A
˜

of a subset of ω, the truth value of “A
˜
∈ F

˜
2” is an CA2 -name but

in general not a CA1 -name.
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and
(α) G(A,F

˜
) is a non-empty set of triples (t, ψ

˜
, ϕ̄
˜

), where7 t is a
(countable) first order theory (or just a CA–name of a (count-
able) first order theory), ψ

˜
is a CA–name of t–bigness notion

scheme, and ϕ̄
˜

is (a CA–name for) an interpretation of t in∏A

n<ω
M
˜
n
A/F˜

, and ‖G(A,F
˜

)‖ ≤ ℵ2, and

(β) if (A`,F
˜
`) ∈ Dom(G) for ` = 1, 2, A1 ⊆ A2 and CA2

F
˜

1 ⊆ F
˜

2,

then G(A1,F
˜

1) ⊆ G(A2,F
˜

2).
(2) An (ℵ3,ℵ2)–bigness guide G is ind–full if

(γ) for every (A,F
˜

) ∈ Dom(G) and a canonical CA–name ϕ̄
˜

for

an interpretation of tind in
∏A

n<ω
M
˜
n
A/F˜

we have (tind, ψind, ϕ̄
˜

) ∈

G(A,F
˜

).
(3) We say that G is full whenever the following condition holds.

(�) Assume (A,F
˜

) ∈ Dom(G) and t
˜

is a canonical CA–name of a
(countable) first order theory in the vocabulary τ(t

˜
) ∈ H(ℵ1), ψ

˜is a canonical CA–name for a pre t
˜
–bigness notion scheme, ψ

˜
∈

Lℵ1,ℵ1(τ(t
˜
)∪ {P ∗}). Let ϕ̄

˜
be a CA–name for an interpretation

of t
˜

in
∏A

n<ω
M
˜
n
A/F˜

; no need for parameters as all elements are

interpretation of an individual constant. Suppose (t
˜
, ψ
˜
, ϕ̄
˜

) is

forced to define a bigness notion8 Γ = Γ(t
˜
,ψ
˜
,ϕ̄
˜

). Then (t
˜
, ψ
˜
, ϕ̄
˜

) ∈
G(A,F

˜
).

The clause 2.2(2) is added for our particular application. It can be re-
placed by the use of a family of bigness notions relevant to your interest.

Proposition 2.3. (1) There is a full (ℵ3,ℵ2)–bigness guide G.
(2) If a bigness guide G is full, then it is ind–full.
(3) Full and even just ind-full implies non-emptiness, i.e. G(A,F

˜
) 6= ∅

when defined.

Proof. Trivial. �

Definition 2.4. Let G be an (ℵ3,ℵ2)–bigness guide. We define the forcing
notion App = AppG. (When G is fixed, as typically in the present paper,
we may and usually will not mention it.)

(1) A condition q in App is a triple q = (A,F
˜
, Γ̄
˜

) = (Aq,F
˜
q, Γ̄

˜
q) such

that:
(a) A is a subset of ℵ3 of cardinality ≤ ℵ1;

7 note that our forcing App will add no real so as we are considering only countable t,
it is OK to use only old ones. As we may consider names in the Cohen forcing, things are
different so we allow such names

8We can fix a Cℵ3–name of countable first order theory.
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(b) F
˜

is a canonical CA–name of a non-principal ultrafilter on ω,
such that for β < ℵ3 divisible by ℵ2,

F
˜
� (A ∩ β)

def
= F

˜
∩ {a

˜
: a
˜

is a CA∩β–name of a subset of ω }

is a CA∩β–name (of an ultrafilter on ω);
Why “canonical”? for the same reasons as in 2.1(4)

(c) Γ̄
˜

= 〈Γ
˜
β : β ∈ A & cf(β) = ℵ2〉, where each Γ

˜
β is a local bigness

notion Γψ
˜

[ϕ̄
˜

] for some (t, ψ
˜
, ϕ̄
˜

) ∈ G(A ∩ β,F
˜
� (A ∩ β));

(d) If cf(β) = ℵ2, β ∈ A, then it is forced (i.e., Cℵ3
equivalently

CA
) that:

the type realized by the element x
˜
β in the model

∏A

n<ω
M
˜
n
A∩β/F˜

over the model
∏A∩β

n<ωM˜
n
A∩β/

(
F
˜
� (A ∩ β)

)
(so it is a type

in the vocabulary τA∩β) is Γ
˜
β–big and complete of course, and

moreover this type is a CA∩β–name ; actually we should say
“by the element x

˜
β/(F

˜
� A)”. We call it “the type induced by

x
˜
β according to q”.

(2) The order ≤App = ≤ of App = AppG is the natural one:
q1 ≤ q2 if and only if Aq1 ⊆ Aq2 , CAq2

F
˜
q1 ⊆ F

˜
q2 , and Γ̄

˜
q2 �

Aq1 = Γ̄
˜
q1 .

(3) We say that q2 ∈ App is an end extension of q1 ∈ App, and we write
q1 ≤end q2, if q1 ≤ q2 and sup(Aq1) ≤ min(Aq2 \Aq1).

(4) For a condition q ∈ App and an ordinal β ∈ ℵ3 we define q � β =(
Aq ∩ β,F

˜
q � (Aq ∩ β), Γ̄

˜
q � (Aq ∩ β)

)
.

(5) For β < ℵ3 we let App � β = {q ∈ App : Aq ⊆ β} with inherited
order. If G ⊆ App is generic over V, then we let G � β = G∩ (App �
β).

One easily checks that

Proposition 2.5. (1) If q ∈ App, β < ℵ3, then q � β ∈ App and
q � β ≤end q.

(2) Both ≤App and ≤end are partial orders, (pedantically quasi orders)
on App.

Lemma 2.6. If 〈qζ : ζ < ξ〉 is an increasing sequence of members of App,
ξ ≤ ℵ1, and qζ1 ≤end qζ2 for ζ1 < ζ2, then there is q ∈ App such that
Aq =

⋃
ζ<ξ

Aqζ and qζ ≤end q for all ζ < ξ.

Proof. We may assume that ξ > 0 is a limit ordinal. If cf(ξ) > ℵ0, then
we let Aq =

⋃
ζ<ξ

Aqζ , F
˜
q =

⋃
ζ<ξ

F
˜
qζ and Γ̄

˜
q =

⋃
ζ<ξ

Γ̄
˜
qζ . If cf(ξ) = ℵ0, then

additionally we have to extend
⋃
ζ<ξ

F
˜
qζ to a CAq–name of an ultrafilter on

ω, which is no problem. �
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Lemma 2.7. Suppose that q ∈ App, Aq ⊆ γ ∈ ℵ3, and p
˜

is a CAq–name of a

type over the model
∏Aq

n<ω
M
˜
n
Aq/F

˜
q (so the type p

˜
= p

˜
(x) is in the vocabulary

τAq , finitely satisfiable in
∏Aq

n<ω
M
˜
n
Aq/F

˜
q). Then:

(1) If cf(γ) < ℵ2, then there is a condition r ∈ App stronger than q such
that Ar = Aq ∪ {γ}, and

CAr
“x
˜
γ/F

˜
r realizes p

˜
in
∏Ar

n<ω

M
˜
n
Ar/F

˜
r”.

(2) If cf(γ) = ℵ2, (t
˜
, ψ
˜
, ϕ̄
˜

) ∈ G(Aq,F
˜
q) and the type p

˜
is (forced to be)

Γψ
˜

[ϕ̄
˜

]–big, then there is a condition r ∈ App as in (1) and such that

Γ
˜
r
γ = Γψ

˜
[ϕ̄
˜

].

Proof. 1) Extend F
˜
q to F

˜
r so that x

˜
γ/F

˜
r realizes the required type, (using

“x
˜
γ is Cohen over VC�A”).

2) Note that every Γψ
˜

[ϕ̄
˜

]–big type can be extended to a complete Γψ
˜

[ϕ̄
˜

]– big

one by 1.2. �

Lemma 2.8. (1) Suppose q0, q1, q2 ∈ App, q0 = q2 � β, q0 ≤ q1,
Aq1 ⊆ β. Suppose further that Aq2 \ Aq0 = {β} and cf(β) = ℵ2.
Assume further that p

˜
1 is a CAq1 –name for a complete Γ

˜

q2
β –big type

over (
∏Aq1

n<ω
M
˜
n
Aq1/F

˜
q1) such that p

˜
1 contains the type p

˜
0 induced by

x
˜
β according to q2 (such p1 necessarily exists, by the properties of

bigness). Then there is q3 ≥ q1, q2 with Aq3 = Aq1 ∪ {β}, such that

x
˜
β induces p

˜
1 on (

∏Aq1

n<ω
M
˜
n
Aq1/F

˜
q1) (according to q3).

(2) Assume q0, q1, q2 ∈ App, q0 = q2 � β, q0 ≤ q1 and Aq1 ⊆ β. If
Aq2 \Aq0 = {β} and cf(β) < ℵ2, then there is q3 ∈ App, q3 ≥ q1, q2

such that Aq3 = Aq1 ∪Aq2. This clause is like the first one except
the cofinality.

