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Abstract. We study the classification of ω1-separable groups us-
ing Ehrenfeucht-Fräıssé games and prove a strong classification re-
sult assuming PFA, and a strong non-structure theorem assuming
♦.

Introduction

An ω1-separable (or ℵ1-separable) group is an abelian group such
that every countable subset is contained in a free direct summand of
the group. In particular, therefore, an ω1-separable group is ℵ1-free,
i.e., every countable subgroup is free. The structure of ω1-separable
groups of cardinality ℵ1 was investigated in [1] and [8]; most of the
results proved there required set-theoretic assumptions beyond ZFC.
(See also [2, Chap. VIII] for an exposition of these results.) Specifi-
cally, assuming Martin’s Axiom (MA) plus ¬CH or the stronger Proper
Forcing Axiom (PFA), one can prove nice structure and classification
results; these results are not theorems of ZFC since counterexamples
exist assuming CH or “prediction principles” like ♦. In [1, Remark 3.3]
it is asserted that a construction given there under the assumption of
CH (or even 2ℵ0 < 2ℵ1) of two non-isomorphic ω1-separable groups

“is strong evidence for the claim that in a model of CH
there is no possible meaningful classification of all ω1-
separable groups. It is difficult to see what conceivable
scheme of classification could distinguish between [the
groups constructed here].”
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But, in fact, the Helsinki school of model theory provides a scheme
for distinguishing between such groups. It is our aim here to use the
methodology of the Helsinki school — which involves Ehrenfeucht-
Fräıssé games (cf. [9], [11] or [12]) — to strengthen the dichotomy
referred to above: that is, to obtain strong classification results assum-
ing PFA, and a strong “non-structure theorem” assuming ♦.

We begin by describing the Ehrenfeucht-Fräıssé (or EF) games, after
which we can state our results more precisely. If α is an ordinal and A
and B are any structures, the game EFα(A,B) is played between two
players ∀ and ∃ who take turns choosing elements of A ∪ B through
α rounds. Specifically, in each round ∀ picks first an element of either
A or B; and then ∃ picks an element of the other structure. The
result is, at the end, two sequences (aν)ν<α and (bν)ν<α of elements of,
respectively, A and B. Player ∃ wins if and only if the function f which
takes aν to bν is a partial isomorphism; otherwise ∀ wins. If A and B
have cardinality κ, ∃ has a winning strategy for EFκ(A,B) if and only
if A and B are isomorphic. (Let ∀ list all the elements of A∪B during
his moves.)

We consider variations of these games defined using trees. Given
any tree T , we define the game EF (A,B;T ): the game is played as
before except that player ∀ must also, whenever it is his turn, pick a
node of the tree strictly above his previous choices (thus his successive
choices will form a branch — a linearly ordered subset — of the tree).
The game ends when ∀ can no longer pick a node above his previous
choices; the criterion for winning is as before, that is, ∃ wins if and only
if the function f defined by the play is a partial isomorphism. We write
A ≡T B if ∃ has a winning strategy in the game EF (A,B;T ). For the
purposes of motivation consider first the case α = ω. (Our interest is
in the case α = ω1.) In this case, we consider only well-founded trees,
i.e., trees without infinite branches; then for every such T , each play of
the game EF (A,B;T ) is finite. (So EF (A,B;T ) may be regarded as
an approximation to the game EFω(A,B).) Scott’s Theorem implies
that for each countable A there is a countable ordinal β such that if Tβ
is any tree of rank β, then for any countable B, B is isomorphic to A if
and only if A ≡Tβ B . In terms of infinitary languages, A is determined
up to isomorphism (among countable structures) by a sentence of L∞ω
of rank β.

For structures of cardinality ℵ1, it is natural to look at approxi-
mations to the EF game of length ω1 and use trees which may have
countably infinite branches, but do not have branches of cardinality
ℵ1; we call these bounded trees. For such T , each play of the game
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EF (A,B;T ) will end after countably many moves. We will say A is
T -equivalent to B if A ≡T B. This relation provides a possible way of
distinguishing between the ω1-separable groups constructed in [1] under
the assumption of CH (cf. the remark after the quotation above).

By a theorem of Hyttinen [3], the entire class of bounded trees de-
termines A up to isomorphism; that is, if A and B are of cardinality
ℵ1 and A ≡T B for all bounded trees, then A is isomorphic to B. The
structure of the class of bounded trees is much more complicated than
that of the class of well-founded trees (cf. [12]). However, in contrast
to the situation for countable structures, there is not always a single
tree which suffices to describe A up to isomorphism. Specifically, Hyt-
tinen and Tuuri [4] proved (assuming CH) that there is a linear order
A of cardinality ℵ1 such that for every bounded tree T there is a linear
order BT of cardinality ℵ1 such that A ≡T BT but A is not isomorphic
to BT . They call this result a non-structure theorem for A. It can be
translated in terms of infinitary languages and says that there is no
complete description of A in a certain strong language Mω2ω1 (which
we shall not define here).

A similar non-structure theorem for p-groups was proved by Mekler
and Oikkonen [10]; their theorem is proved by carrying over to p-groups,
by means of a Hahn power construction, the result of Hyttinen and
Tuuri. Whether the analogous result for ℵ1-free groups is a theorem
of ZFC + CH remains open, but when we consider the question for
ℵ1-separable groups, we obtain an independence result, which is the
subject of this paper. In the first section we prove (with the help of
the structural results referred to above) that assuming PFA

if A and B are ω1-separable groups of cardinality ℵ1 such
that A ≡ω2+ω B, then they are isomorphic (where ω2 +ω
is the countable ordinal regarded as a — linearly ordered
— tree).

See Theorem 6. Thus a single, simple, tree contains enough information
to classify any ω1-separable group — in the precise sense that a single
sentence of Mω2ω1 of “tree rank” ω2 + ω completely describes A.

In section 2 we show, assuming ♦, that not only does ω2 + ω not
have the property above, but for any bounded tree T , there are non-
isomorphic ω1-separable groups AT and BT of cardinality ℵ1 which
cannot be separated by T , in the sense that AT ≡T BT . (See Theorem
7.) The construction in section 2 is strengthened in section 3 to obtain
a non-structure theorem (Theorem 8.):

there is an ω1-separable group A of cardinality ℵ1 such
that for every bounded tree T there is an ω1-separable
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group BT of cardinality ℵ1 which is not isomorphic to A
but is T -equivalent to A.

(Note that A does not depend on T .)
We shall make use, at times, of the following simple lemma, where

A∗ denotes the dual of A, i.e. Hom(A,Z).

Lemma 1. Suppose A ⊆ B and A′ ⊆ B′ ⊆ C ′ where C ′/B′ is ℵ1-free,
B/A is countable and (B/A)∗ = 0. If θ : B → C ′ such that θ[A] ⊆ A′,
then θ[B] ⊆ B′.

Proof. θ induces a homomorphism: B/A→ C ′/A′. By the hypotheses,
the composition of this map with the canonical surjection: C ′/A′ →
C ′/B′ must be zero; that is, θ[B] ⊆ B′. �

1. A structure theorem

An ℵ1-separable group A of cardinality ℵ1 is characterized by the
property that it has a filtration, that is, a continuous chain {Aν : ν <
ω1} of countable free subgroups whose union is A and is such that
A0 = 0 and for all ν, Aν+1 is a direct summand of A. We say that
two ℵ1-separable groups A and B are quotient-equivalent if and only if
they have filtrations, {Aν : ν < ω1} and {Bν : ν < ω1}, respectively,
such that for every α < ω1, Aα+1/Aα is isomorphic to A′α+1/A

′
α. We

say that A and B are filtration-equivalent if and only if they satisfy
the stronger condition that for every α < ω1 there is a level-preserving
isomorphism θα : Aα+1 → Bα+1, i.e., an isomorphism such that for
every ν ≤ α, θ[Aν ] = Bν . Under the assumption of MA + ¬CH,
filtration-equivalence implies isomorphism.

