The f-Factor Problem for Graphs and the Hereditary Property^{*}

Frank Niedermeyer, Bonn Saharon Shelah, Jerusalem Karsten Steffens, Hannover

Abstract

If P is a hereditary property then we show that, for the existence of a perfect f-factor, P is a sufficient condition for countable graphs and yields a sufficient condition for graphs of size \aleph_1 . Further we give two examples of a hereditary property which is even necessary for the existence of a perfect f-factor. We also discuss the \aleph_2 -case.

We consider graphs G = (V, E), where V = V(G) is a nonempty set of vertices and $E = E(G) \subseteq \{ e \subseteq V : |e| = 2 \}$ is the set of edges of G. If x is a vertex of G and $F \subseteq E$, then we denote by $d_F(x)$ the cardinal $|\{e \in F : x \in e\}|$. $d_F(x)$ is called the **degree of** x with respect to F and $d_E(x)$ the **degree of** x. ON denotes the class of ordinals, CN the class of cardinals. Greek letters $\alpha, \beta, \gamma, \ldots$ always denote ordinals, whereas the middle letters $\kappa, \lambda, \mu, \nu, \ldots$ are reserved for infinite cardinals.

Let G = (V, E) be a graph, $f: V \to CN$ be a function and $F \subseteq E$. F is said to be an f-factor of G if $d_F(x) \leq f(x)$ for all $x \in V$. We call an f-factor F of G **perfect** if $d_F(x) = f(x)$ for all $x \in V$. For $\kappa \in CN$ we denote $f^{-1}(\kappa) := \{x \in V : f(x) = \kappa\}$.

Let C be the class of all ordered pairs (G, f), such that G = (V, E) is a graph, $f: V \to CN$ is a function, and $f(x) \leq d_E(x)$ for all $x \in V$.

This paper discusses the problem to find a necessary and sufficient condition for the existence of a perfect *f*-factor of a graph. In [5], Tutte published a criterion for finite graphs, and in [4] Niedermeyer solved the problem for countable graphs and functions $f: V \longrightarrow \omega$. We present a solution for graphs of size \aleph_0 and functions $f: V \longrightarrow \omega \cup {\aleph_0}$, a solution for graphs of size \aleph_1 , and discuss the \aleph_2 -case.

If $H \subseteq E$, then denote by G - H the graph $(V, E \setminus H)$, and if $e \in E$, then let G - e be the graph $G - \{e\}$. If $x, y \in V$, denote by $f_{x,y} \colon V \to CN$ the function defined by

$$f_{x,y}(v) := \begin{cases} f(v) - 1 & \text{if } v \in \{x, y\} \text{ and } 1 \le f(v) < \aleph_0 \\ f(v) & \text{else} \end{cases}.$$

Now let P be a formula with two free variables. P(G, f) means that $(G, f) \in C$ and (G, f) has the property P. P is said to be **hereditary** if for every (G, f) with P(G, f), for every vertex $x \in V(G)$ with f(x) > 0 there exists a vertex $y \in V(G)$ with f(y) > 0, $\{x, y\} \in E(G)$, and $P(G - \{x, y\}, f_{x,y})$.

^{*}This paper was supported by the Volkswagen Stiftung

Remark Let P be a hereditary property, let $(G, f) \in C$ such that P(G, f), and let $W \subseteq V(G)$ be finite. Then there exists a finite f-factor F of G such that $P(G - F, f - d_F)$, $d_F(x) = f(x)$ for every $x \in W$ with $f(x) < \aleph_0$, and $d_F(x) > 0$ for every $x \in W$ with $f(x) \geq \aleph_0$.

Example 1 Let $P_1(G, f)$ be the property "G possesses a perfect f-factor". Obviously P_1 is a hereditary property.

Definition Let $(G, f) \in \mathcal{C}$. By recursion on $\alpha \in ON$ we define the property that (G, f) is an α -obstruction. Let G = (V, E).

If there is an $x \in V$ with f(x) > 0 such that f(y) = 0 for all $y \in V$ with $\{x, y\} \in E$, then (G, f) is a 0-obstruction.