(3) Assume that δ1, δ2 < ℵ2, and 〈βj : j < δ2〉 is a non-decreasing
sequence of ordinals below ℵ3. Let 〈pi : i < δ1〉 be an ≤-increasing
sequence from App. Suppose that qj ∈ App � βj (for j < δ2) are
such that:

pi � βj ≤ qj for i < δ1, j < δ2,

qj ≤end qj′ for j < j′ < δ2.

Then there is an r ∈ App with pi ≤ r and qj ≤end r for all i < δ1

and j < δ2.
(4) If p̄ = 〈pi : i < δ1〉 an increasing sequence in App, δ1 < ℵ2, then

p̄ has an upper bound in App. If cf(δ1) = ℵ1 we use the (naturally
defined) union.

(5) Assume
(a) γ is a limit ordinal of cofinality ℵ0 divisible by ℵ2

Paper Sh:509, version 2006-06-19 11. See https://shelah.logic.at/papers/509/ for possible updates.



14 SAHARON SHELAH

(b) p ∈ Appγ and p
˜

is as CAp-name of a finitely satisfiable set of

formulas in one free variable x over
∏Ap

n<ω
M
˜
n
Ap/F

˜
p

(c) γn ∈ γ \Ap, γn < γn+1 and γ = ∪{γn : n < ω}
Then there is q such that
(α) p ≤ q ∈ Appγ
(β) Aq = Ap ∪ {γn : n < ω}
(γ) CAq

“p
˜

is realized in
∏Aq

n<ω
M
˜
n
Aq/F

˜
q”

Proof. 1) Note that this is a strong form of the ℵ2-c.c., see the proof of
2.9 below. Let Ai = Aqi and let F

˜
i = F

˜
qi for i < 3, and A3 = A1 ∪A2 =

A1 ∪ {β}. The only possibly not clear part is to show that, in VCA3 , there
is an ultrafilter extending F

˜
1 ∪ F

˜
2 which contains F

˜
′, the family of all the

sets

{n < ω : M
˜
n
A3
|= ϕ

˜
[x
˜
β(n), ā

˜
(n)]}

for ϕ
˜

(x, ȳ) ∈ p
˜

1, `g(ȳ) = m, and a CA1–name ā
˜

of an m–tuple from ω
˜
∗
A1

(and
in our notation above ā

˜
(n) is a CA1–name for an m– tuple of elements of ω,

so pedantically we define ā
˜

= 〈a
˜
` : ` < m〉, a

˜
` = 〈a

˜
`(n) : n < ω〉 where a

˜
`(n)

is a (C � A)-name of a natural number and ā
˜

(n) = 〈a
˜
`(n) : ` < m〉 and we

should use below 〈a
˜
`/F

˜
: ` < m〉 instead ā

˜
). As F

˜
1,F

˜
2,F

˜
′ are (forced, i.e.,

CA3
) to be closed under intersections (of two, and hence of finitely many),

clearly if this fails, then (as F
˜

0 is forced to be a non-principal ultrafilter on
ω so m < ω implies  [m,ω) ∈ F

˜
0) there are a condition p ∈ CA3 , a CA1–

name a
˜

of a member of F
˜

1, a CA2–name b
˜

of a member of F
˜

2, a (CA1-name
for a) τA1–formula ϕ

˜
and a CA1–name for an m–tuple ā

˜
from ω

˜
∗
A1

such that

p � A1 CA1
“ϕ
˜

(x, ā
˜

) ∈ p
˜

1 ” and p CA3
“a
˜
∩ b

˜
∩ c

˜
= ∅ ”,

where

c
˜

= {n : M
˜
n
A3
|= ϕ

˜
[x
˜
β(n), ā

˜
(n)]}.

We may easily eliminate parameters, so we may assume that we have ϕ
˜

[x
˜
β(n)]

only (remember the definition of τA1). Let pi = p � Ai for i = 0, 1, 2, and
let H0 ⊆ CA0 be generic over V such that p0 ∈ H0. For n < ω let A

˜
∗
n be a

CA0–name such that

A
˜
∗
n[H0] = {y ∈M

˜
n
A2

: there is p′2 ∈ CA2 such that
p2 ≤ p′2, p′2 � A0 ∈ H0 and
p′2  “ x

˜
β(n) = y and n ∈ b

˜
”}

(recall y ∈ M
˜
n
A2

means y ∈ ω). Let A
˜
∗ =

∏A0

n<ω
A
˜
∗
n/F

˜
0. So A

˜
∗[H0] is (the

interpretation of) an unary predicate from τA0 ; in fact Q〈A
˜
∗
n:n<ω〉 is such a

predicate, but we shall write A
˜
∗(x) instead Q〈A

˜
n:n<ω〉(x). Thus, in V[H0],

either A
˜
∗(x) ∈ p

˜
0 or ¬A

˜
∗(x) ∈ p

˜
0. The latter is impossible by the choice of

A
˜
∗, so necessarily A

˜
∗(x) ∈ p

˜
0. As also p � A1 CA1

“ ϕ
˜

(y) ∈ p
˜

1 ”, clearly if
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H1 ⊆ CA1 is generic over V and H0 ∪ {p1} ⊆ H1, then in V[H1] we have

{n ∈ ω : M
˜
n
A1
|= (∃y)

(
A
˜
∗(y) & ϕ

˜
(y)
)
} ∈ F

˜
1[H1]

(remember p
˜

1 is a type over
∏Aq1

n<ω
M
˜
n
Aq1/F

˜
1 extending p

˜
0). Consequently,

we may find a condition p′1 ∈ H1 ⊆ CA1 stronger than p1, an integer n < ω,
and an element y ∈M

˜
n
A1

(so y ∈ ω) such that

p′1 � A0 ∈ H0, and p′1 CA1
“ M

˜
n
A1
|=
(
A
˜
∗(y) & ϕ

˜
(y)
)

and n ∈ a
˜

”.

As A
˜
∗
n is a CA0–name, we really have y ∈ A

˜
∗
n[H0], and hence (by its defini-

tion) for some p′2 ∈ CA2 we have

p2 ≤ p′2, p′2 � A0 ∈ H0, and p′2  “ y = x
˜
β(n) and n ∈ b

˜
”.

Now for our n we can force n ∈ a
˜
∩b

˜
∩c

˜
by amalgamating the corresponding

conditions p′1, p
′
2, getting a contradiction. As said above this finishes the

proof of the existence of q3.

2) The proof is essentially contained in the previous one (use the very
trivial bigness notion: ϕ(x, ā) is big in M if and only if M |= (∃x)ϕ(x, ā),
so we may use a p

˜
1). See also the end of the proof of (3).

3) We will prove by induction on γ ∈ ℵ3 that if all βj ≤ γ and all pi belong
to App � γ, then the assertion in (3) holds for some r ∈ App � γ.

We may assume that δ1 > 0 (otherwise apply 2.6) and δ2 > 0 (otherwise
let δ′2 = 1, β0 = 0, q′0 ∈ App � 0 be above pi � 0 for i < δ1; so it just means

F
˜
q′0 is an ultrafilter extending F

˜
pi�0 for i < δ1; now if γ = 0, then r = q′0

is as required and otherwise we have reduced the case δ2 = 0 to the case
δ2 = 1).

We may assume that βj = sup{α + 1 : α ∈ Aqj} (for j < δ2), and also
that the sequence 〈βj : j < δ2〉 is strictly increasing. Let β = sup

j<δ2

βj and

let q = (
⋃
j<δ2

Aqj ,
⋃
j<δ2

F
˜
qj ,

⋃
j<δ2

Γ̄
˜
qj ), this triple is not necessarily a member

of App.

We first deal with
Case 1: cf(γ) 6= ℵ0.

If γ = β, then q ∈ App and we may take r = q. So let us assume β < γ.
If δ2 is a successor ordinal, or a limit ordinal of uncountable cofinality, then
we let q∗ = q (clearly q∗ ∈ App � β). If cf(δ2) = ℵ0, then we may first
apply the inductive hypothesis to 〈pi � β : i < δ1〉 (and 〈βj , qj : j < δ2〉) to
get a condition q∗ ∈ App � β which is stronger than all pi � β and which
end-extends all qj . So in all these cases, we have a condition q∗ ∈ App � β
end extending all qj for j < δ2 and stronger than all pi � β for i < δ1 (and
we are looking for an end-extension of it which is a bound to all pi � β). The
following three subcases suffice as we have already dealt with the possibility
γ = 0.
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The Subcase 1A: γ = γ0 + 1 is a successor
In this case our inductive hypotheses applies to the pi � γ0, q

∗, and γ0,
yielding r0 in App � γ0 with pi � γ0 ≤ r0 for i < δ1 and q∗ ≤end r0.
What remains to be done is an amalgamation of r0 with all of the pi, where
Api ⊆ Ar0∪{γ0}, and where one may as well suppose that γ0 is in Api for all
i. This is a slight variation on (1) or (2). For instance, suppose cf(γ0) = ℵ2.
We let

• A2 =
⋃
i<δ1

Api , A0 = A2 \ {γ0}, A1 = Ar0 , A3 = A2 ∪A1.