In [8] (see also [2, Chap. VIII]) it is proved under the hypothesis of
the Proper Forcing Axiom, PFA, that ℵ1-separable groups of cardinal-
ity ℵ1 have a nice structure theory. More precisely, it is shown that,
under PFA, every ℵ1-separable group of cardinality ℵ1 is in standard
form. (Roughly, this means that they have a “classical” construction.
We will give a definition below.) Our goal in this section is to use that
theory to prove the following:

Theorem 2. (PFA) ω2 +ω is a universal equivalence tree for the class
of ℵ1-separable abelian groups of cardinality ℵ1. That is, any two ℵ1-
separable abelian groups of cardinality ℵ1 which are ω2 + ω-equivalent
are isomorphic.

We shall see in the next section that this is not a theorem of ZFC.
We begin with a weaker result.
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ON INVARIANTS FOR ω1-SEPARABLE GROUPS 5

Proposition 3. If A and A′ are strongly ℵ1-free groups of cardinality
ℵ1 which are ω2-equivalent, then they are quotient equivalent.

Proof. Suppose that τ is a w.s. for ∃. Let C be a cub such that if α ∈ C
then for any n ∈ ω, as long as the first n moves of ∀ are in Aα∪A′α, the
replying moves of ∃ given by τ are also in Aα∪A′α. If A and A′ are not
quotient-equivalent, there exists α ∈ C such that Aα+1/Aα⊕Z(ω) is not
isomorphic to A′α+1/A

′
α⊕Z(ω). Now let ∀ play the game so that during

the first ω moves he makes sure that all elements of Aα∪A′α are played;
the result, since τ is a w.s., is that an isomorphism f : Aα → A′α is
obtained.

Then in the next ω moves, ∀ plays so that all, and only, the elements
of Aβ ∪ A′β are played for some β ≥ α + 1. This is possible by using
a bijection of ω with ω × ω. The result is an extension of f to an
isomorphism f ′ : Aβ → A′β. Then, since Aβ/Aα+1 and A′β/A

′
α+1 are

free, we have Aβ/Aα ∼= Aα+1/Aα⊕Aβ/Aα+1 and similarly on the other
side. Since f ′ induces an isomorphism of Aβ/Aα with A′β/A

′
α, we obtain

a contradiction of the choice of α. �

Suppose A is an ℵ1-separable group of cardinality ℵ1 with a filtration
{Aν : ν ∈ ω1}, and let E = {δ : Aδ is not a direct summand of A}; A
is said to be in standard form if:

(1) it has a coherent system of projections {πν : ν /∈ E}, i.e., pro-
jections πν : A → Aν with the property that for all ν < τ in ω1 \ E,
πν ◦ πτ = πν ; and

(2) for every δ ∈ E there is a ladder ηδ on δ and a subset Yδ of Aδ+1

such that Aδ+1 = Aδ + 〈Yδ〉 and

(†) for all y ∈ 〈Yδ〉 and all ν < δ with ν /∈ E, πν(y) =∑
α∈S(πα+1(y) − πα(y)) where S = {α ∈ rge(ηδ) : α <

ν}.
(Here a ladder on δ means a strictly increasing function ηδ : ω → δ
with rge(ηδ) ⊆ ω1 \ E and sup rge(ηδ) = δ.) This property is actually
stronger than the usual definition of standard form (because of the
assertion about the ladder); it can be shown that the Proper Forcing
Axiom (PFA) implies that every strongly ℵ1-free group of cardinality
ℵ1 has this property (by essentially the same proof as in [2, Thm.
VIII.3.3]).

Let Kα = ker(πα) and let Kα,α+1 = Kα ∩ Aα+1. Notice that we can
replace any y in Yδ by y+ u where u ∈ Kα,α+1 for some α ∈ δ \E, and
we will still have a generating set of Aδ+1 over Aδ which satisfies (†).
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Also we can, and will, assume that Aν+1/Aν has infinite rank for every
ν /∈ E.

Lemma 4. Suppose A is in standard form. Then there is a filtration
{Aν : ν ∈ ω1} of A and for each δ ∈ E = {δ : Aδ is not a direct
summand of A}, there are: a ladder ηδ on δ; and a subset ȳδ = {yδ,i : i ∈
I} of Aδ+1 which is linearly independent mod Aδ such that if βn = ηδ(n):

(1) for all n ∈ ω, βn /∈ E; and
(2) Aδ+1 is generated mod Aδ by a set of elements of the form

(1)
t(ȳδ)− a

d

where t(ȳδ) is a linear combination of the elements of ȳδ, d ∈ Z,
and a ∈ ⊕n∈ωKβn,βn+1.

Moreover, given µ < δ, we can choose ηδ such that ηδ(0) > µ.

Proof. Let Yδ and ηδ be as in the definition of standard form above.
Let ȳδ = {yδ,i : i ∈ I} be a maximal linearly independent subset of Yδ.
By the remark preceding the lemma we can (by replacing yδ,i by yδ,i+u
for some u) assume that ηδ(0) > µ.

If d divides t(ȳδ) mod Aν+1 for some integer d and linear combination
t(ȳδ), then d divides t(ȳδ) − a where a = πν+1( t(ȳδ)) =

∑
β∈S πβ,β+1(

t(ȳδ)) for some finite subset S ⊆ rge(ηδ). �

Proposition 5. Let G and G′ be ℵ1-separable groups such that G is
in standard form. Suppose that they have filtrations {Gν : ν ∈ ω1}
and {G′ν : ν ∈ ω1} respectively such that the filtration of G attests that
G is in standard form and E = {ν ∈ ω1 : Gν is not a summand of
G} = {ν ∈ ω1 : G′ν is not a summand of G′}. Suppose also that for
all limit ordinals δ, given a ladder ηδ on δ, there is an isomorphism
θδ : Gδ+1 → G′δ+1 such that for all n ∈ ω, θδ[Gηδ(n)] = G′ηδ(n) and

θδ[Gηδ(n)+1] = G′ηδ(n)+1. Then G and G′ are filtration-equivalent.

Proof. We can assume that the filtration of G is as in Lemma 4. We
prove by induction on ν the following:

if µ < ν and µ, ν ∈ ω1 \ E and f : Gµ → G′µ is a
level-preserving isomorphism, then f extends to a level-
preserving isomorphism g : Gν → G′ν .

If ν = τ + 1 where τ /∈ E, then the result follows easily by induction
and the fact that Gν/Gτ and G′ν/G

′
τ are free. If ν is a limit ordinal,

choose a ladder ζν on ν such that ζν(0) > µ and for all n, ζν(n) /∈ E,
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and extend f successively, by induction, to gn : Gζν(n) → G′ζν(n), and
let g = ∪ngn.

