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Abstract. Fixing an irrational α ∈ (0, 1) we prove the 0-1 law for the random
graph on [n] with the probability of {i, j} being an edge being essentially

1
|i−j|α .

§ 0. Introduction

This continues [She02] which is Part I, background and a description of the
results are given in [I,§0]; as this is the second part, our sections are named §4 - §6
and not §1 - §3.

In §5 we just state the necessary probabilistic inequalities quoting [?]. In [?] we
prove the case with a successor function (this was originally §7).

Recall that we fix an irrational α ∈ (0, 1)R and the random graph Mn = M 0
n is

drawn as follows:

(a) its set of elements is [n] = {1, . . . , n}
(b) for i < j in [n] the probability of {i, j} being an edge is p|i−j| where

p` = 1/`α if ` > 1 as is 1/2α if ` = 1 or just 1 p` = 1/`α for ` > 1

(c) the drawing for the edges are independent

(d) Kn is the set of possible values of Mn,K is the class of graphs.

Our main interest is to prove the 0-1 laws (for first order logic) for this 0-1 context,
but also to analyze the limit theory.

We can now explain our intentions.

Zero Step: We define relations <∗x on the class of graphs with no apparent relation
to the probability side.

First Step: We can prove that these <∗x have the formal properties of <x (which
we defined in [I,§1] via probabilistic expected value), for example “<∗i is a partial
order”, this is done in §4, e.g., in 1.16 below.
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2 SAHARON SHELAH

Remember from [I,§1] that A <a B ⇔ for random enough Mn and f : A↪→Mn,
the maximal number of pairwise disjoint g ⊇ f satisfying g : B →Mn is < nε (for
every fixed ε).

Second Step: We shall start dealing with the two version of <a: the <a from [She02,
§1] and <∗a defined in 1.10(5) below. We intend to prove:

(∗) A <∗a B ⇒ A <a B.

For this it suffices to show that for every f : A↪→Mn and positive real ε, the
expected value of the following is ≤ 1/nε: the number of extensions g : B → Mn

of f satisfying “the sets Rang(g�(B \ A)), f(A) are with distance ≥ nε”. Then,
the expected value of the number of k-tuples of such (pairwise) disjoint g is ≤ 1

nkε
.

So if kε > |A|, the expected value of the number of functions f with k pairwise
disjoint such extensions g is < 1

nkε−|A|
. Hence for random enough Mn, for every

f : A↪→Mn there are no such k-tuples of pairwise disjoint g’s. This will help to
prove that <∗i=<i. We do this and more probability arguments in §5.
But the full proofs of those probabilistic inequalities are delayed to [?].

Third step: We deduce from §5 that <∗x=<x for all relevant x and prove that the
context is weakly nice. We then work somwhat more to prove the existential part of
nice (the simple goodness (see Definition [I,2.12,(1)]) of appropriate candidate). I.e.
we first prove “weakly niceness” by proving that A <∗i B implies (A,B) satisfy the
demand for <i of [I,§1], and in a strong way the parallel thing for ≤s. Those involve
probability estimation, i.e., quoting §5. But we need more: sufficient conditions for
appropriate tuples to be simply good and this is the first part of §6.

Fourth step: This is the universal part from niceness. This does not involve any
probability, just weight computations (and previous stages), in other words, purely
model theoretic investigation of the “limit” theory. By the “universal part of nice”
we mean (A) of [I,2.13,(1)] which includes:

if ā ∈ k(Mn), b ∈ Mn then there are m1 < m, B ⊆ c`k,m1(ā) such that
ā ⊆ B and

c`k(B)
Mn⋃
B

(c`k(āb,Mn)\c`k(B,M )) ∪B.

This is done in the latter part of §6.
Because of the request of the referee and editors to shorten the paper, the com-

putational part (in §5) in full was moved to [?], and the generalization to the case
we have a successor function (which was §7) was moved to [?].

We thank Ilya Tsindlekht for pointing out a gap in the proof of ??.

Notation 0.1. As in [She02].

Paper Sh:517, version 2011-04-13 12. See https://shelah.logic.at/papers/517/ for possible updates.



ZERO ONE LAWS FOR GRAPHS WITH EDGE PROBABILITIES DECAYING WITH DISTANCE, PART IISH5173

§ 1. Applications

§ 1(A). The Basics for the case of 1
`α .

We intend to apply the general theorems (Lemmas [I,2.17,2.19]), to our problem.
That is, we try to answer: does the main context M 0

n with pi = 1/iα for i > 1
satisfies the 0-1 law? So here our irrational number α ∈ (0, 1)R is fixed. We work
in Main Context (see 1.1 below, the other one, M 1

n , would work out as well, see
§7).

Context 1.1. A particular case of [I,1.1]: pi = 1/iα for i > 1, p1 = p2 (where
α ∈ (0, 1)R is a fix irrational) and the n-th random structure is Mn = M 0

n = ([n], R)
(i.e. only the graph with the probability of {i, j} being p|i−j|).

Fact 1.2. 1) For any (finite) graph A, we have A ∈ K∞, that is

1 = lim
n

Prob(A is embeddable into Mn).

2) Moreover 2 for every ε > 0

1 = lim
n

Prob(A has ≥ n1−ε disjoint copies in Mn).

This is easy, still, before proving it, note that since by our definition of the
closure A ⊆ c`m,k(∅,Mn) implies that A has < nε embeddings into Mn we get:

Conclusion 1.3. 〈c`m,kMn
(∅) : n < ω〉 satisfies the 0–1 law (being a sequence of

empty models).

Hence (see [I,Def.1.4,Conclusion 2.19])

Conclusion 1.4. K∞ = K , the class of finite graph, and for our main theorem it
suffices to prove simple almost niceness of K (see Def.[I,2.13]).

(Now 1.3 explicate one part of what in fact we always meant by “random enough”
in previous discussions.)

Proof. Let the nodes of A be {a0, . . . , ak−1}. Let the event E n
r be:

a` 7→ 2rk + 2` is an embedding of A into Mn.

The point of this is that for various values of r these tries are going to speak on
pairwise disjoint sets of nodes, so we get independent events.

Now subfact Prob(E n
r ) = q > 0 (i.e. > 0 but it does not depend on n, r).

(Note: this is not true,e.g. in the close context where the probability of {i, j} being
an edge when i 6= j is 1/nα + 1/2|i−j|, as in that case the probability depends on
n. But still, we can have ≥ q > 0 which suffices); where:

q =
∏

`<m<k,{`,m} edge

1/(2(m− `))α ×
∏

`<m<k,{`,m}not an edge

(
1− 1

(2(m− `))α

)
.

(What we need is that all the relevant edges have probability > 0, < 1. Note: if
we have retained p = 1/iα this is false for the pairs (i, i + 1), so we have changed

2Actually also “≥ cn” works for c ∈ R>0 depending on A only.
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4 SAHARON SHELAH

p1. Anyway, in our case we multiplied by 2 to avoid this (in the definition of the
event)). For the second case, (the probability of edge being 1/nα + 1/2(i−j))

q ≥
∏

`<m<k,{`,m} edge

1

2|m−`|
×

∏
`<m<k,{`,m} not an edge

(1− 1

(3/2)|m−`|
).

So these Prob(E n
r ) have a positive lower bound which does not depend on r.

Also the events E n
0 , . . . ,E

n
[ n2k ]−1 are independent. So the probability that they

all fail is ∏
i<b n2k c

(1− Prob(E n
i )) ≤

∏
i

(1− q) ≤ (1− q) n
2k

which goes to 0 quite fast. The “moreover” is left to the reader. �1.2

Definition 1.5. 1) Let

T = {(A,B, λ) : A ⊆ B graphs (generally: models from K ) and
λ an equivalence relation on B \A}

We may write (A,B, λ) instead of (A,B, λ � (B \A)).
2) We say that X ⊆ B is λ-closed if:

x ∈ X and x ∈ B ∩Dom(λ) implies x/λ ⊆ X.

3) A ≤ B means A is a submodel of B, and A ≤∗ B if 3 A ≤ B ∈ K∞ (clearly ≤∗
is a partial order).

Story:
We would like to ask for any given copy of A in Mn, is there a copy of B

above it, and how many, we hope for a dichotomy: i.e. usually none, always few
or always many. The point of λ is to take distance into account, because for our
present distribution being near is important, b1λb2 will indicate that b1 and b2 are
near. Note that being near is not transitive, but “luck” helps us, we will succeed to
“pretend” it is. We will look at many candidates for a copy of B \A and compute
the expected value. We would like to show that saying “variance small” says that
the true value is near the expected value.

Definition 1.6. 1) For (A,B, λ) ∈ T let

v(A,B, λ) = vλ(A,B) = |(B \A)/λ|

that is, the number of λ–equivalence classes in B \A (v stands for vertices).
(This measures degrees of freedom in choosing candidates for B over a given

copy of A.)
2) Let

3Note: here A ≤∗ B iff A ≤ B; anyhow the choice of ≤∗ is for our present specific context, so
this definition does not apply to §1, §2, §3,§7; in fact, in §7, i.e. in [?] we give a different definition

for a different context.
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ZERO ONE LAWS FOR GRAPHS WITH EDGE PROBABILITIES DECAYING WITH DISTANCE, PART IISH5175

e(A,B, λ) = eλ(A,B) = |eλ(A,B)| where

eλ(A,B) = {e : e an edge of B, e * A, and e * x/λ for x ∈ B \A}.

[This measures the number of “expensive”, “long” edges (e stands for edges).]

Story:
v larger means that there are more candidates for copies of B,
e larger means that the probability per candidate is smaller.

Definition 1.7. 1) For (A,B, λ) ∈ T and our given irrational α ∈ (0, 1)R we define
(w stands for weight)

w(A,B, λ) = wλ(A,B) = vλ(A,B)− αeλ(A,B).

2) Let

Ξ(A,B) =: {λ : (A,B, λ) ∈ T , and if C ⊆ B \A is a non-empty
λ-closed set then wλ(A,C ∪A) > 0}.

3) If A ≤∗ B then we let ξ(A,B) = Max{wλ(A,B) : λ ∈ Ξ(A,B)}.

Observation 1.8. 1) (A,B, λ) ∈ T andA 6= B ⇒ wλ(A,B) 6= 0.
2) If A ≤∗ B ≤∗ C (hence A ≤∗ C) and (A,C, λ) ∈ T and B is λ-closed then

(a) (A,B, λ � (B \A)) ∈ T

(b) (B,C, λ � (C \B)) ∈ T

(c) wλ(A,C) = wλ�(B\A)(A,B) + wλ�(C\B)(B,C)

(d) similarly for v and e.

3) Note that 1.8(2) legitimizes our writing λ instead of λ � (C\A) or λ � (B\(C∪A))
when (A,B, λ) ∈ T and C is a λ-closed subset of B. Thus we may write, e.g.,
wλ(A ∪ C,B) for w(A ∪ C,B, λ � (B \A \ C)).
4) If (A,B, λ) ∈ T and D ⊆ B \A and D+ =

⋃
{x/λ : x ∈ D} then wλ�D+(A,A∪

D+) ≤ wλ�D(A,A ∪D) and D+ is λ-closed.

Proof. 1) As α is irrational and vλ(A,B) is not zero.
2) Clauses (a),(b) are totally immediate, and clauses (c),(d) are easy or see the
proof of 1.15 below.
3) Left to the reader.
4) Clearly by the choice of D+ we have vλ�D+(A,A∪D+) = |D+/λ�D+| = |D/(λ �
D)| = vλ�D(A,A∪D) and eλ�D+(A,A∪D+) ≥ eλ�D(A,A∪D) hence wλ�D+(A,A∪
D+) ≤ wλ�D(A,A ∪D). �1.8

Discussion 1.9. Note: wλ(A,B) measures in a sense the expected value of the
number of copies of B over a given copy of A with λ saying when one node is “near
to” another. Of course, when λ is the identity this degenerates to the definition in
[SS88].
We would like to characterize ≤i and ≤s (from Definition [I,1.4,(3)] and Definition
[I,1.4,(4)]), using w and to prove that they are O.K. (meaning that they form a
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nice context). Looking at the expected behaviour, we attempt to give an “effective”
definition (depending on α only).
All of this, of course, just says what the intention of these relations and functions
is (i.e. <∗i , <

∗
s, <

∗
pr and v, e, w below); we still will not prove anything on the

connections to ≤i,≤s,≤pr. We may view it differently: We are, for our fix α,
defining wλ(A,B) and investigating the ≤∗i ,≤∗s,≤∗pr defined below per se ignoring
the probability side.

Definition 1.10. 1) Recall A ≤∗ B if A ≤ B ∈ K∞.
2) A <∗c B if A <∗ B (i.e. A ≤∗ B and A 6= B) and for every λ, we have

(A,B, λ) ∈ T ⇒ wλ(A,B) < 0,

3) A ≤∗i B if A ≤∗ B and for every A′ we have

A ≤∗ A′ <∗ B ⇒ A′ <∗c B.

Of course, A <∗i B means A ≤∗i BandA 6= B.
4) A ≤∗s B if A ≤∗ B and for no A′ do we have

A <∗i A
′ ≤∗ B,

Of course, A <∗s B means A ≤∗s BandA 6= B.
5) A <∗a B if A ≤∗ B, ¬(A <∗s B) (i.e. A ≤∗ B and there is A′ ⊆ B \ A such that
A <∗i A ∪A′ ≤∗ B).
6) A <∗pr B if A ≤∗ B and A <∗s B but for no C do we have A <∗s C <∗s B.