• F
˜

1 = F
˜
r0 , F

˜
2 =

⋃
i<δ1

F
˜
pi . (The latter might be only a CA2–name of

a filter).
• For i < δ1 let p

˜

i be the CApi∩γ0–name for the (Γ
˜

pi
γ0–big) type in-

duced by x
˜
γ0 over the model

∏Api∩γ0

n<ω
M
˜
n
Api∩γ0

/F
˜
pi�γ0 . Then let

p
˜

0 =
⋃
i<δ1

p
˜

i, and note that it is a CA0–name for a Γ
˜

pi
γ0–big type over

the model
∏A0

n<ω
M
˜
n
A0
/F

˜
0.

• Let p
˜

1 be (a CA1–name for) a complete Γ
˜

pi
γ0–big type over

∏A1

n<ω
M
˜
n
A1
/F

˜
0

extending p0
˜

. (Exists by 1.2; the role of p1
˜

is to be the type which

xγ0 realizes over
∏A1

n<ω
M
˜
n
A1
/Fr0 according to a condition r which we

will choose below so necessarily it extends
⋃
i<δ1

pi

˜
).

Now, in VCA3 , we would like to extend F
˜

1∪F
˜

2 to an ultrafilter F ′ containing
the sets of the form {n < ω : M

˜
n
A3
|= ϕ

˜
[x
˜
γ0(n)]} for all ϕ

˜
(x) ∈ p

˜
1. If this

fails, then as

CA1
“ 〈F

˜
pi : i < δ1〉 is increasing ”

we find a condition p ∈ CA3 , a CA1–name a
˜

of a member of F
˜

1, and i < δ1,
and a CA2–name b

˜
for a member of F

˜
i, and ϕ

˜
such that

p � A1  “ϕ
˜

(x) ∈ p
˜

i ⊆ p
˜

1” and p CA3
“a
˜
∩b

˜
∩{n : Mn

A3
|= ϕ

˜
[xβ(n)]} = ∅”.

Next we continue exactly as in the proof of (1).

The Subcase 1B: γ is a limit ordinal of cofinality ℵ2

Since δ1 < ℵ2 there is some γ0 < γ such that all pi lie in App � γ0 and
β < γ0, and the induction hypothesis then yields the claim.

The Subcase 1C: γ is a limit ordinal of cofinality ℵ1

Choose a strictly increasing and continuous sequence 〈γj : j < ℵ1〉 with
supremum γ, starting with γ0 = β. By induction on j choose rj ∈ App � γj
(for j < ℵ1) such that:

• r0 = q∗;
• rj ≤end rj′ for j < j′ < ℵ1;
• pi � γj ≤ rj for i < δ1 and j < ℵ1.
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[Thus, at a successor stage j + 1, the inductive hypothesis is applied to pi �
γj+1, rj , γj , and γj+1. At a limit stage j, we apply the inductive hypothesis
to pi � γj for i < δ1, rj′ for j′ < j, γj′ for j′ < j, and γj .] Finally, we let
r = (

⋃
j<ℵ1

Arj ,
⋃
j<ℵ1

F
˜
rj ,

⋃
j<ℵ1

Γ̄
˜
rj ). Clearly r ∈ App is as required.

Now we are going to consider the remaining case:

The case 2: γ is a limit ordinal of cofinality ℵ0

If β < γ (where β is as defined at the beginning of the proof), then we
first pick a strictly increasing sequence 〈γj : j < ℵ0〉 of ordinals such that
β ≤ γ0 and sup

j<ℵ0

γj = γ. Then we apply repeatedly the inductive hypothesis

to build a sequence 〈q′j : j < ℵ0〉 such that q′j ∈ App � γj , q′j0 ≤end q
′
j1

for

j0 < j1, qj ≤end q
′
0 (for all j < δ2), and pi � γj ≤ q′j (for all i < δ1, j < ℵ0).

Thus we have reduced this sub-case to the only one remaining: β = γ. Now
if for some j < δ2 we have βj = γ, then r = qj is as required, so without
loss of generality (∀j < δ2)(βj < γ). Then necessarily cf(δ2) = ℵ0 and we
may equally well assume that δ2 = ℵ0.

We take q as defined earlier (so it is the “union” of all qj), but it does not
have to be a condition in App: the filter

⋃
j<ℵ0

F
˜
qj does not have to be an

ultrafilter, and we need to extend it to one that contains also
⋃
i<δ1

F
˜
pi . Note

that A∗
def
=

⋃
i<δ1

Api ⊆
⋃
j<ℵ0

Aqj def
= A+, but there might be CA∗–names for

elements of
⋃
i<δ1

F
˜
pi that are not CAqj –names for any j < ℵ0, so seemingly

it could happen that one name like that is forced to be disjoint from some
element of F

˜
qj . Still, also here

⋃
j<ℵ0

F
˜
qj is closed under finite intersection

and similarly
⋃
i<δ1

F
˜
pi . So assume toward contradiction, that there are a

condition p ∈ CA+ , ordinals i < δ1 and j < ℵ0, a CApi–name a
˜

, and a
CAqj –name b

˜
such that

p CA+ “ a
˜
∈ F

˜
pi & b

˜
∈ F

˜
qj & a

˜
∩ b

˜
= ∅ ”.

Increasing j if necessary, we may also assume that p ∈ CAqj so Dom(p) ⊆
βj × ω. Let H0 ⊆ CApi∩βj be generic over V such that p � Api ∈ H0, and
let

c = {n ∈ ω : there is a condition p′ ∈ CApi stronger than p � Api and
such that p′ � (Api ∩ βj) ∈ H0 and p′ CApi

“ n ∈ a
˜

”}.

Clearly, c ∈ V[H0] is a set from
(
F
˜
pi � (Api ∩ βj)

)
[H0]. Since pi � βj ≤ qj ,

we find a condition p′′ ∈ CAqj and n ∈ c such that

p ≤ p′′ & p′′ � (Api ∩ βj) ∈ H0 & p′′ C
A
qj

“ n ∈ b
˜

”.
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For this n we find p′ ∈ CApi witnessing that n ∈ c (i.e. p′ � (Api ∩ βj) ∈ H0

and p′ CApi
“n ∈ a

˜
”) and next we let p∗ = p′ ∪ p′′. Clearly p∗  n ∈ a

˜
∩ b

˜
,

a contradiction.

4) Follows, i.e., it is the case δ2 = 0 of part (3).

5) We choose qn ∈ Appγn for n < ω such that
Aqn := Ap ∪ {γ` : ` < n}, p � γn ≤ qn and qn ≤end qn+1 for n < ω and let
A = ∪{Aqn : n < ω}

This is possible for n = 0 let qn = p � γn+1, for n = k + 1, let q′n ∈ App

be such that Aq′n = Aqk ∪ {γn} and qk ≤end q
′
n, exists by 2.7, and then qn

as required exists by 2.8(1).
Let x

˜
be the following CA-name of an ω-sequence:

x
˜

= 〈x
˜
γn(n) : n < ω〉.

Now we shall choose q such that Aq = A = ∪{Aqn : n < ω} = Ap ∪ {γn :
n < ω}, n < ω ⇒ qn ≤end q and p ≤ q and CA

“x
˜

realizes p
˜

”.
Again the only problem is to find a CA- name of an ultrafilter on ω which

include

F
˜
p ∪
⋃
{F

˜
qn : n < ω} ∪ {{n : M

˜
n
Ap |= ϕ(x

˜
(n))} : ϕ(x) ∈ p

˜
}

As without loss of generality p
˜

is closed under conjunction it is enough to
show that:

~ if a
˜

is a CAp-name of a member of F
˜
p, n < ω,

b
˜

is a CAqn -name of a member of F
˜
qn

ϕ
˜

(x) is a CAp-name of a formula from p
then CA

“a
˜
∩ b

˜
∩ {n : MAp |= ϕ

˜
(x
˜

(n))} 6= ∅”. As in previous cases
this is easy.

�

Lemma 2.9. Assume V |= GCH. The forcing notion App satisfies the
ℵ3–chain condition, it is ℵ2–complete, ‖App‖ = ℵ3 and ‖App � γ‖ ≤ ℵ2 for
every γ ∈ ℵ3. Consequently, the forcing with App does not collapse cardinals
nor changes cofinalities, and App GCH.

