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Abstract. The aim of this paper is to present an answer to Problem 1
of Monk [Mon90], [Mon96]. We do this by proving in particular that

if µ is a strong limit singular cardinal, θ = (2cf(µ))+, 2µ = µ+

then there are Boolean algebras B1,B2 such that

c(B1) = µ, c(B2) < θ but c(B1 ∗ B2) = µ+.

Further we improve this result, deal with the method and the necessity
of the assumptions.

0. Introduction

Notation 0.1. (1) In the present paper all cardinals are infinite so we will
not repeat this additional demand. Cardinals will be denoted by λ,
µ, θ (with possible indexes) while ordinal numbers will be called α,
β, ζ, ξ, ε, i, j. Usually δ will stand for a limit ordinal (we may forget
to repeat this assumption).

(2) Sequences of ordinals will be called η, ν, ρ (with possible indexes).
For sequences η1, η2 their longest common initial segment is denoted
by η1 ∧ η2. The length of the sequence η is lg(η).

(3) Ideals are supposed to be proper and contain all singletons. For a
limit ordinal δ the ideal of bounded subsets of δ is denoted by Jbd

δ .
If I is an ideal on a set X then I+ is the family of I-large sets, i.e.

a ∈ I+ if and only if a ⊆ X & a /∈ I

and Ic is the dual filter of sets with the complements in I.

Notation 0.2. (1) In a Boolean algebra we denote the Boolean opera-
tions by ∩ (and

⋂
), ∪ (and

⋃
), −. The distinguished elements are

0 and 1. In the cases which may be confusing we will add indexes
to underline in which Boolean algebra the operation (the element)
is considered, but generally we will not do it.
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(2) For a Boolean algebra B and an element x ∈ B we denote:

x0 = x and x1 = −x.
(3) The free product of Boolean algebras B1, B2 is denoted by B1 ∗ B2.

We will use F to denote the free product of a family of Boolean
algebras.

Definition 0.3. (1) A Boolean algebra B satisfies the λ-cc if there is no

family F ⊆ B+ def
= B \ {0} such that |F| = λ and any two members

of F are disjoint (i.e., their meet in B is 0).
(2) The cellularity of the algebra B is

c(B) = sup{|F| : F ⊆ B+ & (∀x, y ∈ F)(x 6= y ⇒ x ∩ y = 0)},
c+(B) = sup{|F|+ : F ⊆ B+ & (∀x, y ∈ F)(x 6= y ⇒ x ∩ y = 0)}.

(3) For a topological space (X, τ):

c(X, τ) = sup{|U| : U is a family of pairwise disjoint
nonempty open sets}.

The problem can be posed in each of the three ways (λ–cc is the way
of forcing, the cellularity of Boolean algebras is the approach of Boolean
algebraists, and the cellularity of a topological space is the way of general
topologists). It is well known that the three are equivalent, though (1)
makes the attainment problem more explicit. We use the second approach.

A stronger property then λ-cc is the λ-Knaster property. This property
behaves nicely in free products – it is productive. We will use it in our
construction.

Definition 0.4. A Boolean algebra B has the λ-Knaster property if for

every sequence 〈zε : ε < λ〉 ⊆ B+ there is A ∈ [λ]λ such that

ε1, ε2 ∈ A ⇒ zε1 ∩ zε2 6= 0.

We are interested in the behaviour of the cellularity of Boolean algebras
when the free product of them is considered.

Thema 0.5. When, for Boolean algebras B1, B2

c+(B1) ≤ λ1 & c+(B2) ≤ λ2 ⇒ c+(B1 ∗ B2) ≤ λ1 + λ2?

There are a lot of results about it, particularly if λ1 = λ2 (see [She94c] or
[Mon90], more [She97]). It is well know that if

(λ+
1 + λ+

2 ) −→ (λ+
1 , λ

+
2 )2

then the answer is “yes”. These are exactly the cases for which “yes” answer
is known. Under GCH the only problem which remained open was the one
presented below:
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The Problem We Address 0.6.
(Posed by D. Monk as Problem 1 in [Mon90], [Mon96] under GCH))
Are there Boolean algebras B1, B2 and cardinals µ, θ such that

(1) λ1 = µ is singular, µ > λ2 = θ > cf(µ) and
(2) c(B1) = µ, c(B2) ≤ θ but c(B1 ∗ B2) > µ?

We will answer this question proving in particular the following result (see
4.4):

If µ is a strong limit singular cardinal, θ = (2cf(µ))+, 2µ = µ+

then there are Boolean algebras B1,B2 such that

c(B1) = µ, c(B2) < θ but c(B1 ∗ B2) = µ+.

Later we deal with better results by refining the method.

Remark 0.7. On products of many Boolean algebras and square bracket
arrows see [She90, 1.2A, 1.3B].

If λ −→ [µ]2, [τ < σ ⇒ 2τ < θ], the cardinals θ, σ are possibly finite, Bi
(for i < θ) are Boolean algebras such that for each j < θ the free product
F

i∈θ\{j}
Bi satisfies the µ-cc then the algebra B = F

i<θ
Bi satisfies the λ-cc.

[Why? Assume 〈aζi : i < θ〉 ∈
∏
i<θ

B+
i (for ζ < λ) such that for every ζ < ξ <

λ, for some i = i(ζ, ξ), Bi |=“aζi ∩ a
ξ
i = 0”. We can find A ∈ [λ]µ and j < θ

such that i(ζ, ξ) = j for ζ < ξ from A. Then 〈aζi : i < θ, i 6= i∗〉 for ζ ∈ A
exemplifies F

i∈θ\{i∗}
Bi fails the µ–cc. We can deal also with ultraproducts

and other products similarly.]

1. Preliminaries: products of ideals

Notation 1.1. For an ideal J on δ the quantifier (∀J i < δ) means “for all
i < δ except a set from the ideal”, i.e.,

(∀J i < δ)ϕ(i) ≡ {i < δ : ¬ϕ(i)} ∈ J.

The dual quantifier (∃J i < δ) means “for a J-positive set of i < δ”.

Proposition 1.2. Assume that λ0 > λ1 > . . . > λn−1 are cardinals, I` are
ideals on λ` (for ` < n) and B ⊆

∏
`<n

λ`. Further suppose that

(α) (∃I0γ0) . . . (∃In−1
γn−1)(〈γ` : ` < n〉 ∈ B)

(β) the ideal I` is (2λ
`+1

)+-complete (for `+ 1 < n).

Paper Sh:575, version 2005-02-03 11. See https://shelah.logic.at/papers/575/ for possible updates.



CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 3

Then there are sets X` ⊆ λ`, X` /∈ I` such that
∏
`<n

X` ⊆ B.

[Note that this translates the situation to arity 1; it is a kind of polarized
(1, . . . , 1)-partitions with ideals.]

Proof. We show it by induction on n. Define

E0
def
= {(γ′, γ′′) : γ′, γ′′ < λ0 and

for all γ1 < λ1, . . . , γn−1 < λn−1 we have
(〈γ′, γ1, . . . , γn−1〉 ∈ B ⇔ 〈γ′′, γ1, . . . , γn−1〉 ∈ B)}.

Clearly E0 is an equivalence relation on λ0 with ≤ 2
∏

0<m<n λ
m

= 2λ
1

equiv-
alence classes. Hence the set

A0
def
=
⋃
{A : A is an E0-equivalence class, A ∈ I0}

is in the ideal I0. Let

A∗0
def
= {γ0 < λ0 : (∃I1γ1) . . . (∃In−1

γn−1)(〈γ0, γ1, . . . , γn−1〉 ∈ B).

The assumption (α) implies that A∗0 /∈ I0 and hence we may choose γ∗0 ∈
A∗0 \ A0. Let

B1
def
= {γ̄ ∈

n−1∏
k=1

λk : 〈γ∗0〉_γ̄ ∈ B}.

Since γ∗0 ∈ A∗0 we are sure that

(∃I1γ1) . . . (∃In−1

γn−1)(〈γ1, . . . , γn−1〉 ∈ B1).

Hence we may apply the inductive hypothesis for n− 1 and B1 and we find

sets X1 ∈ (I1)+, . . . , Xn−1 ∈ (In−1)+ such that
n−1∏̀
=1

X` ⊆ B1, so then

(∀γ1 ∈ X1) . . . (∀γn−1 ∈ Xn−1)(〈γ∗0 , γ1, . . . , γn−1〉 ∈ B).

Take X0 to be the E0-equivalence class of γ∗0 (so X0 ∈ (I0)+ as γ∗0 /∈ A0).
By the definition of the relation E0 and the choice of the sets X` we have
that for each γ0 ∈ X0

(∀γ1 ∈ X1) . . . (∀γn−1 ∈ Xn−1)(〈γ0, γ1, . . . , γn−1〉 ∈ B)

what means that
∏
`<n

X` ⊆ B. The proposition is proved. �

Proposition 1.3. Assume that λ0 > λ1 > . . . > λn−1 ≥ σ are cardinals, I`
are ideals on λ` (for ` < n) and B ⊆

∏
`<n

λ`. Further suppose that

(α) (∃I0γ0) . . . (∃In−1γn−1)(〈γ` : ` < n〉 ∈ B),
(β) for each ` < n − 1 the ideal I` is ((λ`+1)σ)+-complete, [λn−1]<σ ⊆

In−1.

Paper Sh:575, version 2005-02-03 11. See https://shelah.logic.at/papers/575/ for possible updates.



4 SAHARON SHELAH

Then there are sets X` ∈ [λ`]
σ such that

∏
`<n

X` ⊆ B.

Proof. The proof is by induction on n. If n = 1 then there is nothing to do
as In−1 contains all subsets of λn−1 of size < σ and λn1 ≥ σ so every A ∈ I+

n1

has cardinality ≥ σ.
Let n > 1 and let

a0
def
= {γ ∈ λ0 : (∃I1γ1) . . . (∃In−1γn−1)(〈γ, γ1, . . . , γn−1〉 ∈ B)}.

By our assumptions we know that a0 ∈ (I0)+. For each γ ∈ a0 we may
apply the inductive hypothesis to the set

Bγ
def
= {〈γ1, . . . , γn−1〉 ∈

∏
0<`<n

λ` : 〈γ, γ1, . . . , γn−1〉 ∈ B}

and we get sets Xγ
1 ∈ [λ1]σ, . . . , Xγ

n−1 ∈ [λn−1]σ such that∏
0<`<n

Xγ
` ⊆ Bγ.

There is at most (λ1)σ possible sequences 〈Xγ
1 , . . . , X

γ
n−1〉, and the ideal I0 is

((λ1)σ)+–complete, so for some sequence 〈X1, . . . , Xn−1〉 and a set a∗ ⊆ a0,
a∗ ∈ (I0)+ we have

(∀γ ∈ a∗)(Xγ
1 = X1 & . . . & Xγ

n−1 = Xn−1).

Choose X0 ∈ [a∗]σ (remember that I0 contains singletons and it is complete
enough to make sure that σ ≤ |a∗|). Clearly

∏
`<n

X` ⊆ B. �

Remark 1.4. We can use σ0 ≥ σ1 ≥ . . . ≥ σn−1, I` is (λ
σ`+1

`+1 )+-complete,
[λ`]

<σ` ⊆ I`.

Proposition 1.5. Assume that n < ω and λm` , χm` , Pm
` , Im` , Im and B are

such that for `,m ≤ n:

(α) Im` is a χm` -complete ideal on λm` (for `,m ≤ n),
(β) Pm

` ⊆ P(λm` ) is a family dense in (Im` )+ in the sense that:

(∀X ∈ (Im` )+)(∃a ∈ Pm
` )(a ⊆ X)

(γ) Im = {X⊆
∏
`≤n

λm` : ¬(∃Im0 γ0) . . . (∃Imn γn)(〈γ0, . . . , γn〉 ∈ X)}

[thus Im is the ideal on
∏
`≤n

λm` such that the dual filter (Im)c is the

Fubini product of filters (Im0 )c, . . . , (Imn )c],

(δ) χmn−m >
n∑

`=m+1

(|P `
n−`|+

n−∑̀
k=0

λ`k),

(ε) B ⊆
∏
m≤n

∏
`≤n

λm` is a set satisfying

(∃I0η0)(∃I1η1) . . . (∃Inηn)(〈η0, η1, . . . , ηn〉 ∈ B).
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Then there are sets X0, . . . , Xn such that for m ≤ n:

(a) Xm ⊆
∏

`≤n−m
λm` ,

(b) if η, ν ∈ Xm, η 6= ν then
(i) η�(n−m) = ν�(n−m),

(ii) η(n−m) 6= ν(n−m),
(c) {η(n−m) : η ∈ Xm} ∈ Pm

n−m, and
(d) for each 〈η0, . . . , ηn〉 ∈

∏
m≤n

Xm there is 〈η∗0, . . . , η∗n〉 ∈ B such that

(∀m ≤ n)(ηm E η∗m).