The crucial case is when ν = δ + 1 where δ ∈ E. Let ηδ be as in
Lemma 4 with ηδ(0) > µ, and let θδ be the corresponding isomorphism
given by the hypothesis of this Proposition. Let Cδ,n = Kβn,βn+1. By
induction, extend f to a level-preserving isomorphism f0 : Gηδ(0) →
G′ηδ(0) and then extend it to g0 : Gηδ(0)+1 → G′ηδ(0)+1 by letting g0 �
Cδ,0 = θδ � Cδ,0. Clearly g0 is level-preserving. By induction extend g0

to a level-preserving f1 : Gηδ(1) → G′ηδ(1) and then to g1 : Gηδ(1)+1 →
G′ηδ(1)+1 by letting g1 � Cδ,1 = θδ � Cδ,1. Continuing in this way we

obtain level-preserving isomorphisms gn : Gηδ(n)+1 → G′ηδ(n)+1 for each

n. Let g̃ = ∪ngn : Gδ → G′δ.
By Lemma 4, Gδ+1 is generated mod Gδ by a set of elements of the

form
t(ȳδ)− a

d

where a ∈ ⊕n∈ωCδ,n; hence G′δ+1 is generated mod G′δ by elements

t(θδ(ȳδ))− θδ(a)

d
.

But then since g̃(a) = θδ(a) for each such a by construction, we can
extend g̃ to g : Gδ+1 → G′δ+1 by sending each yδ,i in ȳδ to θδ(yδ,i). Since
ȳδ is linearly independent over Gδ this is a well-defined homomorphism.
�

Theorem 6. Suppose A and A′ are ℵ1-separable groups of cardinality
ℵ1 and at least one of them is in standard form. If A and A′ are
ω2 + ω-equivalent, then they are filtration-equivalent.

Proof. We can suppose that A is in standard form, and that we have
chosen a filtration, {Aν : ν ∈ ω1} which attests to that fact. Moreover,
we can assume that if δ ∈ E = {δ : Aδ is not a direct summand of A},
then (Aδ+1/Aδ)

∗ = 0. (Use Stein’s Lemma [2, Exer. 3, p. 112], and
replace Aδ+1 by a direct summand, if necessary.)

Since A is quotient-equivalent to A′ by Proposition 3 , we can assume
that there is a filtration {A′ν : ν ∈ ω1} of A′ such that E = {δ : A′δ is
not a direct summand of A′} and for δ ∈ E, A′δ+1/A

′
δ
∼= Aδ+1/Aδ = 0,

so in particular (A′δ+1/A
′
δ)
∗ = 0.

Fix a bijection ψαβ : ω → (Aβ \Aα)∪ (A′β \A′α) for each α < β. Let
ψ = {ψαβ : α < β < ω1}.
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Whenever we talk about moves in a game, we refer to the game
EFω2+ω(A,A′). Given a strictly increasing finite sequence of countable
ordinals α1 < α2 < ... < αn, we will say that ∀ plays according to ψ
and 〈α1, α2, ..., αn〉 for the first ωn moves if the ωk + ` move of player
∀ is ψαkαk+1

(`) for k = 0, ..., n− 1 and ` ∈ ω (where α0 = 0).
Suppose that τ is a w.s. for ∃ in the game EFω2+ω(A,A′). Let C

be the set of all δ < ω1 such that for any integers n > 0 and m ≥ 0
and any ordinals α1 < α2 < ... < αn < δ, if ∀ plays according to ψ
and 〈α1, α2, ..., αn〉 for the first ωn moves and then plays any elements
of Aδ for the next m moves, then the responses of ∃ using τ are all in
Aδ ∪ A′δ.

Then C is a cub: for the proof of unboundedness, note that there are
only countably many possibilities that one has to close under: choice
of n and m, choice of α1 < α2 < ... < αn, and choice of moves ωn, ωn+
1, ...ωn+m− 1. (The earlier moves are determined by the ψαkαk+1

and
by τ .)

There is a continuous strictly increasing function h̃ : ω1 → ω1 whose
range is C. Define h : ω1 → ω1 by

h(β) =

{
h̃(β) + 1 if β is a successor and h̃(β) ∈ E
h̃(β) otherwise

Let Gα = Ah(α) and G′α = A′h(α). Then for successor β, Gβ is a sum-
mand of A and for limit δ Gδ = Ah̃(δ) = ∪β<δAh(β) = ∪β<δGβ, so

{Gα : α ∈ ω1} (resp. {G′α : α ∈ ω1}) is a filtration of A (resp.
A′). Given a limit ordinal δ and a ladder ηδ on δ, it follows — from
Lemma 1 and the definition of C — that there is an isomorphism
θδ : Gδ+1 → G′δ+1 such that for all n ∈ ω, θδ[Gηδ(n)] = G′ηδ(n) and

θδ[Gηδ(n)+1] = G′ηδ(n)+1. In fact, θδ is the partial isomorphism which
results because ∃ wins the game where the ωk + ` move of ∀ is

ψh(ηδ(n)),h(ηδ(n)+1)(`)

when k = 2n, and is

ψh(ηδ(n)+1),h(ηδ(n+1))(`)

when k = 2n+ 1, and the ω2 +m move of ∀ is ψh(δ),h(δ+1)(m).
Thus we have satisfied the hypotheses of Proposition 5 so we conclude

that A and A′ are filtration-equivalent. �

Now we can prove Theorem 2. PFA implies that every strongly
ℵ1-free abelian groups of cardinality ℵ1 is ℵ1-separable and in stan-
dard form. Moreover, assuming PFA, filtration-equivalent ℵ1-separable
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groups of cardinality ℵ1 are isomorphic. Thus the result follows from
Theorem 6.

2. A diamond construction: one tree

The result to be proved in this section is the following:

Theorem 7. Assume ♦. For any bounded tree T1 there exist non-
isomorphic ℵ1-separable groups G0 and G1 of cardinality ℵ1 which are
T1-equivalent (and filtration-equivalent) and are both in standard form.

Proof. We will present the proof in layers of increasing detail.

(I) Fix a stationary subset E of ω1 consisting of limit ordinals and
such that E is the disjoint union of two uncountable subsets E0 and
E1 such that ♦(E1) holds.

Given a bounded tree T (which in practice will be determined by, but
not equal to, T1), we shall identify its nodes with countable ordinals
in such a way that if ν <T µ (in the tree ordering), then ν < µ (as
ordinals).

By induction on α < ω1 we will define the following data:

(1) continuous chains {G`
ν : ν < α} of countable free groups (for

` = 0, 1) such that for all ν < µ < α, G`
µ/G

`
ν is free if ν /∈ E1,

and if ν ∈ E1, then G`
ν+1/G

`
ν has rank at most 1.

(2) homomorphisms π`ν,µ : G`
µ → G`

ν for ν ≤ µ < α and ν /∈ E1

such that: π`ν,µ is the identity on G`
ν ; for ν ≤ µ < ρ, π`ν,µ ⊆ π`ν,ρ;

and for τ < ν ≤ µ, π`τ,ν ◦ π`ν,µ = π`τ,µ
(i.e., π`ν,µ is a projection and the system of projections is coher-
ent);

(3) for each ν with ν + 1 < α an isomorphism f 0
ν : G0

ν+1 → G1
ν+1

satisfying:
if ν1 <T ν2, then f 0

ν2
� G0

ν1+1 = f 0
ν1

.

(These partial isomorphisms will give ∃ her winning strategy.)
For convenience we will use f 1

ν to denote (f 0
ν )−1 : G1

ν+1 → G0
ν+1.