Proof. The only perhaps unclear part is the chain condition. Suppose to-
wards contradiction that we have an antichain {qα : α ∈ ℵ3 & cf(α) = ℵ2} ⊆
App (the index α is taken to vary over ordinals of cofinality ℵ2 just for con-
venience). An important point is that G can “offer” at most ℵ2 candidates
for the bigness notion at δ < ℵ3, cf(δ) = ℵ2, hence for each γ ∈ ℵ3 the
restricted forcing App � γ has cardinality ≤ ℵ2. Applying Fodor’s lemma
twice, we find a stationary set S ⊆ {α ∈ ℵ3 : cf(α) = ℵ2} and a condition
q∗ ∈ App such that (∀α ∈ S)(qα � α = q∗). Pick α1, α2 ∈ S such that
sup(Aqα1 ) < α2; it follows from Lemma 2.8(3) that the conditions qα1 , qα2

are compatible, a contradiction. �

Proposition 2.10. (1) For each p ∈ App and α ∈ ℵ3, there is a condi-
tion q ∈ App stronger than p and such that α ∈ Aq.
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(2) F
˜

def
=
⋃
{F

˜
r : r ∈ G

˜
App} is an App-name of a Cℵ3–name for a

non-principal ultrafilter on ω. Also, for each r ∈ G
˜
App we have:

F
˜
∩ P(ω)(V[G

˜
App])CAr = F

˜
r.

Proof. Should be clear (for (1) use 2.7 + 2.8(3); then (2) follows). �

Definition 2.11. (1) Suppose GApp ⊆ App is generic over V, V∗ =
V[GApp]. For α ≤ ℵ3 we let Gα = GApp ∩ (App � α). It is a generic
subset of App � α; let F

˜
α be the (App � α)-name of the Cα-name⋃

{F
˜
q : q ∈ Gα}. Note: F

˜
q being a CAq -name is a Cα-name when

Aq ⊆ α. So in V∗ the sequence 〈F
˜
α : α < ℵ3〉 is forced (i.e. C) to

be increasing , let F
˜

= F
˜
ℵ3 so F

˜
α is the Cα–name for the restriction

F
˜
� α of the ultrafilter F

˜
to the sets from the universe (V∗)Cα .

(2) We define an App–name Γ
˜
δ of a Cδ–name as Γpδ for every p ∈ G

˜
App

such that δ ∈ Ap. (So it is an App ∗ Cδ–name.)

Lemma 2.12. (1) Suppose that GApp ⊆ App is generic over V, V∗ =

V[GApp], and δ < ℵ3, cf(δ) = ℵ2, and Hδ ⊆ Cδ is generic over V∗.

Then, in V[GApp ∩ (App � δ)][Hδ], we have9:∏
n<ω

M
˜
n
δ /F˜

δ[Hδ] is ℵ2–compact.

(2) Also if H ⊆ Cℵ3 is generic over V∗, H ⊇ Hδ, then in V∗[H]:
(a)

∏
n<ω

M
˜
n
ℵ3
/F

˜
[H] is ℵ2–compact,

(b) x
˜
δ[H]/F

˜
[H] ∈

∏
n<ω

M
˜
n
ℵ3
/F

˜
[H] realizes a Γ

˜
δ[G][Hδ]–big type over∏δ

n<ω
M
˜
n
δ /F˜

δ[Hδ].

Proof. By 2.7(1)+2.7(2). We can use some x
˜
β with β of cofinality less than

ℵ2 to realize each type. �

3. Definability

Hypothesis 3.1. In this section we assume that G is an (ℵ3,ℵ2)–bigness
guide, App = AppG, G∗ ⊆ App is a generic filter over V, and V∗ = V[G∗].
For an ordinal α < ℵ3, we let G∗α = G∗ ∩ (App � α). Also, H

˜
, H

˜
α are

the canonical Cℵ3– and Cα–names of the generic subsets of Cℵ3 and Cα,
respectively. We work mostly in V∗.

[Note that, by Lemma 2.9, V∗ |= GCH.]

Definition 3.2. (1) We say that m is an (ℵ3,ℵ2)–isomorphism candi-
date (or just an isomorphism candidate, in V or in V∗, see below)
if;
(i) m consists of A∗ = A∗[m] ∈ [ℵ3]<ℵ2 , p∗ = p∗[m], N

˜
`
n =

N
˜
`
n[m], t

˜
`
n (for n < ω, ` ∈ {1, 2}), F

˜
= F

˜
[m], Γ

˜
= Γ

˜
[m] and

(t
˜
, ϕ̄
˜
, ψ
˜
,∆
˜

) = (t
˜
[m], ϕ̄

˜
[m], ψ

˜
[m],∆

˜
[m]),

9Note: M
˜
n
δ is M

˜
n
A for A = δ
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(ii) t
˜
, ψ
˜
, ϕ̄
˜

are CA∗–names as in 2.2(3), ∆
˜
⊆ L(τ(t

˜
)) is a CA∗-name,

equality belongs to it, and Γ
˜

= Γ
˜

(t
˜
,ψ
˜
,ϕ̄
˜
,) is a bigness notion as

there, τ(t
˜
) is countable; we can assume τ(t

˜
) is an object (not a

name) by adding for each m,ℵ0 predicates with m places said
(by t

˜
) to be empty.

(iii) N
˜
`
n, for n < ω and ` ∈ {1, 2}, are CA∗–names for countable

models of a (countable) theory t
˜
`
n, and the universes |N

˜
`
n| are

subsets of ω and with vocabulary τ(t
˜
).

Also it is forced (i.e., Cℵ3
) that t

˜
⊆ Th

( ∏
n<ω

N
˜

1
n/F

˜

)
= Th

( ∏
n<ω

N2
n/F

˜

)
,

where the
∏
n<ω

is
∏ℵ3

n<ω
. Note that we cannot require that t

˜
`
n = t

˜
,

as t
˜

may be infinite, (e.g. tind
0 is) and no N `

n is a model of t
˜
.

(iv) We have predicates Q`R ∈ τA∗ (for R ∈ τ(t
˜
)) such that ϕ̄

˜

` =

〈Q`R : R ∈ τ(t)〉 is the interpretation of τ(t
˜
) in

∏A∗

n<ω
M
˜
n
A∗/F˜

giving
∏
n<ω

N
˜
`
n/F

˜
. (Remember 2.1(4), 1.4(1); so by the choice

of τA∗ actually ϕ̄
˜

∗ = ϕ̄∗.)
(v) F

˜
is a Cℵ3–name (more accurately an App–name of such name,

but we sometimes write F
˜

instead of F
˜

[G∗] as when G∗ is con-
stant) and p∗ ∈ Cℵ3 is a condition such that:

p∗ Cℵ3
“F

˜
is a map from

∏
n<ω

N
˜

1
n into

∏
n<ω

N
˜

2
n”

p∗ Cℵ3
“F

˜
represents a ∆

˜
–embedding modulo F

˜
”.

[If m is clear from the context we may omit it.]

Remark 3.3. (1) In m, note that ∆
˜

tells us which first order formulas in
the vocabulary τ(t

˜
) does the function F

˜
preserve. In our main case

those are the atomic and negation of atomic formulas in τ ind

(2) Of course m gives us two interpretations of t in the ultraproduct:
one for ` = 1 and another for ` = 2, and the interpreting formulas
define N `

n in the n-th coordinate. Without loss of generality the
universe of N

˜
`
n is non-empty for every n < ω (and ` = 1, 2).

Definition 3.4. For m as in 3.2 let
m− = 〈t

˜
, ψ
˜
, ϕ̄
˜
,∆
˜
, 〈N

˜
`
n : n < ω, ` = 1, 2〉〉,

those names involve countably many of the Cohens x
˜
β. Also note that as

App is ℵ2–complete, this forcing does not add new m−, i.e., V and V∗ have
the same set of m−, though we have an App–name m

˜
of such object.

Observation 3.5. Assume, in V∗, that m is an (ℵ3,ℵ2)–isomorphism can-
didate, Γ

˜
= Γ

˜
[m] = Γ(t

˜
,ϕ̄
˜
,ψ
˜

). Then there is a stationary set of ordinals

δ < ℵ3 such that:

(a)δ A∗ = A∗[m] ⊆ δ ∩ Aq, cf(δ) = ℵ2, and p∗ = p∗[m] ∈ Cδ, and for
some q ∈ G∗ we have that Γ

˜
= Γ

˜

q
δ is Γψ

˜
[ϕ̄
˜

] (for (t
˜
, ψ
˜
, ϕ̄
˜

) from 2.2),
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(b)δ for every Cℵ3 � δ–name x
˜

for an element of
∏
n<ω

N
˜

1
n, F

˜
(x
˜

) is a

(Cℵ3 � δ)–name,
[recall App satisfies the ℵ3–c.c]

(c)δ similarly for F
˜
−1 and for “y ∈ Rang(F

˜
)”,

(d)δ Cℵ3
“{n < ω : x

˜
δ(n) ∈ N

˜
1
n} ∈ F

˜
(so x

˜
δ/F

˜
∈
∏
n<ω

N
˜

1
n/F

˜
)”.

For such δ, we let y
˜

∗ = y
˜

∗
δ = y

˜

∗
δ,F

˜
= y∗δ,m be F

˜
(x
˜
δ) ∈

∏
n<ω

N
˜

2
n.