Remark 1.5.A:

(1) Note that the sets Xm in the assertion of 1.5 may be thought of as
sets of the form Xm = {νm_〈α〉 : α ∈ am} for some νm ∈

∏
`<n−m

λm`

and am ∈ Pm
n−m.

(2) We will apply this proposition with λm` = λ`, I
m
` = I` and

λ` > χ` >
∑

k<` λk.
(3) In the assumption (δ) of 1.5 we may have that the last sum on the

right hand side of the inequality ranges from k = 0 to n− `− 1. We
did not formulate that assumption in this way as with n−` there it is
easier to handle the induction step and this change is not important
for our applications.

(4) In the assertion (d) of 1.5 we can make η∗` depending on 〈η0, . . . , η`〉
only.

Proof. The proof is by induction on n. For n = 0 there is nothing to do.
Let us describe the induction step.

Suppose 0 < n < ω and λm` , χm` , Pm
` , Im` , Im (for `,m ≤ n) and B satisfy

the assumptions (α)–(ε). Let

B∗
def
= {〈η0, η1�n, . . . , ηn�n〉 : ηm ∈

∏
`≤n λ

m
` (for m ≤ n) and
〈η0, η1, . . . , ηn〉 ∈ B},

and for η0 ∈
∏
`≤n

λ0
` let

B∗η0
def
= {〈ν1, . . . , νn〉 ∈

n∏
m=1

n−1∏
`=0

λm` : 〈η0, ν1, . . . , νn〉 ∈ B∗}.

Let Jm (for 1 ≤ m ≤ n) be the ideal on
n−1∏̀
=0

λm` coming from the ideals Im` ,

i.e., a set X ⊆
∏
`<n

λm` is in Jm if and only if

¬(∃Im0 γ0) . . . (∃Imn−1γn−1)(〈γ0, . . . , γn−1〉 ∈ X).
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Let us call the set B∗η0 big if

(∃J1

ν1) . . . (∃Jnνn)(〈ν1, . . . , νn〉 ∈ B∗η0).
We may write more explicitly what the bigness means: the above condition
is equivalent to

(∃I10γ1
0) . . . (∃I1n−1γ1

n−1) . . .
. . . (∃In0 γn0 ) . . . (∃Inn−1γnn−1)(〈〈γ1

0 , . . . , γ
1
n−1〉, . . . 〈γn0 , . . . , γnn−1〉〉 ∈ B∗η0)

which means

(∃I10γ1
0) . . . . . . (∃Inn−1γnn−1)

(∃γ1
n) . . . (∃γnn)(〈η0, 〈γ1

0 , . . . , γ
1
n〉, . . . , 〈γn0 , . . . , γnn〉〉 ∈ B).

By the assumptions (γ) and (ε) we know that

(∃I00γ0
0) . . . (∃I0nγ0

n)(∃I10γ1
0) . . . (∃I1nγ1

n) . . .
. . . (∃In0 γn0 ) . . . (∃Innγnn)(〈〈γ0

0 , . . ., γ
0
n〉, 〈γ1

0 , . . ., γ
1
n〉, . . ., 〈γn0 , . . ., γnn〉〉 ∈B).

Obviously any quantifier (∃Im` γm` ) above may be replaced by (∃γm` ) and then
“moved” right as much as we want. Consequently we get

(∃γ0
0) . . . (∃γ0

n−1)(∃I0nγ0
n)(∃I10γ1

0) . . . (∃I1n−1γ1
n−1) . . . . . . (∃In0 γn0 ) . . . (∃Inn−1γnn−1)

(∃γ1
n) . . . (∃γnn)(〈〈γ0

0 , . . . , γ
0
n〉, 〈γ1

0 , . . . , γ
1
n〉, . . . , 〈γn0 , . . . , γnn〉〉 ∈ B)

which means that

(∃γ0
0) . . . (∃γ0

n−1)(∃I0nγ0
n)(B∗〈γ00 ,...,γnn〉

is big).

Hence we find γ0
0 , . . . , γ

0
n−1 and a set a ∈ (I0

n)+ such that

(∀γ ∈ a)(B∗〈γ00 ,...,γnn〉
is big).

Note that the assumptions of the proposition are such that if we know that
B∗η0 is big then we may apply the inductive hypothesis to

λm` , χ
m
` , P

m
` , I

m
` , J

m (for 1 ≤ m ≤ n, ` ≤ n− 1) and B∗η0 .

Consequently for each γ ∈ a we find sets Xγ
1 , . . . , X

γ
n such that for 1 ≤ m ≤

n:

(a)∗ Xγ
m ⊆

∏
`≤n−m

λm` ,

(b)∗ if η, ν ∈ Xγ
m, η 6= ν then

(i) η�(n−m) = ν�(n−m), and
(ii) η(n−m) 6= ν(n−m),

(c)∗ {η(n−m) : η ∈ Xγ
m} ∈ Pm

n−m, and
(d)∗ for all 〈η0, . . . , ηn〉 ∈

∏
m≤n

Xγ
m we have

(∃〈η∗0, . . . , η∗n〉 ∈ B∗〈γ00 ,...,γ0n−1,γ〉
)(∀1 ≤ m ≤ n)(νm E ν∗m).
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Now we may ask how mane possibilities for Xγ
m do we have: not too many.

If we fix the common initial segment (see (b)∗) the only freedom we have is
in choosing an element of Pm

n−m (see (c)∗). Consequently there are at most
|Pm
n−m|+

∑
`≤n−m

λm` possible values for Xγ
m and hence there are at most

n∑
m=1

(|Pm
n−m|+

∑
`≤n−m

λm` ) < χ0
n

possible values for the sequence 〈Xγ
1 , . . . , X

γ
n〉. Since the ideal I0

n is χ0
n-

complete we find a sequence 〈X1, . . . , Xn〉 and a set b ⊆ a, b ∈ (I0
n)+ such

that
(∀γ ∈ b)(〈Xγ

1 , . . . , X
γ
n〉 = 〈X1, . . . , Xn〉).

Next choose b0
n ∈ P 0

n such that b0
n ⊆ b and put

X0 = {〈γ0
0 , . . . , γ

0
n−1, γ〉 : γ ∈ b0

n}.
Now it is a routine to check that the sets X0, X1, . . . , Xn are as required
(i.e., they satisfy clauses (a)–(d)). �

2. Cofinal sequences in trees

Notation 2.1. (1) For a tree T ⊆ δ>µ the set of δ-branches through T is

limδ(T )
def
= {η ∈ δµ : (∀α < δ)(η�α ∈ T )}.

The i-th level (for i < δ) of the tree T is

Ti
def
= T ∩ iµ

and T<i
def
=
⋃
j<i

Tj.

If η ∈ T then the set of immediate successors of η in T is

succT
def
= {ν ∈ T : η C ν & lg(ν) = lg(η) + 1}.

We shall not distinguish strictly between succT (η) and {α : η_〈α〉 ∈
T}.

Definition 2.2. (1) Kµ,δ is the family of all pairs (T, λ̄) such that T ⊆
δ>µ is a tree with δ levels and λ̄ = 〈λη : η ∈ T 〉 is a sequence of
cardinals such that for each η ∈ T we have succT (η) = λη (com-
pare the previous remark about not distinguishing succT (η) and
{α : η_〈α〉 ∈ T}).

(2) For a limit ordinal δ and a cardinal µ we let

Kid
µ,δ

def
= {(T, λ̄, Ī) : (T, λ̄) ∈ Kµ,δ, Ī = 〈Iη : η ∈ T 〉

each Iη is an ideal on λη = succT (η)}.
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Let (T, λ̄, Ī) ∈ Kid
µ,δ and let J be an ideal on δ (including Jbd

δ if we
do not say otherwise). Further let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ) be a
sequence of δ-branches through T .

(3) We say that η̄ is J-cofinal in (T, λ̄, Ī) if
(a) ηα 6= ηβ for distinct α, β < λ, and
(b) for every sequence Ā=〈Aη : η ∈ T 〉 ∈

∏
η∈T

Iη there is α∗<λ such

that

α∗ ≤ α < λ ⇒ (∀J i < δ)(ηα�(i+ 1) /∈ Aηα�i).
(4) If I is an ideal on λ then we say that (η̄, I) is a J-cofinal pair for

(T, λ̄, Ī) if
(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every sequence Ā = 〈Aη : η ∈ T 〉 ∈

∏
η∈T

Iη there is A ∈ I

such that

α ∈ λ \ A ⇒ (∀J i < δ)(ηα�(i+ 1) /∈ Aηα�i).
(5) The sequence η̄ is strongly J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such

that
if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm
then the set

{i < δ : (i) (∀` < m)(ληα` �i < ληαm�i) and
(ii) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm �i

(and well defined) but
ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)}
is in the ideal J .

[Note: in (b) above we may have α∗ < α0, this causes no real change.]
(6) The sequence η̄ is stronger J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such

that
if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm
then the set

{i < δ : (ii) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm �i
(and well defined) but
ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)}
is in the ideal J .

(7) The sequence η̄ is strongest J-cofinal in (T, λ̄, Ī) if
(a) ηα 6= ηβ for distinct α, β < λ,
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(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such
that
if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm
then the set

{i < δ : (i’) (∃` < m)(ληα` �i ≥ ληαm �i) or
(ii) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

(and well defined) but
ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)}
is in the ideal J .

(a) The sequence θ̄ is big∗ J-cofinal in (T, λ̄, Ī) if
(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every η and functions F0, . . . , Fn there is α∗ such that

if α0 < . . . < αn and α∗ ≤ αm then for m ≤ n the set

{i < δ : if ν` =


ηα`�(i+1) if ληα` �i = ληα−m�i or

ληα`�i = ληαn�i and ηα`(i) < ηαm(i)
ηα` � i if not

then we have
ηαm(i) ∈ Fm(ν`) ∈ Iηαm�i}

is in the ideal J .
(b) In almost the same way we define “strongly∗ J-cofinal”, “stronger∗

J-cofinal” and “strongest∗ big J-cofinal” , replacing the require-
ment that α∗ ≤ αm in 5(b), 6(b), 7(b) above (respectively) by
α∗ ≤ α0.

Remark 2.3. (a) Note that “strongest J-cofinal” implies “stronger J-cofinal”
and this implies “strongly J-cofinal”. “Stronger J-cofinal” implies “J-
cofinal”. Also “bigger” ⇒ “big” ⇒ “cofinal”, “big” ⇒ “strongly”.

(b) The different notions of “strong J-cofinality” (the conditions (i) and
(i’)) are to allow us to carry some diagonalization arguments.

(c) The difference between “strongly J-cofinal” and “strongly∗ J-cofinal”
etc is, in our context, immaterial. we may in all places in this paper replace
the respective notion with its version with “∗” and no harm will be done.

Remark 2.4. (1) Remind pcf:
An important case is when 〈λi : i < δ〉 is an increasing sequence

of regular cardinals, λi >
∏
j<i

λj, λη = λlg(η), Iη = Jbd
λη

and λ =

tcf(
∏
i<δ

λi/J).

(2) Moreover we are interested in more complicated Iη’s (as in [She96,
§5]), connected to our problem, so “the existence of the true cofinal-
ity” is less clear. But the assumption 2µ = µ+ will rescue us.
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10 SAHARON SHELAH

(3) There are natural stronger demands of cofinality since here we are
not interested just in xα’s but also in Boolean combinations. Thus
naturally we are interested in behaviours of large sets of n-tuples,
see 5.1.

Proposition 2.5. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ, η̄ = 〈ηα : α < λ〉 ⊆ limδ(T )

and J is an ideal on δ, J ⊇ Jbd
δ .

(1) Assume that
(}) if α < β < λ then (∀J i < δ)(ληα�i < ληβ�i).
Then the following are equivalent

“η̄ is strongly J-cofinal for (T, λ̄, Ī)”,

“η̄ is stronger J-cofinal for (T, λ̄, Ī)”,

“η̄ is strongest J-cofinal for (T, λ̄, Ī)”,

“η̄ is big J-cofinal for (T, λ̄, Ī)”.

(2) If Iν ⊇ Jbd
λν

and λν = λlg(ν) for each ν ∈ T and the sequence η̄ is

stronger J-cofinal for (T, λ̄, Ī) then for some α∗ < λ the sequence
〈ηα : α∗ ≤ α < λ〉 is <J-increasing.

(3) If η ∈ Ti ⇒ λη = λi and η̄ <J-increasing in
∏
i<δ

then “big” is

equivalent to “stronger”.

Proposition 2.6. Suppose that

(1) 〈λi : i < δ〉 is an increasing sequence of regular cardinals, δ < λ0 is
a limit ordinal,

(2) T =
⋃
i<δ

∏
j<i

λj, Iη = Ilg(η) = Jbd
λlg(η)

, λη = λlg(η),

(3) J is an ideal on δ, λ = tcf(
∏
i<δ

λi/J) and it is exemplified by a se-

quence η̄ = 〈ηα : α < λ〉 ⊆
∏
i<δ

λi,

(4) for each i < δ

|{ηα�i : α < λ}| < λi

(so, e.g., λi >
∏
j<i

λj suffices).

