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Abstract

If P is a hereditary property then we show that, for the existence of a perfect f -factor,
P is a sufficient condition for countable graphs and yields a sufficient condition for graphs
of size ℵ1. Further we give two examples of a hereditary property which is even necessary
for the existence of a perfect f -factor. We also discuss the ℵ2-case.

We consider graphs G = (V,E), where V = V (G) is a nonempty set of vertices and E =
E(G) ⊆ { e ⊆ V : |e| = 2} is the set of edges of G. If x is a vertex of G and F ⊆ E, then we
denote by dF (x) the cardinal |{e ∈ F : x ∈ e}|. dF (x) is called the degree of x with respect
to F and dE(x) the degree of x. ON denotes the class of ordinals, CN the class of cardinals.
Greek letters α, β, γ, . . . always denote ordinals, whereas the middle letters κ, λ, µ, ν, . . . are
reserved for infinite cardinals.

Let G = (V,E) be a graph, f : V → CN be a function and F ⊆ E. F is said to be an f-factor
of G if dF (x) ≤ f(x) for all x ∈ V . We call an f -factor F of G perfect if dF (x) = f(x) for
all x ∈ V . For κ ∈ CN we denote f−1(κ) := {x ∈ V : f(x) = κ}.
Let C be the class of all ordered pairs (G, f), such that G = (V,E) is a graph, f : V → CN
is a function, and f(x) ≤ dE(x) for all x ∈ V .

This paper discusses the problem to find a necessary and sufficient condition for the existence
of a perfect f -factor of a graph. In [5], Tutte published a criterion for finite graphs, and in [4]
Niedermeyer solved the problem for countable graphs and functions f : V −→ ω. We present
a solution for graphs of size ℵ0 and functions f : V −→ ω ∪{ℵ0}, a solution for graphs of size
ℵ1, and discuss the ℵ2-case.

If H ⊆ E, then denote by G −H the graph (V,E \H), and if e ∈ E, then let G − e be the
graph G− {e}. If x, y ∈ V , denote by fx,y : V → CN the function defined by

fx,y(v) :=

{
f(v)− 1 if v ∈ {x, y} and 1 ≤ f(v) < ℵ0
f(v) else

.

Now let P be a formula with two free variables. P (G, f) means that (G, f) ∈ C and (G, f)
has the property P . P is said to be hereditary if for every (G, f) with P (G, f), for every
vertex x ∈ V (G) with f(x) > 0 there exists a vertex y ∈ V (G) with f(y) > 0, {x, y} ∈ E(G),
and P (G− {x, y}, fx,y).
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Remark Let P be a hereditary property, let (G, f) ∈ C such that P (G, f), and let W ⊆
V (G) be finite. Then there exists a finite f -factor F of G such that P (G − F, f − dF ),
dF (x) = f(x) for every x ∈ W with f(x) < ℵ0, and dF (x) > 0 for every x ∈ W with
f(x) ≥ ℵ0.

Example 1 Let P1(G, f) be the property “G possesses a perfect f -factor”. Obviously P1

is a hereditary property.

Definition Let (G, f) ∈ C. By recursion on α ∈ ON we define the property that (G, f) is
an α-obstruction. Let G = (V,E).

If there is an x ∈ V with f(x) > 0 such that f(y) = 0 for all y ∈ V with {x, y} ∈ E, then
(G, f) is a 0-obstruction.

If there is a vertex x ∈ V such that f(x) > 0 and

(i) for every y ∈ V with {x, y} ∈ E and f(y) > 0 there is an ordinal βy such that
(G− {x, y}, fx,y) is a βy-obstruction and

(ii) α = sup{βy + 1: {x, y} ∈ E, f(y) > 0},

then (G, f) is an α-obstruction.

Example 2 Let P2(G, f) be the property “(G, f) is not an α-obstruction for every α ∈ ON ”.
Then we can prove the following

Lemma 1

(i) P2 is a hereditary property.

(ii) If P is a hereditary property, then P2(G, f) is necessary for P (G, f). Therefore P2 is a
necessary condition for the existence of a perfect f -factor.