Remark: Also notice that the clauses (b)δ, (c)δ of 3.5 above say that F
˜
δ[G∗]

is really a Cδ–name for a function from (
∏
n<ω

N
˜

1
n)(V∗)Cδ into (

∏
n<ω

N
˜

2
n)(V∗)Cδ

preserving ∆
˜

–formulas; in the main case it is “onto”.

The Main Isomorphism Theorem 3.6. Assume that m is an (ℵ3,ℵ2)–
isomorphism candidate as in 3.2, and δ < ℵ3 is as in Observation 3.5. Then
there are qδ,Γ

˜
, y
˜

such that

(a) qδ ∈ App, moreover qδ ∈ G∗, and Γ
˜

= Γ
˜

qδ
δ is Γψ

˜
[ϕ̄
˜

] for (t
˜
, ψ
˜
, ϕ̄
˜

) from

2.2 (the set of choices of qδ is dense and quite closed)
(b) qδ App p∗ Cℵ3

“F
˜

(xδ) = y
˜

∗”, where y
˜

∗ is a CAqδ –name of a
member of ωω,

(c) A∗ ⊆ Aqδ , Aδ
def
= Aqδ ∩ δ,

(d) in V[G∗δ ][H˜
δ] we have:

(i) Fδ = F
˜
δ[G
∗
δ ][H˜

δ] is a non-principal ultrafilter on ω.

(ii) The model Mδ =
∏δ

n<ω
Mn
δ /Fδ with the vocabulary τδ is ℵ2–

compact where Mn
δ = M

˜
n
δ [G∗δ ][H

δ] and N `
n = N

˜
`
n[G∗δ ][H˜

δ].
(iii) The vocabulary τAδ

⊆ τδ is of cardinality ≤ ℵ1.

(iv) MAδ
=
∏Aδ

n<ω
Mn

Aδ
/Fqδ�δ[H

˜
δ] ≺Mδ � τAδ

.

(v) p∗ Cδ “F
˜
δ = (F

˜
� δ)[H

˜
δ] =

(
(F
˜
� δ)[G∗ ∩ (App � δ)]

)
[H
˜
δ]

is a ∆
˜

–embedding from the model
∏δ

n<ω
N1
n/Fδ into

∏δ

n<ω
N2
n/Fδ”,

recalling p∗ = p∗[m]
(vi) Let p

˜
δ = p

˜
δ(x) be the (CAδ

–name of the) 1–type in the vocabu-
lary τAδ

such that qδ App p
∗ Cδ “ p

˜
δ(x) is the type realized by

x
˜
δ over MAδ

in
∏
n<ω

Mn
Aqδ /F

˜
qδ”. [Clearly it is a CAqδ –name,

or an App ∗ CAqδ –name; see clause (d) of Definition 2.4(1).]
Clearly qδ App p

∗ Cδ “p
˜
δ is Γ

˜
–big”.

(vii) For ` = 1, 2 let N
˜
`
δ =

∏δ

n<ω
N
˜
`
n/F

˜
δ (they are in V∗[H

˜
δ], even in

V[G∗δ ][H˜
δ]). We define Rδ,m ⊆ (N

˜
1
δ)
m × (N

˜
2
δ)
m for m < ω so

that they are (App � δ) ∗ Cδ- names and (qδ � Aδ, p
∗) forces

(~)1 Rδ,m includes the graph of Fδ, i.e., if ā is an m–tuple from
N1
δ , then (ā, Fδ(ā)) ∈ Rδ,m,
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(~)2 the truth value of (ā, b̄) ∈ Rδ,m depends only on Lω,ω(τAδ
)–

type realized by (ā, b̄) over MAδ
in Mδ,

(~)3 Rδ,m is minimal such that (~)1 + (~)2 hold.
(viii) The relations Rδ,m mentioned above satisfy (i.e. (qδ � Aδ, p

∗)
forces):
(⊕)1 if ā1, ā2 are finite sequences of the same length m of mem-

bers of N1
δ , and pδ ∪ {ϑN

1
δ (x, ā1),¬ϑN1

δ (x, ā2)} is a Γ–big

type over Mδ, and ϑ,¬ϑ ∈ ∆
˜

[m], where ϑN
1
δ is ϑ as in-

terpreted in the interpretation ϕ̄1,
then (ā1, Fδ(ā2)) /∈ Rδ,m.

(⊕)2 Above, we may replace ϑ,¬ϑ by any pair ϑ0, ϑ1 of contra-
dictory formulas from ∆

˜
[m].

(ix) Note that also

(∗)p
∗

y
˜

∗,δ p∗ Cℵ3
“the ∆

˜
–type which y

˜

∗ realizes over N
˜

2
δ = (

∏
n<ω

N
˜

2
n/F

˜
)(V∗)

Cℵ3
�δ

in the model N
˜

2 = (
∏
n<ω

N
˜

2
n/F

˜
)(V∗)

Cℵ3 includes the image

under F
˜

of the ∆
˜

–type which

x
˜
δ/F

˜
realizes over N

˜
1
δ = (

∏
n<ω

N
˜

1
n/F

˜
)(V∗)

Cℵ3
�δ

in the model N
˜

1 = (
∏
n<ω

N
˜

1
n/F

˜
)(V∗)

Cℵ3 ”.

The proof of the Main Isomorphism Theorem 3.6. Note that we use
the countability of t

˜
.

Take a condition qδ ∈ G∗ such that

(A)qδ A∗ ⊆ Aqδ recalling that m determine A∗, x
˜
δ, y

˜

∗ are CAqδ –names (so
δ ∈ Aqδ), and p∗ ∈ CAqδ∩δ, and

(B)qδ the condition qδ forces (in App) that clauses (b)δ, (c)δ and (d)δ from
3.5 hold true (so in particular qδ forces that x

˜
δ/F

˜
∈
∏
n<ω

N
˜

1
n/F

˜
,

y
˜

∗ ∈
∏
n<ω

N
˜

2
n and (∗)p

∗

y
˜

∗,δ from clause (ix) of 3.6 holds as F
˜

is (forced

to be) a 4
˜

-embedding), and

(C)qδ if x
˜

is a CAqδ –name for a member of
∏Aqδ

n<ω
N
˜

1
n (
∏Aqδ

n<ω
N
˜

2
n, respec-

tively), then F
˜

(x
˜

) (F
˜
−1(x

˜
), respectively) is also a CAqδ –name.

Before we continue with the proof of 3.6, let us note the following.

Lemma 3.7. Let δ < ℵ3, qδ ∈ App and y
˜

∗, p∗ be as above. Suppose that

qδ � δ = q ≤ q′ ∈ G∗ ∩ (App � δ).

Let ϑ
˜
∗ be a CA∗–name of a τ(t

˜
)–formula. Assume further that x

˜
′, x

˜
′′ and

y
˜

′, y
˜

′′ are CAq′–names, and p∗ ≤ p ∈ CAq′ , and the condition p forces (in
CAq′ ) that

(α) x
˜
′, x

˜
′′ ∈

∏
n<ω

N
˜

1
n, and y

˜

′, y
˜

′′ ∈
∏
n<ω

N
˜

2
n, and
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(β) the types of (x
˜
′, y

˜

′) and of (x
˜
′′, y

˜

′′) over
∏Aq

n<ω
M
˜
n
Aq/F

˜
q in the model∏Aq′

n<ω
M
˜
n
Aq/F

˜
q′ (i.e., the vocabulary and the ω structures are from

V[G∗δ ][H˜
∩ CAq ], the ultraproduct is taken in V[G∗δ ][H˜

∩ CAq′ ]) are
equal.

Then the following conditions are equivalent.

(A) There is r0 ∈ App such that qδ, q
′ ≤ r0, r0 � δ ∈ G∗ ∩ (App � δ), and

p C
Ar

0 “
∏Ar0

n<ω
N
˜

1
n/F

˜
r0 |= ϑ

˜
∗[x

˜
′/F

˜
r0
, x
˜
δ/F

˜
r0

] and∏Ar0

n<ω
N
˜

2
n/F

˜
r0 |= ¬ϑ

˜
∗[y

˜

′/F
˜
r0
, y
˜

∗/F
˜
r0

] ”.

(B) There is r1 ∈ App such that qδ, q
′ ≤ r1, r1 � δ ∈ G∗ ∩ (App � δ) and

p C
Ar

1 “
∏Ar1

n<ω
N
˜

1
n/F

˜
r1 |= ϑ

˜
∗[x

˜
′′/F

˜
r1
, x
˜
δ/F

˜
r1

] and∏Ar1

n<ω
N
˜

2
n/F

˜
r1 |= ¬ϑ

˜
∗[y

˜

′′/F
˜
r1
, y
˜

∗/F
˜
r1

] ”.

Remark: Note that y
˜

∗ is not necessarily a C � (Aqδ ∩ (δ+ 1))-name (though
x
˜
δ is), this somewhat complicates the proof.