Define G` = ∪ν<ω1G
`
ν . (It depends on T , but we suppress that in the

notation.) Now we will indicate how we choose T so that G0 and G1

are T1-equivalent.
Let T2 = <ω1ω1 \ ∅, i.e., the tree of non-empty countable sequences

of countable ordinals, partially ordered by inclusion (so it has ℵ1 nodes
of height 0). Let T be the product T1 ⊗ T2, i.e., the (bounded) tree
whose nodes are elements (s, σ) ∈ T1 × T2, where s and σ have the
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10 PAUL C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH

same height, and the partial ordering is defined coordinate-wise. (As
above, we identify the nodes of T with ordinals.)

Suppose we are able to carry out the construction outlined above for
this T . Then since the G`

ν are free, G` is ℵ1-free. Moreover, for ν /∈ E1⋃
µ<ω1

π`ν,µ : G` → G`
ν is a projection which shows that G`

ν is a direct

summand of G` ; so G` is ℵ1-separable (and has a coherent system of
projections; the fact that it is in standard form will follow from the
details of the construction — see part (V)).

We claim that G0 and G1 are T1-equivalent. In fact, here is ∃’s
winning strategy in the T1-game. If in his first move ∀ plays s0 ∈ T1

(which we may assume has height 0), and y0 ∈ G`0
γ0

, ∃ chooses α0

such that (s0, 〈α0〉) ∈ T is the element ν0 in the enumeration of T ,
where ν0 ≥ γ0; and she plays f `0ν0 (y0) ∈ G1−`0

ν0+1. (Note that the domain

of f `0ν0 is G`0
ν0+1 ⊇ G`0

γ0
.) Suppose that after β moves ∀ has chosen

s0 <T1 s1 <T1 ... <T1 sι <T1 ... in the tree and y0, y1, ..., yι, ... in the
groups where yι ∈ G`ι (ι < β), and ∃ has responded to the ιth move
with f `ινι (yι) where νι = (sι, 〈α0, ..., αι〉). Now if ∀ plays sβ >T1 sι

(ι < β) — which we can assume has height β — and yβ ∈ G
`β
γβ , then

∃ chooses αβ such that (sβ, 〈α0, ..., αβ〉) is νβ ≥ γβ, and plays f `νβ(yβ).

Notice that νβ >T νι, so f `νβ extends f `νι for ` = 0, 1. Therefore the
sequence of moves determines a partial isomorphism, so ∃ will win.

(II) Of course, we also want to do the construction so that G0 and G1

are not isomorphic. This will be achieved by our construction of G`
δ+1

for δ ∈ E1 (plus the requirement 4 below); when δ ∈ E1 we will make
use of the “guess” provided by ♦(E1) of an isomorphism: G0

δ → G1
δ .

Our construction will be such that when α = µ + 1 where µ /∈ E,
then

G`
α = G`

µ ⊕ Zx`µ,0 ⊕ Zx`µ,1
When α = σ + 1 where σ ∈ E0, then

G`
α = G`

σ ⊕
⊕
n∈ω

Zu`σ,n ⊕ Zv`σ,n.

We define

wσ,n = 2u0
σ,n+1 − u0

σ,n.

Notice that {wσ,n : n ∈ ω} generates a pure subgroup of
⊕

n∈ω Zu0
σ,n

which is not a direct summand. Hence there is no isomorphism of⊕
n∈ω Zu0

σ,n ⊕ Zv0
σ,n with

⊕
n∈ω Zu1

σ,n ⊕ Zv1
σ,n which takes each wσ,n to

v1
σ,n. In order to carry out the inductive construction we will define in

addition:
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4. subsets Wα[Θ] of G0
α for every non-empty finite subset

Θ of α which is an antichain in T , satisfying:
(a) for all α < β, Wα[Θ] ⊆ Wβ[Θ];
(b) every element of Wα[Θ] is of the form wσ,n for

some σ ∈ E0, and n ∈ ω.

The functions f 0
α will be required to satisfy:

(c) for all µ ≤ α, j ∈ {0, 1} f 0
α(x0

µ,j) = x1
µ,j; moreover,

if wσ,n ∈ Wα+1[Θ] and Θ ∩ {ν : ν ≤T α} 6= ∅, then
f 0
α(wσ,n) = v1

σ,n.

For any finite antichain Θ in T , let W [Θ] =
⋃
αWα[Θ].

Now we will outline how we do the construction so that G0 and
G1 are not isomorphic. Before we start, we choose a function Υ with
domain E0 which maps onto the set of all ω-sequences 〈Θn : n ∈ ω〉 of
finite subsets of T such that

⋃
n∈ω Θn is an antichain; we also require

that if Υ(σ) = 〈Θσ
n : n ∈ ω〉, then each Θσ

n ⊆ σ.
Suppose now that we have defined G`

ν for ν ≤ α. If α = σ ∈ E0,
then G`

σ+1 will be defined as indicated above and is such that (as we
will prove)

(II.1) for all e ∈ {1,−1}, there is no isomorphism of
G0
σ+1 with

⊕
n∈ω Zv1

σ,n⊕C for any C, which for all n ∈ ω
takes wσ,n to ev1

σ,n.

Moreover wσ,n will be put into Wσ+1[Θσ
n]. (This is the only way that

an element becomes a member of a Wα[Θ].)
If α = δ ∈ E1 and β < δ, we introduce the notation Aβ,δ = {t : t is

<T -minimal in δ \ β} — so Aβ,δ is an antichain. We fix finite subsets
Θβ,δ
n of Aβ,δ which form a chain such that ∪n∈ωΘβ,δ

n = Aβ,δ. We consider
the prediction given by ♦(E1) of an isomorphism h : G0

δ → G1
δ and we

ask whether the following holds:

(II.2) ∃ β < δ ∀ e ∈ {1,−1} ∀ n ∈ ω ∃ wσ,m ∈ Wδ[Θ
β,δ
n ]

such that h(wσ,m) 6= ev1
σ,m.

We will do the construction of G`
δ+1 so that:

(II.3) If (II.2) holds, then G`
δ+1/G

`
δ is non-free rank 1 and

h does not extend to a homomorphism: G0
δ+1 → G1

δ+1.

Assuming we can do all of this, let us see why G0 is not isomorphic
to G1. Suppose, to the contrary, that there is an isomorphism H :
G0 → G1. Then there is a stationary set, S, of δ ∈ E1 where ♦(E1)
guesses h = H � G0

δ and H : G0
δ → G1

δ . Note that Lemma 1 implies
that H must map G0

δ+1 into G1
δ+1 because G0

δ+1/G
0
δ is non-free rank 1
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12 PAUL C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH

but G1/G1
δ+1 is ℵ1-free by construction. If for any such δ (II.2) holds,

then H � G0
δ+1 would extend h = H � G0

δ , contradicting (II.3).
Since (II.2) fails, for all δ ∈ S and all β < δ there exists e ∈ {1,−1}

and a finite subset Θ of Aβ,δ such that H(wσ,n) = ev1
σ,n for all wσ,n ∈

Wδ[Θ]. Now there is a cub C such that for all δ ∈ C, all e ∈ {1,−1},
all β < δ, and all finite subsets Θ of Aβ,δ, if H(wσ,n) 6= ev1

σ,n for some

wσ,n ∈ W [Θ], then H(wσ,n) 6= ev1
σ,n for some wσ,n ∈ Wδ[Θ]. Thus for

all δ ∈ C ∩S and all β < δ, there exists e ∈ {1,−1} and a finite subset
Θ of Aβ,δ such that H(wσ,n) = ev1

σ,n for all wσ,n ∈ W [Θ]. Since C ∩ S
is uncountable, it follows easily that there exists e ∈ {1,−1}, and an
uncountable set {Θν : ν < ω1} of pairwise disjoint finite antichains such
that H(wσ,n) = ev1

σ,n for all wσ,n ∈ W [Θν ] for all ν < ω1. Since T has
no uncountable branches, by a standard argument (see, for example, [5,
Lemma 24.2, p. 245]), there is a countably infinite subset {νn : n ∈ ω}
of ω1 such that

⋃
{Θνn : n ∈ ω} is an antichain. There exists σ ∈ E0

such that Υ(σ) = 〈Θνn : n ∈ ω〉. Now H � G0
σ+1 is such that for all

n ∈ ω, H(wσ,n) = ev1
σ,n since wσ,n ∈ Wσ+1[Θνn ]; this contradicts (II.1),

since
⊕

n∈ω Zv1
σ,n is a direct summand of G1

σ+1, and hence of G1 (by
2).