Proof

(i) Assume P2(G, f), that means that for all α ∈ ON , (G, f) is not an α-obstruction.
Let G = (V,E) and x ∈ V with f(x) > 0. To get a contradiction let us assume
that, for each y ∈ V with {x, y} ∈ E and f(y) > 0, there is an ordinal βy such that
(G − {x, y}, fx,y) is a βy-obstruction. If α = sup{βy + 1: {x, y} ∈ E, f(y) > 0}, then
(G, f) is an α-obstruction which contradicts our assumption.

(ii) By induction on α ∈ ON we prove for any (G, f) ∈ C with P (G, f) that (G, f) is not
an α-obstruction.

Since P is heriditary, (G, f) is obviously not a 0-obstruction.

Now let α > 0. Assume that (G, f) is an α-obstruction. Let G = (V,E). By definition,
there is a vertex x ∈ V with f(x) > 0 such that for each y ∈ V with f(y) > 0 and
{x, y} ∈ E there is an ordinal βy < α such that (G − {x, y}, fx,y) is a βy-obstruction.
On the other hand, since P (G, f), P is hereditary, and f(x) > 0, there is an edge
{x, y} ∈ E such that P (G − {x, y}, fx,y). By inductive hypothesis (G − {x, y}, fx,y) is
not a βy-obstruction. This contradiction proves (ii).
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For a hereditary property P , it must not be true that P2(G, f) is sufficient for P (G, f). This
is demonstrated by the following example.

Example 3 Let P3(G, f) be the property “G possesses a perfect f -factor without cycles”.

P3 also shows that not every hereditary property is a necessary condition for the existence of
a perfect f -factor.

Definition Let (G, f) ∈ C. For 0 < k ≤ ω we call a sequence T = (vi)0≤i<k of vertices of
G a trail if {vi−1, vi} ∈ E(G) for 0 < i < k and {vi−1, vi} 6= {vj−1, vj} for i 6= j. For any
f -factor F , a trail T = (vi)0≤i<k is called F -augmenting if

(i) k > 1

(ii) {vi−1, vi} ∈ F iff i > 0 is even

(iii) dF (v0) < f(v0)

(iv) k = ω
or
k < ω is even, v0 6= vk−1 and dF (vk−1) < f(vk−1)
or
k < ω is even, v0 = vk−1 and dF (vk−1) + 1 < f(vk−1)

Example 4 Let P4(G, f) be the property “for every f -factor F of G and every vertex
x ∈ V (G) with dF (x) < f(x) there exists an F -augmenting trail starting at x”. Further let
P ′4(G, f) be the property “P4(G, f) and ran(f) ⊆ ω”.

Lemma 2 If (G, f) ∈ C and G possesses a perfect f -factor, then P4(G, f).

Proof For the convenience of the reader, we present the easy proof. Let G = (V,E), let
F be an f -factor of G and H be a perfect f -factor of G. For all x ∈ V with dF (x) < f(x),
we construct by induction an F -augmenting trail starting at x. Let v0 = x. Since dF (v0) <
f(v0) = dH(v0) there is an edge {v0, y} ∈ H \ F . Let v1 = y. Let the trail T = (vj)0≤j≤i be
defined such that

(1) {vj−1, vj} ∈ F \H iff j > 0 is even.

(2) {vj−1, vj} ∈ H \ F iff j is odd.

If i is odd, vi 6= v0, and dF (vi) < f(vi), let k = i+ 1.

If i is odd, vi = v0, and dF (vi) + 1 < f(vi), let again k = i+ 1.

If i is odd and vi 6= v0, dF (vi) = f(vi) or vi = v0, dF (vi) + 1 ≥ f(vi), then there is an edge
{vi, y} ∈ F \H which is not an edge of T . Let vi+1 = y.

Finally, if i is even, there is an edge {vi, y} ∈ H \ F which is not an edge of the trail T . Let
vi+1 = y.

Much more difficult is the proof of Lemma 3 which is Corollary 4 of [4].

3

Paper Sh:557, version 2003-01-20 11. See https://shelah.logic.at/papers/557/ for possible updates.



Lemma 3 P ′4 is a hereditary property.

It is not true that every hereditary property P is a sufficient condition for the existence of a
perfect f -factor of a given graph. This demonstrates the property P4, applied to the complete
bipartite graph Kℵ0,ℵ1 and the function f ≡ 1. But we have the following

Theorem 1 Let (G, f) ∈ C and |V (G)| = ℵ0. If P is a hereditary property and P (G, f)
then G possesses a perfect f -factor.