Then the sequence η̄ is J-cofinal in (T, λ̄, Ī).

Proof. First note that our assumptions imply that each ideal Iη = Ilg(η) is
|{ηα�lg(η) : α < λ}|+-complete. Hence for each sequence Ā = 〈Aη : η ∈
T 〉 ∈

∏
η∈T

Iη and i < δ the set

Ai
def
=
⋃
{Aηα�i : α < λ}
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is in the the ideal Ii, i.e., it is bounded in λi (for i < δ). (We should remind
here our convention which says in this case that we do not distinguish λi
and succT (η) if lg(η) = i, see 2.1.) Take η∗ ∈

∏
i<δ

λi such that for each i < δ

we have Ai ⊆ η∗(i). As the sequence η̄ realizes the true cofinality of
∏
i<δ

λi/J

we find α∗ < λ such that

α∗ ≤ α < λ ⇒ {i < δ : ηα(i) < η∗(i)} ∈ J
which allows us to finish the proof. �

It follows from the above proposition that the notion of J-cofinal se-
quences is not empty. Of course, it is better to have “strongly (or even:
stronger) J-cofinal” sequences η̄. So it is nice to have that sometimes the
weaker notion implies the stronger one.

Proposition 2.7. Assume that δ is a limit ordinal, µ is a cardinal, and
(T, λ̄, Ī) ∈ Kid

µ,δ. Let J be an ideal on δ such that J ⊇ Jbd
δ (which is our

standard hypothesis). Further suppose that

(~) if η ∈ Ti then the ideal Iη is (|Ti| +
∑
{λν : ν∈Ti & λν<λη})+–

complete.

Then each J-cofinal sequence η̄ for (T, λ̄, Ī) is strongly J-cofinal for (T, λ̄, Ī).
If, in addition, η 6= ν ∈ Ti ⇒ λη 6= λν then η̄ is big J-cofinal for

(T, λ̄, Ī). Also, if in addition

η ∈ Ti ⇒
(∃!1ν ∈ Ti)(λν = λη) ∨ [(∃≤λην ∈ Ti)(λν = λη) & Iη normal ]

then η̄ is big J-cofinal.

Proof. Let n < ω and F0, . . . , Fn be (n+ 1)-place functions. First we define
a sequence Ā = 〈Aη : η ∈ T 〉. For m ≤ n and a sequence 〈ηm, . . . , ηn〉 ⊆ Ti
we put

Am〈ηm,...,ηn〉=
⋃
{ Fm(ν0, . . . , νm−1, ηm, . . . , ηn) : ν0, . . . , νm−1 ∈ Ti+1,

(ν0, . . . , νm−1, ηm, . . . , ηn)∈dom(F ),
λν0�i < λη, . . . , λνm−1�i < ληm
and F (ν0, . . . , νm−1, ηm, . . . , ηn) ∈ Iηm , }

and next for η ∈ Ti let

Aη =
⋃
{Am〈η,ηm+1,...,ηn〉 : m ≤ n & ηm+1, . . . , ηn ∈ Ti}.

Note that the assumption (~) was set up so that Am〈ηm,...,ηn〉 ∈ Iηm and the

sets Aη are in Iη (for η ∈ T ).
By the J-cofinality of η̄, for some α∗ < λ we have

α∗ ≤ α < λ ⇒ (∀J i < δ)(ηα�(i+ 1) /∈ Aηα�i).
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12 SAHARON SHELAH

We are going to prove that this α∗ is as required in the definition of strongly
J-cofinal sequences. So suppose that m ≤ n, α0 < . . . < αn < λ and

α∗ ≤ αm. By the choice of α∗ we have that the set A
def
= {i < δ : ηαm�(i+1) ∈

Aηαm �i} is in the ideal J . But if i < δ is such that

(∀` < m)(ληα` �i < ληαm �i), and
F (ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i, but
ηαm�(i+1) ∈ F (ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)

then clearly ηαm�(i + 1) ∈ Am〈ηαm�i,...,ηαn�i〉 and so i ∈ A. This finishes the
proof.

The “big” version should be clear too. �

Proposition 2.8. Assume that µ is a strong limit uncountable cardinal and
〈µi : i < δ〉 is an increasing sequence of cardinals with limit µ. Further
suppose that (T, λ̄, Ī) ∈ Kid

µ,δ, |Ti| ≤ µi (for i < δ), λη < µ and each Iη
is µ+

lg(η)-complete and contains all singletons (for η ∈ T ). Finally assume

2µ = µ+ and let J be an ideal on δ, J ⊇ Jbd
δ .

Then there exists a stronger J-cofinal sequence η̄ for (T, λ̄, Ī) of the length
µ+ (even for J = Jbd

δ ).
We can get “big” if

ρ 6= η ∈ Ti & λρ = λη ⇒ (∃≤λην ∈ Ti)(λν = λη) & Iη normal.

Proof. This is a straight diagonal argument. Put

Y
def
= {〈F0, . . . , Fn〉 : n < ω and each F` is a function with

dom(F ) ⊆ T n+1, rng(F ) ⊆
⋃
η∈T

Iη}.

Since |Y | = µµ = µ+ (remember that µ is strong limit and λη < µ for

η ∈ T ) we may choose an enumeration Y = {〈F ξ
0 , . . . , F

ξ
nξ
〉 : ξ < µ+}. For

each ζ < µ+ choose an increasing sequence 〈Aζi : i < δ〉 such that |Aζi | ≤ µi
and ζ =

⋃
i<δ

Aζi . Now we choose by induction on ζ < µ+ branches ηζ such

that for each ζ the restriction ηζ�i is defined by induction on ζ as follows.
If i = 0 or i is limit then there is nothing to do.
Suppose now that we have defined ηζ�i and ηξ for ξ < ζ. We find ηζ(i) such
that

(α) ηζ(i) ∈ ληζ�i,
(β) if ε ∈ Aζi , m ≤ nε, α0, . . . , αm−1 ∈ Aζi (hence α` < ζ so ηα` are

defined already), νm+1, . . . , νn ∈ Ti and

F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, νm+1, . . . , νn) ∈ Iηζ�i

and well defined, then

ηζ�(i+ 1) /∈ F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, νm+1, . . . , νn),
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(γ) ηζ�(i+ 1) /∈ {ηε�(i+ 1) : ε ∈ Aζi }.
Why it is possible? Note that there is ≤ ℵ0 + |Aζi | + |A

ζ
i |<ℵ0 + |Ti| ≤ µi

negative demands and each of them says that ηζ�(i + 1) is not in some
set from Iηζ�i (remember that we have assumed that the ideals Iηζ�i contain
singletons). Consequently using the completeness of the ideal we may satisfy
the requirements (α)–(γ) above.

Now of course ηζ ∈ limδ(T ). Moreover if ε < ζ < µ+ then (∃i < δ)(ε ∈
Aζi ) which implies (∃i < δ)(ηε�(i+ 1) 6= ηζ�(i+ 1)). Consequently

ε < ζ < µ+ ⇒ ηε 6= ηζ .

Checking the demand (b) of “stronger J-cofinal” is straightforward: for
functions F0, . . . , Fn (and n ∈ ω) take ε such that

〈F0, . . . , Fn〉 = 〈F ε
0 , . . . , F

ε
nε〉

and put α∗ = ε+1. Suppose now that m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm.
Let i∗ < δ be such that for i > i∗ we have

ε, α0, . . . , αm−1 ∈ Aαmi .

Then by the choice of ηαm�(i+ 1) we have that for each i > i∗:

if F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, ηαm+1�i, . . . , ηαn�i) ∈ Iηαm�i,

then ηαm�i /∈ F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, ηαm+1�i, . . . , ηαn�i).

This finishes the proof. �

Remark 2.9. The proof above can be carried out for functions F which
depend on (ηα0 , . . . , ηαm−1 , ηαm�i, . . . , ηαn�i). This will be natural later.

Let us note that if the ideals Iη are sufficiently complete then J-cofinal
sequences cannot be too short.

Proposition 2.10. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ is such that for each η ∈

Ti, i < δ the ideal Iη is (κi)
+–complete (enough if [λη]

κi ⊆ Iη). Let J ⊇ Jbd
δ

be an ideal on δ and let η̄ = 〈ηα : α < δ∗〉 be a J-cofinal sequence for
(T, λ̄, Ī). Then

δ∗ > lim sup
J
κi

and consequently

cf(δ∗) > lim sup
J
κi.

Proof. Fix an enumeration δ∗ = {αε : ε < |δ∗|} and for α < δ∗ let ζ(α) be
the unique ζ such that α = αζ .
For η ∈ Ti, i < δ put

Aη
def
= {ν ∈ succT (η) : (∃ε ≤ κi)(ν C ηε)}.
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14 SAHARON SHELAH

Clearly |Aη| ≤ κi and hence Aη ∈ Iη. Apply the J-cofinality of η̄ to the
sequence Ā = 〈Aη : η ∈ T 〉. Thus there is α∗ < δ∗ such that for each
α ∈ [α∗, δ∗) we have

(∀J i < δ)(ηα�(i+ 1) /∈ Aηα�i)
and hence

(∀J i < δ)(ζ(α) > κi)

and consequently
ζ(α) ≥ lim sup

J
κi.

Hence we conclude that |δ∗| > lim supJ κi.
For the part “consequently” of the proposition note that if 〈ηα : α < δ∗〉
is J-cofinal (in (T, λ̄, Ī)) and A ⊆ δ∗ is cofinal in δ∗ then 〈ηα : α ∈ A〉 is
J-cofinal too. �

Remark 2.11. (1) So if we have a J-cofinal sequence of the length δ∗

then we also have one of the length cf(δ∗). Thus assuming regularity
of the length is natural.

(2) Moreover the assumption that the length of the sequence is above
|δ| + |T | is very natural and in most cases it will follow from the
J-cofinality (and completeness assumptions). However we will try
to state this condition in the assumptions whenever it is used in the
proof (even if it can be concluded from the other assumptions).

3. Getting (κ, notλ)-Knaster algebras

Proposition 3.1. Let λ, σ be cardinals such that (∀α < σ)(2|α| < λ), σ is
regular. Then there are a Boolean algebra B, a sequence 〈yα : α < λ〉 ⊆ B+

and an ideal I on λ such that

(a) if X ⊆ λ, X /∈ I then (∃α, β ∈ X)(B |= yα ∩ yβ = 0)
(b) the ideal I is σ-complete
(c) the algebra B satisfies the µ-Knaster condition for any regular un-

countable µ (really B is free).

Proof. Let B be the Boolean algebra freely generated by {zα : α < λ}
(so the demand (c) is satisfied). Let A = {(α, β) : α < β < λ} and
y(α,β) = zα − zβ( 6= 0) (for (α, β) ∈ A). The ideal I of subsets of A defined
by

a set X ⊆ A is in I if and only if
there are ζ < σ, Xε ⊆ A (for ε < ζ) such that X ⊆

⋃
ε<ζ

Xε

and for every ε < ζ no two y(α1,β1), y(α2,β2) ∈ Xε are disjoint
in B.

First note that
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Claim 3.1.1. A /∈ I.

Proof of the claim. If not then we have witnesses ζ < σ and Xε (for ε < ζ)
for it. So A =

⋃
ε<ζ

Xε and hence for (α, β) ∈ A we have ε(α, β) such that

y(α,β) ∈ Xε(α,β). So ε(·, ·) is actually a function from [λ]2 to ζ < σ. By the
Erdös–Rado theorem we find α < β < γ < λ such that ε(α, β) = ε(β, γ).
But

y(α,β) ∩ y(β,γ) = (zα − zβ) ∩ (zβ − zγ) = 0,

so (α, β), (β, γ) cannot be in the same Xε – a contradiction. �

To finish the proof note that I is σ-complete (as σ is regular), if X /∈ I
then, by the definition of I, there are two disjoint elements in {y(α,β) :
(α, β) ∈ X}. Finally |A| = λ. �

Definition 3.2. (a) A pair (B, ȳ) is called a λ-marked Boolean algebra
if B is a Boolean algebra and ȳ = 〈yα : α < λ〉 is a sequence of
non-zero elements of B.

(b) A triple (B, ȳ, I) is called a (λ, χ)-well marked Boolean algebra if
(B, ȳ) is a λ-marked Boolean algebra, χ is a regular cardinal and I
is a (proper) χ-complete ideal on λ such that

{A ⊆ λ : (∀α, β ∈ A)(B |= yα ∩ yβ 6= 0)} ⊆ I.

By λ-well marked Boolean algebra we will mean (λ,ℵ0)-well marked
one. As in the above situation λ can be read from ȳ (as λ = lg(ȳ)) we
may omit it and then we may speak just about well marked Boolean
algebras.