(III) The next step is to describe in detail the recursive construction
of the data satisfying the properties 1, 2, 3 and 4, as well as (II.1) and
(II.3). So assume that we have defined G`

ν , and Wν [Θ] for ν < α and
f `ν for ν + 1 < α.

There are several cases to consider.

Case 1: α is a limit ordinal. We let G`
α = ∪ν<αG`

ν , Wa[Θ] =⋃
ν<αWν [Θ]. Clearly the desired properties are satisfied.

If α is a successor, α = µ+ 1, we will define G`
α so that

(III.1) if B = {t : t <T µ} and we define gB = ∪{f 0
t :

t ∈ B}, then gB (which is a function by 3.) extends to
an isomorphism, f 0

µ, of G0
α onto G1

α which satisfies 4(c),

i.e. for all ν ≤ µ, j ∈ {0, 1} f 0
µ(x0

ν,j) = x1
ν,j and if wσ,n ∈

Wα[Θ] and Θ ∩ {ν : ν ≤T µ} 6= ∅, then f 0
µ(wσ,n) = v1

σ,n.

Leaving the verification of (III.1) to the next part, we will show how
to define the data at α (except for the definition of the π`σ,α which we
defer to part (V)).
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Case 2: α = µ+ 1 for some µ /∈ E. As described above, define

G`
α = G`

µ ⊕ Zx`µ,0 ⊕ Zx`µ,1.

Let Wα[Θ] = Wµ[Θ] for every Θ ⊆ µ (= ∅ if Θ is not a subset of µ).
Assuming (III.1), we have f 0

µ as desired.

Case 3: α = σ + 1, where σ ∈ E0. In this case, as stated before,

G`
α = G`

σ ⊕
⊕
n∈ω

Zu`σ,n ⊕ Zv`σ,n

and recall that wσ,n is defined to be 2u0
σ,n+1 − u0

σ,n. Say Υ(σ) =
〈Θσ

n : n ∈ ω〉. Define

Wα[Θ] =

{
Wσ[Θ] ∪ {wσ,n} if Θ = Θσ

n

Wσ[Θ] otherwise.

Assuming (III.1) (with µ = σ), we can define f 0
σ . Now let us see why

(II.1) holds. Suppose to the contrary that there is an isomorphism H :
G0 → G1 contradicting (II.1). Now

⊕
n∈ω Zv1

σ,n is a direct summand of

G1
α and hence (by 2) a direct summand of G1. Thus H−1[

⊕
n∈ω Zv1

σ,n] is

a direct summand of G0. But by assumption on H, H−1[
⊕

n∈ω Zv1
σ,n] =⊕

n∈ω Zwσ,n and the latter is not a direct summand of G0 because the

coset of u0
σ,0 is a non-zero element of G0/

⊕
n∈ω Zwσ,n which is divisible

by all power of 2 by definition of the wσ,n.

Case 4: α = δ + 1, where δ ∈ E1. If (II.2) fails, let G`
δ+1 = G`

δ.
Otherwise, let β be as in (II.2). We introduce some ad hoc notation.
For any finite subset Θ of Aβ,δ, let fΘ be the function whose domain is
the subgroup generated by {x0

µ,j : µ /∈ E, µ < δ, j ∈ {0, 1}} ∪Wδ[Θ]

such that fΘ(x0
µ,j) = x1

µ,j and fΘ(wσ,n) = v1
σ,n. Notice that for all u ∈

dom(fΘ) and all ν ∈ Θ, if ν ≤T ρ and u ∈ dom(f 0
ρ ), then fΘ(u) = f 0

ρ (u)

by 4(c). Let Θβ,δ
n be as before (finite subsets forming a chain whose

union is Aβ,δ); for short, let Θn = Θβ,δ
n . We claim that:

(III.2) given m,m′ ∈ Z \ {0}, n ∈ ω, y ∈ G1
δ , for suffi-

ciently large γ < δ there exists k0 ∈ dom(fΘn) ∩ G0
γ+2

such that k0 is pure-independent mod G0
γ+1 and is such

that mh(k0) 6= m′fΘn(k0) + y. Moreover, fΘn(k0) is
pure-independent mod G1

γ+1.

Supposing this is true — we will prove it in part (IV) — let us define
G`
δ+1. Fix a ladder ηδ on δ. Also, enumerate in an ω-sequence all triples
〈r, d, v〉 where r ∈ ω, d ∈ Z \ {0}, and g ∈ G1

δ so that the nth triple
〈r, d, g〉 satisfies n > r. By (III.2) we can inductively define primes
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14 PAUL C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH

pn, ordinals γn ≥ ηδ(n), and elements k0
δ,n ∈ dom(fΘn) ∩ G0

γn+2 pure-

independent over G0
γn+1 such that (if the nth triple is 〈r, d, g〉), pn does

not divide mh(k0
δ,n)−m′fΘn(k0

δ,n)− y where

m =
∏n−1

i=0 pi
m′ = d

∏n−1
i=r pi

y =
∑n

j=0(
∏j−1

i=0 pi)h(k0
δ,j) + g − d

∑n
j=r(

∏j−1
i=r pi)fΘj(k

0
δ,j).

(Note that since G1
δ is free, every non-zero element is divisible by only

finitely many primes, so we can take pn to be any sufficiently large
prime.) Then we let G0

δ+1 be generated by G0
δ ∪ {z0

δ,n : n ∈ ω} modulo
the relations

pnz
0
δ,n+1 = z0

δ,n + k0
δ,n

and G1
δ+1 is defined similarly, except that we impose the relations

pnz
1
δ,n+1 = z1

δ,n + fΘn(k0
δ,n).

We need to show that h does not extend to a homomorphism: G0
δ+1 →

G1
δ+1. If it does, then h(z0

δ,0) = dz1
δ,r + g for some r ∈ ω, d ∈ Z \ {0},

and g ∈ G1
δ . Let n be such that 〈r, d, g〉 is the nth triple in the list.

Now, in G0
δ+1 we have

(
n∏
i=0

pi)z
0
δ,n+1 = z0

δ,0 +
n∑
j=0

(

j−1∏
i=0

pi)k
0
δ,j

so, applying h, we conclude that pn divides

dz1
δ,r + g +

n∑
j=0

(

j−1∏
i=0

pi)h(k0
δ,j).

On the other hand, in G1
δ+1 we have pn divides

dz1
δ,r + d

n∑
j=r

(

j−1∏
i=r

pi)fΘj(k
0
δ,j)

so, subtracting, we obtain a contradiction since pn divides mh(k0
δ,n) −

m′f 0
Θσn

(k0
δ,n)− y, where m, m′, and y are as above.

We let Wδ+1[Θ] = Wδ[Θ] for any subset Θ of δ (and = ∅ if Θ 6⊆ δ).
By (III.1) we can define f 0

δ .