Remark 1.11. We intend to prove that usually ≤∗x=≤x but it will take time.

Lemma 1.12. Suppose A′ <∗ B, (A′, B, λ) ∈ T and wλ(A′, B) > 0. Then there
is A′′ satisfying A′ ≤∗ A′′ <∗ B such that A′′ is λ-closed and

(∗)1 = (∗)1 [A′′, B, λ] we have wλ(A′′, B) > 0 and if C ⊆ B \A′′, C /∈ {∅, B \A′′} and
C is λ-closed then wλ(A′′, A′′ ∪ C) > 0 and wλ(A′′ ∪ C,B) < 0.

Proof. Let C ′ be a maximal λ-closed subset of B \A′ such that wλ(A′∪C ′, B) > 0.
Such a C ′ exists since C ′ = ∅ is as required and B is finite. Let A′′ = A′ ∪ C ′.
Since C ′ is λ-closed, B\A′′ is λ-closed and (A′′, B, λ � (B \ A′′)) ∈ T and clearly
wλ(A′′, B) > 0. Now suppose D ⊆ B \ A′′ is λ-closed, D /∈ {∅, B \ A′′}. By the
maximality of C ′, wλ(A′′ ∪D,B) < 0. Now (by 1.8(2)(c))

wλ(A′′, B) = wλ(A′′, A′′ ∪D) + wλ(A′′ ∪D,B)

and the term in the left side is positive by the choice of C ′ and A′′, but in the right
side, the term wλ(A′′, A′′ ∪D) is negative by a previous sentence the maximality
of C ′ so together we conclude wλ(A′′, A′′ ∪D) > 0 contradicting the maximality of
C ′. �1.12
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§ 1(B). Investigating the ≤∗x’s.

Claim 1.13. Assume A <∗ B. The following statements are equivalent:

(i) A <∗i B,

(ii) for no A′ and λ do we have:

(∗)2 = (∗)2[A,A′, B, λ] we have A ≤∗ A′ <∗ B, (A′, B, λ) ∈ T and wλ(A′, B) >
0,

(iii) for no A′, λ do we have:

(∗)3 = (∗)3[A,A′, B, λ] we have A ≤∗ A′ <∗ B, (A′, B, λ) ∈ T ,wλ(A′, B) >
0 and moreover (∗)1[A′, B, λ] of 1.12.

Proof. For the equivalence of the first and the second clauses read Definition 1.10(2),
1.10(3) (remembering 1.8(1)). Trivially (∗)3 ⇒ (∗)2 and hence the second clause
implies the third one. Now we will see that (iii) ⇒ (ii). So suppose ¬(ii), so let
this be exemplified by A′,λ i.e. they satisfy (∗a)2 so by 1.12 there is A′′ such that

A′ ≤∗ A′′ <∗ B and (∗)1[A′′, B, λ] of 1.12 holds. So A′′, λ exemplified that ¬(iii)
holds. �1.13

Observation 1.14. 1) If (∗)3[A,A′, B, λ] from 1.13(iii) holds, then we have: if
C ⊆ B \A′ is λ-closed non-empty then w(A′, A′ ∪ C, λ � C) > 0.
[Why? If C 6= B \A′ this is stated explicitly, otherwise this means w(A′, B, λ) > 0
which holds.]
2) In (∗)3 of 1.13(iii), i.e., 1.12(∗)1[A′, B, λ], we can allow any λ–closed C ⊆ B\A′
if we make the inequalities non-strict.
[Why? If C = ∅ then wλ(A′, A′ ∪ C) = wλ(A′, A′) = 0, wλ(A′ ∪ C,B) =
wλ(A′, B) > 0. If C = B \ A′ then wλ(A′, A′ ∪ C) = wλ(A′, B) > 0 and
wλ(A′ ∪C,B) = wλ(B,B) = 0. Lastly if C /∈ {∅, B \A′} we use 1.12(∗)1[A′, B, λ]
itself.]
3) If (A,B, λ) ∈ T , A′ ≤∗ A,B′ ≤∗ B,A′ ≤∗ B′ and B \ A = B′ \ A′ then
(A′, B′, λ) ∈ T ,w(A′, B′, λ) ≥ w(A,B, λ) also e(A′, B′, λ) ≤ e(A,B, λ),v(A′, B′, λ) =
v(A,B, λ).

4) In (3) if in addition A
M⋃
A′
B′, i.e., no edge {x, y} with satisfying x ∈ A\A′ and

y ∈ B′\A′ then the equalities hold.

Claim 1.15. A ≤∗s B if and only if either A = B or for some λ we have:
(A,B, λ) ∈ T and for every non-empty λ-closed C ⊆ B \ A, we have w(A,A ∪

C, λ � C) > 0, that is Ξ(A,B) 6= ∅.

Proof. So we have A ≤∗s B. If A = B we are done: the left side holds as its first
possibility is A = B. So assume A <∗s B. Let C be such that

(∗)1 C is minimal such that A ≤∗ C ≤∗ B and for some λ0 the triple (C,B, λ0) ∈
T satisfies: for every non-empty λ0-closed C ′ ⊆ B \ C we have w(C,C ∪
C ′, λ0 � C ′) > 0

(exists as C = B is O.K. because then there is no such C ′).
By 1.8(4):
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(∗)2 for every non-empty C ′ ⊆ B\C so not necessarily λ0-closed we have w(C,C∪
C ′, λ0 � C ′) > 0 hence ¬(C <∗i C ∪ C ′) by (i)⇔ (ii) of 1.13.

If C = A we have finished by the choice of C. Otherwise, the hypothesis A ≤∗s B
implies that ¬(A <∗i C), hence by 1.13 the third clause (iii) fails which means that
(recalling 1.10(1)), for some C ′, λ1 we have

(∗)3 A ≤∗ C ′ <∗ C, (C ′, C, λ1) ∈ T ,wλ1
(C ′, C) > 0 and for every λ1-closed

D ⊆ C \ C ′ satisfying D /∈ {∅, C \ C ′} we have

• w(C ′, C ′ ∪D,λ1 � D) > 0
and

• w
(
C ′ ∪D,C, λ1 � (C \ C ′ \D)

)
< 0.

Define an equivalence relation λ on B\C ′: an equivalence class of λ is an equivalence
class of λ0 or an equivalence class of λ1.

We shall show that (C ′, B, λ) satisfies the requirements in (∗)1 above on C, thus
contradicting the minimality of C. Clearly A ≤∗ C ′ ≤∗ B. So let D ⊆ B \ C ′
be λ-closed and we define D0 = D ∩ (B \ C), D1 = D ∩ (C \ C ′). Clearly D0

is λ0-closed so w(C,C ∪ D0, λ � D0) ≥ 0 (see ??(2)), and D1 is λ1-closed so
w(C ′, C ′ ∪ D1, λ � D1) ≥ 0 (this follows from: for every λ1-closed D ⊆ C \ C ′
satisfying D /∈ {∅, C \C ′} we have wλ(C ′, C ′ ∪D,λ1 � D) > 0 and by ??(2)). Now
(in the last line we change C ′ to C twice), by ??(3) we will get

v(C ′, C ′ ∪D,λ) = |D/λ| = |D1/λ1|+ |D0/λ0|
= v(C ′, C ′ ∪D1, λ � D1) + v(C ′ ∪D1, C

′ ∪D1 ∪D0, λ � D0)
= v(C ′, C ′ ∪D1, λ � D1) + v(C,C ∪D0, λ � D0),

and (using ??(3)):

e(C ′, C ′ ∪D,λ) = e(C ′, C ′ ∪D1, λ � D1)
+e(C ′ ∪D1, C

′ ∪D1 ∪D0, λ � D0)
≤ e(C ′, C ′ ∪D1, λ � D1) + e(C,C ∪D0, λ � D0),

and hence

w(C ′, C ′ ∪D,λ) = v(C ′, C ′ ∪D,λ)− αe(C ′, C ′ ∪D,λ)
= v(C ′, C ′ ∪D1, λ � D1) + v(C,C ∪D0, λ � D0)
−αe(C ′, C ′ ∪D1, λ � D1)
−αe(C ′ ∪D1, C

′ ∪D1 ∪D0, λ � D0)
≥ v(C ′, C ′ ∪D1, λ � D1) + v(C,C ∪D0, λ � D0)
−αe(C ′, C ′ ∪D1, λ � D1)− αe(C,C ∪D0, λ � D0)
= w(C ′, C ′ ∪D1, λ � D1) + w(C,C ∪D0, λ � D0) ≥ 0,

and the (strict) inequality holds by the irrationality of α, i.e. by 1.8(1). So actu-
ally (C ′, B, λ) satisfies the requirements on C, λ0 thus giving contradiction to the
minimality of C.

The if direction:
As the case A = B is obvious, we can assume that the second half of 1.15 holds.

So let λ be as required in the second half of 1.15.
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Suppose A <∗ C ≤∗ B, and we shall prove that ¬(A <∗i C) thus finishing by
Definition 1.10. We shall show that λ′ = λ � (C\A) satisfies (∗)2[A,A,C, λ′] from
1.13, thus (ii) of 1.13 fail hence (i) of 1.13 fails, i.e., ¬(A <∗i C) as required. Let
D =

⋃
{x/λ : x ∈ C \A}, so D is a non-empty λ-closed subset of B \A. Hence by

the present assumption on A, B, λ we have w(A,A ∪D,λ � D) > 0. Now

v(A,C, λ � C) = |C/λ| = |D/λ| = v(A,D, λ � D)

and

e(A,C, λ � C) ≤ e(A,D, λ � D)

so w(A,C, λ � C) ≥ w(A,D, λ � D) > 0 as requested. �1.15

Claim 1.16. 1) ≤∗i is transitive.
2) ≤∗s is transitive.
3) For any A ≤∗ C for some B we have A ≤∗i B ≤∗s C.
4) If A <∗ B and ¬(A ≤∗s B) then A <∗c B or there is C such that A <∗ C <∗ B,
¬(A <∗s C).
5) Smoothness holds (with <∗i instead of <i see [I,2.5(4)]), that is

(a) if A ≤∗ C ≤∗ M ∈ K , A ≤∗ B ≤∗ M , B ∩ C = A then A <∗c B ⇒ C <∗c
B ∪ C and A ≤∗i C ⇒ B ≤∗i B ∪ C

(b) if in addition C
M⋃
A
B then A <∗c B ⇔ C ≤∗c B ∪ C and A ≤∗i C ⇔ B ≤∗i

B ∪ C and A ≤∗s B ⇔ C ≤∗s C ∪B.

6) For A <∗ B we have ¬(A ≤∗s B) iff (∃C)(A <∗c C ≤∗ B).
7) If A ≤∗ B ≤∗ C and A ≤∗s C then A ≤∗s B.
8) If A` ≤∗s B` for ` = 1, 2, A1 ≤∗ A2, B1 ≤∗ B2 and B2\A2 = B1\A1 then

ξ(A1, B1) ≥ ξ(A2, B2).

9) In (8), equality holds iff A2, B1 are freely amalgamated over A1 inside B2.
10) If A <∗s B` for ` = 1, 2 and B1 <

∗
i B2 and for some edge {x, y} of B2 we have

x ∈ A, y ∈ B2\B1 then ξ(A,B1) > ξ(A,B2).
11) If B1 <∗ B2 and for no x ∈ B1, y ∈ B2\B1 is {x, y} an edge of B2 then
B1 <

∗
s B2.

12) If A ≤∗ B ≤∗ C and A ≤∗i C then B ≤∗i C.
13) If A <∗pr B and a ∈ B\A then A ∪ {a} ≤∗i B.
14) If A1 <

∗
pr B1, A1 ≤∗ A2 ≤∗ B2 and B1 ≤∗ B2 and B2 = A2∪B1 then A2 ≤∗s B2

or A2 <
∗
pr B2.