If there is a vertex $x \in V$ such that f(x) > 0 and

- (i) for every $y \in V$ with $\{x, y\} \in E$ and f(y) > 0 there is an ordinal β_y such that $(G \{x, y\}, f_{x,y})$ is a β_y -obstruction and
- (ii) $\alpha = \sup\{\beta_y + 1 \colon \{x, y\} \in E, f(y) > 0\},\$

then (G, f) is an α -obstruction.

Example 2 Let $P_2(G, f)$ be the property "(G, f) is not an α -obstruction for every $\alpha \in ON$ ". Then we can prove the following

Lemma 1

- (i) P_2 is a hereditary property.
- (ii) If P is a hereditary property, then $P_2(G, f)$ is necessary for P(G, f). Therefore P_2 is a necessary condition for the existence of a perfect f-factor.

Proof

- (i) Assume $P_2(G, f)$, that means that for all $\alpha \in ON$, (G, f) is not an α -obstruction. Let G = (V, E) and $x \in V$ with f(x) > 0. To get a contradiction let us assume that, for each $y \in V$ with $\{x, y\} \in E$ and f(y) > 0, there is an ordinal β_y such that $(G - \{x, y\}, f_{x,y})$ is a β_y -obstruction. If $\alpha = \sup\{\beta_y + 1: \{x, y\} \in E, f(y) > 0\}$, then (G, f) is an α -obstruction which contradicts our assumption.
- (ii) By induction on $\alpha \in ON$ we prove for any $(G, f) \in \mathcal{C}$ with P(G, f) that (G, f) is not an α -obstruction.

Since P is heriditary, (G, f) is obviously not a 0-obstruction.

Now let $\alpha > 0$. Assume that (G, f) is an α -obstruction. Let G = (V, E). By definition, there is a vertex $x \in V$ with f(x) > 0 such that for each $y \in V$ with f(y) > 0 and $\{x, y\} \in E$ there is an ordinal $\beta_y < \alpha$ such that $(G - \{x, y\}, f_{x,y})$ is a β_y -obstruction. On the other hand, since P(G, f), P is hereditary, and f(x) > 0, there is an edge $\{x, y\} \in E$ such that $P(G - \{x, y\}, f_{x,y})$. By inductive hypothesis $(G - \{x, y\}, f_{x,y})$ is not a β_y -obstruction. This contradiction proves (ii). For a hereditary property P, it must not be true that $P_2(G, f)$ is sufficient for P(G, f). This is demonstrated by the following example.

Example 3 Let $P_3(G, f)$ be the property "G possesses a perfect f-factor without cycles".

 P_3 also shows that not every hereditary property is a necessary condition for the existence of a perfect *f*-factor.

Definition Let $(G, f) \in C$. For $0 < k \leq \omega$ we call a sequence $T = (v_i)_{0 \leq i < k}$ of vertices of G a **trail** if $\{v_{i-1}, v_i\} \in E(G)$ for 0 < i < k and $\{v_{i-1}, v_i\} \neq \{v_{j-1}, v_j\}$ for $i \neq j$. For any f-factor F, a trail $T = (v_i)_{0 \leq i < k}$ is called F-augmenting if

- (i) k > 1
- (ii) $\{v_{i-1}, v_i\} \in F$ iff i > 0 is even
- (iii) $d_F(v_0) < f(v_0)$
- (iv) $k = \omega$ or $k < \omega$ is even, $v_0 \neq v_{k-1}$ and $d_F(v_{k-1}) < f(v_{k-1})$ or $k < \omega$ is even, $v_0 = v_{k-1}$ and $d_F(v_{k-1}) + 1 < f(v_{k-1})$

Example 4 Let $P_4(G, f)$ be the property "for every f-factor F of G and every vertex $x \in V(G)$ with $d_F(x) < f(x)$ there exists an F-augmenting trail starting at x". Further let $P'_4(G, f)$ be the property " $P_4(G, f)$ and $ran(f) \subseteq \omega$ ".

Lemma 2 If $(G, f) \in \mathcal{C}$ and G possesses a perfect f-factor, then $P_4(G, f)$.