Proof Let v0, v1, v2, . . . be an enumeration of the vertices of G such that, for every x ∈ V
with f(x) = ℵ0, the set {i < ω : x = vi} is infinite. Since P (G, f) and P is hereditary, one
can define recursively finite f -factors F0 ⊆ F1 ⊆ F2 ⊆ · · · such that (G− Fk, f − dFk) fulfills
property P and the following is true: If f(v0) = ℵ0, then F0={{x, v0}}, if f(vk) = ℵ0, k > 0,
then Fk \ Fk−1 =

{
{x, vk}

}
for some x ∈ V , and if f(vk) < ℵ0, then dFk(vk) = f(vk). By

construction, F :=
⋃
{Fk : k < ω} is a perfect f -factor.

Corollary 1 Let (G, f) ∈ C and |V (G)| = ℵ0.

(1) G has a perfect f -factor iff P2(G, f).

(2) If ran(f) ⊆ ω, then G has a perfect f -factor iff P4(G, f).

Tutte’s condition ([3], [5]) for the existence of a perfect 1-factor for finite graphs is necessary
but not sufficient for countable graphs. Thus Theorem 1 shows that not every necessary
condition for the existence of a perfect f -factor is a hereditary property. The property “G
has a perfect f -factor with cycles” tells us that a sufficient condition for the existence of a
perfect f -factor for G is not necessarily hereditary.

Definition Let (G, f) ∈ C, G = (V,E), and |V | = κ+ for some infinite cardinal κ. Let
(Aα)α<κ+ be an increasing continuous sequence of subsets of V such that |Aα| < κ+ for all
α < κ+ and V =

⋃
{Aα : α < κ+}. For α < κ+ we define

Vα := (V \Aα) ∪ f−1(κ+)

Eα :=
{
{x, y} ∈ E : x ∈ Vα, y ∈ V \Aα

}
Gα := (Vα, Eα)

fα := f � Vα

For any property P , (Aα)α<κ+ is said to be a P -destruction of (G, f) if

S = {α < κ+ : (Gα, fα) does not fulfill P}

is stationary in κ+. (G, f) is called P -destructed if there is a P -destruction of (G, f).

Lemma 4 (Transfer Lemma) Let P (G, f) be a necessary condition for the existence of a
perfect f -factor of a graph G. If (G, f) ∈ C, |V (G)| = κ+ for an infinite cardinal κ, and if G
possesses a perfect f -factor, then (G, f) is not P -destructed.
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Proof Let F be a perfect f -factor of G and assume that there is a P -destruction (Aα)α<κ+
of (G, f). Define Vα, Eα, Gα, fα, S as above and let α ∈ S. (Gα, fα) does not fulfill P , and
by the hypothesis of the Lemma, Gα has not a perfect fα-factor. In particular Fα := F ∩Eα
is not a perfect fα-factor of Gα. Therefore there is a vertex xα ∈ Vα such that dFα(xα) <
fα(xα) = f(xα). Since F is a perfect f -factor, there exists, for some vertex yα, an edge
{xα, yα} ∈ F \ Fα. Using the fact |Aα| < κ+ we know that dFα(x) = dF (x) = κ+ = f(x) for
any x ∈ f−1(κ+). So xα ∈ Vα \ f−1(κ+) and yα ∈ Aα \ f−1(κ+). .

If α ∈ S is a limit ordinal, let β(α) < α be an ordinal with yα ∈ Aβ(α). By Fodor’s Theorem
(cf. [1] or [2], Theorem 1.8.8), there is an ordinal γ < κ+ such that

|{α ∈ S : α limit ordinal, β(α) = γ}| = κ+.

Since |Aγ | < κ+, there is a vertex y∗ ∈ Aγ such that

|{α ∈ S : α limit ordinal, yα = y∗}| = κ+.

If x ∈ Aα0 \ f−1(κ+) for some α0 < κ+, then x 6∈ Vα for all α > α0 and thus

|{α ∈ S : xα = x}| < κ+.

It follows that f(y∗) = dF (y∗) = κ+, so y∗ ∈ f−1(κ+). On the other hand y∗ ∈ Aα \ f−1(κ+)
for every ordinal α with y∗ = yα. This contradiction proves the lemma.

Theorem 2 Let (G, f) ∈ C and |V (G)| = ℵ1. If P is a hereditary property such that
P (G, f) and if (G, f) is not P -destructed then G possesses a perfect f -factor.