Proof. By symmetry it suffices to show that (A) implies (B). So suppose
that r0 is as in (A). By 3.10+3.11 below we are done. �

Proof. Continuation of the proof of 3.6: We define some Cδ–names;
recall H

˜
δ ⊆ Cℵ3 � δ is generic over V∗, F

˜
δ[H

˜
δ] =

⋃
{F

˜
r′ [H

˜
δ] : r′ ∈ Gδ}, and

M
˜
∗
δ =

∏δ

n<ω

M
˜
n
δ /F

˜
δ, and N

˜
`
δ =

∏δ

n<ω

N
˜
`
n/F

˜
δ (for ` = 1, 2).

Let

Z
˜

1
δ [H˜

δ] =
{

(x
˜
/F

˜
δ, y

˜
/F

˜
δ) ∈ N

˜
1
δ ×N˜

2
δ : there are a τ(t

˜
)–formula ϑ ∈ ∆

˜
and

conditions p ∈ Cℵ3 and r0 ∈ App such that
p∗ ≤ p, p � δ ∈ Hδ, x

˜
, y
˜

are C
Ar0∩δ–names, and

qδ ≤ r0, r0 � δ ∈ G∗ ∩ (App � δ), and

p C
Ar

0 “
∏Ar0

n<ω
N
˜

1
n/F

˜
r0 |= ϑ[x

˜
/F

˜
r0
, x
˜
δ/F

˜
r0

] and∏Ar0

n<ω
N
˜

2
n/F

˜
r0 |= ¬ϑ[y

˜
/F

˜
r0
, y
˜

∗/F
˜
r0

] ”
}
,

Z
˜

0
δ [H˜

δ] = (N
˜

1
δ ×N˜

2
δ) \ Z˜

1
δ .

Now, it follows from 3.7 (and 2.8) that

(�)δ in V[G∗∩(App � δ)][H
˜
δ], if the types realized by (x

˜
′/F

˜
δ, y

˜

′/F
˜
δ) and

(x
˜
′′/F

˜
δ, y

˜

′′/F
˜
δ) over the model

∏Aqδ∩δ

n<ω
M
˜
n
Aqδ∩δ/F˜

qδ�δ in the model
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n<ω
M
˜
n
Aqδ∩δ/F˜ δ are equal, then

(x
˜
′/F

˜
δ, y

˜

′/F
˜
δ) ∈ Z

˜
0
δ if and only if (x

˜
′′/F

˜
δ, y

˜

′′/F
˜
δ) ∈ Z

˜
0
δ .

Now, most clauses of 3.6 should be clear; we say more on (d)(vii,viii), for
notational simplicity for m = 1.

We let R
˜
δ,1 = Z

˜
0
δ , so clause (d)(vii)(~)2 holds.

Since F
˜

is (an App∗Cℵ3–name for) a ∆
˜

–embedding from
∏
n<ω

N
˜

1
n/F

˜
onto∏

n<ω
N
˜

2
n/F

˜
, if x

˜
/F

˜
δ ∈ N

˜
1
δ , then Cδ “ (x

˜
/F

˜
δ, F

˜
(x
˜

)/F
˜
δ) ∈ Z

˜
0
δ ”. Hence

clause (d)(viii)(⊕)1 holds.

Thus the proof of 3.6 is completed. �

Conclusion 3.8. In V[G∗][Hℵ3 ], for each m, there is a stationary set S ⊆
{δ < ℵ3 : cf(δ) = ℵ2} and conditions q, qδ ∈ App such that for each δ ∈ S:

• clauses (a)δ–(d)δ of 3.5 are satisfied,
• qδ ∈ G∗, qδ � δ = q, qδ, y

˜
δ as in 3.5,

• the conclusion of 3.6 holds,
• for every δ1, δ2 ∈ S there is a one-to-one order preserving func-

tion h : Aqδ1
onto−→ Aqδ2 (so it is the identity on Aq) which maps

δ1, qδ1 , x
˜
δ1 , F

˜
(x
˜
δ1) = y

˜
δ1 onto δ2, qδ2 , x

˜
δ2 , F

˜
(x
˜
δ2) = y

˜
δ2 ,

Proof. Straightforward. �

We still have some debts as 3.11,3.10 were used in the proof of 3.6

Definition 3.9. (1) Let ~β,q,r,s,f
˜

mean that

(a) q, r, s ∈ Appβ
(b) q ≤ r and q ≤ s
(c) Ar = As call it A
(d) f

˜
is a CA-name of a partial (one to one) elementary mapping

from
∏A

n<ω
M
˜
n
Aq/F

˜
r into

∏A

n<ω
M
˜
n
Aq/F

˜
s over

∏Aq

n<ω
M
˜
n
Aq/F

˜
q; i.e.

(α) f
˜

is a subset of {(a
˜
, b
˜
) : a

˜
, b
˜

are canonical CA-names of
ω-sequences of natural numbers},

(β) if GA ⊆ CA is generic over V then in V[GA], the set
{(a

˜
[GA], b

˜
[GA]): (a

˜
, b
˜
) ∈ f

˜
} is a function and

(γ) if moreover in V[GA] the first order formula ϕ(x1, . . . , xn)
is in the vocabulary τAq and (a

˜
`, b

˜
`) ∈ f

˜
for ` = 1, . . . , n

and we let F1 = F
˜
r[GA] and F2 = F

˜
s[GA] then∏A

n<ω

Mn
Aq/F1 |= ϕ[(a

˜
1[GA])/F1, . . . , (a

˜
n[GA])/F1]

iff∏A

n<ω

Mn
Aq/F2 |= ϕ[(b

˜
1[GA])/F2, . . . , (b

˜
n[GA])/F2].
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(δ) f
˜

include the identity may on
∏Aq

n<ω
M
˜
n
Aq/Fq

(2) Let ~+
β,q,r,s,f

˜

means that in part (1) we add: f
˜

is in isomorphism

from
∏A

n<ω
M
˜
n
Aq/F

˜
r onto

∏A

n<ω
M
˜
n
Aq/F

˜
s (i.e. this is CA

).

Observation 3.10. Assume ~β,q,r,s,f
˜If cf(β) = ℵ2 or β is divisible by ℵ2 and has cofinality ℵ0 then we can find

r′, s′, f ′ such that ~+
β,q,r′,s′,f

˜

′ and r ≤ r′, s ≤ s′ and C
Ar
′ “f

˜
⊆ f

˜

′

Proof. By ℵ1 uses of 2.7(1) and 2.8(4) if cf(β) = ℵ2 and by ℵ1 uses of 2.8(5)
and 2.8(4) if cf(β) = ℵ0. �

Lemma 3.11. If β1 < β2 < ℵ3 are divisible by ℵ2, q2 ∈ Appβ2
, q0 = q2 �

β1, q0 ≤ r0 ∈ Appβ1
, r0 ≤ r1 ∈ Appβ2

, and ~+
β1,q1,r0,s,f

˜

(see Definition 3.9)

then we can find r2, s2 and f ′

˜
such that:

(i) ~+
β2,q2,r2,s2,f

˜

′

(ii) r1 ≤ r2

(iii) s ≤ s2 and
(iv) CAr2

f
˜
⊆ f

˜

′

Proof of 3.11: We prove this by induction on β2.

Case 1: β2 = 0
Empty

Case 2: β2 = β1 + ℵ2 and cf(β1) < ℵ2.

It is enough to find s′ ∈ App such that letting r′ = r1 we have As′ =
Ar′ , p ≤ s′, s ≤ s′ and ~β2,q2,r′,s′,f

˜
(i.e. without the +), this is enough by

observation 3.10.
Let f

˜
= {(a

˜
ε, b

˜
ε) : ε < ε∗}. So it suffices to find a CAr′ -name of an

ultrafilter which is forced to include the following families

(a) Fq2
(b) Fs
(c) the sets of the form {n : M

˜
n
Ar′ |= ϕ

˜
(b
˜
ε0(n), . . . , b

˜
εk−1

(n))}: where

ε0, . . . , εk−1 < ε∗ and ϕ
˜

(x0, . . . xk−1) is a CAq2 - name of a first order
formula in the vocabulary τAq2 such that

Ar′∏
n<ω

M
˜
n
Aq2/F

˜
r′ |= ϕ

˜
[a
˜
ε0/F

˜
r′ , . . . , a

˜
εk−1

/F
˜
r′ ].

So it suffices to prove that any finite intersection is not empty, but each
of those families is closed under finite intersection, hence it suffices to prove
the following

~ p C
Ar
′ “a

˜
∩ b

˜
∩ c

˜
6= ∅”

when
(a) p ∈ CAr
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(b) a
˜

is a CAq2 - name such that p � Aq2  “a
˜
∈ F

˜
q2”

(c) b
˜

is a CAs-name such that p � As  “b
˜
∈ F

˜
s”

(d) c
˜

= {n : M
˜
n
Ar′ |= ϕ

˜
[b
˜
ε0(n), . . . , b

˜
εk−1

(n)]} where ϕ
˜

is a CAq2 -

name of a first order formula in the vocabulary τAq2 , without
loss of generality a predicate as an atomic formula, such that

p C
Ar
′ “
∏Ar′

n<ω
M
˜
n
Aq2/F

˜
r′ |= ϕ[a

˜
ε0/F

˜
r′ , . . . , a

˜
εk−1

/F
˜
r′ ]”

Without loss of generality p forces that ϕ
˜

= Q〈R
˜

2
n:n<ω〉.