Remark 3.3. Thus proposition 3.1 says that if λ, σ are regular cardinals and

(∀α < σ)(2|α| < λ)

then there exists a (λ, σ)-well marked Boolean algebra (B, ȳ, I) such that B
satisfies the κ-Knaster property for every κ.

Definition 3.4. (a) For cardinals µ and λ and a limit ordinal δ, a
(δ, µ, λ)–constructor is a system

C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉)
such that
(a) (T, λ̄) ∈ Kµ,δ,
(b) η̄ = 〈ηi : i ∈ λ〉 where ηi ∈ limδ(T ) (for i < λ) are distinct

δ-branches through T and
(c) for each η ∈ T : (Bη, ȳη) is a λη-marked Boolean algebra, i.e.,

ȳη = 〈yη_〈α〉 : α < λη〉 ⊆ B+
η (usually this will be an enumera-

tion of B+
η ).

Paper Sh:575, version 2005-02-03 11. See https://shelah.logic.at/papers/575/ for possible updates.



16 SAHARON SHELAH

(b) Let C be a constructor (as above). We define Boolean algebras B2 =
Bred = Bred(C) and B1 = Bgreen = Bgreen(C) by:

Bred is the Boolean algebra freely generated by {xi : i < λ} except
that

if i0, . . . , in−1 < λ, ν = ηi0�ζ = ηi1�ζ = . . . = ηin−1�ζ
and Bν |=

⋂
`<n

yηi` �(ζ+1) = 0

then
⋂
`<n

xi` = 0

[Note: we may demand that the sequence 〈ηi`(ζ) : ` < n〉 is strictly
increasing, this will cause no difference.]

Bgreen is the Boolean algebra freely generated by {xi : i < λ} except
that

if ν = ηi�ζ = ηj�ζ, ηi(ζ) 6= ηj(ζ) and
Bν |= yηi�(ζ+1) ∩ yηj�(ζ+1) 6= 0
then xi ∩ xj = 0.

Remark 3.5. (1) The equations for the green case can look strange but
they have to be dual to the ones of the red case.

(2) “Freely generated except . . .” means that a Boolean combination is
non-zero except when some (finitely many) conditions implies it. For
this it is enough to look at elements of the form

xt0i0 ∩ . . . ∩ x
tn−1

in−1

where t` ∈ {0, 1}.
(3) Working in the free product Bred∗Bgreen we will use the same notation

for elements (e.g., generators) of Bred as for elements of Bgreen. Thus
xi may stay either for the respective generator in Bred or Bgreen. We
hope that this will not be confusing, as one can easily decide in which
algebra the element is considered from the place of it (if x ∈ Bred,
y ∈ Bgreen then (x, y) will stay for the element x ∩Bred∗Bgreen y ∈
Bred ∗ Bgreen). In particular we may write (xi, xi) for an element
which could be denoted xred

i ∩ x
green
i .

Remark 3.6. If the pair (Bred,Bgreen) is a counterexample with the free prod-
uct Bred ∗Bgreen failing the λ-cc but each of the algebras satisfying that con-
dition then each of the algebras fails the λ-Knaster condition. But Bred is
supposed to have κ-cc (κ smaller than λ). This is known to restrict λ.

Proposition 3.7. Assume that C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a (δ, µ, λ)–
constructor and J ⊇ Jbd

δ is an ideal on δ such that

(a) η̄ = 〈ηi : i ∈ T 〉 is J-cofinal for (T, λ̄, Ī),
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(b) if X ∈ I+
η then

(∃α, β ∈ X)(Bη |= yηˆ〈α〉 ∩ yη_〈β〉 = 0).

Then the sequence 〈xred
α : α < λ〉 exemplifies that Bred(C) fails the λ-Knaster

condition.

Explanation: The above proposition is not just something in the di-
rection of Problem 0.6. The tuple (Bred, x̄, Jbd

λ ) is like (Bη, ȳη, Iη), but Jbd
λ

is nicer than ideals given by previous results. Using such objects makes
building examples for Problem 0.6 much easier.

Proof. It is enough to show that

for each Y ∈ [λ]λ one can find ε, ζ ∈ Y such that

Bηε�i |= yηε�(i+1) ∩ yηζ�(i+1) = 0

where i = lg(ηε ∧ ηζ).
For this, for each ν ∈ T we put

Aν
def
= {α < λν : (∃ε ∈ Y )(ν_〈α〉 C ηε)}.

Claim 3.7.1. There is ν ∈ T such that Aν /∈ Iν.

Proof of the claim. First note that by the definition of Aν , for each ε ∈ Y
we have

(∀i < δ)(ηε
_〈i〉 ∈ Aηε�i).

Now, if we had that Aν ∈ Iν for all ν ∈ T then we could apply the assump-
tion that η̄ is J-cofinal for (T, λ̄, Ī) to the sequence 〈Aν : ν ∈ T 〉. Thus we
would find α∗ < λ such that

α∗ ≤ α < λ ⇒ {i < δ : ηα(i) /∈ Aηα�i} ∈ J,
which contradicts our previous remark (remember |Y | = λ). The claim is
proved. �

Due to the claim we find ν ∈ T such that Aν /∈ Iν . By the part (b) of
our assumptions we find α, β ∈ Aν such that

Bν |= yν_〈α〉 ∩ yν_〈β〉 = 0.

Choose ε, ζ ∈ Y such that ν_〈α〉 C ηε, ν
_〈β〉 C ηζ (see the definition of

Aν). Then ν = ηε ∧ ηζ and

Bν |= yηε�(i+1) ∩ yηζ�(i+1) = 0

(where i = lg(ν)), finishing the proof of the proposition. �

Lemma 3.8. Let C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) be a (δ, µ, λ)–constructor
such that
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18 SAHARON SHELAH

(F) the Boolean algebras Bη satisfy the (2|δ|)+–Knaster condition.

Then the Boolean algebra Bred(C) satisfies the (2|δ|)+–Knaster condition. In
fact we may replace (2|δ|)+ above by any regular cardinal θ such that

(∀α < θ)(|α||δ| < θ).

To get that Bred(C) satisfies the (2|δ|)+–cc it is enough if instead of (F) we
assume

(FF) every free product of finitely many of the Boolean algebras Bη satisfies
the (2|δ|)+–cc.

Remark: 1. Usually we will have δ = cf(µ).
2. Later we will get more (e.g., |δ|+-Knaster if (T, η̄) is hereditarily free, see
5.12, 5.13).

Proof. Let θ = (2|δ|)+ and assume (F) (the other cases have the same
proofs). Suppose that zε ∈ Bred \ {0} (for ε < θ). We start with a series of
reductions which we describe fully here but later, in similar situations, we
will state what is the result of the procedure only.

Standard cleaning: Each zε is a Boolean combination of some gener-
ators xi0 , . . . , xin−1 . But, as we want to find a subsequence with non-zero
intersections, we may replace zε by any non-zero z ≤ zε. Consequently we
may assume that each zε is an intersection of some generators or their com-
plements. Further, as cf(θ) = θ > ℵ0 we may assume that the number of
generators needed for this representation does not depend on ε and is equal
to, say, n∗. Thus we have two functions

i : θ × n∗ −→ λ and t : θ × n∗ −→ 2

such that for each ε < θ:

zε =
⋂
`<n∗

(xi(ε,`))
t(ε,`)

and there is no repetition in 〈i(ε, `) : ` < n∗〉. Moreover we may assume that
t(ε, `) does not depend on ε, i.e., t(ε, `) = t(`). By the ∆–system lemma for
finite sets we may assume that 〈〈i(ε, `) : ` < n∗〉 : ε < θ〉 is a ∆-system of
sequences, i.e.:

(∗)1 i(ε, `1) = i(ε, `2) ⇒ `1 = `2, and
(∗)2 for some w ⊆ n∗ we have

(∃ε1 < ε2 < θ)(i(ε1, `) = i(ε2, `)) iff (∀ε1, ε2 < θ)(i(ε1, `) = i(ε2, `))
iff ` ∈ w.

Now note that, by the definition of the algebra Bred,
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(∗)3 zε1 ∩ zε2 = 0 if and only if⋂
{xt(`)i(ε1,`)

: ` < n∗, t(`) = 0} ∩
⋂
{xt(`)i(ε2,`)

: ` < n∗, t(`) = 0} = 0.

Consequently we may assume that

(∀` < n∗)(∀ε < θ)(t(`) = 0).

Explanation of what we are going to do now: We want to replace
the sequence 〈zε : ε < θ〉 by a large subsequence such that the places of
splitting between two branches used in two different zε’s will be uniform.
Then we will be able to translate our θ–cc problem to the one on the algebras
Bη.

Let

Aε
def
= {ν ∈ δ>µ : (∃j < ε)(∃` < n∗)(ν C ηi(j,`))}

and let Bε be the closure of Aε:

Bε
def
= {ρ ∈ δ≥µ : ρ ∈ Aε or lg(ρ) is a limit ordinal and

(∀ζ < lg(ρ))(ρ�ζ ∈ Aε)}

Note that |Aε| ≤ |ε| · |δ| and hence |Bε| ≤ |Aε|≤|δ| < θ. Next we define (for
ε < θ, ` < n∗):

ζ(ε, `)
def
= sup{ζ < δ : ηi(ε,`)�ζ ∈ Bε}.

Thus ζ(ε, `) ≤ lg(ηi(ε,`)) = δ. Let S = {ε < θ : cf(ε) > |δ|}. For each ε ∈ S
we necessarily have

ηi(ε,`)�ζ(ε, `) ∈ Bε and Bε =
⋃
ξ<ε

Bξ

(remember that cf(ε) > |δ| and for limit ε we have Aε =
⋃
ξ<ε

Aξ) and hence

ηi(ε,`)�ζ(ε, `) ∈ Bξ(ε,`), for some ξ(ε, `) < ε.

Let ξ(ε) = max{ξ(ε, `) : ` < n∗}. By the Fodor lemma we find ξ∗ < θ such
that the set

S1
def
= {ε ∈ S : ξ(ε) = ξ∗}

is stationary. Thus ηi(ε,`)�ζ(ε, `) ∈ Bξ∗ for each ε ∈ S1, ` < n∗. Since
|Bξ∗|, |δ| < θ we find ν0, . . . , νn∗−1 ∈ Bξ∗ and α(`1, `2) ≤ δ (for `1 ≤ `2 < n∗)
such that the set

S2
def
= {ε ∈ S1 : (∀` < n∗)(ηi(ε,`)�ζ(ε, `) = ν`) &

& (∀`1 ≤ `2 < n∗)(lg(ηi(ε,`1) ∧ ηi(ε,`2)) = α(`1, `2))}
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is stationary. Further, applying the ∆–system lemma we find a set S3 ∈ [S2]θ

such that

{〈ηi(ε,`)(lg(ν`)) : ` < n∗〉 : ε ∈ S3}
forms a ∆–system of sequences.

For ε ∈ S3 and ν ∈ T denote

bεν
def
=
⋂
{yηi(ε,`)�(lg(ν)+1) : ` < n∗, ν C ηi(ε,`)} ∈ Bν .

Claim 3.8.1. For each ε ∈ S3, ν ∈ T the element bεν (of the algebra Bν) is
non-zero.

Proof of the claim. It follows from the definition of Bred and the fact that
zε 6= 0, as:

bεν = 0 ⇒
⋂
{xηi(ε,`) : ` < n∗, ν C ηi(ε,`)} = 0 ⇒ zε = 0.

�

Since for each ` < n∗ the algebra Bν` satisfies the θ–Knaster property we

find a set S4 ∈ [S3]θ such that for each ` < n∗ and ε1, ε2 ∈ S4 we have

ε1 6= ε2 ⇒ bε1ν` ∩ b
ε2
ν`
6= 0 in Bν` .

Now we may finish by proving the following claim.

Claim 3.8.2. For each ε1, ε2 ∈ S4

Bred |= zε1 ∩ zε2 6= 0.

Proof of the claim. Since zε1 ∩ zε2 is just the intersection of generators it is
enough to show that (remember the definition of Bred):

(⊗) for each ε1, ε2 ∈ S4 and for every ν ∈ T

Bν |=
⋂
{yηi�(lg(ν)+1) : i ∈ {i(ε1, `), i(ε2, `) : ` < n∗} and ν C ηi} 6= 0.

If ν = ν`, ` < n∗ then the intersection is bε1ν` ∩ b
ε2
ν`

which by the choice of the
set S4 is not zero. So suppose that ν /∈ {ν` : ` < n∗}. Put

uν
def
= {i : ν C ηi and for some ` < n∗ either i = i(ε1, `) or i = i(ε2, `)}.