Proof. 1) So assume A ≤∗i B ≤∗i C and we shall prove A ≤∗i C. By 1.13 it suffice to
prove that clause (ii) there holds with A,C here standing for A,B there. So assume
A ≤∗ A′ <∗ C, (A′, C, λ) ∈ T and we shall prove that wλ(A′, C) ≤ 0, this suffice.
Let A′1 = A′ ∩B, A′0 =: B ∪A′ ∪ ∪{x/λ : x ∈ B}, now as A ≤∗i B by 1.13 + ??(2)
we have wλ(A′1, B) ≤ 0, and by ??(3) we have wλ(A′, B ∪ A′) ≤ wλ(A′1, B) and
by 1.8(4) we have wλ(A′, A′0) ≤ wλ(A′, A′ ∪ B). Those three inequalities together
gives wλ(A′, A′0) ≤ 0 and as B ≤∗i C ∧ B ⊆ A′0 by 1.13 we have wλ(A′0, C) ≤ 0.
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By 1.8(2)(c) we have wλ(A′, C) = wλ(A′, A′0) + wλ(A′0, C) and by the previous
sentence the latter is ≤ 0 + 0 = 0, so wλ(A,A′) ≤ 0 as required.
2) We use the condition from 1.15. So assume A0 ≤∗s A1 ≤∗s A2 and λ` witness
A` ≤∗s A`+1 (i.e. (A`, A`+1, λ`) is as in 1.15). Let λ be the equivalence relation on
A2 \ A0 such that for x ∈ A`+1 \ A` we have x/λ = x/λ`. Easily (A0, A2, λ) ∈ T .
Now, by 1.8(2)(c), ??(3) and 1.15 the triple (A0, A2, λ) satisfies the second condition
in 1.15 so A0 ≤∗s A2.
3) Let B be maximal such that A ≤∗i B ≤∗ C, such B exists as C is finite 4 and
for B = A we get A ≤∗i B ≤∗ C. Now if B ≤∗s C we are done, otherwise by the
definition of ≤∗s in 1.10(4) there is B′ such that B <∗i B

′ ≤∗ C, now by part (1) we
have A ≤∗i B′ ≤∗ C, contradicting the maximality of B, so really B ≤∗s C and we
are done.
4) We assume A <∗ B and now if A <∗c B we are done hence we can assume ¬(A <∗c
B), by Definition 1.10(2) there is λ such that (A,B, λ) ∈ T and wλ(A,B) ≥ 0. So
by the irrationality of α the inequality is strict and by 1.12 there is C such that
A ≤∗ C <∗ B, C is λ-closed, wλ(C,B) > 0 and if C ′ ⊆ B \C is non-empty λ-closed
and 6= B\C then wλ(C,C∪C ′) > 0andwλ(C∪C ′, B) < 0. So by 1.15 + inspection,
C <∗s B, so by 1.16(2), A ≤∗s C ⇒ A∗ ≤∗s B, but we know that ¬(A <∗s B) hence
by part (2) we have ¬(A ≤∗s C), so the second possibility in the conclusion holds.
5) Clause (a): Assume A ≤∗ C ≤∗ M ∈ K and A ≤∗ B ≤∗ M and B ∩ C. Then

• A ≤∗c B ⇒ C <∗c B ∪ C and

• A ≤∗i C ⇒ B ≤∗i B ∪ C.

[Why? Note by our assumption C <∗ B ∪ C and B <∗ B ∪ C. The first desired
conclusion is easier, so we prove the second so assume A ≤∗i C. If B ≤∗ D <∗ B∪C,
and (D,B ∪ C, λ) ∈ T then A ≤∗ D ∩ C <∗ C so as A ≤∗i C, by the definition
of ≤i we have wλ(D ∩ C,C) < 0 hence (noting C \ D ∩ C = B ∪ C \ D) by
Observation ??(3) we have wλ(D,B ∪ C) ≤ wλ(D ∩ C,C) < 0 hence (by the Def.
of ≤∗c) D ≤∗c B ∪ C. As this holds for any such D by Definition 1.10(3) we have
B ≤∗i B ∪ C as required.]

Clause (b): If in addition C
M⋃
A
B then

• A <∗c C ⇔ B ≤∗c B ∪ C and

• A ≤i C ⇔ B ≤i B ∪ C and

• A ≤∗s B ⇔ B ≤∗s B ∪ C.

[Why? Immediate by ??(4), Definition 1.10 and clause (a) which was proved.]
6) The “only if” direction can be prove by induction on |B|, using 1.16(4). For the
if direction assume that for some C, A <∗c C ≤∗ B and choose a minimal C like
that. Now if A ≤∗ A∗ <∗ C, and λ1 is an equivalence relation on C \ A∗ then let
λ0 be an equivalence relation on A∗ \ A such that wλ0(A,A∗) ≥ 0 (exists by the
minimality of C) and let λ = λ0 ∪ λ1 so (A,C, λ) ∈ T and by 1.8(2)(i) we have
wλ(A∗, C) = wλ(A,C)−wλ(A,A∗); but as A <∗c C we have wλ(A,C) < 0, and by
the choice of λ0 we have wλ(A,A∗) ≥ 0 hence wλ(A∗, C) < 0 hence wλ1

(A∗, C) =

4Actually the finiteness is not needed if for possibly infinite A,B we define A ≤∗i B iff for every

finite B′ ≤∗ B there is a finite B′′ such that B′ ≤∗ B′′ ≤∗ B, and B′′ ∩A <∗i B
′′.
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wλ(A∗, C) < 0. As λ1 was any equivalence relation on C \A∗ by Definition 1.10(2)
we have shown that A∗ <∗c C. By the definition of ≤∗i (1.10(3)), as A∗ was arbitrary
such that A ≤∗ A∗ <∗ C by Definition 1.10(3) we get that A <∗i C, hence by the
definition of ≤s (1.10(4)), we can deduce ¬(A ≤∗s B) as required.
7) Immediate by Definition 1.10(4).
8) It is enough to prove that

~ if λ ∈ Ξ(A2, B2) then λ ∈ Ξ(A1, B1) and wλ(A1, B1) ≥ wλ(A2, B2).

So assume λ is an equivalence relation over B2\A2 which is equal to B1\A1, now
for every non-empty λ-closed C ⊆ B1\A1 we have

(i) vλ(A1, A1 ∪ C) = |C/λ| = vλ(A2, A2 ∪ C)

(ii) eλ(A1, A1 ∪ C) ≤ eλ(A2, A2 ∪ C)
[as any edge in eλ(A1, A1 ∪ C) belongs to eλ(A2, A2 ∪ C)]

hence

(iii) wλ(A1, A1 ∪ C) ≥ wλ(A2, A2 ∪ C).

So by the definition of Ξ(A1, B1) we have λ ∈ Ξ(A2, B2) ⇒ λ ∈ Ξ(A1, B1) and,
moreover, the desired inequality in ~ holds.

9) First assume A2

B2⋃
A1

B1, in the proof of (8) we get eλ(A1, A1∪C) = eλ(A2, A2∪C)

hence wλ(A1, A1 ∪ C) = wλ(A2, A2 ∪ C), in particular wλ(A1, B1) = wλ(A2, B2).
Also now the proof of (8) gives λ ∈ Ξ(A1, B1) ⇒ λ ∈ Ξ(A2, B2) so trivially
ξ(A1, B1) = ξ(A2, B2).

Second, assume ¬(A2

B2⋃
A1

B1) then for every equivalence relation λ on B1\A1 =

B2\A2 we have

(ii)+ eλ(A1, B1) < eλ(A2, B2).

[Why? As eλ(A1, B1) is a proper subset of eλ(A2, B2) by our present assumption.]
hence

(iii)+ wλ(A1, B1) > wλ(A2, B2).

As the number of such λ is finite and as we have shown Ξ(A2, B2) ⊆ Ξ(A1, B1) we
get ξ(A1, B1) > ξ(A2, B2).
10) This follows from ~0 +~1 +~2 below and the finiteness of Ξ(A,B2) recalling
Definition 1.7(3).

~0 Ξ(A,B2) 6= ∅.

[Why? As we are assuming A <s B2 and so recall claim 1.15.]

~1 λ ∈ Ξ(A,B2)⇒ λ � (B1\A) ∈ Ξ(A,B1).

[Why? If λ is an equivalence relation on B2\A and let λ1 = λ � (B1\A) so λ1 is an
equivalence relation on B1\A and for any non-empty λ1-closed C1 ⊆ B1\A, letting
C2 = ∪{x/λ : x ∈ C1} we have wλ(A,A ∪ C1) ≥ wλ(A,A ∪ C2) by 1.8(4) and the
latter is positive because λ ∈ Ξ(A,B2).]

And
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~2 λ ∈ Ξ(A,B2)⇒ wλ(A,B2) < wλ(A,B1).

[Why? Otherwise let λ be from Ξ(A,B2) and let Cλ = ∪{x/λ : x ∈ B1\A} ∪ A so
B1 ≤∗ Cλ ≤∗ B2.]

Case 1: Cλ = B2.
So vλ(A,B1) = v(A,B1, λ�(B1\A)) = |(B1\A)/λ| = |(B2\A)/λ| = vλ(A,B2, λ).

By an assumption of part (10), for some x ∈ A, y ∈ B2\B1 the pair {x, y} is an
edge so e(A,B1, λ � (B1\A)) is a proper subset of e(A,B2, λ) hence

eλ(A,B1) < eλ(A,B2)

hence

wλ(A,B1) > wλ(A,B2)

is as required.

Case 2: Cλ 6= B2.
As in case 1, wλ(A,B1) ≥ wλ(A,Cλ). Now B1 ≤∗ Cλ ≤∗ B2, (using the

case assumption) and B1 <
∗
i B2 by an assumption so by part (12) below we have

Cλ ≤∗i B2 but we are assuming Cλ 6= B2 hence Cλ <
∗
i B2 and by 1.13 this im-

plies wλ(Cλ, B2) < 0. So wλ(A,B2) = wλ(A,Cλ) + wλ(Cλ, B2) ≤ wλ(A,B1) +
wλ(Cλ, B2) < wλ(A,B1) as required.
11) Define λ, it is the equivalence relation with exactly one class on B2\B1 so
(B1, B2, λ) ∈ T ,vλ(B1, B2) = 1, eλ(B1, B2) = 0 so wλ(B1, B2) ≥ 0 hence λ ∈
Ξ(B2, B2) hence B1 <s B2.
12) By the Definition 1.10(3).
13) Clearly A∪{a} ≤∗ B hence by part (3) for some C we have A∪{a} ≤∗i C ≤∗s B.
If C = B we are done, otherwise A <∗s C by part (7) so we have A <∗s C <∗s B,
contradiction.
14) Easy by Definition 1.10(6). �1.16
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§ 2. The probabilistic inequalities

In this section we deal with probabilistic inequalities about the number of ex-
tensions for the context M 0

n . Mostly the (computational) proofs are delayed to
[?].

Note: the proof of almost simply niceness of K is in the next section.

Context 2.1. As in §4, so pi = 1/iα, for i > 1, p1 = p2 (where α ∈ (0, 1)R irrational)
and Mn = M 0

n (i.e. only the graph).

Definition 2.2. Let ε > 0, k ∈ N,Mn ∈ K and A <∗ B be in K∞. Assume
f : A ↪→ Mn is an embedding or just f : A ↪→ [n] which means it is one to one.
Define

G ε,k
A,B(f,Mn) := {ḡ : (1) ḡ = 〈g` : ` < k〉,

(2) • f ⊆ g`
• g` a one-to-one function from B into |Mn|

(3) g` : B ↪→f Mn, for ` ≤ k or we may write g` : B ↪→A Mn

which means :
• g : A ↪→ [n] so g is one-to-one
• {a, b} ∈ Edge(B)\Edge(A)⇒ {g(b), g(b)} ∈ Edge(Mn)
• g extends f

(4) `1 6= `2 ⇒ Rang(g`1) ∩ Rang(g`2) = Rang(f)
(5) [` < k and x ∈ B\A and y ∈ A]⇒ |g`(x)− g`(y)| ≥ nε}.

The size of this set has natural connection with the number of pairwise disjoint
extensions g : B ↪→Mn of f , hence with the holding of A <s B, see 2.3 below.

Fact 2.3. For every ε and k and A ≤∗ B we have:

(∗) for every n and M ∈ Kn and one to one f : A ↪→A Mn we have: if

G ε,k
A,B(f,Mn) = ∅ then

2(|A|)nε + (k − 1) ≥ max{` : there are gm : B ↪→A M for m < ` such that f ⊆ gm and
[m1 < m2 ⇒ Rang(gm1) ∩ Rang(gm2) ⊆ Rang(f)]}.

Proof. Assume that there are gm for m < `∗ where `∗ > 2|A|nε + k − 1 as above.
By renaming without loss of generality for some `∗∗ ≤ `∗ we have Rang(gm)\ Rang(f)

when m < `∗∗ is with distance ≥ nε from Rang(f) but if ` ∈ [`∗∗, `∗] then
Rang(g`)\ Rang(f) has distance < nε to Rang(f). Recall that by one of our as-
sumptions `∗∗ ≤ k − 1. Now for each x ∈ Rang(f), there are ≤ 2nε numbers
m ∈ [`∗∗, `∗) such that min{|x − gm(y)| : y ∈ B \ A} ≤ nε. So by the demand on
`∗∗ we have `∗ − `∗∗ ≤ (|A|)× (2nε) = 2|A|nε and as `∗∗ < k we are done. �2.3

The following is central, it does not yet prove almost niceness, but the parallels
(to 2.4) from [SS88], [BS97] were immediate, and here we see the main additional
difficulty we have which is that we are looking for copies of B over A but we
have to take into account the distance, the closeness of images of points in B
under embeddings into Mn. Now, in order to prove 2.4 we will have to look for

different types of g’s which satisfy Condition (5) from the Def. of G ε,k
A,B(f,Mn) and

restricting ourselves to one kind we will calculate the expected value of “relevant
part” of G ε,1

A,B(f,Mn) and we will show that it is small enough.
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Theorem 2.4. Assume A <∗ B (so both in K∞). Then ⊗2 ⇒ ⊗1 where

⊗1 for every ε > 0, for some k ∈ N, for every random enough Mn we have:

(∗) if f : A ↪→ [n] then G ε,k
A,B(f,Mn) = ∅

⊗2 A <∗a B (which by Definition 1.10(5) means A <∗ B ∧ ¬(A <s B)).

Remark 2.5. From ⊗1 we can conclude: for every ε ∈ R+ we have: for every
random enough Mn, for every f : A ↪→A Mn, there cannot be ≥ nε extensions
g : B ↪→A Mn of f pairwise disjoint over f .