Let H ⊆ CAq0 be generic over V such that p � Aq0 ∈ H. In V[H] for each
n we define a k-place relation R0

n on ω
R0
n = {(m0, . . . ,mk−1): there is p′, p ≤ p′ ∈ CAr′ , p′ � Aq0 ∈ H such that

p′  n ∈ a
˜

and 〈m0, . . . ,mk−1〉 ∈ R
˜

2
n}

Now

(∗)0 p Cr′
∏Ar

n<ω
Mn

Aq2/F
˜
r |= ϕ[a

˜
ε0/F

˜
r, . . .]

hence
(∗)1 p Cr “〈a

˜
ε0/F

˜
r, . . . , a

˜
εk−1

/F
˜
r〉 ∈ Q〈R

˜
2
n:n<ω〉”

hence
(∗)2 p � Ar  〈a

˜
ε0/F

˜
r, . . . , a

˜
εk−1

/F
˜
r〉 ∈ Q〈R

˜
0
n:n<ω〉”

hence
(∗)3 p � Ar  “〈b

˜
ε0/F

˜
s, . . . , b

˜
εk−1

/F
˜
s〉 satisfiesQ〈R0

n:n<ω〉 in
∏As

n<ω
M
˜
n
Aq0/F

˜
s”

so
(∗)4 in V[H], the set b′ ∈ F

˜
q0 where b′ = {n : for some p′, p � As0 ≤

p′ ∈ CAs0 and p′ � Aq0 ∈ H and p′ CAs0
“n ∈ b

˜
and 〈b

˜
ε0(n), . . . , b

˜
εk−1

(n)〉 ∈
R
˜

0
n[H]”}

So clearly b′ is a non-empty set of natural numbers, so choose n ∈ b′.
So there is p1 ∈ CAs , p � As ≤ p1, p1 � Aq0 ∈ H, p1  “n ∈ b

˜
and

〈b
˜
ε0(n), . . . b

˜
εk−1

(n)〉 ∈ R
˜

0
n[H]”. Without loss of generality p1 forces values

to b
˜
ε0(n), . . . , b

˜
εk−1

(n), call them m0, . . . ,mk−1. So 〈m0, . . . ,mk−1〉 ∈ R
˜

0
n[H],

hence by its definition there is p2 such that p � Aq2 ≤ p2 ∈ CAq2 , p2  “n ∈
a
˜

and 〈m0, . . . ,m0〉 ∈ R
˜

2
n”.

Now p∗ =: p1 ∪ p2 ∈ CAr′ is above p, p∗ � Aq0 ∈ H, and it forces that
n ∈ a

˜
∩ b

˜
∩ c

˜
, which is enough.

Case 3: β2 = β1 + ℵ2, cf(β1) = ℵ2

First by 2.8 we can find r′, s′, f ′ such that

� (a) r0 ≤ r′ ∈ App � β1,
(b) s ≤ s′ ∈ App � β1,
(c) q2 � β1 ≤ s′
(d) ~+

β1,q2�β1,r′,s′,f ′

Now we continue as in case 2, the Γ
˜

q2
β1

-bigness of x
˜
β1 is automatic.

Case 4: (∀γ < β2)(γ + ℵ2 < β2)
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Let 〈γε : ε < cf(β2)〉 be increasing continuous with limit β2 such that
γ0 = β1, cf(γε) < ℵ2 and each γε is divisible by ℵ2 and stipulate γcf(β2) = β2.
We choose (rε, sε, f

˜
ε) by induction on ε ≤ cf(β2) such that

� (a) ~+
βγε ,q2�γε,rε,sε,f

˜
ε

holds.

(b) (r0, s0, f
˜

0) = (r0, s, f
˜

)
(c) r′ � γε ≤ rε
(d) if ζ < ε then rζ ≤ rε, sζ ≤ sε and CArε

f
˜
ζ ⊆ f

˜
ε

Clearly if we succeed we are done with case 4.
For ε = 0 this is trivial.
For ε = ζ + 1 first find r′ζ ∈ Appγε such that r′ � γε ≤ r′ζ and r′ζ � γζ = rζ ,

possibly by 2.8(3). Second apply the induction hypothesis with (βζ , βε, q2 �
βζ , q2 � βε, rζ , sζ , f

˜
ζ , r
′
ζ) standing for (β0, β2, q0, q2, r, s, f, r

′).

For ε limit of uncountable cofinality take the union (see 2.8(4)).
For ε limit of countable cofinality, we first repeat the argument in case 2.
Then use 2.8 and then 3.10. �3.5A

4. Back to Model Theory

In this section we present just enough to solve the problem on finite fields.

Definition 4.1. Let M be a model. Assume N1 = M [ϕ̄1] , N2 = M [ϕ̄2]

are models of t0 interpreted in M by the sequences ϕ̄1, ϕ̄2 of formulas with
parameters from M , and they have the same vocabulary τ∗ = τ(N1) =
τ(N2). Furthermore, let Γ be an invariant bigness notion in M (over some
set A0 of < κ parameters, more exactly in K(M,A0)), and ∆ ⊆ Lω,ω(τ(N1))
and κ > ℵ0 (for simplicity) and for a formula ϑ(x̄) ∈ ∆ let ϑϕ`(x̄) be the

result of substituting ϕ̄` in ϑ so N ` |= ϑ[ā] iff ā ∈ lgx̄(N `) and M |= ϑϕ̄` [ā].

(1) We say that (N1, N2) is (κ,Γ,∆)–complicated in M when:
for every ∆–embedding F of N1 into N2, and for every Γ–big type
p0(x) inside M of cardinality < κ such that p0(M) ⊆ N1, there is a
Γ–big type p1(x) inside M of cardinality < κ which includes p0(x)
and such that, letting τ(p1) ⊆ τ(M) consist of those predicates and
function symbols mentioned in p1(x) (so |τ(p1)| < κ) and A ⊆M be
the set of parameters of p0 union with A0 so |A| < κ and A0 ⊆ A,
we have

(∗)p1(x) letting

Rm
def
= {(ā, b̄) : ā ∈ m(N1), b̄ ∈ m(N2) and for some c̄ ∈ m(N1) we have

tpLω,ω(τ(p))(ā
_b̄, A,M) = tpLω,ω(τ(p))(c̄

_F (c̄), A,M) }

the parallel of 3.6(vii)+(viii) holds, so
(⊕)1 if ā1, ā2 are finite sequences of the same length m of members

of N1, and p1 ∪ {ϑN1

ϕ̄1 (x, ā1),¬ϑN1

ϕ̄1 (x, ā2)} is a Γ–big type over

M , and ϑ,¬ϑ ∈ ∆, then (ā1, F (ā2)) /∈ Rm.
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(⊕)2 Moreover, in ⊕1 we can replace ϑ,¬ϑ by any pair ϑ0, ϑ1 of
contradictory formulas from ∆.

(2) In part (1):
(i) We do not mention ∆ if it is the set of quantifier free formulas

(of Lω,ω(τ(N1))).
(ii) We replace Γ by (t, ψ) if we mean “for all bigness notions of the

form Γ = Γ(t,ψ,ϕ̄), where ϕ̄ is an interpretation of t in M with
< κ parameters and |t| < κ, ψ ∈ Lκ,ω” (i.e., ψ ∈ Lµ+,ω for some
µ < κ and in the vocabulary τ(t) ∪ {P ∗}).

(iii) We omit Γ if we mean “for all Γ’s as in (ii)”.
(iv) We say M is κ–complicated (or: (κ,Γ,∆)–complicated) and

omit N1, N2 if this holds for all N1, N2 as in our assumptions,
but with |τ(N1)| < κ.

Remark 4.2. More on the relation Rn etc., see [Shec].

Theorem 4.3. Let G be a full (ℵ3,ℵ2)–bigness guide (see 2.2; recall there
is one by 2.3). Assume that G ⊆ AppG is generic over V and H ⊆ Cℵ3

is generic over V[G] and F = F
˜
ℵ3 [G][H], and let 〈Mn = Mn

ℵ3
: n < ω〉

be a sequence of models as in 2.1(4), that is each with a countable universe
being the set of natural numbers for simplicity, all with the same vocabulary
such that for every k and a sequence 〈Rn : n < ω〉 with Rn being a k–
place relation on Mn there is a k-place predicate in the common vocabulary
satisfying RMn = Rn for each n. Then

(1) in V[G][H] the model M =
∏
n<ω

Mn
ℵ3
/F is ℵ2–complicated and ℵ2–

compact.
(2) We can change the demands on G accordingly to the version of ℵ2–

complicated we actually used (e.g. not all Γ-s, etc.), (so we are using
a different G).