Proof For the convenience of the reader, we present the easy proof. Let G = (V, E), let F be an f-factor of G and H be a perfect f-factor of G. For all $x \in V$ with $d_F(x) < f(x)$, we construct by induction an F-augmenting trail starting at x. Let $v_0 = x$. Since $d_F(v_0) < f(v_0) = d_H(v_0)$ there is an edge $\{v_0, y\} \in H \setminus F$. Let $v_1 = y$. Let the trail $T = (v_j)_{0 \le j \le i}$ be defined such that

- (1) $\{v_{j-1}, v_j\} \in F \setminus H$ iff j > 0 is even.
- (2) $\{v_{j-1}, v_j\} \in H \setminus F$ iff j is odd.

If i is odd, $v_i \neq v_0$, and $d_F(v_i) < f(v_i)$, let k = i + 1.

If i is odd, $v_i = v_0$, and $d_F(v_i) + 1 < f(v_i)$, let again k = i + 1.

If i is odd and $v_i \neq v_0$, $d_F(v_i) = f(v_i)$ or $v_i = v_0$, $d_F(v_i) + 1 \geq f(v_i)$, then there is an edge $\{v_i, y\} \in F \setminus H$ which is not an edge of T. Let $v_{i+1} = y$.

Finally, if i is even, there is an edge $\{v_i, y\} \in H \setminus F$ which is not an edge of the trail T. Let $v_{i+1} = y$.

Much more difficult is the proof of Lemma 3 which is Corollary 4 of [4].

Lemma 3 P'_4 is a hereditary property.

It is not true that every hereditary property P is a sufficient condition for the existence of a perfect f-factor of a given graph. This demonstrates the property P_4 , applied to the complete bipartite graph K_{\aleph_0,\aleph_1} and the function $f \equiv 1$. But we have the following

Theorem 1 Let $(G, f) \in \mathcal{C}$ and $|V(G)| = \aleph_0$. If P is a hereditary property and P(G, f) then G possesses a perfect f-factor.

Proof Let v_0, v_1, v_2, \ldots be an enumeration of the vertices of G such that, for every $x \in V$ with $f(x) = \aleph_0$, the set $\{i < \omega : x = v_i\}$ is infinite. Since P(G, f) and P is hereditary, one can define recursively finite f-factors $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$ such that $(G - F_k, f - d_{F_k})$ fulfills property P and the following is true: If $f(v_0) = \aleph_0$, then $F_0 = \{\{x, v_0\}\}$, if $f(v_k) = \aleph_0, k > 0$, then $F_k \setminus F_{k-1} = \{\{x, v_k\}\}$ for some $x \in V$, and if $f(v_k) < \aleph_0$, then $d_{F_k}(v_k) = f(v_k)$. By construction, $F := \bigcup\{F_k : k < \omega\}$ is a perfect f-factor.

Corollary 1 Let $(G, f) \in \mathcal{C}$ and $|V(G)| = \aleph_0$.

- (1) G has a perfect f-factor iff $P_2(G, f)$.
- (2) If $ran(f) \subseteq \omega$, then G has a perfect f-factor iff $P_4(G, f)$.

Tutte's condition ([3], [5]) for the existence of a perfect 1-factor for finite graphs is necessary but not sufficient for countable graphs. Thus Theorem 1 shows that not every necessary condition for the existence of a perfect f-factor is a hereditary property. The property "Ghas a perfect f-factor with cycles" tells us that a sufficient condition for the existence of a perfect f-factor for G is not necessarily hereditary.

Definition Let $(G, f) \in \mathcal{C}$, G = (V, E), and $|V| = \kappa^+$ for some infinite cardinal κ . Let $(A_{\alpha})_{\alpha < \kappa^+}$ be an increasing continuous sequence of subsets of V such that $|A_{\alpha}| < \kappa^+$ for all $\alpha < \kappa^+$ and $V = \bigcup \{A_{\alpha} : \alpha < \kappa^+\}$. For $\alpha < \kappa^+$ we define

$$V_{\alpha} := (V \setminus A_{\alpha}) \cup f^{-1}(\kappa^{+})$$

$$E_{\alpha} := \{\{x, y\} \in E : x \in V_{\alpha}, y \in V \setminus A_{\alpha}\}$$

$$G_{\alpha} := (V_{\alpha}, E_{\alpha})$$

$$f_{\alpha} := f \upharpoonright V_{\alpha}$$

For any property P, $(A_{\alpha})_{\alpha < \kappa^+}$ is said to be a *P*-destruction of (G, f) if

$$S = \{ \alpha < \kappa^+ \colon (G_\alpha, f_\alpha) \text{ does not fulfill } P \}$$

is stationary in κ^+ . (G, f) is called *P*-destructed if there is a *P*-destruction of (G, f).