Explanation 2.6. For this, first choose ε1 < ε. Note that for any k we have

G ε,k
A,B(f,Mn) ⊆ G ε1,k

A,B (f,Mn). Choose k1 for ε1 by ⊗1. Then by 2.3 the number

of pairwise disjoint extensions g : B ↪→A Mn of f is ≤ 2(|A|)nε1 + (k1 − 1). For
sufficiently large n this is < nε.

Remark 2.7. We think of g extending f such that g : B ↪→ Mn that satisfies, for
some constants c1 and c2 with c2 > 2c1 and equivalence relation λ:

xλy ⇒ |g(x)− g(y)| < c1

and

[{x, y} ⊆ B ∧ {x, y} * A ∧ ¬xλy]⇒ |g(x)− g(y)| ≥ c2.

Explanation 2.8. So the number of such g ⊃ f is ∼ n|(B\A)/λ| = nv(A,B,λ), the
probability of each being an embedding, assuming f is one to one, is ∼ n−αe(A,B,λ),
hence the expected value is ∼ nwλ(A,B) (∼ means “up to a constant”). So A <∗i B
implies that usually there are few such copies of B over any copy of A, i.e. the
expected value is < 1. In [SS88], λ is equality, things here are more complicated.

By 2.4 we have sufficient conditions for (given A ≤∗ B) “every f : A↪→Mn

has few pairwise disjoint extension to g : B↪→Mn”. Now we try to get a dual,
a sufficient condition for: (given A ≤∗ B) for every random enough Mn, every
f : A↪→Mn has “many” pairwise disjoint extensions to g : A↪→Mn.

Now 2.9 is used in 3.2.

Lemma 2.9. If (A),(B),(C) then ⊗ where:

(A) λ ∈ Ξγ(A,B) that is

(a) (A,B, λ) ∈ T

(b) (∀B′)[A <∗ B′ ≤∗ BandB′ is λ-closed ⇒ wλ(A,B′) > 0], (recall that
“B′ is λ-closed” means xλy ∧ x ∈ B′ ⇒ y ∈ B′).

(B) let ζ ∈ R+ be defined by

ζ =: min{wλ�B′(A,B
′) : A ⊆ B′ ⊆ B and B′ is λ-closed},

(C) k∗ large enough than |B| or just |A|+ |(B\A)/λ| and m ∈ N

⊗ for every small enough ε > 0, for every random enough Mn, for every
f : A↪→[n] there are ≥ n(1−ε)·ζ pairwise disjoint extensions g of f satisfying

(i) g : B↪→AMn,
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(ii) if xλy (so x, y ∈ B\A) then |x− y| ≤ 2|B|
(iii) if x ∈ B\A, y ∈ B and ¬(xλy) then |x− y| ≥ n/k∗
(iv) there are no b ∈ B\A and extension g′ : B+↪→Mn of g�(b/λ)
when (recall b/λ denote B�(b/λ)):

(a) |B+\B| ≤ m
(b) (b/λ) <i ((b/λ) ∪ (B+\B)

(c) if b1 ∈ B+\B then |g+(b)− g+(b1)| ≤ nε.

Now 2.4, 2.9 are enough for proving <∗i=<i, <
∗
s=<s, weakly nice and similar things,

see §(6A) and proof of 3.2, 3.3, 3.4.

Claim 2.10. 1) Assume A <∗pr B and we let ξ = ξ(A,B) that is

ξ = max{wλ(A,B) : (A,B, λ) ∈ T and λ ∈ Ξ(A,B), i.e.
for every λ-closed non-empty C ⊆ B \A
we have w(A,A ∪ C, λ � C) > 0}.

Then for every ε ∈ R+ for every random enough Mn for every f : A↪→Mn we have

(∗) the number of g : B↪→Mn extending f is at most nξ+ε.

2) Assume that A <∗s B, λ ∈ Ξ(A,B) and ξ = wλ(A,B). Then for every reals

ζ, ε > 0 for every random enough Mn, for every f : A↪→Mn the set G ε,ζ
f,A,B,λ(Mn)

defined below has ≤ nξ+ε members, where

G ε,ζ
f,A,B,λ(Mn) = {g : g : B↪→Mn extend f and

x ∈ B\A ∧ y ∈ B ∧ ¬(xλy)⇒ nζ ≤ |x− y|}.

Remark 2.11. Part (1) is used in the proof of 3.5 before (∗)4, pg. 27 and part (2)
before (∗)6, pg.28.

Claim 2.12. For every c ∈ R+ for A <s B and λ ∈ Ξ(A,B) for every ζ ∈ R+ for
every ε ∈ R+ small enough we have:

� for Mn random enough, if f : A↪→[n] then |F ε,c
A,B(f,Mn)| is ≤ nwλ(A,B)+ζ

where F ε,c
A,B(f,Mn) is the set of functions g such that

(a) g : B↪→AMn

(b) if b1λb2 then |g(b1)− g(b2)| ≤ c1nε

(c) if b2 ∈ B\A and b2 ∈ B\(b1/λ) then |g(b1)− g(b2)| ≥ 3c1n
ε.

Proof. Like the proof of 2.4. �

Claim 2.13. Like 2.12 but |F ε,c
A,B(f,Mn)| is ≥ nwλ(A,B)−ζ .

Proof. Like the proof of 2.4. �
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§ 3. The conclusion

§ 3(A). An Outline.
Comment: In this section it is shown that <∗i and <∗s (introduced in §4) agree

with the <i and <s of [I,§1] by using the probabilistic information from §5. Then
it is proven that the main context Mn is simply nice (hence simply almost nice)
and it satisfies the 0− 1 law.

Context 3.1. As in §4 and §5, so pi = 1/iα, for i > 1, p1 = p2 (where α ∈ (0, 1)R
irrational) and Mn = M 0

n (only the graph) and ≤i, ≤s, cl are as defined §1. (So
K∞ = K by 1.4).

Note that actually the section has two parts of distinct flavours: in 3.2 - 3.5 we
use the probabilistic information from §5. First we show that the definition of <i
from [I,§1] and of <∗i from §4 give the same relation. This is done in 3.2, we then
deduce that <x=<∗x for the relevant x’s (in 3.3, 3.4). We then (in 3.5) prove the
existence of g : B↪→Mn extending a given f (for Mn random enough) for which no
“unintended algebraic elements” occur. In 3.7 we rephrase it by sufficient conditions
for simply good tuple, ([She02, 2.12(1)]); all this is §(6B). But to actually prove
almost niceness, we need more work on the relations ≤∗x defined in §4; this is done
in 3.8, 3.10, 3.11, i.e. §(6C).

Lastly, (in §(6D)) we put everything together.
The argument in 3.2 - 3.5 parallels that in [BS97] which is more hidden in

[SS88]. The most delicate step is to establish clauses (A)(δ) and (ε) of Definition
[I,2.13,(1)], (almost simply nice). For this, we consider f : A↪→Mn and try to
extend f to g : B↪→Mn where A ≤s B such that Rang(g) and c`k(f(A),Mn)
are “freely amalgamated” over Rang(f). The key facts have been established in
Section 5. If ζ = w(A,B, λ) we have shown (Claim 2.9) that for every ε > 0 for
every random enough Mn, there are ≥ nζ−ε embeddings of B into Mn extending
f . But we also show (using 2.10) that for each obstruction to free amalgamation
there is a ζ ′ < ζ such that for every ε1 > 0 the number of embeddings satisfying
this obstruction is < nζ

′+ε1 , where ζ ′ = w(A,B′, λ) (for some B′ exemplifying
the obstruction) with ζ ′ + α ≤ ζ. So if α > ε + ε1 we overcome the obstruction.
The details of this computation for various kinds of obstructions are carried out in
proving Claim 3.5.

§ 3(B). Using the inequalities.

Claim 3.2. Assume A <∗ B. Then the following are equivalent:

(i) A <∗i B (i.e. from Definition 1.10(3)),

(ii) it is not true that: for some ε, for every random enough Mn for every
f : A↪→Mn, the number of g : B↪→Mn extending f is ≥ nε,

(iii) for every ε ∈ R+ for every random enough Mn for every f : A↪→Mn the
number of g : B↪→Mn extending f is < nε (this is the definition of A <i B
in [I,§1]).

Proof. We shall use the well known finite ∆-system lemma: if fi : B → [n] is one to

one and fi � A = f for i < k then for some w ⊆ {0, . . . , k−1}, |w| ≥ 1
|B\A|2 k

1/2|B\A| ,
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and A′ ⊆ B and f∗ we have:
∧
i∈w

fi � A′ = f∗ and 〈 Rang(fi � (B \A′) : i ∈ w〉 are

pairwise disjoint (so if the fi’s are pairwise distinct then B \A′ 6= ∅).
We use freely Fact 1.2. First, clearly (iii)⇒ (ii).
Second, if ¬(i), i.e., ¬(A <∗i B) then by 1.13 (equivalence of first and last

possibilities + 1.12(1)) there are A′, λ as there, that is such that:
A ≤∗ A′ <∗ B and (A′, B, λ) ∈ T and if C ⊆ B \A′ is non-empty λ-closed then

w(A′, A′ ∪ C, λ � C) > 0 (see 1.13).
So (A′, B, λ) satisfies the assumptions of 2.9 which gives ¬(ii), i.e., we have

proved ¬(i)⇒ ¬(ii) hence (ii)⇒ (i).
Lastly, to prove (i)⇒ (iii) assume ¬(iii) (and we shall prove ¬(i)). So for some

ε ∈ R+:

(∗)1 0 < lim supn→∞ Prob (for some f : A↪→Mn, the number of g : B↪→Mn

extending f is ≥ nε).
But by the first paragraph of this proof it follows that from (∗)1 we can deduce
that for some ζ ∈ R+

(∗)2 0 < lim supn→∞ Prob (for some A′, A ≤∗ A′ <∗ B, and f ′ : A′↪→Mn there
are ≥ nζ functions g : B↪→Mn which are pairwise disjoint extensions of f ′).

So for some A′, A ≤∗ A′ <∗ B and

(∗)3 0 < lim supn→∞ Prob (for some f ′ : A′↪→Mn there are ≥ nζ functions
g : B↪→Mn which are pairwise disjoint extensions of f∗).

By 2.4 (and 2.3, 2.2) we have ¬(A′ <∗a B), which by Definition 1.10(5) means
that A′ <∗s B which (by Definition 1.10(4)) implies ¬(A <∗i B) so ¬(i) holds as
required. �3.2

Claim 3.3. For A <∗ B ∈ K∞, the following conditions are equivalent:

(i) A <∗s B,

(ii) it is not true that: “for every ε ∈ R+, for every random enough Mn for
every f : A↪→Mn, there are no nε pairwise disjoint extensions g : B↪→Mn

of f”,

(iii) for some ε ∈ R+ for every random enough Mn for every f : A↪→Mn there
are ≥ nε pairwise disjoint extensions g : B↪→Mn of f .

Proof. Reflection shows that (iii)⇒ (ii).
If ¬(i), i.e., ¬(A <∗s B) then by Definition 1.10(4) for some B′, A <∗i B

′ ≤∗ B,
hence by 3.2 easily ¬(ii), so (ii)⇒ (i).

Lastly, it suffices to prove (i) ⇒ (iii). Now by (i) and 1.15 for some λ the
assumptions of 2.9 holds hence the conclusion which give clause (iii). �3.3

Conclusion 3.4. 1) <∗s=<s and <∗i=<i, and K is weakly nice where <s, <i are
defined in [I,1.4(4),1.4(5)] hence <∗pr=≤pr.
2) (K , c`) is as required in [I,§2], and the ≤i, ≤s defined in [I,§2] are the same
as those defined in [I,§1] for our context, of course when for A ≤ B ∈ K∞ we let
c`(A,B) be minimal A′ such that A ≤ A′ ≤s B.
3) Also K (that is (K , c`)) is transitive local transparent and smooth, (see [I,2.2(3),2.3(2),2.5(5),2.5(4)]).
4) <∗x=<x for the other x’s (not used).
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Proof. 1) <∗s=<s and <∗i=<i by 3.2, 3.3 and see Definition in [I,§1].
Lastly, K being weakly nice follows from 3.3, see Definition in [I,§1].
2) By [I,2.6].
3) By [I,2.6] the transitive local and transparent follows (see clauses (δ), (ε), (ζ)
there). As for smoothness, use 1.16(5).
4) Check. �3.4

Note that we are in a “nice” case, in particular no successor function. Toward
proving it we characterize “simply good”.

Claim 3.5. If A ≤∗s B and k, t ∈ N satisfies k + |B| ≤ t, then for every random
enough Mn, for every f : A↪→Mn, we can find g : B↪→Mn extending f such that:

(i) Rang(g) ∩ c`t(Rang(f),Mn) = Rang(f),

(ii) Rang(g)
Mn⋃

Rang(f)
c`t(Rang(f),Mn),

(iii) c`k(Rang(g),Mn) ⊆ Rang(g) ∪ c`k(Rang(f),Mn).

Remark 3.6. Note that we can in clauses (i), (ii) of 3.5 replace t by k - this just
demands less. We shall use this freely. Have we put t in the second appearance of k
in clause (iii) of 3.5 the loss would not be great: just in [I], we should systematically
use [I2.12(2)] instead of [I2.12(1)]. It even suffices to demand “given A ≤∗s B and
k for some t . . . ”.