(3) If N1, N2 are models of tind
1 (which is defined in from Definition

1.5), interpreted in M , then any isomorphism π from N1 onto N2

is definable in M .
(4) If N ` =

∏
n<ω

N `
n/F , each N `

n is countable, and N ` is a model of tind
1

(for ` = 1, 2), and π is an isomorphism from N1 onto N2, then there
are A ∈ F and isomorphisms πn from N1

n onto N2
n (for n ∈ A) such

that π =
∏
n<ω

πn/F .

(5) Above we may replace : “N ` is a model of tind
1 ” by “some formula

φ(x, y) in the vocabulary of N1 which is equal to that of N2, has
the strong independence property” (in their common theory 10, see
Definition 1.5 on the strong independence property).

10 of course if the strong independence property holds when we restrict ourselves to
say a predicate P we get less, but see [Shec]
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(6) If N `
n are finite fields (for ` = 1, 2 and n < ω), and

∏
n<ω

N1
n/F is

isomorphic to
∏
n<ω

N2
n/F , then the set {n < ω : N1

n ' N2
n} belongs

to F .

Proof. (1) By 3.8.

(2) The same proof.

(3) By 4.4 below and 1.6(2).

(4) Without loss of generality, the universe of N `
n is α`n ≤ ω. Now, for

` = 1, 2, we can find P` ∈ τM such that (P`)
Mn
ℵ3 = |N `

n| and for Q` ∈ τ(N `
n)

there is Q` ∈ τM with (Q`)
Mn
ℵ3 = QN

`
n and R` ∈ τM with (R`)

Mn
ℵ3 = RN

`
n .

Therefore, N ` =
∏
n<ω

N `
n/F can be viewed as an interpretation in M by ϕ̄`.

Now apply part (3) for Γ = Γ(tind
1 ,ψind,ϕ̄1).

(5) This follows by part (4), as the vocabulary is finite, being an isomor-
phism is expressibly a first order sentence.

(6) This is a particular case of part (4). Of course without loss of generality
the fields N1, N2 are infinite. By part (5) it suffices for infinite ultraproducts
N ` of finite fields to find a formula ϑ(x, y) in the vocabulary of fields which
has the strong independence property see Definition 1.5. First we deal with
the case that the fields are of characteristic > 2. Consider the formula
ϑ(x, y) saying that x+ y has a square root in the field.

We rely on a theorem of Duret, [Dur80, p. 982, Lemma 10], for the value
p = 2 the hypothesis of this lemma holds as the field contains all p-th roots
of the unit (that is 1,−1). The conclusion says that for n and any pairwise
distinct elements a1, . . . , an, b1, . . . , bn of the field there is an element c such
that am + c has a square root and bm + c does not have a square root for
m = 1, . . . , n. So the formula ϑp(x, y) = (∃z)(zp = x+ y) is as required.

Of course, if the characteristic of the field is 2, then we naturally use
the same theorem but choosing p = 3, so of course maybe the field fail to
have all the p-th roots of the unit, however, as Duret does, in this case we
consider an algebraic extension of N ` of order 3 by adding a root of x3 − 1
hence all of them getting a new field N `

∗ . Now the set of elements of N `
∗ can

be represented as the set of triples of elements of N `, and the operations of
N `
∗ are definable in N `; so our problem is almost notational. E.g. we can

note that recalling N ` =
∏
n<ωN

`
n/F then N `

∗ =
∏
n<ω

N `
∗,n/F where N `

∗,n is

equal to N `
n if N `

n has three 3-th roots of the unit and an algebraic extension
of N `

n of order three which has this property otherwise. Again the first
order theory of N `

∗ has the strong independence property and for N1
∗ , N

2
∗

(by asking on the existence of cubic roots) we get the desired conclusion;
but any isomorphism from N1 onto N2 can be extended to an isomorphism
from N1

∗ onto N2
∗ and we can easily finish. (We could have used the“strong

independence property for m-types”.) �
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Proposition 4.4. Assume that M is a κ–complicated κ–compact model. Let
N1, N2 be interpretations of tind

1 in M . Then for any isomorphism π from
N1 onto N2, the function π is definable in M by a first order formula (with
parameters).

Proof. Let N` = M [ϕ̄`] (so ϕ̄` has parameters in M) for ` = 1, 2 and let F
be an isomorphism from N1 onto N2.

Let Γ be the bigness notion Γ(tind,ψind,ϕ̄1,) (so ψind ∈ Lω1,ω). Let p0(x) be

the type just saying x ∈ QN1 , and let p1 be the type guaranteed to exists in
Definition 4.1(1), without loss of generality closed under conjunctions. Let
A ⊆ M , |A| < κ and τ∗ ⊆ τM , |τ∗| < κ be given by the definition of being
κ–complicated (applied to F ). [Without loss of generality, A includes the
parameters of ϕ̄1, ϕ̄2 and is closed under F and F−1, and for every n and
for every formula ϕ(x) ∈ p1, A includes the finite set mentioned in 1.5(2).]

Let R1 be as in 4.1(1). Clearly, recalling Definition 1.5(2), there are no
distinct a1, a2 ∈ PN1 \ A and b ∈ N2 such that (a1, b), (a2, b) ∈ R1, but
a ∈ PN1 ⇒ (a, F (a)) ∈ R1. Hence

{(b, a) : (a, b) ∈ R1 and a ∈ PN1 }
is the graph of a partial function from PN2 into PN1 which includes the graph
of F−1 � PN2 . But F is one-to-one and onto. Therefore, R1 � (PN1 × PN2)
is the graph of F � PN1 . But R1 � PN1 is definable in (M � τ∗, c)c∈A by a
formula from L∞,κ, so also F � PN1 is, and thus if N1, N2 are models of tind

1

also F is (by 1.6). Applying [She78b, 1.9] (or [Shear, Ch XI]) we conclude
that it is definable by a first order formula with parameters from M , as
required. �

Similarly we can show the following.

Proposition 4.5. Assume that Γ is a (ℵ2,ℵ1)–(P, ϑ)–separative bigness
notion, see Definition 1.4. Suppose that N1, N2 are interpretations of t
in M , and M is κ–compact κ–complicated (or just κ–complicated for Γ),
κ > ℵ0.

(1) If F is an isomorphism from N1 onto N2, then
(∗)1 F � PN1 is definable in (M � τ∗, c)c∈A by a formula from L∞,κ,

recalling τ ⊆ τM , |τ | < κ, A ⊆M , |A| < κ.
(2) If F is an embedding of N1 into N2, then

(∗)2 there is a partial function f from PN2 into PN1 which extends
F−1 and is definable in (M � τ∗, c)c∈A by a formula from L∞,κ,
where τ∗, A are as above.

Remark 4.6. (1) The proposition 4.5 should be the beginning of an anal-
ysis of first order theories T . For more in this direction see [She94a],
[Shec].

(2) As stated in the introduction, we may avoid the preliminary forcing
with App and construct the name F

˜
in the ground model V, provided

V is somewhat L–like. Assuming ♦{δ<ℵ3:cf(δ)=ω2} is enough, but

Paper Sh:509, version 2006-06-19 11. See https://shelah.logic.at/papers/509/ for possible updates.



VIVA III 31

we may also use the weaker principle from [HLS93] and [She94b,
Appendix].

(3) We may vary the cardinals, e.g., we may replace ℵ2,ℵ3 by κ, λ,
respectively, provided λ = κ+, κ = κ<κ (so an approximation has
size < κ).

Moreover we can replace ℵ0 by θ = θ<θ, so in full let us assume
that

θ = θ<θ < κ = κ<κ < λ = κ+.

(a) For A ⊆ λ let C(A) = CA = {p : p is a partial function from
Dom(p) ∈ [A]<θ to θ>2 } ordered by

p1 ≤CA
p2 iff Dom(p1) ⊆ Dom(p2) & (∀α ∈ Dom(p1))(p1(α) E p2(α)).

(b) We define App−G as the set of q = (Aq,F
˜
q) where Aq ∈ [λ]<κ

and F
˜
q is a CAq–name of a regular ultrafilter on θ such that for

each α < λ, F
˜
q ∩ P(θ)V

C(Aq∩α)
is a CAq∩α–name.

(c) For α ∈ A ∈ [λ]<κ, x
˜
α is the CA–name

⋃
{p(α) : p ∈ G

˜
C(A) of

a member of θθ.
(d) We define M

˜
ε
A for ε < θ, A ∈ [λ]<κ as the following CA–name:

it is a model with universe θ,
τM

˜
ε
A

= {PR̄
˜

: R̄
˜

= 〈R
˜
ε : ε < θ〉, for some m each R̄

˜
ε is a CA-

name of an m–place relation on θ},
(PR̄

˜
)M˜

ε
A = R

˜
ε.

So we may think of τM
˜
ε
A

to be an old object whose members
are indexed as PR̄

˜
, where each R

˜
ε is a CA–name. Or we can

consider τM
˜
ε
A

to be a name and interpret it in V[GC(A)].

Paper Sh:509, version 2006-06-19 11. See https://shelah.logic.at/papers/509/ for possible updates.



32 SAHARON SHELAH

References

[Dur80] Jean-Louis Duret, Les corps faiblement algébriquement clos non séparablement
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