Lemma 4 (*Transfer Lemma*) Let P(G, f) be a necessary condition for the existence of a perfect *f*-factor of a graph *G*. If $(G, f) \in C$, $|V(G)| = \kappa^+$ for an infinite cardinal κ , and if *G* possesses a perfect *f*-factor, then (G, f) is not *P*-destructed.

Proof Let *F* be a perfect *f*-factor of *G* and assume that there is a *P*-destruction $(A_{\alpha})_{\alpha < \kappa^+}$ of (G, f). Define $V_{\alpha}, E_{\alpha}, G_{\alpha}, f_{\alpha}, S$ as above and let $\alpha \in S$. (G_{α}, f_{α}) does not fulfill *P*, and by the hypothesis of the Lemma, G_{α} has not a perfect f_{α} -factor. In particular $F_{\alpha} := F \cap E_{\alpha}$ is not a perfect f_{α} -factor of G_{α} . Therefore there is a vertex $x_{\alpha} \in V_{\alpha}$ such that $d_{F_{\alpha}}(x_{\alpha}) < f_{\alpha}(x_{\alpha}) = f(x_{\alpha})$. Since *F* is a perfect *f*-factor, there exists, for some vertex y_{α} , an edge $\{x_{\alpha}, y_{\alpha}\} \in F \setminus F_{\alpha}$. Using the fact $|A_{\alpha}| < \kappa^+$ we know that $d_{F_{\alpha}}(x) = d_F(x) = \kappa^+ = f(x)$ for any $x \in f^{-1}(\kappa^+)$. So $x_{\alpha} \in V_{\alpha} \setminus f^{-1}(\kappa^+)$ and $y_{\alpha} \in A_{\alpha} \setminus f^{-1}(\kappa^+)$.

If $\alpha \in S$ is a limit ordinal, let $\beta(\alpha) < \alpha$ be an ordinal with $y_{\alpha} \in A_{\beta(\alpha)}$. By Fodor's Theorem (cf. [1] or [2], Theorem 1.8.8), there is an ordinal $\gamma < \kappa^+$ such that

 $|\{\alpha \in S : \alpha \text{ limit ordinal}, \beta(\alpha) = \gamma\}| = \kappa^+.$

Since $|A_{\gamma}| < \kappa^+$, there is a vertex $y^* \in A_{\gamma}$ such that

 $|\{\alpha \in S \colon \alpha \text{ limit ordinal}, y_{\alpha} = y^*\}| = \kappa^+.$

If $x \in A_{\alpha_0} \setminus f^{-1}(\kappa^+)$ for some $\alpha_0 < \kappa^+$, then $x \notin V_\alpha$ for all $\alpha > \alpha_0$ and thus

 $|\{\alpha \in S \colon x_\alpha = x\}| < \kappa^+.$

It follows that $f(y^*) = d_F(y^*) = \kappa^+$, so $y^* \in f^{-1}(\kappa^+)$. On the other hand $y^* \in A_\alpha \setminus f^{-1}(\kappa^+)$ for every ordinal α with $y^* = y_\alpha$. This contradiction proves the lemma.

Theorem 2 Let $(G, f) \in C$ and $|V(G)| = \aleph_1$. If P is a hereditary property such that P(G, f) and if (G, f) is not P-destructed then G possesses a perfect f-factor.

Proof Let $(A_{\alpha})_{\alpha < \omega_1}$ be an increasing continuous sequence of countable subsets of V such that $V = \bigcup_{\alpha < \omega_1} A_{\alpha}$. Define $V_{\alpha}, E_{\alpha}, G_{\alpha}, f_{\alpha}$ as above. Since $(A_{\alpha})_{\alpha < \omega_1}$ is not a P-destruction, there is a closed unbounded set $K \subseteq \omega_1$ such that (G_{α}, f_{α}) fulfills P for every $\alpha \in K$. We can assume w.l.o.g. that $K = \omega_1$, because otherwise we could consider the sequence $(A_{\alpha})_{\alpha \in K}$ instead of $(A_{\alpha})_{\alpha < \omega_1}$. Since (G, f) fulfills P we can further assume that $A_0 = \emptyset$.