If

{ηi(lg(ν)) : i ∈ uν} ⊆ {ηi(ε2,`)(lg(ν)) : ` < n∗ & ν C ηi(ε2,`)}
then we are done as bε2ν 6= 0. So there is `1 < n∗ such that ν C ηi(ε1,`1) and

ηi(ε1,`1)�(lg(ν) + 1) /∈ {ηi(ε2,`)�(lg(ν) + 1) : ` < n∗ & ν C ηi(ε2,`)}.
Similarly we may assume that there is `2 < n∗ such that ν C ηi(ε2,`2) and

ηi(ε2,`2)�(lg(ν) + 1) /∈ {ηi(ε1,`)�(lg(ν) + 1) : ` < n∗ & ν C ηi(ε1,`)}.
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Because of the symmetry we may assume that ε1 < ε2. Then

ν = ηi(ε2,`2)�lg(ν) ∈ Aε1+1 ⊆ Bε2

and hence ζ(ε2, `2) ≥ lg(ν). By the choice of S2 (remember ε1, ε2 ∈ S4 ⊆ S2),
we get ν E ν`2 . But we have assumed that ν 6= ν`2 , so ν C ν`2 . Hence (once
again due to ε1, ε2 ∈ S2)

ηi(ε2,`2)�(lg(ν) + 1) = ηi(ε1,`2)�(lg(ν) + 1) = ν`2�(lg(ν) + 1),

which contradicts the choice of `2.
The claim, and so the lemma, are proved. �

�

Remark 3.9. We can strengthen “θ-Knaster” in the assumption and conclu-
sion of 3.8 in various ways. For example we may have that “intersection of
any n members of the final set is non-zero”.

Definition 3.10. Let (B, ȳ) be a λ-marked Boolean algebra, κ ≤ λ. We
say that

(1) (B, ȳ) satisfies the κ-Knaster property if B satisfies the definition of
the κ-Knaster property (see 0.4) with restriction to subsequences of
ȳ.

(2) (B, ȳ) is (κ, notλ)–Knaster if
(a) the algebra B has the κ-Knaster property, but
(b) the sequence ȳ witnesses that the λ-Knaster property fails for

B.

Conclusion 3.11. Assume that µ is a strong limit singular cardinal, λ =
2µ = µ+ and θ = (2cf(µ))+.
Then there exists a λ-marked Boolean algebra (B, ȳ) which is (θ, notλ)–
Knaster.

Proof. Choose cardinals µ0
i , µi < µ (for i < cf(µ)) such that

(α) cf(µ) < µ0
0,

(β)
∏
j<i

µj < µ0
i , µi = (2µ

0
i )+,

(γ) the sequences 〈µi : i < cf(µ)〉, 〈µ0
i : i < cf(µ)〉 are increasing cofinal

in µ.

(Possible as µ is strong limit singular). By proposition 3.1 we find µi-marked
Boolean algebras (Bi, ȳi) and (µ0

i )
+–complete ideals Ii on µi (for i < δ) such

that

(a) if X ⊆ µi, X /∈ Ii then (∃α, β ∈ X)(Bi |= yiα ∩ yiβ = 0),

(b) the algebra Bi has the (2cf(µ))+–Knaster property.
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Let T =
⋃

i<cf(µ)

∏
j<i

µj and for ν ∈ Ti (i < cf(µ)) let Iν = Ii, Bν = Bi, ȳν = ȳi

and λν = µi. Now we may apply proposition 2.8 to µ, 〈µ0
i : i < cf(µ)〉 and

(T, λ̄, Ī) to find a stronger Jbd
cf(µ)-cofinal sequence η̄ for (T, λ̄, Ī) of the length

λ. Consider the (cf(µ), µ, λ)–constructor C = (T, λ̄, η̄, 〈(Bν , ȳν) : ν ∈ T 〉).
By (b) above we may apply lemma 3.8 to get that the algebra Bred(C)
satisfies the (2cf(µ))+–Knaster condition. Finally we use proposition 3.7
(and (a) above) to conclude that (Bred(C), 〈xred

α : α < λ〉) is (θ, notλ)–
Knaster. �

Proposition 3.12. Assume that:
κ is a regular cardinal such that (∀α < κ)(|α||δ| < κ), λ̄ = 〈λi : i < δ〉 is
an increasing sequence of regular cardinals such that κ ≤ λ0,

∏
j<i

λj < λi (or

just max pcf{λj : j < i} < λi) for i < δ and λ ∈ pcf{λi : i < δ}. Further
suppose that for each i < δ there exists a λi-marked Boolean algebra which
is (κ, notλi)–Knaster.
Then there exists a λ-marked Boolean algebra which is (κ, notλ)–Knaster.

Proof. If λ = λi for some i < δ then there is nothing to do. If λ < λi
for some i < δ then let α < δ be the maximal limit ordinal such that
(∀i < α)(λi < λ) (it necessarily exists) . Now we may replace 〈i: i < δ〉 by
〈λi : i < α〉. Thus we may assume that (∀i < δ)(λi < λ). Further we may
assume that

λ = max pcf{λi : i < δ}
(by [She94c, I, 1.8]). Now, due to [She94c, II, 3.5, p.65], we find a sequence
η̄ ⊆

∏
i<δ

λi and an ideal J on δ such that

(1) J ⊇ Jbd
δ and λ = tcf(

∏
i<δ

λi/J)

(naturally: J = {a ⊆ δ : max pcf{λi : i ∈ a} < λ}),
(2) η̄ = 〈ηε : ε < λ〉 is <J -increasing cofinal in

∏
i<δ

λi/J ,

(3) for each i < δ

|{ηε�i : ε < λ}| < λi.

Let T =
⋃
i<δ

∏
j<i

λj and for ν ∈ Ti (i < δ) let λν = λi, Iν = Jbd
λi

.

It follows from the choice of η̄, J above and our assumptions that we may
apply proposition 2.6 and hence η̄ is J-cofinal for (T, λ̄, Ī). For ν ∈ T let
(Bν , ȳν) be a λν-marked (κ, notλν)–Knaster Boolean algebra (exists by our
assumptions). Now we may finish using 3.8 and 3.7 for C = (T, λ̄, η̄, 〈(Bη, ȳη) :
η ∈ T 〉), Ī and J (note the assumption (b) of 3.7 is satisfied as Iη = Jbd

λη
;

remember the choice of (Bη, ȳη)). �
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Remark 3.13. Note that from cardinal arithmetic hypothesis cf(µ) = χ,
χ<χ < χ < µ, µ+ = λ < 2χ alone we cannot hope to build a counterexample.
This is because of [She80b, §4], particularly lemma 4.13 there. It was shown
in that paper that if χ<χ < χ1 = χ<χ1

1 then there is a χ+-cc χ-complete
forcing notion P of size χ1 such that

P “if |B| < χ1,B |= χ-cc
then B+ is the union of χ ultrafilters”.

More on this see in section 8.
So the centrality of λ ∈ Reg∩(µ, 2µ], µ strong limit singular, is very natural.

4. The main result

Proposition 4.1. Suppose that C is a (δ, µ, λ)–constructor. Then the free
product Bred(C) ∗ Bgreen(C) fails the λ-cc (so c(Bred(C) ∗ Bgreen(C)) ≥ λ).

Proof. Look at the elements (xi, xi) ∈ Bred ∗ Bgreen for i < λ. It follows
directly from the definition of the algebras that for each i < j < λ:

either Bred |= xred
i ∩ xred

j = 0 or Bgreen |= xgreen
i ∩ xgreen

j = 0.

Consequently the sequence 〈(xi, xi) : i < λ〉 witnesses the assertion of the
proposition. �

Proposition 4.2. Suppose that n < ω and for ` ≤ n:

(1) χ`, λ` are regular cardinals, χ` < λ` < χ`+1,
(2) (B`, ȳ`, I`) is a (λ`, χ`)–well marked Boolean algebra (see definition

3.2), ȳ` = 〈y`i : i < λ`〉,
(3) B is the Boolean algebra freely generated by {yη : η ∈

∏
`≤n

λ`} except

that
if ηi0 , . . . , ηik−1

∈
∏
`≤n

λ`, ηi0�` = ηi1�` = . . . = ηin−1�`

and
B` |=

⋂
m<k

y`ηim (`) = 0

then
⋂
m<k

yηim = 0.

[Compare to the definition of the algebras Bred(C).]
(4) I = {B ⊆

∏
`≤n

λ` : ¬(∃I0γ0) . . . (∃Inγn)(〈γ0, . . . , γn〉 ∈ B)}.

Then:

(a) if all the algebras B` (for ` ≤ n) satisfy the θ-Knaster property, θ is
a regular uncountable cardinal then B has the θ-Knaster property;

(b) I is a χ0-complete ideal on
∏
`≤n

λi;
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(c) if Y ⊆ (
∏
`≤n

λ`)
n is such that

(∃Iη0) . . . (∃Iηn)(〈η0, . . . , ηn〉 ∈ Y )

then there are 〈η′0, . . . , η′n〉, 〈η′′0 , . . . , η′′n〉 ∈ Y such that for all ` ≤ n

B |= yη′` ∩ yη′′` = 0.

Proof. (a) The proof that the algebra B satisfies θ–Knaster condition is
exactly the same as that of 3.8 (actually it is a special case of that).

(b) Should be clear.

(c) For `,m ≤ n put

χm` = χ`, λ
m
` = λ`, I

m
` = I`, P

m
` = {{α, β} ⊆ λ` : B` |= y`α∩y`β = 0}, B = Y.

It is easy to check that the assumptions of proposition 1.5 are satisfied.
Applying it we find sets X0, . . . , Xn satisfying the respective versions of
clauses (a)–(d) there. Note that our choice of the sets Pm

` and clauses (b),
(c) of 1.5 imply that

Xm = {ν ′m, ν ′′m} ⊆
∏

`≤n−m
λ`,

ν ′m�(n−m) = ν ′′m�(n−m),
Bn−m |= yn−mν′m(n−m) ∩ y

n−m
ν′′m(n−m) = 0.

Look at the sequences 〈ν ′0, . . . , ν ′n〉, 〈ν ′′0 , . . . , ν ′′n〉. By the clause (d) of 1.5 we
find 〈η′0, . . . , η′m〉, 〈ν ′′0 , . . . , ν ′′n〉 ∈ Y such that for each m ≤ n

ν ′m E η′m, ν ′′m E η′′m.

Now, the properties of ν ′m, ν ′′m and the definition of the algebra B imply that
for each m ≤ n:

B |= yη′m ∩ yη′′m = 0,

finishing the proof. �

Lemma 4.3. Assume that λ is a regular cardinal, |δ| < λ, J is an ideal on
δ extending Jbd

δ , C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a (δ, µ, λ)–constructor
and Ī is such that (T, λ̄, Ī) ∈ Kid

δ,µ. Suppose that η̄ = 〈ηα : α < λ〉 is a

stronger (or big) J-cofinal in (T, λ̄, Ī) sequence such that

(∀i < δ)(|{ηα�i : α < λ}| < λ).

Further, assume that

(�) for every n < ω for a J-positive set of i < δ we have:
if η0, . . . , ηn ∈ Ti are pairwise distinct and the set Y ⊆∏
`≤n

λη` is such that

(∃Iη0γ0) . . . (∃Iηnγn)(〈γ0, . . . , γn〉 ∈ Y )
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then for some γ′`, γ
′′
` < λη` (for ` ≤ n) we have

〈γ′` : ` ≤ n〉, 〈γ′′` : ` ≤ n〉 ∈ Y and for all ` ≤ n

Bη` |= yη`_〈γ′`〉 ∩ yη`_〈γ′′` 〉 = 0.

Then the Boolean algebra Bgreen(C) satisfies λ-cc.

Proof. Suppose that 〈zα : α < λ〉 ⊆ Bgreen \ {0}. By the standard cleaning
(compare the first part of the proof of 3.8) we may assume that there are
n∗ ∈ ω and a function ε : λ× n∗ −→ λ such that

(1) zα =
⋂
`<n∗

xε(α,`) (in Bgreen),

(2) ε(α, 0) < ε(α, 1) < . . . < ε(α, n∗ − 1),
(3) 〈〈ε(α, `) : ` < n∗〉 : α < λ〉 forms a ∆–system of sequences with the

kernel m∗, i.e., (∀` < m∗)(ε(α, `) = ε(`)) and

(∀` ∈ [m∗, n∗))(∀α < λ)(ε(α, `) /∈ {ε(β, k) : (β, k) 6= (α, `)}),
(4) there is i∗ < δ such that for each α < λ there is no repetition in the

sequence 〈ηε(α,`)�i∗ : ` < n∗〉.
Since |{ηα�i : α < λ}| < λ (for i < δ) and |δ| < λ we may additionally
require that

ˆ(∗) for each i < δ, for every α < λ we have

(∃λβ < λ)(∀` < n∗)(ηε(α,`)�(i+ 1) = ηε(β,`)�(i+ 1)),

and
ˆ(∗∗) for each α < β < λ, ` < n∗

ηε(α,`)�i
∗ = ηε(β,`)�i

∗.