Proof. We prove this by induction on |B \ A|, but by the character of the desired
conclusion, if A <∗s B <∗s C, to prove it for the pair (A,C) it suffices to prove it for
the pairs (A,B) and (B,C). Also, if B = A the statement is trivial (because we
can take f = g). So, without loss of generality, A <∗pr B (see Definition 1.10(6)).

Let λ ∈ Ξ(A,B), that is λ is such that (A,B, λ) ∈ T and for every λ-closed
C ⊆ B \A we have wλ(A,A ∪ C) > 0 and recall

ξ := wλ(A,B) = max{wλ1(A,B) : λ1 ∈ Ξ(A,B)}.

Choose k∗ = k(∗) large enough and ε ∈ R+ small enough. The requirements on ε,
k(∗) will be clear by the end of the argument.

Let Mn be random enough, and f : A↪→Mn. Now by 3.2 and the definition of
c`t we have (∗) and by 2.9 for ζ = ξ we have (∗)1 where

(∗)0 |c`t(f(A),Mn)| ≤ nε/k(∗),

(∗)1 |G | ≥ nξ−ε/2,

where G is the family from ⊗ of 2.9, in particular each g ∈ G extends f to an
embedding of B into Mn and also saisfies (ii)-(iv) from there.

Recall that

~1 if A′ ⊆ M ∈ K and a ∈ c`k(A′,M) then for some C we have C ⊆
c`k(A′,M), |C| ≤ k, a ∈ C and c`k(C ∩A′, C) = C

(by the Definition of c`k, see [I,§1]).
We intend to find g ∈ G satisfying the requirements in the claim. Now g being

an embedding of B into Mn extending f follows from g ∈ G . So it is enough to
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prove that < nξ−ε members g of G fail clause (i) and similarly for clauses (ii) and
(iii) of 3.5.

More specifically, let

�1 G 1 = {g ∈ G : g(B) ∩ c`t(f(A),Mn) 6= f(A) or just for some a ∈ B\A, b ∈
c`+(f(A),Mn)\f(A) we have |g(b)− a| ≤ nε},

�2 G 2 = {g ∈ G : g /∈ G 1 but clause (ii) fails for g}
�3 G 3 = {g ∈ G : clause (iii) fails for g but g /∈ G 1 ∪ G 2}.

So clearly it is enough to prove G * G 1∪G 2∪G 3 (because (i) fails for g ⇒ g ∈ G 1,
(ii) fails for g ⇒ g ∈ G 2 ∨ g ∈ G 1 and (iii) fails for g ⇒ g ∈ G 3 ∨ g ∈ G 2 ∨ g ∈ G 1.

So it is enough to prove that |G ι| < |G |/3 for ι = 1, 2, 3; naturally much more is
proved.

On the number of g ∈ G 1: For a ∈ B\A and x ∈ c`t(f(A),Mn) let G 1
a,x = {g ∈

G 2 : g(a) = x or just |g(a) − x| ≤ nε}, so G 1 = ∪{G 1
a,x : a ∈ B\A and x ∈

c`t(f(A),Mn)}, and by 1.16(13) clearly A∪ {a} ≤i B (as A <pr B). The rest is as
in the proof for G 2 below, only easier.

On the number of g ∈ G 2:

If g ∈ G 2 then for some

xg ∈ c`t(Rang(f),Mn) \ Rang(f) and y ∈ B \A

we have: {xg, g(y)} is an edge of Mn. Note xg /∈ g(B) as g ∈ G2.
We now form a new structure B2 with a set of elements B ∪ {x∗}, (x∗ /∈ B),

such that g ∪ {〈x∗, xg〉} : B2↪→Mn and let A2 = B2 � (A ∪ {x∗}). Now up to
isomorphism over B there is a finite number (i.e., with a bound not depending on
n) of such B2, say 〈B2

j : j < j∗2 〉.
For x ∈ c`t(Rang(f),Mn) and j < j∗ let

G 2
j,x =: {g : g is an embedding of B2

j into Mn extending f and satisfying g(x∗) = x}

G 2
j =:

⋃
x∈c`t(f(A),Mn)

G 2
j,x.

So:

(∗)2 if g ∈ G 2 then

g ∈
⋃
{{g′ � B : g′ ∈ G 2

j,x} : j < j∗2 and x ∈ c`t(f(A),Mn)}.

Now, if ¬(A2
j <s B

2
j ) then as A <∗pr B easily A2

j <i B
2
j so by 3.2 using (∗) (with

ε/2− ε/k(∗) here standing for ε in (iii) there) we have

(∗)3 if ¬(A2
j <s B

2
j ) then |G 2

j | ≤ nε/2.
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[Why? As A2
j <i B

2
j on the one hand for each x ∈ c`t(Rang(f),Mn) by 3.2 the

number of g : B2
j ↪→Mn extending f ∪ {〈x∗, x〉} : A2

j ↪→Mn is < nε/k(∗) and on the

other hand the number of candidates for x is ≤ |c`t(Rang(f),Mn)| ≤ n
ε

k(∗) . So
|G 2
j | ≤ nε/k(∗) × nε/k(∗) ≤ n2ε/k(∗) ≤ n ε2 .]

If A2
j <s B

2
j , then by 1.16(14) still A2

j <pr B
2
j and letting

ξ2
j =: max{wλ(A2

j , B
2
j ) : (A2

j , B
2
j , λ) ∈ T and for every

λ-closed non-empty C ⊆ B2
j \A2

j

we have w(A2
j , A

2
j ∪ C, λ � C) > 0}

clearly ξ2
j < ξ − 2ε (as we retain the “old” edges, and by at least one we actually

enlarge the number of edges but we keep the number of “vertexes”, i.e., equivalence
classes see 1.16(9)).

So, by 2.10,

(∗)4 if A2
j <
∗
pr B

2
j then |G 2

j | ≤ nξ−2ε.

As ξ − 2ε > ε by (∗)3 + (∗)4, multiplying by j∗, as n is large enough

(∗)5 |G 2|, the number of g ∈ G \G 1 failing clause (ii) of 3.5 is ≤ nξ−ε.

On the number of g ∈ G 3:

First if g ∈ G 3 then necessarily there are A+ = A+
g , B

+ = B+
g , C = Cg, g

+ such
that

⊗1 (a) B ≤∗ B+

(b) c`k(B,B+) = B+; moreover B+ = B ∪ C, |C| ≤ k and C ∩A ≤i C
(c) A ≤i A+ ≤s B+ hence B ∩A+ = A, |B+| ≤ |B|+ k

(d) C * B ∪A+ and B
B+⋃
A
A+

(e) g ⊆ g+ and g+ : B+↪→Mn and g+(A+) ⊆ c`t(f(A),Mn)

(f) without loss of generality |B+| is minimal under (a)-(d).

[Why? As g ∈ G 3 there is yg ∈ c`k(g(B),Mn) such that yg /∈ g(B) and more-
over yg /∈ c`k(f(A),Mn). By the first statement (and ~1 above) there is C∗ ⊆
c`k(g(B),Mn) with ≤ k elements such that yg ∈ C∗ and C∗ ∩ g(B) ≤i C∗. Let
B∗ = g(B) ∪ C∗ ≤ Mn. Let B+, g+ be such that B ≤∗ B+ ∈ K , g ⊆ g+, g+ an
isomorphism from B+ onto B∗, and let C = g−1(C∗).

Lastly, choose A+ such that A′ ≤i A+ ≤s B+, clearly it exists by 1.16(2). Now
|A+| ≤ |B| + |C| ≤ |B| + k ≤ t by the assumptions on A,B, k, t hence g+(A+) ⊆
c`t(f(A),Mn) but as g ∈ G 3 we have g /∈ G 1 hence A = g(B) ∩ c`t(f(A),Mn) so
we have A+ ∩ B = A. Also C * B ∪ A+, otherwise, as g /∈ G 2, g /∈ G 1 we have

B
B+⋃
A
A+ hence C ∩ B

⋃
C ∩A

C ∩ A+ but as C ∩ B <∗i C so by smoothness (e.g.

1.16(5)) we get C ∩ A <∗i C ∩ A+ hence C ∩ A+ ⊆ c`k(A,B+) hence C∗\g(B) =
g+(C\B) ⊆ g+(C∩A+) ⊆ c`k(f(A),Mn) hence yg ∈ c`k(f(A),Mn), contradiction.
So clauses (a)-(e) of ⊗1 hold and so without loss of generality also clause (f).]

⊗2 if g ∈ G 3 then there are (unique) kg, λg, hg, A
∗
g such that
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(a) 0 < kg < k∗/3

(b) λg is an equivalence relation on B+\A
(c) λg = {(b1, b2) : b1, b2 ∈ B+

g \A and |g+(b1)− g+(b2)| ≤ kgnε/k∗}
(d) also λg = {(b1, b2) : b1, b2 ∈ B+

g \A and |g+(b1)− g+(b2)| ≤ 3knε/k∗}
(e) A∗g = ∪{b/λg : b ∈ A}

[Why? Obvious, e.g. 3|B
+|×|B+| ≤ k∗ suffice; actually can use 2 instead of 3.]

⊗3 (a) if a ∈ B\A and b ∈ A+
g then |g∗(a)− (b)| > nε > kgn

ε/k∗

(b) wλg (A+
g , B

+
g ) < wλ(A,B)

(c) moreover the difference is > ε.

Why? Clause (a) as g /∈ G 1 see the “or just...” in its definition, clause (c) follows
from clause (b), so we concentrate on clause (b).

Let B∗g = ∪{b/λg : b ∈ B\A} ∪A+ so B∗g ⊇ B. rm Without loss of generality

⊗3.1 B+
g = B∗g .

[Why? Toward contradiction assume thatB+
g 6= B∗g . Easily wλ(A,B) ≥ wλg (A+, B∗g ).

Also B∗g <
∗
i B

+
g as B <∗i B

+
g , B ≤∗ B∗g ≤∗ B+

g and B∗g 6= B+
g by the case assump-

tion. As B∗g is λg-closed we have wλg (A+, B+
g ) = wλg (A+, B∗g ) + wλg (B∗g , B

+
g ) ≤

wλ(A,B) + wλg (B∗g , B
+
g ) < wg(A,B).

Why? By §4, as wλ(A,B) ≥ wλg (A,B) and as wλg (B∗g , B
+
g ) is negative as

B∗g ≺∗i B+
g . So we have proved ⊗3(b) indeed; so without loss of generality B+

g = B∗g
as promised in ⊗3.1.]

As B+
g = B∗g , necessarily B <i B

∗
g .

Let 〈b` : ` < `(∗)〉 be representatives of (B\A)/λ hence of B∗g\A+
g , so necessarily

`(∗) > 0.
rm Without loss of generality

⊗3.2 E := eλ(A+
g , B

+
g ) is empty.

[Why? If E 6= ∅ then clearly wλ(A,B) > w(A+
g , B

∗
g ) as required in ⊗3(b).]

Another formulation

⊗′3.2 without loss of generality there are no ` < `(∗) and edge {a, b} of B+ when
one of the following occurs:

(a) a ∈ (b`/λg)\B and b ∈ ∪{b`1/λg : `1 6= ` and `1 < `(∗)}
(b) b ∈ B+

g \A+
g and a ∈ A+

g \A
(c) b ∈ (b`/λg)\(b`/λ) and a ∈ A
(d) a ∈ (b`/λg)\B and b ∈ A+.

[Why? In clause (a) otherwise vλ(A,B) = vλg (A,B∗g ) = vλg (A,B+
g ) and eλ(A,B) &

eλg (A,B∗g ) we get the inequality of ⊗3(b). Clauses (b),(c) are similar.]

⊗3.3 `(∗) = 1 ∧A+
g = A.
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[Why? Note 〈(b`/λg)\B : ` < `(∗)〉 are pairwise disjoint with no edges between
the (by ⊗3.3(a), so by smoothness clearly for some ` < `(∗) we have (A+

g ∪ B) <i
(A+

g ∪ B ∪ (b`/λg)), so necessarily (b`/λg) * B. By ⊗1(f) we have `(∗) ≤ 1. But

`(∗) = 0 is impossible as B+
g 6= B∪A+

g by⊗1(a) so `(∗) = 1. By⊗′3.2(a) also we have

A∪ (b/λg)
B+⋃

A ∪ (b0/λ)
A+ ∪ (b0/λg) hence A+

g ∪ (b0/λ) <i A
+
g ∪ (b0/λg). By ⊗′3.2(d)

we have A∪ (b0/λg)
B+⋃
A
A+ so by smoothness we have ((b0/λg)∪A) <i (b/λg)∪A,

so by the minimality of B+, see ⊗1(f), we have A+
g = A.]

⊗3.4 b0/λg
B+⋃
b0/λ

B hence by smoothness (b0/λg) <
∗
i (b0/λ).

[Why? By ⊗3.4.]
Together we contradict the demand in 2.9⊗(iv) (((b`/λ) ∪ A+) <s B

′, so ⊗3(b)
holds hence ⊗3 holds.]

⊗4 for g ∈ G

(a) let xg, i.e. xg[Mn] be (B+
g , A

+
g , Cg, kg, λg)

(b) let hg = hg[Mn] := g�A+
g

⊗5 without loss of generality {xg : g ∈ G for some Mn} is a finite set, i.e. of
size not depending on G .