To obtain a perfect f-factor of G, we now construct an increasing continuous function $i: \omega_1 \to \omega_1$ and an increasing sequence $(F_{\varepsilon})_{\varepsilon < \omega_1}$ of f-factors of G with the following properties:

- (i) $\bigcup F_{\varepsilon} \subseteq A_{i(\varepsilon)}$
- (ii) $\forall x \in A_{i(\varepsilon)}(f(x) \leq \aleph_0 \Rightarrow d_{F_{\varepsilon}}(x) = f(x))$
- (iii) $\forall x \in A_{i(\varepsilon)}(f(x) = \aleph_1 \Rightarrow d_{F_{\varepsilon+1} \setminus F_{\varepsilon}}(x) = \aleph_0)$

Then $F := \bigcup_{\varepsilon < \omega_1} F_{\varepsilon}$ obviously is a perfect *f*-factor of *G*. The function *i* and the sequence $(F_{\varepsilon})_{\varepsilon < \omega_1}$ will be defined by transfinite recursion. Let i(0) := 0 and $F_0 := \emptyset$. Now let $\varepsilon > 0$ and let us assume that, for each $\delta < \varepsilon$, $i(\delta)$ and F_{δ} are already

defined. If ε is a limit ordinal, let $i(\varepsilon) := \bigcup_{\delta < \varepsilon} i(\delta)$ and $F_{\varepsilon} := \bigcup_{\delta < \varepsilon} F_{\delta}$. Now let $\varepsilon = \delta + 1$. By induction on m we define an increasing sequence $(H_m)_{m < \omega}$ of finite $f_{i(\delta)}$ -factors of $G_{i(\varepsilon)}$, an increasing function $\rho: \omega \longrightarrow \omega_1$ and for any $n \ge m$, vertices $x_{m,n} \in V_{i(\varepsilon)}$.

Now let $\varepsilon = \delta + 1$. By induction on m we define an increasing sequence $(H_m)_{m < \omega}$ of finite $J_{i(\delta)}$ factors of $G_{i(\delta)}$, an increasing function $\varrho \colon \omega \longrightarrow \omega_1$, and, for any $n \ge m$, vertices $x_{m,n} \in V_{i(\delta)}$ such that for every m

- (a) $\{x_{m,n}: n \ge m\} = A_{\rho(m+1)} \setminus (A_{\rho(m)} \setminus f^{-1}(\aleph_1))$
- (b) $\bigcup H_m \subseteq A_{\varrho(m)}$
- (c) $d_{H_{m+1}}(x_{k,m}) = f_{i(\delta)}(x_{k,m})$ for all $k \leq m$ with $f_{i(\delta)}(x_{k,m}) < \aleph_0$
- (d) $d_{H_{m+1}\setminus H_m}(x_{k,m}) > 0$ for all $k \leq m$ with $f_{i(\delta)}(x_{k,m}) \geq \aleph_0$
- (e) $P(G_{i(\delta)} H_m, f_{i(\delta)} d_{H_m}).$

Then let $F_{\varepsilon} := F_{\delta} \cup \bigcup \{H_m : m < \omega\}$ and $i(\varepsilon) := \bigcup \{\varrho(m) : m < \omega\}$. By construction, (i), (ii), (iii), (iii) are fulfilled.

 $\mathbf{m} = \mathbf{0}$: Let $\varrho(0) := i(\delta), H_0 := \emptyset$.