(IV) In this layer we will prove (III.1) and (III.2).
First let us prove (III.2) since for the purposes of proving (III.1) we

will need more information about the nature of the elements k0
δ,n. Fix
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m,m′, n, y, γ as in (III.2); there are several cases. In the first two cases
we can use any γ < δ.

Case (i): y 6= 0. If neither x0
γ+1,0 nor x0

γ+1,1 will serve for k0, then

x0
γ+1,0 − x0

γ+1,1 will.

Case (ii): y = 0, m 6= ±m′. Let k0 = x0
γ+1,0. Then by construction,

k0 generates a cyclic summand of G0
δ ; hence fΘn(k0) and h(k0) both

generate cyclic summands of G1
δ . Hence mh(k0) 6= m′f 0

Θn
(k0).

Case (iii): y = 0, m = m′. Pick γ sufficiently large so that there
exists wσ,j ∈ G0

γ+1 ∩Wδ[Θn] such that fΘn(wσ,j) 6= h(wσ,j). If x0
γ+1,0

will not serve for k0 (i.e., h(x0
γ+1,0) = x1

γ+1,0), then we can take k0 to

be x0
γ+1,0 + wσ,j.

Case (iv): y = 0, m = −m′. Similarly k0 can be taken to be of the
form x0

γ+1,0 or x0
γ+1,0 − wσ,j where fΘn(wσ,j) 6= −h(wσ,j).

Now if we examine the construction in Case 4 of (III) and the proof
above we see that

(IV.1) each k0
δ,n can be (and will be) taken to be of the

form x0
µn,jn ± ξδ,n where ξδ,n is 0, x0

σ,j or wσ,j for some
σ, j.

We will say that wσ,j is a part of k0
δ,n in case ξδ,n is wσ,j.

Before beginning the proof of (III.1), let us observe the following
facts:

(IV.2) Given σ ∈ E0 and N ∈ ω, there is an isomor-
phism g′ :

⊕
n∈ω Zu0

σ,n ⊕ Zv0
σ,n →

⊕
n∈ω Zu1

σ,n ⊕ Zv1
σ,n

such that g′(wσ,n) = v1
σ,n for n ≤ N and g′(u0

σ,n) = u1
σ,n

for n ≥ N + 1.

Indeed, we can define g′(u0
σ,n) = 2g′(u0

σ,n+1)− v1
σ,n for n ≤ N (and the

other values appropriately).

(IV.3) Given an isomorphism g : G0
δ → G1

δ where δ ∈ E1,
we can extend g to an isomorphism g′ : G0

δ+1 → G1
δ+1

provided that (using the notation of Case 4) g(k0
δ,n) =

fΘn(k0
δ,n) for almost all n ∈ ω.

Indeed, if g(k0
δ,n) = fΘn(k0

δ,n) for all n ≥ N , we can define g′(z0
δ,n) = z1

δ,n

for n ≥ N and g′(z0
δ,n) = png

′(z0
δ,n+1)−g(k0

δ,n) for n < N by “downward
induction”. We will apply (IV.3) to the situation of (III.1), with g =
gB, δ = µ, δ + 1 = α; if we are in Case 4, then the hypothesis on g in
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(IV.3) will hold if there exists t ∈ B such that t ≥ β (where β is as in
Case 4).

We return to the notation of (III.1). Let τ = sup{t + 1 : t ∈ B};
then domgB = G0

τ . Assume first that τ = µ. In case G`
µ+1/G

`
µ is free

there is no problem extending gB; in the other case µ = δ ∈ E1 and by
the remarks above we can extend gB since there exists t ∈ B such that
t ≥ β (since supB = δ).

We are left with the case when τ < µ. We will first define an exten-
sion of gB to a partial isomorphism g̃B whose domain is

dom(gB) +

〈 {x0
ν,j : ν ≤ µ, j = 0, 1}∪

{u0
σ,n : σ ∈ E0 ∩ µ+ 1, n ∈ ω}∪
{v0

σ,n : σ ∈ E0 ∩ µ+ 1, n ∈ ω}

〉
Notice that every k0

δ,n for δ ≤ µ, n ∈ ω belongs to the domain of g̃B.

We let g̃B(x0
ν,j) = x1

ν,j for all ν, j. By enumerating in an ω-sequence the

set (E0 ∪ E1) ∩ (µ + 1) we can define by recursion the values g̃B(u0
σ,n)

and g̃B(v0
σ,n) so that:

• g̃B(wσ,n) = v1
σ,n whenever wσ,n ∈ Wµ+1[Θ] for some Θ with

B ∩Θ 6= ∅;
• for all σ ∈ E0 with τ ≤ σ ≤ µ, for almost all n ∈ ω, g̃B(u0

σ,n) =

u1
σ,n; and

• for all δ ∈ E1 with τ ≤ δ ≤ µ, for almost all n ∈ ω, if (for some
σ,m) wσ,m is a part of k0

δ,n , then g̃B(wσ,m) = v1
σ,m.

The first condition is required by 4(c). In view of (IV.2), there is
no conflict between the first two conditions because for any σ ∈ E0,⋃
n∈ω Θσ

n is an antichain, so there is at most one n such that Θσ
n∩B 6= ∅.

To be sure that the third condition can indeed be satisfied, we need
to consider the case that for some δ ∈ E1, there are infinitely many
n such that there exists wσn,mn which is a part of k0

δ,n and belongs to
the domain of gB. Say this is the case for n belonging to the (infinite)
set Y ⊆ ω (for a fixed δ). Then for each n ∈ Y ∃tn ∈ B such that
tn ≥ σn. Suppose that the construction of G`

δ+1 uses Aβ,δ = ∪n∈ωΘβ,δ
n .

Selecting one n∗ ∈ Y , we see that since Θβ,δ
n∗ ⊆ σn∗ , σn∗ > β and

hence tn∗ ∈ Aβ,δ. Therefore there exists M such that for all n ≥ M ,
tn∗ ∈ Θβ,δ

n . But then, for n ∈ Y with n ≥ M , tn ≥ σn ⊇ Θβ,δ
n , so

tn∗ ≤ tn and thus tn∗ ≤T tn. By the construction in Case 4 and by
4(c), gB(wσn,mn) = v1

σn,mn for n ∈ Y , n ≥ M . Moreover, there is no
conflict between the last two conditions because, by construction, if
δ ∈ E1 and σ ∈ E0, then wσ,m ∈ Wδ[Θ

β,δ
n ] if and only if Θβ,δ

n = Θσ
m, but

the elements of {Θσ
m : m ∈ ω} are disjoint and the Θβ,δ

n form a chain
under ⊆ .
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It remains to extend g̃B to f 0
µ by defining f 0

µ(z0
δ,n) for τ ≤ δ ≤ µ, n ∈

ω. This is possible by observation (IV.3) because of the construction
of g̃B.

(V) We will define the projections π`ν,µ by induction on µ and then
verify the conditions to be in standard form (see section 1 or [2, Def.
1.9(ii), p. 257]). We refer to the cases of the construction in part (III).
In Case 1, we take unions. In Case 2, for ν < µ+ 1 we let π`ν,µ+1 be the

extension of π`ν,µ which sends each x`µ,j to 0 . (Here, π`µ,µ is the identity.)