Proof Let (Aα)α<ω1 be an increasing continuous sequence of countable subsets of V such
that V =

⋃
α<ω1

Aα. Define Vα, Eα, Gα, fα as above. Since (Aα)α<ω1 is not a P -destruction,
there is a closed unbounded set K ⊆ ω1 such that (Gα, fα) fulfills P for every α ∈ K. We can
assume w. l. o. g. that K = ω1, because otherwise we could consider the sequence (Aα)α∈K
instead of (Aα)α<ω1 . Since (G, f) fulfills P we can further assume that A0 = ∅.
To obtain a perfect f -factor of G, we now construct an increasing continuous function
i : ω1 → ω1 and an increasing sequence (Fε)ε<ω1 of f -factors of G with the following proper-
ties:

(i)
⋃
Fε ⊆ Ai(ε)

(ii) ∀x ∈ Ai(ε)
(
f(x) ≤ ℵ0 ⇒ dFε(x) = f(x)

)
(iii) ∀x ∈ Ai(ε)

(
f(x) = ℵ1 ⇒ dFε+1\Fε(x) = ℵ0

)
Then F :=

⋃
ε<ω1

Fε obviously is a perfect f -factor of G.

The function i and the sequence (Fε)ε<ω1 will be defined by transfinite recursion. Let i(0) := 0
and F0 := ∅. Now let ε > 0 and let us assume that, for each δ < ε, i(δ) and Fδ are already
defined. If ε is a limit ordinal, let i(ε) :=

⋃
δ<ε i(δ) and Fε :=

⋃
δ<ε Fδ.

Now let ε = δ+1. By induction on m we define an increasing sequence (Hm)m<ω of finite fi(δ)-
factors of Gi(δ), an increasing function % : ω −→ ω1, and, for any n ≥ m, vertices xm,n ∈ Vi(δ)
such that for every m
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(a) {xm,n : n ≥ m} = A%(m+1) \ (A%(m) \ f−1(ℵ1))

(b)
⋃
Hm ⊆ A%(m)

(c) dHm+1(xk,m) = fi(δ)(xk,m) for all k ≤ m with fi(δ)(xk,m) < ℵ0

(d) dHm+1\Hm(xk,m) > 0 for all k ≤ m with fi(δ)(xk,m) ≥ ℵ0

(e) P (Gi(δ) −Hm, fi(δ) − dHm).

Then let Fε := Fδ ∪
⋃
{Hm : m < ω} and i(ε) :=

⋃
{%(m) : m < ω}. By construction, (i), (ii),

(iii) are fulfilled.

m = 0 : Let %(0) := i(δ), H0 := ∅.

m = m + 1 : Now suppose that for m < ω the ordinal %(m), the finite fi(δ)-factor Hm of
Gi(δ), and, for all k < m and n ≥ k, the vertices xk,n ∈ Vi(δ) are already
defined such that (a) - (e) are fulfilled.

The set Wm := {xk,n : k ≤ n < m} is finite. Since P is hereditary, there exists
a finite fi(δ)-factor Hm+1 ⊇ Hm of Gi(δ) such that P (Gi(δ) − Hm+1, fi(δ) −
dHm+1) and dHm+1(x) = fi(δ)(x) whenever x ∈ Wm and fi(δ)(x) < ℵ0, or
dHm+1\Hm(x) > 0 whenever x ∈Wm and fi(δ)(x) ≥ ℵ0.
Let %(m + 1) > %(m) be the least ordinal such that

⋃
Hm+1 ⊆ A%(m+1). For

n ≥ m choose xm,n with {xm,m, xm,m+1, xm,m+2, . . .} = A%(m+1) \ (A%(m) \
f−1(ℵ1)).

Corollary 2 Let (G, f) ∈ C and |V (G)| = ℵ1.

(i) G possesses a perfect f -factor if and only if (G, f) is not P2-destructed.

(ii) If ran(f) ⊆ ω then G possesses a perfect f -factor if and only if (G, f) is not P4-
destructed.

To handle the cases of higher cardinality, we introduce the notion of a κ-perfect f -factor.

Definition Let (G, f) ∈ C and let κ be an infinite cardinal. An f -factor F of G is said to
be κ-perfect if dF (x) = f(x) for all vertices x with f(x) ≤ κ and dF (x) > 0 for all vertices
x with f(x) > κ.