 $\mathbf{m} = \mathbf{m} + \mathbf{1}:$ Now suppose that for $m < \omega$ the ordinal $\varrho(m)$, the finite $f_{i(\delta)}$ -factor H_m of $G_{i(\delta)}$, and, for all k < m and $n \ge k$, the vertices $x_{k,n} \in V_{i(\delta)}$ are already defined such that (a) - (e) are fulfilled. The set $W_m := \{x_{k,n} : k \le n < m\}$ is finite. Since P is hereditary, there exists a finite $f_{i(\delta)}$ -factor $H_{m+1} \supseteq H_m$ of $G_{i(\delta)}$ such that $P(G_{i(\delta)} - H_{m+1}, f_{i(\delta)} - d_{H_{m+1}})$ and $d_{H_{m+1}}(x) = f_{i(\delta)}(x)$ whenever $x \in W_m$ and $f_{i(\delta)}(x) < \aleph_0$, or $d_{H_{m+1} \setminus H_m}(x) > 0$ whenever $x \in W_m$ and $f_{i(\delta)}(x) \ge \aleph_0$. Let $\varrho(m+1) > \varrho(m)$ be the least ordinal such that $\bigcup H_{m+1} \subseteq A_{\varrho(m+1)}$. For

Let $\varrho(m+1) > \varrho(m)$ be the least ordinal such that $\bigcup H_{m+1} \subseteq A_{\varrho(m+1)}$. For $n \ge m$ choose $x_{m,n}$ with $\{x_{m,m}, x_{m,m+1}, x_{m,m+2}, \ldots\} = A_{\varrho(m+1)} \setminus (A_{\varrho(m)} \setminus f^{-1}(\aleph_1)).$

Corollary 2 Let $(G, f) \in \mathcal{C}$ and $|V(G)| = \aleph_1$.

- (i) G possesses a perfect f-factor if and only if (G, f) is not P_2 -destructed.
- (ii) If $ran(f) \subseteq \omega$ then G possesses a perfect f-factor if and only if (G, f) is not P_4 -destructed.

To handle the cases of higher cardinality, we introduce the notion of a κ -perfect f-factor.

Definition Let $(G, f) \in C$ and let κ be an infinite cardinal. An *f*-factor *F* of *G* is said to be κ -perfect if $d_F(x) = f(x)$ for all vertices x with $f(x) \leq \kappa$ and $d_F(x) > 0$ for all vertices x with $f(x) > \kappa$.

Theorem 3 Let κ be an infinite cardinal, $(G, f) \in C$, and $|V(G)| = \kappa^+$. G possesses a perfect f-factor if and only if there is an increasing continuous sequence $(A_{\alpha})_{\alpha < \kappa^+}$ of subsets of V(G) such that

- (i) $A_0 = \emptyset, V(G) = \bigcup \{A_\alpha \colon \alpha < \kappa^+\},\$
- (ii) $|A_{\alpha+1} \setminus A_{\alpha}| = \kappa$ for all $\alpha < \kappa^+$,
- (iii) for all $\alpha < \kappa^+$ there exists an κ -perfect g_{α} -factor of $(B_{\alpha}, \{\{x, y\} \in E : x \in B_{\alpha}, y \in A_{\alpha+1} \setminus A_{\alpha}\})$, where $B_{\alpha} = (A_{\alpha+1} \setminus (A_{\alpha} \setminus f^{-1}(\kappa^+)))$ and $g_{\alpha} := f \upharpoonright B_{\alpha}$.

Proof Let $(A_{\alpha})_{\alpha < \kappa^{+}}$ be an increasing continuous sequence of subsets of V and, for $\alpha < \kappa^{+}$, let F_{α} be a κ -perfect g_{α} -factor with the properties (i), (ii), (iii). Then $F_{\alpha_{1}} \cap F_{\alpha_{2}} = \emptyset$ if $\alpha_{1} \neq \alpha_{2}$. Let $F := \bigcup \{F_{\alpha} : \alpha < \kappa^{+}\}$. We will show that F is a perfect f-factor of G. Let $x \in V$ and let α be the smallest ordinal such that $x \in A_{\alpha+1}$. If $f(x) \leq \kappa$ then $d_{F}(x) = d_{F_{\alpha}}(x) = f(x)$. If on the other hand $f(x) > \kappa$, we have $d_{F_{\beta}}(x) > 0$ for all $\beta \geq \alpha$ since F_{β} is κ -perfect. Thus $d_{F}(x) = \kappa^{+}$.