[Why? Just think.]
Hence

⊗6 let 〈xj = (Bj , A
+
j , Cj , kj , λj) : j < j3〉 list X

⊗7 let Hj [Mn] = {hg : g ∈ G [Mn]}
⊗8 Hj [Mn] has ≤ |c`k(g(A),Mn)| ≤ (nε/k(∗))|A

+
j | ≤ nmε/k(∗).

[Why? By (∗)0 and the definition above.]

⊗9 for h ∈Hj = ∪{Hj [G ] : j < j3} let G 3
j,h[Mn] = {g ∈ G [Mn] : xg = xj and

hg = h}.

Now

⊗10 Gj,h has at most n(ξ−ε)+mε/k(∗) members.

[Why? Like 2.4, fully by 2.12.]

⊗11 |G 3| ≤ nξ−ε+(m+2)/k(∗).

[Why? Put together.]
So we are done. �3.5

Conclusion 3.7. If A <∗s B and B0 ⊆ B and k ∈ N then the tuple (B,A,B0, k)
is simply good (see Definition ??(I,(1)).

Proof. Read 3.5 and Definition [She02, 2.12]. �3.7
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§ 3(C). Analyzing the Model Theory.

Toward simple niceness the “only” thing left is the universal part, i.e., Definition
[She02, 2.13].

The following claims 3.8, 3.10 do not use §5 and have nothing to do with proba-
bility; they are the crucial step for proving the satisfaction of Definition ??[I,(1)(A)]
in our case; claim 3.8 is a sufficient condition for goodness (by 3.7). Our preceding
the actual proof (of 3.11) by the two claims (3.8,3.10) and separating them is for
clarity, though it has a bad effect on the bound; see also - 3.8 using “c`k,m(āb,M)”
instead of c`k(āb,M) when k′ < k may improve the bound.

Claim 3.8. For every k and ` (from N) there are natural numbers t = t(k, `) and
k∗(k, `) ≥ t, k such that for any k∗ ≥ k∗(k, `) we have:

(∗) if m⊗ ∈ N and M ∈ K , ā ∈ `≥M , b ∈M then

⊗ the set

R =: {(c, d) : d ∈ c`k(āb,M) \ c`k∗,m⊗+k(ā,M) and

c ∈ c`k∗,m⊗(ā,M) and {c, d} is an edge of M}

has less than t members.

Proof. If k = 0 this is trivial so without loss of generality k > 0. Choose ε ∈ R+

small enough such that

(∗)1 C0 <
∗ C1and(C0, C1, λ) ∈ T and|C1| ≤ k ⇒ wλ(C0, C1) /∈ [−ε, ε]

(in fact we can restrict ourselves to the case C0 <
∗
i C1)).

Choose c ∈ R+ large enough such that

(∗)2 (C0, C1, λ) ∈ T , |(C1 \ C0)/λ| ≤⇒ wλ(C0, C1) ≤ c.

(so actually c = k is enough). Choose t1 > 0 such that t1 > c/ε and t1 > 2.

Choose t2 ≥ 22t1+k+`

(overkill, we mainly need to apply twice the ∆-system
lemma; but note that in the proof of 3.10 below we will use Ramsey Theorem).
Lastly, choose t > k2t2 and let k∗ ∈ N be large enough which actually means that
k∗ > kandk∗ ≥ (k + 1)× t2 so k∗(k, `) =: (k + 1)× t2 is O.K.

Suppose we have m⊗, M , ā, b as in (∗) but such that the set R has at least t
members. Let (ci, di) ∈ R for i < t be pairwise distinct 5.

As di ∈ c`k(āb,M ), we can choose for each i < t a set Ci ≤M such that:

(i) Ci ≤M ,

(ii) |Ci| ≤ k,

(iii) di ∈ Ci,
(iv) Ci � (Ci ∩ (āb)) <i Ci.

For each i < t, as Ci ∩ c`k
∗,m⊗+k(ā,M) is a proper subset of Ci (this is witnessed

by di, i.e., as di ∈ Ci \ (Ci ∩ c`k
∗,m⊗+k(ā,Mn))) clearly this set has < k elements

and hence for some k[i] < k we have

5Note: we do not require the di’s to be distinct; though if w = {i : di = d∗} has ≥ k′ > 1
α

elements then d∗ ∈ c`k′ (c`k∗,m⊗+k(ā,M))
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(v) Ci ∩ c`k
∗,m⊗+k[i]+1(ā,M) ⊆ c`k∗,m⊗+k[i](ā,M).

So without loss of generality

(vi) i < t/k2 ⇒ k[i] = k[0]and|Ci| = |C0| = k′ ≤ k,

remember t2 < t/k2; also

(vii) b ∈ Ci.

[Why? If not then by clause (iv) we have (Ci ∩ ā) <i Ci, hence di ∈ Ci ⊆
c`k(ā,M) ⊆ c`k∗,m⊗+k(ā,M), contradiction.]

As k∗ ≥ k∗(k, `) ≥ t2× (k+ 1) (by the assumption on k∗), clearly |
⋃
i<t2

Ci ∪{ci :

i < t2}| ≤
∑
i<t2

|Ci|+ t2 ≤
∑
i<t2

k + t2 ≤ t2 × (k + 1) ≤ k∗ and we define

D =
⋃
i<t2

Ci ∪ {ci : i < t2}

D′ = D ∩ c`k
∗,m⊗+k[0](ā,M).

So by the previous sentence we have |D′| ≤ |D| ≤ k∗.
Now

⊗0 D′ <s D.

[Why? As otherwise “there is D′′ such that D′ <i D
′′ ≤s D so as |D′′| ≤ |D| ≤ k∗

clearly D′′ ⊆ c`k∗,m⊗+k[0]+1(āb,M); contradiction.]
So we can choose λ ∈ Ξ(D′, D) (see Definition 1.7(2)). Let Ci = {di,s : s < k′},

with di,0 = di and recalling (vii) also b 6= di ⇒ b = di,1 and with no repetitions.
Clearly di,0 = di /∈ D′. By the finite ∆-system lemma for some S0, S1, S2 ⊆

{0, . . . , k′ − 1} and u ⊆ {0, . . . , t2 − 1} with ≥ t1 elements we have:

⊕1 (a) λ′ =: {(s1, s2) : di,s1λdi,s2} is the same for all i ∈ u and S0 =
{0, . . . , k′ − 1}\Dom(λ′) so di,s ∈ D′ ⇒ i ∈ S0

(b) for each j < `g(ā) + 1, and s < k′, the truth value of di,s = (āb)j is
the same for all i ∈ u and each s ∈ S0 = {0, . . . , k′ − 1}\Dom(λ′)

(c) di1,s1 = di2,s2 ⇒ s1 = s2 for i1, i2 ∈ u
(d) di1,s = di2,s ⇔ s ∈ S1 for i1 6= i2 ∈ u
(e) di1,s1λdi2,s2 ⇒ di1,s1λdi1,s2 and di1,s2λdi2,s2 for i1 6= i2 ∈ u
(f) di1,sλdi2,s ⇔ s ∈ S2 for i1 6= i2 ∈ u: so i ∈ u and s ∈ S2 ⇒ di,s /∈ D′

(g) the statement b = di,0 has the same truth value for all i ∈ u
(h) in §7 we also demand (di1,s1Sdi1,s2) = (di2,s1Sdi1,s2) where S is the
successor relation.

Now we necessarily have:

⊕2 0 /∈ S2 (i.e., λ � {di : i ∈ u} is equality).
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[Why? Otherwise, letting X = di/λ for any i ∈ u, the triple (D′, D′∪X,λ�X) ∈ T
has weight

w(D′, D′ ∪X,λ � X) = v(D′, D′ ∪X,λ � X)
−αe(D′, D′ ∪X,λ � X)
= 1− α× |{e : e an edge of M with one end in
D′ and the other in X}|.

Now as ci ∈ c`k
∗,m⊗(ā,M) clearly ci ∈ D′ and the pairs {ci, di} ∈ edge(M) are

distinct for different i clearly the number above is ≤ 1 − α × |{(ci, di) : i ∈ u}| =
1− α× |u| = 1− α× t1 < 0; contradiction to λ ∈ Ξ(D′, D).]

Let D0 = ā ∪
⋃
{di,s/λ : s ∈ S2 and i ∈ u}, clearly D0 is λ-closed subset of D

though not necessarily ⊆ Dom(λ) = D\D′ because of ā.

⊕3 b = di,1 and 1 ∈ S1\S0 and 0 /∈ S0∪S1∪S2 and S1\S0 ⊆ S2 (hence b ∈ D0).

[Why? The first two clauses hold as b ∈ Ci, b ∈ {di,0, di,1} and ⊕2 and (g) of ⊕1.
The last clause holds by ⊕1(d),(f) and the “hence b ∈ D0” by the definition of
D0, S1\Dom(λ′) ⊆ S2 and the first clause. Also 0 /∈ S0 ∪ S1 ∪ S2 should be clear.]

⊕4 For each i ∈ u we have wλ(Ci ∩D0, Ci) < 0.

[Why? As Ci ∩ (āb) ⊆ Ci ∩D0 by clauses (b) + (f) of ⊕1 and by monotonicity of
<i we have Ci � (Ci ∩ āb) <i Ci ⇒ Ci ∩ D0 ≤i Ci but di,0 = di ∈ Ci\Ci ∩ D0.]
Hence

⊕5 wλ(Ci ∩D0, Ci) ≤ −ε for i ∈ u.

[Why? See the choice of ε.]
Let

D1 =: D′ ∪
⋃
{di,s/λ : i ∈ u, s < k′} = D′ ∪D0 ∪ {di,s/λ : i ∈ u, s < k′ands /∈ S2}

so clearly D1 is λ-closed subset of D including D′ but D1 6= D′ as i ∈ u⇒ di ∈ D1

by ⊕2. Also clearly

⊕6 D′ ⊆ D′ ∪D0 ⊆ D1 ⊆ D and D0, D1 are λ-closed.

So, as we know λ ∈ Ξ(D′, D), we have

⊕7 wλ(D′, D1) > 0.

Now:
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wλ(D′, D1) = wλ(D′,
⋃
{x/λ : x ∈

⋃
i∈u

Ci \D′} ∪D′)

= wλ(D′, D′ ∪D0) + wλ(D′ ∪D0, D
′ ∪D0

∪
⋃
{di,s/λ : i ∈ u, s < k′, s /∈ S0 ∪ S2})

[now by 3.9 below with Bi = {di,s : s < k′, s /∈ S2 ∪ S0} and
B+
i = ∪{di,s/λ : s < k′, s /∈ S2}]

≤ wλ(D′, D′ ∪D0) +
∑
i∈u

wλ(D′ ∪D0, D
′ ∪D0 ∪ {di,s : s < k′, s /∈ S2 ∪ S0})

[now as Ci = {di,s : s < k′} and di,s ∈ D′ ∪D0 if s < k′, s ∈ S0 ∪ S2, i ∈ u]
≤ wλ(D′, D′ ∪D0) +

∑
i∈u

wλ(D′ ∪D0, D
′ ∪D0 ∪ Ci)

[now as wλ(A1, B1) ≤ wλ(A,B)
when A ≤ A1 ≤ B1, A ≤ B ≤ B1, B1 \A1 = B \A) by ??(3)]

≤ wλ(D′ ∩D0, D0) +
∑
i∈u

wλ(Ci ∩D0, Ci)

[now by the choice of c, D0 i.e., (∗)2 and the choice of ε, u+⊕5 respectively]
≤ c + |u| × (−ε) = c− t1ε < 0,

contradicting the choice of λ, i.e., ⊕7. �3.8

Observation 3.9. Assume

(a) A ≤∗ A ∪Bi ≤∗ A ∪B+
i ≤∗ B for i ∈ u,

(b) B\A is the disjoint union of 〈B+
i : i ∈ u〉,

(c) λ is an equivalence relation on B\A,

(d) each B+
i is λ-closed in fact,

(e) B+
i = ∪{x/λ : x ∈ Bi\A}.

Then wλ(A,B) ≥ Σ{wλ(A,Bi) : i ∈ u}.

Proof. By clause (b) + (d)

vλ(A,B) = Σ{vλ(A,A ∪B+
i ) : i ∈ u} = Σ{vλ(A,A ∪Bi) : i ∈ u}

and by clause (b) the set eλ(A,B) contains the disjoint union of 〈eλ(A,Bi) : i ∈ u〉.
Together the result follows. �3.9

Claim 3.10. For every k, m and ` from N for some m∗ = m∗(k, `,m), for any
k∗ ≥ k∗(k, `) (the function k∗(k, l) is the one from claim 3.8) satisfying k∗ ≥ k×m∗
we have

(∗) if M ∈ K , ā ∈ `≥M and b ∈M\c`k∗,m∗(ā,M) then for some m⊗ ≤ m∗−m
we have

c`k(āb,M) ∩ c`k
∗,m⊗+m(ā,M) ⊆ c`k

∗,m⊗(ā,M).

Proof. For k = 0 this is trivial so without loss of generality k > 0. Let t = t(k, `) be
as in the previous claim 3.8. Choose m∗ such that, e.g., bm∗/(km)c → (t+ 5)2

2k!+`

in the usual notation in Ramsey theory. We could get more reasonable bounds
but no need as for now. Remember that k∗(k, `) is from 3.8 and k∗ is any natural
number ≥ k∗(k, `) such that k∗ ≥ km∗.