Remark: Note that the claim below is like an (n∗ −m∗)–place version
of 3.7. Having an (n∗ −m∗)–ary version is extra for the construction but it
also costs.

Claim 4.3.1. Assume that:
C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉 is a (δ, µ, λ)–constructor, λ a regular cardinal,
δ < λ, Ī is such that (T, λ̄, Ī) ∈ Kid

δ,µ, J is an ideal on δ extending Jbd
δ and

the sequence η̄ is stronger J-cofinal in (T, λ̄, Ī).
Further suppose that ε : λ × n∗ −→, m∗, n∗ and i∗ < δ are as above (after

the reduction, but the property ˆ(∗∗) is not needed).
Then

(�) for every large enough α < λ the set:

Zα
def
= {i < δ : ¬(∃Iηε(α,m∗)�iγm∗)(∃

Iηε(α,m∗+1)�iγm∗+1) . . .

. . . (∃Iηε(α,n∗−1)�iγn∗−1)(∃λβ)(∀` ∈ [m∗, n∗))(ηε(β,`)�(i+1) = ηε(α,`)�i_〈γ`〉)}
is in the ideal J .
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Proof of the claim. For i < δ, i ≥ i∗ and distinct sequences νm∗ , . . . , νn∗−1 ∈
Ti define

B〈ν`:`∈[m∗,n∗)〉
def
= {γ̄ : γ̄ = 〈γ` : ` ∈ [m∗, n∗)〉 and

for arbitrarily large α < λ for all m∗ ≤ ` < n∗

ν`
_〈γ`〉 C ηε(α,`)}.

We will call a sequence 〈ν` : ` ∈ [m∗, n∗)〉 a success if

(∃Iνm∗ γm∗) . . . (∃Iνn∗−1γn∗−1)(〈γ` : ` ∈ [m∗, n∗)〉 ∈ B〈ν`∈[m∗,n∗)〉).

Using this notion we may reformulate (�) (which we have to prove) to

(�∗) for every large enough α < λ, for J-majority of i < δ, i > i∗ the
sequence 〈ηε(α,`)�i : ` ∈ [m∗, n∗)〉 is a success.

To show (�∗) note that if a sequence 〈ν` : ` ∈ [m∗, n∗)〉 is not a success then
there are functions fk〈ν`:`∈[m∗,n∗)〉 (for m∗ ≤ k < n∗) such that

fk〈ν`:`∈[m∗,n∗)〉 :
k−1∏
`=m∗

λν` −→ Iνk and

if 〈γ` : ` ∈ [m∗, n∗)〉 ∈ B〈ν`:`∈[m∗,n∗)〉
then (∃k ∈ [m∗, n∗))(γk ∈ fk〈ν`:`∈[m∗,n∗)〉(γm∗ , . . . , γk−1)).

If 〈ν` : ` ∈ [m∗, n∗)〉 is a success then we declare that fk〈ν`:`∈[m∗,n∗)〉 is con-

stantly equal to ∅.
Now we may finish the proof of the claim applying clause (b) of definition
2.2(5) to n∗ − 1 and functions F0, . . . , Fn∗−1 such that for k ∈ [m∗, n∗)

Fk(ν0
_〈γ0〉, . . . , νk−1

_〈γk−1〉, νk, . . . , νn∗−1〉) = fk〈ν`:`∈[m∗,n∗)〉(γm∗ , . . . , γk−1).

This gives us a suitable α∗ < λ. Suppose ε(α,m∗) ≥ α∗. Then for J-
majority of i < δ for each k ∈ [m∗, n∗) we have

if

Fm(ηε(α,0)�(i+ 1), . . . , ηε(α,k−1)�(i+ 1), ηε(α,k)�i, . . . , ηε(α,n∗−1)�i) ∈ Iηε(α,k)�i
then

ηε(α,k)�(i+1) /∈Fm(ηε(α,0)�(i+1), . . ., ηε(α,k−1)�(i+1), ηε(α,k)�i, . . ., ηε(α,n∗−1)�i).

But the choice of the functions Fk implies that thus for J-majority of i < δ,
for each k ∈ [m∗, n∗)

ηε(α,k)(i) /∈ fk〈ηε(α,`)�i:`∈[m∗,n∗)〉(ηε(α,m∗)(i), . . . , ηε(α,k−1)(i)).
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Now the definition of the function fk〈ν`:`∈[m∗,n∗)〉 works: if for some relevant

i < δ above the sequence 〈ηε(α,`)�i : ` ∈ [m∗, n∗)〉 is not a success then

〈ηε(α,`)(i) : ` ∈ [m∗, n∗)〉 /∈ B〈ηε(α,`)�i:`∈[m∗,n∗)〉,

and this contradicts (∗̂) before. The claim is proved. �

Let α∗ be such that for each α ≥ α∗ we have Zα ∈ J . Choose i ∈ δ \ Zα∗
such that the clause (�) applies for n∗ −m∗ and i. Let

Y
def
= {〈γm∗ , . . . , γn∗−1〉 (∃λβ)(∀`∈[m∗, n∗))(ηε(β,`)�(i+1)=(ηε(α∗,`)�i)

_〈γ`〉)}.
The definition of Zα∗ (and the choice of i) imply that the assumption (�)
applies to the set Y , and we get γ′`, γ

′′
` < ληε(α∗,`)�i (for m∗ ≤ ` < n∗) such

that
〈γ′` : m∗ ≤ ` < n∗〉, 〈γ′′` : m∗ ≤ ` < n∗〉 ∈ Y and

Bηε(α∗,`)�i |= yηε(α∗,`)�i_〈γ′`〉 ∩ yηε(α∗,`)�i_〈γ′′` 〉 = 0 for m∗ ≤ ` < n∗.

Now, choose α < β < λ such that for m∗ ≤ ` < n∗

ηε(α∗,`)�i
_〈γ′`〉 = ηε(α,`)�(i+ 1), ηε(α∗,`)�i

_〈γ′′` 〉 = ηε(β,`)�(i+ 1)

(possible by the choice of Y and γ′`, γ
′′
` ). The definition of the algebra

Bgreen(C) and the choice of γ′`, γ
′′
` imply that for m∗ ≤ ` < n∗

Bgreen(C) |= xε(α,`) ∩ xε(β,`) 6= 0.

If ` 6= m then
Bgreen(C) |= xε(α,`) ∩ xε(β,m) 6= 0

by the conditions ˆ(∗∗) and 4) of the preliminary cleaning (and the definition
of Bgreen(C), remember zα 6= 0). Finally, remembering that ε(α, `) = ε(β, `)
for ` < m∗, zα 6= 0 and zβ 6= 0, we may conclude that

Bgreen(C) |=
⋂
`<n∗

xε(α,`) ∩
⋂
`<n∗

xε(β,`) 6= 0

finishing the proof. �

Theorem 4.4. If µ is a strong limit singular cardinal, λ
def
= 2µ = µ+

then there are Boolean algebras B1,B2 such that the algebra B1 satisfies the
λ-cc, the algebra B2 has the (2cf(µ))+–Knaster property but the free product
B1 ∗ B2 does not satisfy the λ-cc.

Proof. Let δ = cf(µ) and let h : δ −→ ω be a function such that

(∀n ∈ ω)(∃δi)(h(i) = n).

Choose an increasing sequence 〈µi : i < δ〉 of regular cardinals such that
µ =

∑
i<δ

µi. Next, by induction on i < δ choose λi, χi, (Bi, ȳi) and Ii such

that
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(1) λi, χi are regular cardinals below µ,
(2) λi > χi ≥

∏
j<i

λj + µi,

(3) Ii is a χ+
i -complete ideal on λi (containing all singletons),

(4) (Bi, ȳi) is a λi-marked Boolean algebra such that
if n = h(i) and the set Y ⊆ (λi)

n+1 is such that

(∃Iiγ0) . . . (∃Iiγn)(〈γ0, . . . , γn〉 ∈ Y )

then for some γ′`, γ
′′
` < λi (for ` ≤ n) we have

〈γ′` : ` ≤ n〉, 〈γ′′` : ` ≤ n〉 ∈ Y and for all ` ≤ n

Bi |= yiγ′` ∩ y
i
γ′′`

= 0,

(5) each algebra Bi satisfies the (2|δ|)+–Knaster condition.

Arriving at the stage i of the construction first we put χi = (
∏
j<i

λj +µi)
+.

Next we define inductively χi,k, λi,k for k ≤ h(i) such that

χi,0 = χi, λi,k = (2χi,k)+, χi,k+1 = (λi,k)
+.

By 3.1, for each k ≤ h(i) we find a (λi,k, χ
+
i,k)–well marked Boolean algebra

(Bi,k, ȳi,k, Ii,k) such that Bi,k has the (2δ)+–Knaster property (compare 3.3).
Let λi = λi,h(i). Proposition 4.2 applied to 〈(Bi,k, ȳi,k, Ii,k) : k ≤ h(i)〉
provides a λi-marked Boolean algebra (Bi, ȳi) and a χ+

i -complete ideal Ii on
λi such that the requirements 4,5 above are satisfied.

Now put T =
⋃
j<δ

∏
i<j

λi and for η ∈ T :

Bη = Blg(η), ȳη = ȳlg(η), Iη = Ilg(η).

By 2.8 we find a stronger Jbd
δ -cofinal sequence η̄ = 〈ηα : α < λ〉 for (T, λ̄, Ī).

Take the (δ, µ, µ+)-constructor C determined by these parameters. Look at
the algebras B2 = Bred(C), B1 = Bgreen(C). Applying 4.1 we get that B1 ∗B2

fails the λ-cc. The choice of the function h and the requirement 4 above
allow us to apply 4.3 to conclude that the algebra B2 satisfies λ-cc. Finally,
by 3.8, we have that B1 has the (2δ)+–Knaster property. �

Remark 4.5. (1) We shall later give results not using 2µ = µ+ but still
not in ZFC

(2) Applying the methods of [She01] one can the consistency of: for
some µ strong limit singular there is no example for λ = µ+.

(3) If we want “for no regular λ ∈ [µ, 2µ]” more is needed, we expect the
consistency, but it is harder (not speaking of “for all µ”)

(4) Remark 1) above shows that 2µ > µ+ is not enough for the negative
result.
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5. Toward improvements

Definition 5.1. Let (T, λ̄, Ī) ∈ Kid
µ,δ and let J be an ideal on δ (including

Jbd
δ , as usual). We say that a sequence η̄ = 〈ηα : α < λ〉 of δ-branches

through T is super J-cofinal for (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ
(b) for every function F there is α∗ < λ such that

if α0 < . . . < αn < λ, α∗ ≤ αn
then the set

{i < δ : (ii)∗ F (ηα0 , . . . , ηαn−1 , ηαn�i) ∈ Iηαn�i
(and well defined) but
ηαn�(i+1) ∈ F (ηα0 , . . . , ηαn−1 , ηαn�i)}

is in the ideal J .

Remark 5.2. (1) The main difference between the definition of super J-
cofinal sequence and those in 2.2 is the fact that here the values of
the function F depend on ηα` (for ` < n), not on the restrictions of
these sequences as it was in earlier notions.

(2) “super∗ J–cofinal” is defined by adding “α∗ ≤ α0” (compare 2.2(10)).

Proposition 5.3. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ is such that for each ν ∈ Ti,

i < δ the ideal Iν is |Ti|+–complete. Let J ⊇ Jbd
δ be an ideal on δ. Then

every super J–cofinal sequence is stronger∗ J-cofinal.

Proof. Assume that η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ) is super J-cofinal for
(T, λ̄, Ī). Let n < ω and let F0, . . . , Fn−1 be functions. For each ` ≤ n we
define an (`+ 1)–place function F ∗` such that

if α0 < α1 < . . . < α`−1 < λ, ρ ∈ Ti, i < δ
then

F ∗` (ηα0 , . . . , ηα`−1
, ρ) =⋃

{F`(ηα0�(i+1), . . . , ηα`−1
�(i+1), ρ, ν`+1, . . . , νn) : ν`+1, . . . , νn ∈ Ti &

F`(ηα0�(i+1), . . . , ηα`−1
�(i+1), ρ, ν`+1, . . . , νn) ∈ Iρ (and well defined)}.

As the ideals Iρ (for ρ ∈ Ti) are |Ti|+-complete we know that

F ∗` (ηα0 , . . . , ηα`−1
, ρ) ∈ Iρ.

Applying 5.1(b) to the functions F ∗` (` < n) we choose α∗` < λ such that
if α0 < . . . < α` < λ, α∗` ≤ α`
then the set

B∗`
def
= {i < δ : F ∗` (ηα0 , . . . , ηα`−1

, ηα`�i) ∈ Iηα` �i but
ηα`�(i+ 1) ∈ F ∗` (ηα0 , . . . , ηα`−1

, ηα`�i)}
is in the ideal J .
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Put α∗ = max{α∗` : ` ≤ n}. We want to show that this α∗ works for
the condition 2.2(6)(b) (version for “stronger∗”). So suppose that m ≤ n,
α∗ ≤ α0 < α1 < . . . < αn < λ. Let

Bm
def
= {i < δ : Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

and ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)}.
Note that if i ∈ Bm then, as α∗m ≤ α∗ ≤ αm,

ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ⊆
⊆ F ∗m(ηα0 , . . . , ηαm−1 , ηαm�i) ∈ Iηαm �i.