In Case 3, for ν ≤ σ we let π`ν,σ+1 be the extension of π`ν,σ which sends

each u`σ,n and each v`σ,n to 0.
Finally, for Case 4, we use the notation of that case. We define

π0
ν,δ+1(z0

δ,n) = −
∑m

j=n dn,jk
0
δ,j where m is maximal such that γm+2 ≤ ν

and dn,j =
∏j−1

i=n pi (and dn,0 = 1 ). (Compare [2, pp. 249f].) The
definition of π1

ν,δ+1 is similar, replacing k0
δ,j by fΘj(k

0
δ,j). Let Y `

δ =

{z`δ,n : n ∈ ω}. Then we can easily verify the conditions of [2, Def.
1.9(ii), p. 257] using the information in the proof of (III.2) about the
form of k0

δ,j.
This completes the proof of Theorem 7.

3. A non-structure theorem

Our goal is to generalize the construction in the previous section to
prove:

Theorem 8. Assume ♦. There exists an ℵ1-separable group G0 and for
each bounded tree T1 an ℵ1-separable group GT1 which is T1-equivalent
to G0 but not isomorphic to G0. Moreover, all the groups are of cardi-
nality ℵ1 and in standard form.

Proof. We assume familiarity with the previous proof and outline the
modifications, in layers of increasing detail.

(VI) Fix a stationary subset E of ω1 consisting of limit ordinals
(> 0) and such that E is the disjoint union of two subsets E0 and E1

such that cardinality ♦(E0) and ♦(E1) hold. (♦(E0) is not essential,
but convenient.)

We need only consider bounded trees T on ω1 such that if ν <T µ
(in the tree ordering), then ν < µ (as ordinals). For each δ ∈ E1 (resp.
σ ∈ E0), diamond will give us a “prediction” Tδ = 〈δ,<δ〉 (resp. Tσ)
of the restriction of a bounded tree to δ (resp. σ). If µ < δ we write
Tδ � µ for 〈µ,<δ ∩(µ× µ)〉.
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By induction on δ ∈ {0} ∪ E we will define the following data:

(1) continuous chains {Gδ
ν : ν ≤ δ + 1} of countable free groups

such that for all ν < µ ≤ δ + 1, Gδ
µ/G

δ
ν is free if ν /∈ E1, and if

ν ∈ E1, then Gδ
ν+1/G

δ
ν has rank at most 1.

(2) projections πδν,µ : Gδ
µ → Gδ

ν for ν ≤ µ ≤ δ + 1 and ν /∈ E1

such that: for ν ≤ µ < ρ, πδν,µ ⊆ πδν,ρ; and for τ < ν ≤ µ,

πδτ,ν ◦ πδν,µ = πδτ,µ;

(3) for each δ ∈ E and each ν ≤ δ an isomorphism f δν : G0
ν+1 →

Gδ
ν+1 satisfying:

if ν1 <δ ν2, then f δν2 � G
0
ν1+1 = f δν1 .

Moreover, we require that if δ < δ′ are elements of E such that
Tδ = Tδ′ � δ, then Gδ

ν = Gδ′
ν for ν ≤ δ+1; πδ

′
ν,µ = πδν,µ for ν ≤ µ ≤ δ+1;

and f δ
′
ν = f δν for ν ≤ δ.

Define G0 = ∪ν<ω1G
0
ν and for each bounded tree T on ω1 let GT =⋃

{Gδ
ν : Tδ = T � δ, ν ≤ δ + 1}. As before, given T1 we can choose T

so that G0 and GT are T1-equivalent.
We indicate how to modify the previous construction so that G0

and GT are not isomorphic. Our construction will be such that when
α = µ+ 1 where µ /∈ E, then

(*) G0
α = G0

µ ⊕ Zx0
µ,0 ⊕ Zx0

µ,1

and
(**) Gδ

α = Gδ
µ ⊕ Zx1

µ,0 ⊕ Zx1
µ,1

for δ ∈ E, α < δ.
When α = σ + 1 where σ ∈ E0, then

(***) G0
α = G0

σ ⊕
⊕
n∈ω

Zu0
σ,n ⊕ Zv0

σ,n

and
(****) Gδ

α = Gδ
σ ⊕

⊕
n∈ω

Zu1
σ,n ⊕ Zv1

σ,n

for δ ∈ E, σ < δ.
We define

wσ,n = 2u0
σ,n+1 − u0

σ,n.

In order to carry out the inductive construction we will define in
addition:

4. for δ ∈ E and α ≤ δ+1, subsetsW δ
α[Θ] ofG0

α for every
non-empty finite subset Θ of α which is an antichain in
Tδ, satisfying:
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(a) for all α < β, W δ
α[Θ] ⊆ W δ

β [Θ];

(b) every element of W δ
α[Θ] is of the form wσ,n for

some n ∈ ω and some σ ∈ E0 such that Tδ � σ = Tσ.

The functions f δα will be required to satisfy (as before):

(c) for all µ ≤ α, j ∈ {0, 1} f δα(x0
µ,j) = x1

µ,j; moreover,

if wσ,n ∈ W δ
α+1[Θ] and Θ ∩ {ν : ν ≤δ α} 6= ∅, then

f δα(wσ,n) = v1
σ,n.

Moreover, in order to carry out the inductive construction we will also
require the following for all δ ∈ E, α ≤ δ :

(d) if σ ∈ E0 with σ ≤ α + 1 and Tδ � σ 6= Tσ, then
f δα(u0

σ,n) = u1
σ,n for all n ∈ ω;

(e) for all pairs β1, β2 with sup{t : t <δ α} ≤ β1 <
β2 ≤ α, it is the case for almost all n ∈ ω that for all
wσ,m ∈ W δ

α+1[Θβ1,β2
n ] we have f δα(wσ,m) = v1

σ,m.

(The notation Θβ1,β2
n is defined before (II.2).)

♦(E0) gives us for each σ ∈ E0 a “prediction” Υ(σ) = 〈Θσ
n : n ∈ ω〉 of

an ω-sequence of finite subsets of Tσ such that
⋃
n∈ω Θσ

n is an antichain
in Tσ. The proof that G0 and GT are not isomorphic will then work as
before.

(VII) The next step is to describe in detail the inductive construc-
tion of the data satisfying the properties given above. Our construction
is by induction on the elements of E. At stage δ ∈ E we will define G0

α

and Gδ
α for any α ≤ δ + 1 for which they are not already defined. We

will have already defined G0
ν for ν ≤ sup{δ′ + 1 : δ′ ∈ E, δ′ < δ}. By

following the prescriptions in (*) and (***), we can assume that G0
ν is

defined for all ν ≤ δ.
Let γ = sup{δ′ + 1 : δ′ ∈ E ∩ δ, Tδ � δ′ = Tδ′}. Then we need to

define Gδ
α for γ < α ≤ δ + 1. We need to do this is such a way that

we are able to define the partial isomorphisms f δα. We shall leave the
details of the latter to the next section and describe the construction
of the groups here. There are two cases to consider.

Case 1: γ = δ ∈ E. Then Gδ
δ is already defined. If δ ∈ E0, follow

the prescription in (***) and (****). If δ ∈ E1, ♦(E1) gives us an iso-
morphism h : G0

δ → Gδ
δ; the construction of G0

δ+1 and Gδ
δ is essentially

the same as in the previous Theorem (Case 4 of (III)); in particular,
if (II.2) holds, we use an antichain Aδβ,δ = {t : t is <δ-minimal in

δ \ β}; G0
δ+1 is generated by G0

δ ∪ {z0
δ,n : n ∈ ω} subject to relations
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pnz
0
δ,n+1 = z0

δ,n + k0
δ,n (which keep h from extending) and Gδ

δ+1 is gen-

erated by Gδ
δ ∪ {zδδ,n : n ∈ ω} subject to relations pnz

δ
δ,n+1 = zδδ,n + kδδ,n

(where kδδ,n = f δΘn(k0
δ,n)).