If the conclusion fails, then the set
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Z =: {j ≤ m∗ − k : c`k(āb,M) ∩ c`k
∗,j+1(ā,M) * c`k

∗,j(ā,M)}

satisfies:

j ≤ m∗ −m− k ⇒ Z ∩ [j, j +m) 6= ∅.

Hence |Z| ≥ (m∗ −m− k)/m.
For j ∈ Z there are Cj ≤M and dj such that

|Cj | ≤ k and (Cj ∩ (āb)) <∗i Cj , and dj ∈ Cj ∩ c`k
∗,j+1(ā,M)\ c`k∗,j(ā,M). Now

we use the same argument as in the proof of 3.8.
As dj ∈ Cj ∩ c`k

∗,j+1(ā,M) \ c`k∗,j(ā,M) we will get that Cj ∩ c`k
∗,j(ā,M) is

a proper subset of Cj ∩ c`k
∗,j+1(ā,M) (witnessed by dj) so |Cj ∩ c`k

∗,j(ā,M)| <
|Cj ∩ c`k

∗,j+1(ā,M)| ≤ k so |Cj ∩ c`k
∗,j(ā,M)| < k. Hence for some kj ∈ {1, . . . , k}

we have Cj∩c`k
∗,m∗−kj+1(ā,M) ⊆ c`k∗,m∗−kj (ā,M) hence for some k′ ∈ {1, . . . , k}

we have |Z ′| ≥ (m∗ −m− k)/(mk) where Z ′ = {j ∈ Z : kj = k′}.
Let Cj = {dj,s : s < sj ≤ k} with dj,0 = dj and no repetitions. We can find

s∗ ≤ k and S1, S0 ⊆ {0, . . . , s∗ − 1} and u ⊆ Z ′ satisfying |u| = t + 5 such that
(because of the partition relation):

(a) i ∈ u⇒ sj = s∗,

(b) for each j < `g(ā) + 1 and s < s∗ the truth value of di,s = (āb)j is the same
for all i ∈ u,

(c) if i 6= j are from u then |i− j| > k + 1, i.e., the Ci’s for i ∈ u are quite far
from each other

(d) the truth value of “{di,s1 , di,s2} is an edge” is the same for all i ∈ u,

(e) for all i0 < i1 from u:

[di0,s ∈ c`k
∗,i1(ā,M)]⇔ s ∈ S0,

(f) for all i0 < i1 from u:

di1,s ∈ c`k
∗,i0(ā,M)⇔ s ∈ S1,

(g) for each s < s∗, the sequence 〈di,s : i ∈ u〉 is constant or with no repetition,

(h) if di1,s1 = di2,s2 then di1,s1 = di1,s2 = di2,s2 , moreover, s1 = s2 (recalling
that 〈di,s : s < sj〉 is with no repetitions).

Now let i(∗) be, e.g., the third element of the set u and

B1 =: Ci(∗) ∩ c`k
∗,min(u)(ā,M), and B2 =: Ci(∗) ∩ c`k

∗,max(u)(ā,M).

So

~1 B1 <
∗ B2 ≤∗ Ci(∗) (note: that B1 6= B2 because di(∗) ∈ B2 \B1) and

~2 (āb) ∩B2 ⊆ B1 by clause (b) and

~3 there is no edge in (Ci(∗) \B2)× (B2 \B1).
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Why? Toward contradiction assume that this fails. Let the edge be {di(∗),s1 , di(∗),s2}
with

di(∗),s1 ∈ Ci(∗) \B2 and di(∗),s2 ∈ B2 \B1;

hence

(∗)1 di(∗),s1 ∈ Ci(∗)\c`k
∗,max(u)(ā,M) and di(∗),s2 ∈ c`k

∗,max(u)(ā,M)\c`k∗,min(u)(ā,M)
and {di(∗),s1 , di(∗),s2} is an edge.

Hence by clause (d)

(∗)2 {di,s1 , di,s2} is an edge for every i ∈ u

and by clauses (e), (f) we have

(∗)3 if i0 < i1 < i2 are in u then di1,s2 /∈ c`k
∗,i0(ā,M) and di1,s2 ∈ c`k

∗,i2(ā,M)

and di1,s1 /∈ c`k
∗,i2(ā,M)

and so necessarily

(∗)4 〈di,s2 : i ∈ u〉 is with no repetitions.

[Why? By clause (g) and (∗)3.]
So the set of edges {{di,s1 , di,s2} : i ∈ u but |u ∩ i| ≥ 2 and |u \ i| ≥ 2} con-

tradicts 3.8 using m⊗ = max(u) − k there (and our choice of parameters and
Ci ⊆ c`k(āb,M)). So ~3 holds.

As Ci(∗) � (āb) <i Ci(∗) and B2 ∩ (āb) ⊆ B1 (by ~2), clearly Ci(∗) ∩ āb ⊆ Ci(∗) \
(B2\B1) ⊂ Ci(∗), the strict⊂ as di(∗) ∈ Ci(∗)∩(c`k

∗,i(∗)+1(āb,M)\c`k∗,i(∗)(āb,M)) ⊆
B2\B1. But, as stated above, Ci(∗)\(B2\B1)

⋃
B1

B2, hence by the previous sentence

(and smoothness, see 1.16(5)) we get B1 <
∗
i B2; also |B2| ≤ |Ci(∗)| ≤ k ≤ k∗. By

their definitions, B1 ⊆ c`k
∗,min(u)(ā,M), but B1 ≤∗i B2, |B2| ≤ k ≤ k∗ and hence

B2 ⊆ c`k
∗,2nd member of u

(ā,M). Contradiction to the choice of di(∗). �3.10

Claim 3.11. For every k, m and ` (from N), for some m∗, k∗ and t∗ we have:

(∗) if M ∈ K , ā ∈ `≥M and b ∈M\c`k∗,m∗(ā,M) then for some m⊗ ≤ m∗−m
and B we have

(i) |B| ≤ t∗,
(ii) ā ⊆ B ⊆ c`k(B,M) ⊆ c`k∗,m⊗(ā,M),

(iii) c`k
∗,m⊗+m(ā,M), (c`k(āb,M) \ c`k∗,m⊗+m(ā,M))∪B are free over B

inside M ,

(iv) B ≤∗s B∗ =: M � ((c`k
∗
(āb,M) \ c`k∗,m⊗+m(B,M)) ∪B).

Remark 3.12. Clearly this will finish the proof of simply nice.

Comments 3.13. Let us describe the proof below.
1) In the proof we apply the last two claims. By them we arrive to the following
situation: inside c`k(āb,M) we have B ≤ B∗, |B| ≤ t∗ and there is no “small” D
such that B <∗i D ≤ B∗ and we have to show that B <∗s B

∗, a kind of compactness
lemma.
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2) Note that for each d ∈ c`k(āb,M) there is Cd ⊆ c`k(āb,M) witnessing it, i.e.,
Cd ∩ (āb) ≤i Cd, d ∈ Cd, |Cd| ≤ k. To prove the statement above we choose an
increasing sequence 〈Di : i ≤ i(∗)〉 of subsets of B∗, D0 = B ∪ {b}, |Di| has an a
priori bound, Di+1 “large” enough. So by our assumption toward contradiction
B <∗s Di(∗) hence there is λ ∈ Ξ(B,Di(∗)), without loss of generality, B∗ = B ∪⋃
{Cd : d ∈ Di(∗)}. For each i < i(∗) we try to “lift” λ � (Di\B) to λ+ ∈ Ξ(B,B∗),

a failure will show that we could have put elements satisfying some conditions in
Di+1 so we had done so. As this occurs for every i < i(∗), by weight computations
we get a contradiction.

Proof. Without loss of generality k > 0. Let t = t(k, `), k∗(k, `) be as required in
3.8 (for our given k, `).

Choose m(1) = t× (m+ 1) + k + 2 and let t∗ = t+ `+ k.
Choose m∗ as in 3.10 for k (given in 3.11), m(1) (chosen above) and ` (given in

3.11), i.e., m∗ = m∗(k,m(1), `) . Let ε∗ ∈ R>0 be such that

(A′, B′, λ) ∈ T and|B′| ≤ kandA′ 6= B′ ⇒ wλ(A′, B′) /∈ (−ε∗, ε∗).

Let i(∗) > 1
ε∗ . Define inductively k∗i for i ≤ i(∗) as follows

k∗0 = max{k∗(k, `),m× k,m∗ × t∗ + 1}

k∗i+1 = 22k
∗
i

and lastly let

k∗ = k × k∗i(∗).

We shall prove that m∗, k∗, t∗ are as required in 3.11. So let M , ā, b be as in
the assumption of (∗) of 3.11. So M ∈ K , ā ∈ `≥M and b ∈ M \ c`k∗,m∗(ā,M),
but this means that the assumption of (∗) in 3.10 holds for k, m(1), `, so we can
apply it (i.e., as m∗ = m∗(k,m(1), `), k∗ ≥ k∗(k, `) where k∗(k, `) is from 3.8 and
k∗ ≥ k ×m∗ as k∗ ≥ k∗i(∗) > k∗0 ≥ m∗ × k).

So for some r ≤ m∗ −m(1) we have

⊕1 c`k(āb,M) ∩ c`k∗,r+m(1)(ā,M) ⊆ c`k∗,r(ā,M).

Let us define

R = {(c, d) : d ∈ c`k(āb,M) \ c`k∗,r+m(1)(ā,M) and

c ∈ c`k∗,r+m(1)−k(ā,M) and
{c, d} is an edge of M}.

How many members does R have? By 3.8 (with r+m(1)−k here standing for m⊗

there are (as k∗ ≥ k∗(k, `)) at most t members. But by ⊕1 above

R = {(c, d) : d ∈ c`k(āb,M) \ c`k∗,r(ā,M) and

c ∈ c`k∗,r+m(1)−k(ā,M) and
{c, d} is an edge of M}.

But t× (m+ 1) + 1 < m(1)− k by the choice of m(1) (and, of course, c`k
∗,i(ā,M)

increase with i) hence for some m⊗ ∈ {r + 1, . . . , r +m(1)− k −m} we have

Paper Sh:517, version 2011-04-13 12. See https://shelah.logic.at/papers/517/ for possible updates.



30 SAHARON SHELAH

⊕2 (c, d) ∈ R ⇒ c /∈ c`k∗,m⊗+m(ā,M) \ c`k∗,m⊗−1(ā,M).

So

⊕3 r ≤ m⊗ − 1 < m⊗ +m ≤ r +m(1)− k.

Let

B =: {c ∈ c`k
∗,m⊗−1(ā,M) : for some d we have (c, d) ∈ R} ∪ ā.

So by the above B = {c ∈ c`k∗,m⊗+m(ā,M) : (∃d)((c, d) ∈ R)} ∪ ā.
Let us check the demands (i)− (iv) of (∗) of 3.11, remember that we are defining

B∗ = (c`k(āb,M) \ c`k∗,m⊗+m(ā,M))∪B, that is the submodel of M with this set
of elements. �

Clause (i): |B| ≤ t∗.
As said above, |R| ≤ t, hence clearly |B| ≤ t+ `g(ā) ≤ t+ ` ≤ t∗.

Clause (ii): ā ⊆ B ⊆ c`k(B,M) ⊆ c`k∗,m⊗(ā,M).

As by its definition B ⊆ c`k
∗,m⊗−1(ā,M), and k ≤ k∗ clearly c`k(B,M) ⊆

c`k
∗,m⊗(ā,M) and B ⊆ c`k(B,M) always and ā ⊆ B by its definition.

Clause (iii):
Clearly

B = c`k
∗,m⊗+m(ā,M) ∩ ((c`k(āb,M) \ c`k∗,m⊗+m(ā,M)) ∪B)

= (c`k
∗,m⊗+m(ā,M)) ∩B∗.

Now the “no edges” holds by the definitions of B and R.

Clause (iv): B ≤∗s B∗.
Clearly B ⊆ B∗ by the definition of B∗ before the proof of clause (i). Toward

contradiction assume ¬(B ≤∗s B∗) then 1.16(2) for some D, B <i D ≤ B∗, and

choose suchD with minimal number of elements. Note that asB ⊆ c`k∗,m⊗−1(ā,M)

and B∗ ∩ c`k∗,m⊗+m(ā,M) = B, necessarily |D| > k∗ (and B <∗ D ≤ B∗). For
every d ∈ D \ B, as d ∈ B∗ clearly d ∈ c`k(āb,M) hence there is a set Cd ≤ M ,
|Cd| ≤ k such that Cd � (āb) ≤i Cd, d ∈ Cd; note that Cd ⊆ c`k(āb,M) by
the definition of c`k, hence by the choice of B∗ and m⊗ and ⊕1 we have Cd ⊆
B∗∪ c`k∗,m⊗−1(ā,M). Let C ′d = Cd∩ (B∪{b}), C ′′d = Cd∩B∗. Clearly Cd∩ (āb) ≤

C ′d ≤ C ′′d ≤ Cd hence C ′d ≤i Cd. Now by clause (iii), C ′′d
M⋃
C ′d

C ′d ∪ (Cd \ C ′′d ) hence

(by smoothness) we have C ′di ≤i C
′′
di

. Of course, |C ′′d | ≤ |Cd| ≤ k. For d ∈ B let
Cd = C ′d = C ′′d = {d}.