Hence we conclude that Bm ⊆ B∗m and therefore Bm ∈ J , what finishes the
proof of the proposition. �

Proposition 5.4. Assume that (T, λ̄, Ī) ∈ Kid
µ,δ, each ideal Iη (for η ∈ Ti,

i < δ) is (|δ| + |Ti|)+-complete and J ⊇ Jbd
δ is an ideal on δ. Further

suppose that a sequence η̄ = 〈ηα : α < λ〉 is super J-cofinal for (T, λ̄, Ī), λ is
a regular cardinal greater than |T | and a sequence 〈αε,` : ε < λ, ` < n〉 ⊆ λ
is with no repetition and such that

αε,0 < αε,1 < . . . < αε,n−1 for all ε < λ.

Then for every ε < λ large enough there is a ∈ J such that

(�) if i` ∈ δ \ a (for ` < n), i0 ≥ i1 ≥ . . . ≥ in−1 then

(∃Iηαε,0 �i0γ0) . . . (∃Iηαε,n−1 �in−1γn−1)
(∃λζ <λ)(∀`<n)(ηαζ,`�(i`+1) = ηαε,`�i`

_〈γ`〉).

Proof. This is very similar to claim 4.3.1. First choose ε0 < λ such that for
each ε ∈ [ε0, λ) and for every i0, . . . , in−1 < δ we have

(∃λζ < λ)(∀` < n)(ηαζ,`�(i` + 1) = ηαε,`�(i` + 1))

(possible as |T | < cf(λ) = λ).
Now, for ı̄ = 〈i` : ` < n〉 ⊆ δ and ν̄ = 〈ν` : ` < n〉 such that i0 ≥ i1 ≥

. . . ≥ in−1, ν` ∈ Ti` and k < n we define a function fkı̄,ν̄ :
∏̀
<k

λν` −→ Iνk (with

a convention that f 0
ı̄,ν̄ is supposed to be a 0-place function, i.e., a constant)

as follows.
Let

Bı̄,ν̄
def
= {〈γ` : ` < n〉 ∈

∏
`<n

λν` : (∃λζ < λ)(∀` < n)(ηαζ,`�(i` + 1) = ν`
_〈γ`〉)}.

If

(�ı̄,ν̄) ¬(∃Iν0γ0) . . . (∃Iνn−1γn−1)(〈γ0, . . . , γn−1〉 ∈ Bı̄,ν̄)

then f 0
ı̄,ν̄ , . . . , f

n−1
ı̄,ν̄ are such that

(♦) if 〈γ0, . . . , γn−1〉 ∈ Bı̄,ν̄ then (∃k < n)(γk ∈ fkı̄,ν̄(γ0, . . . , γk−1)).
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Otherwise (i.e., if not (�ı̄,ν̄)) the functions fkı̄,ν̄ are constantly equal to ∅
(for k < n). Next, for k < n, choose functions Fk such that if η0, . . . , ηk ∈
limδ(T ), i < δ then

Fk(η0, . . . , ηk−1, ηk�i) =⋃
{fkı̄,ν̄(η0(i0), . . . , ηk−1(ik−1)) : ı̄ = 〈i` : ` < n〉, ν̄ = 〈ν` : ` < n〉,

δ > i0 ≥ . . . ≥ ik = i ≥ ik+1 ≥ . . . ≥ in−1,
ν` = η`�i` for ` ≤ k and
ν` ∈ Ti` for k < ` < n}.

Note that Fk(η0, . . . , ηk−1, ηk�i) is a union of at most |δ| + |Ti| sets from
the ideal Iηk�i and hence Fk(η0, . . . , ηk−1, ηk�i) ∈ Iηk�i (for each η0, . . . , ηk ∈
limδ(T ), i < δ). Thus, using the super J-cofinality of η̄ we find α∗ < λ such
that

if α∗ ≤ α< . . . < αn < λ
then the set

{i < δ : (∃k < n)(ηαk(i) ∈ Fk(ηα0 , . . . , ηαk−1
, ηαk))}

is in the ideal J .

Let ε1 > ε0 be such that for every ε ∈ [ε1, λ) we have α∗ < αε,0 < . . . <
αε,n−1.

Suppose now that ε1 < ε < λ. By the choice of α∗ we know that the set

a
def
= {i < δ : (∃` < n)(ηαε,`(i) ∈ F`(ηαε,0 , . . . ηαε,`−1

, ηαε,`�i))}
is in the ideal J . We are going to show that the assertion (�) holds for ε
and a.

Suppose that ı̄ = 〈i` : ` < n〉 ⊆ δ \ a, i0 ≥ i1 ≥ . . . ≥ in−1. Let ν̄ = 〈ν` : ` <
n〉, ν` = ηαε,`�i`. If the condition (�ı̄,ν̄) fails then we are done. So assume
that it holds true. By the choice of the set a (and α∗) we have

(∀` < n)(ηαε,`(i`) /∈ F`(ηαε,0 , . . . , ηαε,`−1
, ηαε,`�il)),

what, by the definition of F`, implies that

(∀` < n)(ηαε,`(i`) /∈ f `ı̄,ν̄(ηαε,0(i0), . . . , ηαε,`−1
(i`−1))).

By (♦) we conclude that

〈ηαε,0(i0), . . . , ηαε,n−1(in−1)〉 /∈ Bı̄,ν̄ ,

and hence, by the definition of Bı̄,ν̄ ,

¬(∃λζ)(∀` < n)(ηαζ,`�(i` + 1) = ηαε,`�(i`)),

what contradicts the choice of ε0 (remember ε ≥ ε1 > ε0). �

Definition 5.5. We say that a λ-marked Boolean algebra (B, ȳ) has char-
acter n if
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for every finite set u ∈ [λ]<ω such that B |=
⋂
α∈u

yα = 0 there

exist a subset v ⊆ u of size |v| ≤ n such that B |=
⋂
α∈v

yα = 0.

Proposition 5.6. If a λ-marked Boolean algebra (B, ȳ) is (θ, notλ)-Knaster
(or other examples considered in the present paper) and (B, ȳ) has character
2 then without loss of generality (B, ȳ) is determined by a colouring on λ:

if c : [λ]2 −→ 2 is such that

c({α, β}) = 0 iff B |= yα ∩ yβ = 0

then the algebra B is freely generated by {yα : α < λ} except
that

if c({α, β}) = 0 then yα ∩ yβ = 0.

Remark 5.7. These are nice examples.

Proposition 5.8. In all our results (like: 3.1 or 3.8), the marked Boolean
algebra (B, ȳ) which we get is actually of character 2 as long as any (Bη, ȳη)
appearing in the assumptions (if any) is like that.
Then automatically the θ–Knaster property of the marked Boolean algebra
(B, ȳ) implies a stronger condition:
if Z ∈ [lg(ȳ)]θ then there is a set Y ∈ [Z]θ such that {yi : i ∈ Y } generates
a filter in B.

Proposition 5.9. Let (T, λ̄, Ī) ∈ Kid
µ,δ be such that for each η ∈ T the filter

(Iη)
c (dual to Iη) is an ultrafilter on succT (η), and let J be an ideal on δ

(extending Jbd
δ ). If:

(a) C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a (δ, µ, λ)–constructor, the se-
quence η̄ is stronger J-cofinal for (T, λ̄, Ī), |T | < cf(λ) = λ,

(b) the sequence 〈αε,` : ε < λ, ` < n〉 ⊆ λ is with no repetition,
(c) for each distinct η, ν ∈ T either the ideal Iη is (2λν )+–complete

(which, of course, implies λη > 2λν) or the ideal Iν is (2λη)+–
complete (it is enough if this holds true for η, ν such that lg(η) =
lg(ν),

then for every large enough ε < λ for J-almost all i < δ there are sets
X` ∈ (Iηαε,` �i)

+ (for ` < n) such that

(∀γ0 ∈ X0) . . . (∀γn−1 ∈ Xn−1)(∃λζ < λ)(∀` < n)(ηαε,`�i
_〈γ`〉 C ηαζ,`).

Remark 5.9.A We can replace stronger by big and then omit being an
ultrafilter.

Proof. First note that we may slightly re-enumerate are sequence 〈αε,` : ε <
λ, ` < n〉 and we may assume that for each ε < λ

αε,0 < αε,1 < . . . < αε,n−1.
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Now, since |T | < cf(λ) = λ we may apply claim 4.3.1 to

〈〈αε,` : ` < n〉 : ε0 ≤ ε < λ〉

(we need to take ε0 large enough to get the condition ˆ(∗) of the proof of
4.3). Consequently we may conclude that there is ε1 < λ such that for every
ε ∈ [ε1, λ)

(�ε) for J-majority of i < δ we have

(∃Iηαε,0 �iγ0) . . . (∃Iηαε,n−1 �iγn−1)(∃λζ<λ)(∀`<n)(ηαζ,`�(i+1) = ηαε,`�î 〈γ`〉).
Now we would like to apply 1.2. We cannot do this directly as we do not
know if the cardinals ληε,`�i are decreasing (with `). However the following
claim helps us.

Claim 5.9.1. Suppose that λ0 < λ1 are cardinals and I0, I1 are maximal
ideals on λ0, λ1 respectively. Assume that the ideal I1 is (λ0)+–complete and
ϕ(x, y) is a formula. Then

(∃I0γ0)(∃I1γ1)ϕ(γ0, γ1) ⇒ (∃I1γ1)(∃I0γ0)ϕ(γ0, γ1).

Proof of the claim. First note that if I is a maximal ideal then the quanti-
fiers ∃I and ∀I are equivalent. Suppose now that

(∃I0γ0)(∃I1γ1)ϕ(γ0, γ1).

This implies (as I0, I1 are maximal) that

(∀I0γ0)(∀I1γ1)ϕ(γ0, γ1).

Thus we have a set a ∈ I0 and for each γ ∈ λ0 \ a we have a set bγ ∈ I1 such
that

(∀γ0 ∈ λ0 \ a)(∀γ1 ∈ λ1 \ bγ0)ϕ(γ0, γ1).

Let b =
⋃

γ∈λ0\a
bγ. As I1 is (λ0)+–complete the set b is in I1. Clearly

(∀γ1 ∈ λ1 \ b)(∀γ0 ∈ λ \ a)ϕ(γ0, γ1)

which implies (∃I1γ1)(∃I0γ0)ϕ(γ0, γ1), finishing the proof of the claim. �

Now fix ε > ε1 (ε1 as chosen earlier). Take i∗ < δ such that the elements
of 〈ηαε,`�i : ` < n〉 are pairwise distinct. Suppose that i ∈ [i∗, δ) is such that
the formula of (�ε) holds true. Let {k` : ` < n} be an enumeration of n
such that

ληαε,k0 �i
> ληαε,k1 �i

> . . . > ληαε,kn−1
�i.

(Note that by the assumption (c) we know that all the ληαε,k` �i
are distinct,

remember the choice of i∗.) Applying claim 5.9.1 we conclude that

(∃Iηαε,k0 �i
γk0) . . . (∃

Iηαε,kn−1
�i
γkn−1)(∃λζ<λ)(∀`<n)(ηαε,`�i

_〈γ`〉 = ηαζ,`�(i+1)).
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But now we are able to use 1.2 and we get that there are sets Xk` ⊆ ληαε,k` �i
,

Xk` /∈ Iηαε,k` �i (for ` < n) such that∏
`<n

X` ⊆ {〈γ0, . . . , γn−1〉 : (∃λζ<λ)(∀`<n)(ηαε,`�i
_〈γ`〉 = ηαζ,`�(i+1))}

what is exactly what we need. �

If we assume less completeness of the ideals Iη in 5.9 then still we may
say something.

Proposition 5.10. Let 〈σi : i < δ〉 be a sequence of cardinals. Suppose that
T, λ̄, Ī, η̄, J, λ, µ, δ and 〈αε,` : ε < λ, ` < n〉 are as in 5.9 but with condition
(c) replaced by

(c)−〈σi:i<δ〉: if η, ν ∈ Ti, η 6= ν, i < δ then either the ideal Iη is ((λν)
σi)+–

complete or the ideal Iν is ((λη)
σi)+–complete.

Then for every large enough ε < λ for J-almost all i < δ there are sets
X` ∈ [ληαε,` �i]

σi (for ` < n) such that

(∀γ0 ∈ X0) . . . (∀γn−1Xn−1)(∃λζ < λ)(∀` < n)(ηαε,`�i
_〈γ`〉 C ηαζ,`).