Theorem 3 Let κ be an infinite cardinal, (G, f) ∈ C, and |V (G)| = κ+. G possesses a
perfect f -factor if and only if there is an increasing continuous sequence (Aα)α<κ+ of subsets
of V (G) such that

(i) A0 = ∅, V (G) =
⋃
{Aα : α < κ+},

(ii) |Aα+1 \Aα| = κ for all α < κ+,

(iii) for all α < κ+ there exists an κ-perfect gα-factor of
(Bα,

{
{x, y} ∈ E : x ∈ Bα, y ∈ Aα+1 \Aα

}
), where

Bα = (Aα+1 \ (Aα \ f−1(κ+))) and gα := f � Bα.

6

Paper Sh:557, version 2003-01-20 11. See https://shelah.logic.at/papers/557/ for possible updates.



Proof Let (Aα)α<κ+ be an increasing continuous sequence of subsets of V and, for α < κ+,
let Fα be a κ-perfect gα-factor with the properties (i), (ii), (iii). Then Fα1∩Fα2 = ∅ if α1 6= α2.
Let F :=

⋃
{Fα : α < κ+}. We will show that F is a perfect f -factor of G. Let x ∈ V and

let α be the smallest ordinal such that x ∈ Aα+1. If f(x) ≤ κ then dF (x) = dFα(x) = f(x).
If on the other hand f(x) > κ, we have dFβ (x) > 0 for all β ≥ α since Fβ is κ-perfect. Thus
dF (x) = κ+.

To prove the converse, let F be a perfect f -factor of G and A0 := ∅. Let (Pδ : δ < κ+) be a
partition of V such that |Pδ| = κ for all δ < κ+. Now assume that Aδ ⊆ V is defined for all
δ < α. If α is a limit ordinal, then let Aα =

⋃
{Aδ : δ < α}. If α = δ+1, we define by induction

an increasing sequence (Cn)n<ω of subsets of V . Let C0 ⊆ V such that Aδ ∪ Pδ ⊆ C0 and
|C0 \Aδ| = κ. If Cn is defined let Cn+1 be a ”κ-neighborhood” of Cn: If x ∈ Cn and f(x) ≤ κ
let N(x) = {y ∈ V : {y, x} ∈ F}, and if f(x) = κ+ choose yx ∈ V \ Cn with {yx, x} ∈ F
and let N(x) = {yx}. Then let Cn+1 = Cn ∪

⋃
{N(x) : x ∈ Cn} and Aα :=

⋃
{Cn : n < ω}.

By construction, (Aα)α<κ+ is an increasing continuous sequence of subsets of V with the
properties (i), (ii), (iii).

Remark If κ+ = ℵ2, gα := f � Vα ∩ Aα+1 and Xα := Aα+1 ∩ f−1(ℵ2), then there is an
ℵ1-perfect gα-factor of (Vα ∩ Aα+1, {{x, y} ∈ E : x ∈ Vα ∩ Aα+1, y ∈ Aα+1 \ Aα}) if and only
if there exists a function hα : Aα+1 ∩ f−1(ℵ2) → ω ∪ {ℵ0,ℵ1} such that there is a perfect
(gα \ (gα�Xα)) ∪ hα-factor of (Vα ∩Aα+1, {{x, y} ∈ E : x ∈ Vα ∩Aα+1, y ∈ Aα+1 \Aα}).

Corollary 3 Let (G, f) ∈ C and |V (G)| = ℵ2. G possesses a perfect f -factor if and only if
there is an increasing continuous sequence (Aα)α<ω2 of subsets of V (G), such that

(i) A0 = ∅, V (G) =
⋃
α<ω2

Aα.

(ii) |Aα+1 \Aα| = ℵ1 for all α < ω2.

(iii) For each α < ω2 there is a function hα : Aα+1 ∩ f−1(ℵ2) → ω ∪ {ℵ0,ℵ1} such that the
graph

(Aα+1 \ (Aα \ f−1(ℵ2)), {{x, y} ∈ E : x ∈ Aα+1 \ (Aα \ f−1(ℵ2)), y ∈ Aα+1 \Aα})

together with (
f � Aα+1 \ (Aα \ f−1(ℵ2) ) \ f � (Aα+1 ∩ f−1(ℵ2))

)
∪ hα

is not P2-destructed.
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