For the purposes of later stages of the construction we also define,
for any δ1 > δ such that δ1 ∈ E and Tδ1 � δ 6= Tδ, elements kδ1δ,n ∈ G

δ1
δ .

We know that k0
δ,n has the form x0

µn,jn ± ξδ,n where ξδ,n is either 0, x0
σ,j,

or wσ,j for some σ, j (cf. (IV.1)). In case ξδ,n is 0, let kδ1δ,n = x1
µn,jn ;

in case ξδ,n = x0
σ,j , let kδ1δ,n = x1

µn,jn ± x
1
σ,j. Finally, if ξδ,n = wσ,j, let

kδ1δ,n = x1
µn,jn ± ξ

′
δ,n where

ξ′δ,n =

{
w1
σ,j if Tδ1 � σ 6= Tσ

v1
σ,j if Tδ1 � σ = Tσ

and w1
σ,j = 2u1

σ,j+1−u1
σ,j. We will be able to show (in the next section)

the following:

(VII.1) for any branch B in Tδ1 � δ with δ = sup{t+ 1 :
t ∈ B}, gB = ∪{f δ1α : α ∈ B} is such that for almost all
n, gB(k0

δ,n) = kδ1δ,n.

(This is evidence of what, in view of (IV.3), will enable us to extend
functions.)

Case 2: γ < δ. We need to define Gδ
α for γ + 1 ≤ α ≤ δ + 1 by

induction on α. If we have defined Gδ
α for α ≤ ρ < δ, and ρ does not

belong to E1, we follow the prescription in (**) or (****). If ρ ∈ E1,
then Tδ � ρ 6= Tρ (by definition of γ). By induction G0

ρ+1 is constructed

as in Case 1 and we have kδρ,n as there (with δ playing the role of

δ1 and ρ playing the role of δ). In particular, G0
ρ+1 is generated by

G0
ρ ∪ {z0

ρ,n : n ∈ ω} subject to relations pnz
0
ρ,n+1 = z0

ρ,n + k0
ρ,n. We

define Gδ
ρ+1 to be generated by Gδ

ρ ∪ {zδρ,n : n ∈ ω} subject to relations

pnz
δ
ρ,n+1 = zδρ,n + kδρ,n. Finally, we define Gδ

δ+1 as in Case 1.

The definition of theW δ
α[Θ] will be as in (III); specifically, W δ

α+1[Θ] =
W δ
α[Θ] unless α = σ ∈ E0, Tδ � σ = Tσ and Θ = Θσ

n for some n, in
which case W δ

σ+1[Θ] = W δ
σ [Θ] ∪ {wσ,n}.

(VIII) We have defined the groups and the sets W δ
α[Θ]; the last step

is to show that the partial isomorphisms f δν can be defined satisfying
the conditions in 4.

First let us verify (VII.1). Let δ and δ1 be as in Case 1 of (VII) and
suppose B is a branch in Tδ1 � δ with δ = sup{t+ 1 : t ∈ B}. Then gB
is an isomorphism : G0

δ → Gδ1
δ and we want to show that gB(k0

δ,n) = kδ1δ,n
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for almost all n. Recall that k0
δ,n has the form x0

µn,jn ± ξδ,n where ξδ,n
is either 0, x0

σ,j, or wσ,j for some σ, j; the only case we need to worry
about is when ξδ,n = wσ,j.

Let µ = sup{α < δ : Tδ � α = Tδ1 � α}; so µ < δ and Gδ1
α = Gδ

α for
α ≤ µ. Suppose that G0

δ+1 and Gδ
δ+1 are defined using Aδβ,δ =

⋃
n∈ω Θβ,δ

n

as in Case 1 of (VII) and Case 4 of (III). We consider several cases.
First, suppose that there exists t ∈ Aδβ,δ with t ≥ µ. Then for almost

all n, t ∈ Θβ,δ
n and thus if wσ,j ∈ W δ

δ [Θβ,δ
n ] then σ > t ≥ µ; hence

Tδ1 � σ 6= Tδ � σ and it follows from 4(d) that gB(k0
δ,n) = kδ1δ,n. If this

case does not hold then Aδβ,δ ⊆ µ so Aδβ,δ = Aδβ,µ is an antichain in
Tδ1 � µ = Tδ � µ. If there exists t ∈ B with β ≤ t < µ, then there
exists t ∈ B with t ∈ Aδβ,δ and hence t ∈ Θβ,δ

n for almost all n; it follows

easily that for almost all n gB(k0
δ,n) = kδ1δ,n (considering separately the

cases when σ ≤ µ and σ > µ). In the remaining case, if α = inf{t ∈
B : t ≥ β}, then α ≥ µ so we have sup{t : t <δ1 α} ≤ β < µ ≤ α and
we have the desired conclusion by 4(e) — again distinguishing between
the cases when σ ≤ µ and σ > µ. This completes the proof of (VII.1).

Now we need to verify the analog of (III.1). Letting δ and γ be
as in (VII), we need to define f δα for γ ≤ α ≤ δ. Fix α and let
B = {t < γ : t <δ α} and gB = ∪{f δt : t ∈ B}. We can suppose that α
is <δ-minimal among elements of {β : γ ≤ β ≤ α}.

We will first define an extension of gB to a partial isomorphism g̃B
whose domain is

dom(gB) +

〈 {x0
ν,j : ν ≤ α, j = 0, 1}∪

{u0
σ,n : σ ∈ E0 ∩ (α + 1), n ∈ ω}∪
{v0

σ,n : σ ∈ E0 ∩ (α + 1), n ∈ ω}

〉

Using an enumeration in an ω-sequence of Y0 ∪ Y1 where

Y0 = {σ ∈ E0 : supB ≤ σ < γ and Tδ � σ = Tσ}

and

Y1 = {〈β1, β2〉 : supB ≤ β1 < β2 ≤ α}

we can define g̃B such that

(c′) for all ν ≤ α, j ∈ {0, 1} g̃B(x0
ν,j) = x1

ν,j; moreover,

if wσ,n ∈ W δ
γ+1[Θ] and Θ ∩B 6= ∅, then g̃B(wσ,n) = v1

σ,n;

(d′) if σ ∈ E0 ∩α+ 2, then g̃B(u0
σ,n) = u1

σ,n for almost

all n, and if Tδ � σ 6= Tσ, then g̃B(u0
σ,n) = u1

σ,n for all n;
and

Paper Sh:520, version 1995-01-12 11. See https://shelah.logic.at/papers/520/ for possible updates.



22 PAUL C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH

(e′) for all pairs β1, β2 with supB ≤ β1 < β2 ≤ α,
it is the case for almost all n ∈ ω that for all wσ,m ∈
W δ
α+1[Θβ1,β2

n ] we have g̃B(wσ,m) = v1
σ,m.

Now g̃B(k0
ρ,n) is defined for all ρ ∈ E1 with ρ ≤ α. We need to

define f δα(zδρ,n) for all such ρ ≥ supB. In view of (IV.3), we can do

this provided that g̃B(k0
ρ,n) = kδρ,n for almost all n ∈ ω. We consider

separately the cases: Tδ � ρ = Tρ; and Tδ � ρ 6= Tρ. The first case is as
in (IV); the last is as in the proof of (VII.1) (with δ playing the role of
δ1, ρ playing the role of δ and using (d′) and (e′)).

This completes the proof of Theorem 8.
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