To prove the converse, let F be a perfect f-factor of G and $A_0 := \emptyset$. Let $(P_{\delta}: \delta < \kappa^+)$ be a partition of V such that $|P_{\delta}| = \kappa$ for all $\delta < \kappa^+$. Now assume that $A_{\delta} \subseteq V$ is defined for all $\delta < \alpha$. If α is a limit ordinal, then let $A_{\alpha} = \bigcup \{A_{\delta}: \delta < \alpha\}$. If $\alpha = \delta + 1$, we define by induction an increasing sequence $(C_n)_{n < \omega}$ of subsets of V. Let $C_0 \subseteq V$ such that $A_{\delta} \cup P_{\delta} \subseteq C_0$ and $|C_0 \setminus A_{\delta}| = \kappa$. If C_n is defined let C_{n+1} be a " κ -neighborhood" of C_n : If $x \in C_n$ and $f(x) \leq \kappa$ let $N(x) = \{y \in V: \{y, x\} \in F\}$, and if $f(x) = \kappa^+$ choose $y_x \in V \setminus C_n$ with $\{y_x, x\} \in F$ and let $N(x) = \{y_x\}$. Then let $C_{n+1} = C_n \cup \bigcup \{N(x): x \in C_n\}$ and $A_{\alpha} := \bigcup \{C_n: n < \omega\}$. By construction, $(A_{\alpha})_{\alpha < \kappa^+}$ is an increasing continuous sequence of subsets of V with the properties (i), (ii), (iii).

Remark If $\kappa^+ = \aleph_2$, $g_\alpha := f \upharpoonright V_\alpha \cap A_{\alpha+1}$ and $X_\alpha := A_{\alpha+1} \cap f^{-1}(\aleph_2)$, then there is an \aleph_1 -perfect g_α -factor of $(V_\alpha \cap A_{\alpha+1}, \{\{x, y\} \in E : x \in V_\alpha \cap A_{\alpha+1}, y \in A_{\alpha+1} \setminus A_\alpha\})$ if and only if there exists a function $h_\alpha : A_{\alpha+1} \cap f^{-1}(\aleph_2) \to \omega \cup \{\aleph_0, \aleph_1\}$ such that there is a perfect $(g_\alpha \setminus (g_\alpha \upharpoonright X_\alpha)) \cup h_\alpha$ -factor of $(V_\alpha \cap A_{\alpha+1}, \{\{x, y\} \in E : x \in V_\alpha \cap A_{\alpha+1}, y \in A_{\alpha+1} \setminus A_\alpha\})$.

Corollary 3 Let $(G, f) \in \mathcal{C}$ and $|V(G)| = \aleph_2$. *G* possesses a perfect *f*-factor if and only if there is an increasing continuous sequence $(A_{\alpha})_{\alpha < \omega_2}$ of subsets of V(G), such that

- (i) $A_0 = \emptyset$, $V(G) = \bigcup_{\alpha < \omega_2} A_{\alpha}$.
- (ii) $|A_{\alpha+1} \setminus A_{\alpha}| = \aleph_1$ for all $\alpha < \omega_2$.
- (iii) For each $\alpha < \omega_2$ there is a function $h_{\alpha} \colon A_{\alpha+1} \cap f^{-1}(\aleph_2) \to \omega \cup \{\aleph_0, \aleph_1\}$ such that the graph

$$(A_{\alpha+1} \setminus (A_{\alpha} \setminus f^{-1}(\aleph_2)), \{\{x, y\} \in E \colon x \in A_{\alpha+1} \setminus (A_{\alpha} \setminus f^{-1}(\aleph_2)), y \in A_{\alpha+1} \setminus A_{\alpha}\})$$

together with

$$\left(f \upharpoonright A_{\alpha+1} \setminus (A_{\alpha} \setminus f^{-1}(\aleph_2)) \setminus f \upharpoonright (A_{\alpha+1} \cap f^{-1}(\aleph_2))\right) \cup h_{\alpha}$$

is not P_2 -destructed.

References

- G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), 139-142.
- [2] M. Holz, K. Steffens, E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser, Advanced Texts, Basel, Boston, Berlin 1999.

- [3] L. Lovász, M. D. Plummer, *Matching Theory*, Annals of Discrete Mathematics, 29, North-Holland 1986.
- [4] F. Niedermeyer, *f-optimal factors of infinite graphs*, Discrete Mathematics 95 (1991), 231-254, North Holland.
- [5] W. T. Tutte, The Factors of Graphs, Canad. J. Math. 4 (1952), 314-328.