We now choose a set Di by induction on i ≤ i(∗), such that (letting C∗∗i =⋃
d∈Di

C ′′d ):

(a) D0 = B ∪ {b}
(b) j < i⇒ Dj ⊆ Di ⊆ D
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(c) |Di| ≤ k∗i
(d) if λ is an equivalence relation on C∗∗i \ B and for some d ∈ D \Di one of

the clauses below holds then there is such d ∈ Di+1 where

⊗1
λ,d for some x ∈ C ′′d \ C∗∗i , there are no y ∈ C ′′d ∩ C∗∗i , j∗ ∈ N and 〈yj :

j ≤ j∗〉 such that yj ∈ C ′′d , yj∗ = x, y0 = y, {yj , yj+1} an edge of M ,
(actually an empty case, i.e., never occurs see (∗)14 below)

⊗2
λ,d there are x ∈ C ′′d \ C∗∗i , y ∈ (C∗∗i \ C ′′d ) ∪ B and y′ ∈ C ′′d ∩ C∗∗i such

that {x, y} is an edge of M and y is connected by a path 〈y0, . . . , y1〉
inside C ′′d to x so x = yj , y = y0 and [yi ∈ C∗∗i ≡ i = 0] and ¬(y′λy)

⊗3
λ,d there is an edge {x1, x2} of M such that we have:

(A) {x1, x2} ⊆ C ′′d
(B) {x1, x2} is disjoint to C∗∗i

(C) for s ∈ {1, 2} there is a path 〈ys,0, . . . , ys,js〉 in C ′′d , ys,js =
xs, [ys,j ∈ C∗∗i ≡ j = 0] and ¬(y1,0λy2,0)

(e) if λ is an equivalence relation on C∗∗i \B to which clause (d) does not apply
but there are d1, d2 ∈ D satisfying one of the following then we can find
such d1, d2 ∈ Di+1

⊗4
λ,d1,d2

for some x1 ∈ C ′′d1 \C
∗∗
i , x2 ∈ C ′′d2 \C

∗∗
i and y1 ∈ C ′′d1 ∩C

∗∗
i , y2 ∈ C ′′d2 ∩

C∗∗i we have: for s = 1, 2 there is a path 〈ys,0, . . . , ys,js〉 in C ′′ds , ys,js =
x, ys,0 = ys, [ys,j ∈ C∗∗i ⇔ j = 0] and: x1 = x2and¬(y1λy2)

⊗5
λ,d1,d2

for some x1, x2, y1, y2 as in ⊗4
λ,d1,d2

we have: ¬(y1λy2) and {x1, x2}
an edge.

So |Di(∗)| ≤ k∗/k (by the choice of k∗, i(∗) and clause (c)), hence C∗∗i(∗) =:⋃
d∈Di(∗)

C ′′d has ≤ k∗ members, āb ⊆ B ∪ {b} ⊆ D0 ⊆ C∗∗i(∗) ⊆ c`k(āb,M) and

C∗∗i(∗) ∩ c`
k∗,m⊗+m(ā,M) = B ⊆ c`k

∗,m⊗−1(ā,M) hence necessarily B ≤s C∗∗i(∗)
hence there is λ ∈ Ξ(B,C∗∗i(∗)). Let λi = λ � (C∗∗i \B).

Now

� (B,C∗∗i , λi) ∈ Ξ(B,C∗∗i ).

[Why? Easy.]

Case 1: For some i and an equivalence relation λi on Di\B, clauses (d) and (e) are
vacuous for λi.

Let λ∗i be the set of pairs (x, y) from C∗∗ \B where C∗∗ =
⋃
d∈D

C ′′d which satisfies

(α) or (β) where

(α) x, y ∈ C∗∗i \B and xλiy

(β) for some d ∈ D we have x ∈ C∗∗ \C∗∗i , x ∈ C ′′d , y ∈ C∗∗i ∩C ′′d and there is a
sequence 〈yj : j ≤ j∗〉, j∗ ≥ 1 such that yj∗ = x, yj ∈ C ′′d , y0 = y, {yj , yj+1}
an edge of M and [j > 0⇒ yj /∈ C∗∗i ].

This in general is not an equivalence relation.
Let C⊗ = {x : for some (x1, x2) ∈ λ∗i we have x ∈ {x1, x2}}
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λ+
i = {(x1, x2) : for some y1, y2 ∈ Di we have

y1λy2, (x1, y1) ∈ λ∗i , (x2, y2) ∈ λ∗i }.

Now

(∗)1 λ+
i is a set of pairs from C⊗ with λ+

i � Di = λi

(∗)2 x ∈ C⊗ ⇒ (x, x) ∈ λ+
i .

[Why? Read clauses (α), (β) and the choice of λ+
i .]

(∗)3 for every x ∈ C⊗ for some y ∈ C∗∗i we have xλ∗i y.

[Why? Read the choice of λ+
i , λ

∗
i .]

(∗)4 λ+
i is a symmetric relation on C⊗.

[Why? Read the definition of λ+
i recalling λ is symmetric.]

(∗)5 λ+
i is transitive.

[Why? Looking at the choice of λ∗i this is reduced to the case excluded in (∗)6

below]

(∗)6 if (x, y1), (x, y2) ∈ λ∗i , {y1, y2} ⊆ Di, x /∈ Di, then y1λy2.

[Why? Because clause (e) in the choice of Di+1 is vacuous. More fully, otherwise
possibility ⊗4

λ,d1,d2
holds for λi.]

(∗)7 for every x ∈ C∗∗ \ C∗∗i , clause (β) apply to x ∈ C⊗, i.e., C⊗ = C∗∗.

[Why? As x ∈ C∗∗ there is d ∈ D such that x ∈ C ′′d , hence by ⊗1
λ,d of clause (d) of

the choice of Di+1 holds for x hence is not vacuous contradicting the assumption
on i in the present case.]

(∗)8 λ+
i is an equivalence relation on C∗∗\B.

[Why? Its domain is C∗∗\B by (∗)7, it is an equivalence relation on its domain by
(∗)1 + (∗)2 + (∗)4 + (∗)5.]

Also

(∗)9 λ+
i � C

∗∗
i = λi.

[Why? By the choice of λ+
i that is by (∗)1.]

(∗)10 every λ+
i -equivalence class is represented in C∗∗i .

[Why? By the choice of λ+
i and λ∗i .]

(∗)11 if x1, x2 ∈ C∗∗ \B and ¬(x1λ
+
i x2) but {x1, x2} is an edge then {x1, x2} ⊆

C∗∗i .
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[Why (∗)11 holds?
Assume {x1, x2} is a counterexample, so {x1, x2} * C∗∗i , so without loss of

generality x1 /∈ C∗∗i . Now for ` = 1, 2 if x` /∈ C∗∗i then we can choose d` ∈ Di and
y` ∈ C ′′d` ∩C

∗∗
i such that d witnesses that (x`, y`) ∈ λ∗i that is, as in clause (β) there

is a path 〈y`,0, . . . , y`,j`〉 such that y`,0 = y`, y`,j` = x` and (j > 0⇒ y`,j /∈ C∗∗i ).
We separate to cases:

(A) x1, x2 /∈ C∗∗i , d1 = d2. This case can’t happen as ⊗3
λ,d1

of clause (d) is
vacuous.

(B) x1, x2 /∈ C∗∗i , d1 6= d2. In this case by the vacuousness of ⊗5
λi,d1,d2

of clause

(e) we get contradiction.

(C) x1 ∈ C ′′d1 and x2 ∈ C∗∗i . By the vacuousness of ⊗2
λi,d1

of clause (d) we get
a contradiction.

Together we have proved (∗)11.]
As λi ∈ Ξ(B,C∗∗i ) by (∗)8 + (∗)9 + (∗)10 + (∗)11 and �, easily λ+

i ∈ Ξ(B,C∗∗),
hence (see 1.15) B <∗s C

∗∗, so as B ⊆ D ⊆ C∗∗ we have B <∗s D, the desired
contradiction.

Case 2: For every i < i(∗), at least one of the clauses (d), (e) is non vacuous for λi.
Let wi = wλi(B,C

∗∗
i ). For each i let 〈di,j : j < ji〉 list Di+1 \ Di, such that:

if clause (d) applies to λi then di,0 form a witness and if clause (e) applies to λi
then di,0, di,1 form a witness. For j ≤ ji let C∗∗i,j = C∗∗i ∪

⋃
s<j

C ′′di,s , so C∗∗i,0 = C∗∗i ,

C∗∗i,ji = C∗∗i+1. Let wi,j = wλi(B,C
∗∗
i,j).

So it suffice to prove:

(A) wi,j ≥ wi,j+1

(B) wi,0 − ε∗ ≥ wi,1 or wi,1 − ε∗ ≥ wi,2.

Let i < i(∗), j < ji.
Clearly C∗∗i,j+1 \ C∗∗i,j ⊆ C ′′di,j ⊆ C

∗∗
i,j+1, let

Ai,j = {x ∈ C ′′di,j : x ∈ B or x/λ is not disjoint to C∗∗i,j}.

Clearly Ai,j\B is (λ � C ′′di,j )-closed hence Ai,j ≤∗ C ′′di,j , C
′′
di,j
\Ai,j is disjoint to C∗∗i,j

and C ′di,j = Cdi,j ∩ (B ∪ {b}) ⊆ C∗∗i,j , and C ′di,j ⊆ C ′′di,j hence C ′di,j ⊆ Ai,j , Ai,j ≤∗
C ′′di,j , but C ′di,j ≤i C

′′
di,j

so Ai,j ≤∗i C ′′di,j (the ≤∗ in this sentence serves §7 where

we say, “repeat the proof of 3.16”).
Clearly

(∗)12 wi,j+1 = wi,j + wλ(Ai,j , C
′′
di,j

)− αe1
i,j − αe2

i,j where

e1
i,j = |{{x, y} : {x, y} an edge of M, {x, y} ⊆ Ai,j ,

¬(xλy) but {x, y} * C∗∗i,j}|

e2
i,j = |{{x, y} : {x, y} an edge of M,x ∈ C ′′di,j \ C

∗∗
i,j ,

y ∈ C∗∗i,j \ C ′′di,j but ¬(xλy)}|.

Note
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(∗)13 wλ(Ai,j , C
′′
di,j

) can be zero if Ai,j = C ′′di,j and is ≤ −ε∗ otherwise.

[Why? As Ai,j ≤∗i C ′′di,j .]

(∗)14 in clause (d), ⊗1
λ,d never occurs.

[Why? If x ∈ C ′′d is as there, let Y = {y ∈ C ′′d : y, x are connected in M � C ′′d }.
So x ∈ Y ⊆ C ′′d , Y ∩ C∗∗i = ∅ and C ′d = C ′′d ∩ (B ∪ {b}) = C ′′d ∩ C∗∗0 ⊆ C∗∗i . Hence
(C ′′d \Y ) <∗i C

′′
d , but the equivalence relation {(y′, y′′) : y′, y′′ ∈ Y } exemplify that

this fail.]

Proof. Proof of (A)

Easy by (∗)12, because wλ(Ai,j , C
′′
di,j

) ≤ 0 holds by (∗)13,−αe1
i,j ≤ 0, and

−αe2
i,j ≤ 0 as e1

i,j , e2
i,j are natural numbers. �

Proof. Proof of (B)

It suffice to prove that wi,0 6= wi,1 or wi,1 6= wi,2 (as inequality implies the right
order (by clause (A)) and the difference is≥ ε∗ by definition of ε∗ (if wλ(Ai,1, C

′′
di,j

) 6=
0) and ≥ α (if e1

i,j 6= 0 or e2
i,j 6= 0)). But if wi,0 = wi,1 recalling (∗)14 easily clause

(d) does not apply to λi, and if wi,0 = wi,1 = wi,2 also clause (e) does not apply.
So (A),(B) holds so we are done proving case 2 hence the claim. �3.11

Remark 3.14.

(a) We could use smaller k∗ by building a tree 〈(Dt, D
+
t , Ct, λt) : t ∈ T 〉, T a

finite tree with a root Λ, DΛ = ∅, D+
Λ = B ∪ {b}, for each t we have λt an

equivalence relation on Ct\B and Ct = ∪{C ′′d : d ∈ Dt} ∪B, s ∈ sucT (t)⇒
D+
t = Ds and D+

t \Dt is {d} or {d1, d2} which witness clause (d) or clause
(e) for (Dt, λt) when t 6= Λ and

{(Ds, λs) : s ∈ sucT (t)} = {(D+
t , λ) : λ � Dt = λt, λ

an equivalence relation on D+
t \B}.

(b) We can make the argument separated that is prove as a separate claim
that is for any k and ` there is k∗ such that: if A, B ⊆ M ∈ K , |B|,
|A| ≤ `, B ⊆ B∗, c`k(A,M) \ c`k(B,M) ⊆ B∗ \ B ⊆ c`k(A,M) and
(∀C)(B ⊆ C ⊆ B∗ ∧ |C| ≤ k∗ ⇒ B <s C) then B <s B

∗.

This is a kind of compactness.

§ 3(D). The Conclusions.

Conclusion 3.15. Requirements (A) of [She02, 2.13(1)] and even (B) + (C) of
[She02, 2.13(3)] hold.

Proof. Requirement (B) of [She02, 2.13(3)] holds by 3.7. Requirement (A) of
[She02, 2.13(2)] holds by 3.11 (and the previous sentence). �3.15

Conclusion 3.16.

(1) K is smooth and transitive and local and transparent
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(2) K is simply nice (hence simply almost nice)

(3) K satisfies the 0-1 law.

This paper latexed up to pg. 44
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