Proof. The proof goes exactly as the one of 5.9, but instead of 1.2 we use
1.3. �

Remark 5.11. (1) Note that in the situation as in 5.9, we usually have
that “J–cofinal” implies “stronger J–cofinal” (see 2.7, 2.5).

(2) The first assumption of 5.9 (ultrafilters) coupled with our normal
completeness demands is a very heavy condition, but it has rewards.

(3) A natural context here is when 〈µi : i ≤ κ〉 is a strictly increasing
continues sequence of cardinals such that each µi+1 is compact and
µ = µκ. Then every µi+1-complete filter can be extended to an µi+1-
complete ultrafilter. Moreover 2µ = µ+ follows by Solovay [Sol74].

If for some function f from cardinals to cardinals, for each χ there
is an algebra Bχ of cardinality f(χ) which cannot be decomposed
into ≤ µ sets Xi each with some property Pr(Bχ, Xi) and if each µi
if f -inaccessible
then we can find T, Ī, λ̄ as in 5.9 and such that η ∈ Ti ⇒ µi <
χη < λη < µi+1 and for η ∈ Ti there is an algebra Bη with universe
λη and the ideal Iη is χη–complete,

if X ⊆ Bη and Pr(Bη, X) then X ∈ Iη
(compare 3.1) and λη < λν ⇒ (2λη)+ < χν . Now choosing cofinal
η̄ we may proceed as in earlier arguments.

(4) It seems to be good for building nice examples, however we did not
find the right question yet.
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(5) Central to our proofs is an assumption that

“〈αζ,` : ζ < λ, ` < n〉 ⊆ λ is a sequence with no repetition”,

i.e., we deal with λ disjoint n-tuples. This is natural as the examples
constructed here are generated from {xi : i < λ} by finitary func-
tions. One may ask what happens if we admit functions with, say,
ℵ0 places? We can still try to get for µ as above that:
(�) there is h : [µ+]2 −→ 2 such that

if 〈uε : ε < λ〉 are pairwise disjoint, uε = {αε,` : ` < `∗} is
the increasing (with `) enumeration, `∗ < µ (`∗ infinite), for a
sequence 〈ν` : ` < `∗〉 ⊆ Ti

B〈ν`:`<`∗〉
def
=

{〈ηαε,`(i) : ` < `∗〉 : (∃λζ < λ)(∀` < `∗)(ηαε,`�(i+ 1) = ηαζ,`�(i+ 1))},

for some i∗ < δ there are no repetitions in 〈ηαε,`�i∗ : ` < `∗〉 and
h�[uε]2 ≡ 1 (for each ε < λ)
then there are α < β (really a large set of these) such that

h�[uα ∪ uβ]2 ≡ 1.

The point is that we can deal with functions with infinitely many
variables. Looking at previous proofs, “in stronger” we can get (for
µ strong limit singular etc):

for α large enough

for i < δ = cf(µ) large enough

. . . . . . . . .

we can defeat

(. . . . . . (∀Iηαε,` �iγ`) . . . . . .)(〈γ` : ` < `∗〉 ∈ B〈ηαε,` �i:`<`∗〉)

but the duality of quantifiers fails, so the conclusion is
only that

(∀J i < δ)[¬(. . . (∀Iηαε,` �iγ`) . . .)`<`∗(〈ηαε,`(i) : ` < `∗〉 /∈ B〈ηαε,` �i:`<`∗〉)].

(6) (no ultrafilters) If I ⊇ Jbd
η , δ is a regular cardinal, λη = λlg(η) and for

each u ∈ [Ti]
<|δ|χ, i < δ the free product F

η∈u
Bη satisfies the λ-cc then

we can show that the algebra Bred
<χ satisfies the λ-cc too, where for a

cardinal χ the algebra Bred
<χ is the Boolean algebra freely generated
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by

{
⋂
α∈u

x
t(α)
α : t : u −→ 2, u ∈ [λ]<δ, h�[u ∩ t−1[1]]2 ≡ 1 and

|u| < χ and
(∃i < δ)(the mapping α 7→ ηα(i) is one-to-one (for α ∈ u))
(∃i < δ)(∃α ∈ u)(∀j ∈ (i, δ))(∀β ∈ u)(fα(j) ≤ fβ(j))}.

[Note that if χ ≤ cf(δ) it is simpler.]

∗ ∗ ∗ ∗ ∗
Now we will deal with an additional demand that the algebra Bred satisfies

|δ|+-cc (or even has the |δ|+–Knaster property). Note that the demand of
|δ|-cc does not seem to be reasonable: if every ȳη has two disjoint members
(and every node t ∈ T is an initial segment of a branch through T ) then
we can find δ branches which, if in {ηα : α < λ}, give δ pairwise disjoint
elements. Moreover:

for each ν ∈ T` let Aν = {ηα(i) : ηα�i = ν} and

aα = {i < δ : (∃β ∈ Aηα�i)(Bηα�i |= yηα(i) ∩ yβ = 0)}.

So if Bred |= σ-cc then (∀α < λ)(|aα| < σ).

Definition 5.12. Let (T, λ̄) ∈ Kµ,δ and let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ). We
say that η̄ is hereditary θ-free if for every Y ∈ [λ]θ there are Z ∈ [Y ]θ and
i < δ such that

(∀α, β ∈ Z)(α 6= β ⇒ [ηα�i = ηβ�i & ηα(i) 6= ηβ(i)]).

Proposition 5.13. Assume that C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a
(δ, µ, λ)–constructor. If η̄ is hereditary θ-free, each algebra Bη has the θ-
Knaster property and θ is regular then the algebra Bred(C) has the θ-Knaster
property.

Proof. The same as for 3.8. Note that the proof there shows actually that,

if (∀α < θ)(|α||δ| < θ = cf(θ)), then η̄ is θ-hereditary free.

�

Proposition 5.14. Assume that (T, λ̄) ∈ Kµ,δ, η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ),
λ is a regular cardinal. Further suppose that

(a) (∀α < θ)(|α|<δ < θ = cf(θ)), δ < θ, J is an ideal on δ extending
Jbd
δ , and

(b) the sequence η̄ is <J-increasing and one of the following conditions
is satisfied:
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(α) η̄ is <J-cofinal in
∏
i<δ

λi/J , λi are regular cardinals above θ (at

least for J-majority of i < δ), {α < λ : cf(α) = θ} ∈ I[λ] and
λη = λlg(η);

(β) there are a sequence 〈Cα : α < λ〉 of subsets of λ, a closed
unbounded subset E of λ and i∗ < δ such that

(i) Cα ⊆ α, otp(Cα) ≤ θ,
(ii) if β ∈ Cα then Cβ = Cα ∩ β and ηβ�[i∗, δ) < ηα�[i∗, δ),
(iii) if α ∈ E and cf(α) = θ then α = sup(Cα).

Then there is A ∈ [λ]λ such that the restriction η̄�A is θ-hereditary free.

Proof. First let us assume that the case (β) of the clause (b) of the assump-
tions holds.

Claim 5.14.1. Suppose that Y ∈ [E]θ. Then

(1) (∃Z ∈ [Y ]θ)(∃i⊗)(the sequence 〈fβε(i⊗) : ε ∈ Z〉 is strictly increasing).
(2) If additionally J = Jbd

δ then

(∃Z∈ [Y ]θ)(∃i⊗<δ)(the sequence 〈ηβ�[i⊗, δ) : β ∈ Z〉 is strictly increasing).

Proof of the claim. Suppose Y ∈ [E]θ. Without loss of generality we may
assume that otp(Y ) = θ. Let α = sup(Y ). So α ∈ E, cf(α) = θ and hence
Cα is unbounded in α. Let Cα = 〈αε : ε < θ〉 be the increasing enumeration.
Clearly the set

A
def
= {ε < θ : [αε, αε+1) ∩ Y 6= ∅}

is unbounded in θ. For ε ∈ A choose βε ∈ [αε, αε+1) ∩ Y . Then

(∃aε ∈ J)(ηαε�(δ \ aε) ≤ ηβε�(δ \ aε) < ηαε+1�(δ \ aε)).

Now choose iε ∈ δ \ aε, iε > i∗ and find B ∈ [A]θ such that

ε ∈ B ⇒ iε = i⊗.

Easily, by the assumption (β)(2), this i⊗ and Z = {βε : ε ∈ B} are as
required in 5.14.1(1).
If additionally we know that J = Jbd

δ then for some B ∈ [A]θ we have

(∃i⊗ ∈ [i∗, δ))(ε ∈ B ⇒ aε ⊆ i⊗)

and hence the sequence 〈fβε�[i⊗, δ) : ε ∈ B〉 is as required in 5.14.1(2)
(remember (β)(2)). �

But now, using i⊗ given by 5.14.1 we may deal with the sequence 〈fβε�(i⊗+
1) : ε ∈ B〉 and using the old proof (see 3.8) on the tree

⋃
i≤i⊗

Ti (note that

we may apply the assumption (a) to arguments like there) we may get the
desired conclusion. This finishes the case when (β) of (b) holds true.
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Now, assume that the case (α) of the clause (b) of the assumptions holds.
We reduce this case to the previous one (using cofinality).
Take C̄, E witnessing that the set {α < λ : cf(α) = θ} is in I[λ] and build
a <J -increasing sequence η̄′ = 〈η′α : α < λ〉 ⊆

∏
i<δ

λi such that η′α > ηα and

η̄′ satisfies the clause (β) of (b) for C̄, E. [The construction of η′α is by
induction on α < λ. Suppose that we have defined η′β for β < α. Now, at

the stage α of the construction, we first choose η0
α ∈

∏
i<δ

λi such that

(∀β < α)(η′β <J η
0
α).

This is possible since the condition (α) implies that λ = tcf(
∏

i<δ λi/J),
α < λ. Now we put for i < δ:

η′α(i) = max
{
η0
α(i), ηα(i) + 1, sup{η′γ(i) + 1 : γ ∈ Cα}

}
.

One can check that this η̄′ is as required.]

Now we use the fact that η̄ is cofinal. The set

E ′ = {γ ∈ E : (∀α < γ)(∃β < γ)(η′α <J ηβ)}
is a club of λ. Look at η̄�E ′. Suppose that Y ∈ [E ′]θ. Without loss
of generality we may assume that otp(Y ) = θ and let α = sup(Y ). By
induction on ε < θ choose αε < βε < γε such that

βε ∈ Y , αε ∈ Cα, γε ∈ Cα, η′αε <J ηβε <J η
′
γε and

if ζ < ε then γζ < αε.

Next choose iε > i∗ such that

η′αε(iε) < ηβε(iε) < η′γε(iε).

We may assume that iε = i⊗ for all ε < θ. Now, as η̄′ obeys C̄, we have

ζ < ε ⇒ η′γζ(i
⊗) < η′αε(i

⊗)

and hence we conclude that the sequence 〈ηβε(i⊗) : ε < θ〉 is strictly increas-
ing. Now we may finish the proof like earlier. �

Conclusion 5.15. If µ is a strong limit singular cardinal, 2µ = µ+ = λ and
¬(∃0#) or at least

{δ < µ+ : cf(δ) = (2<cf(µ))+} ∈ I[λ]

then there is a (cf(µ), µ, λ)–constructor C such that the algebra Bred(C) has
the (2<cf(µ))+–Knaster property, its counterpart Bgreen(C) is λ–cc and the
free product is not λ–cc.
[Note that if GCH holds then (2<cf(µ))+ = (cf(µ))+ so the problem is closed
then.]

Proof. Like 4.4 using 5.14, 5.13 instead of 2.8, 3.8. �
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6. The use of pcf

Assuming that 2<κ is much larger than κ = cf(κ) (= cf(µ) < µ) we
may still want to have examples with the (κ+, notλ)–Knaster property and
the non-multiplicativity. Here 5.15 does not help if GCH holds on an end
segment of the cardinals (and ¬(∃0#)). We try to remedy this.

It is done inductively. So 6.3 uses cf(µ) = ℵ0 just to start the induction.
We can phrase (a part of) it without this assumption but in applications
we use it for cf(µ) = ℵ0. Also 6.3(b) really needs this condition (otherwise
we would have to assume that (∀α < θ)(|α|<δ < µ)). This result says that,
if cf(µ) = ℵ0, then we have gotten the θ–Knaster property for every regular
cardinal θ ∈ µ \ κ+.

Definition 6.1. (1) Let Kwmk denote the class of all tuples (θ, λ, χ, J)
such that θ < λ, χ are regular cardinals, J is a χ–complete ideal on
λ and there is a (λ, χ)–well marked Boolean algebra (B, ȳ, J) (see
3.2) such that the algebra B satisfies the θ–Knaster property (wmk
stays for “well marked Knaster”).

When we write (θ, λ) ∈ Kwmk we really mean (θ, λ, λ, Jbd
λ ) ∈ Kwmk

(what means just that there exists a (θ, λ)–Knaster marked Boolean
algebra).

(2) By Ksmk (smk is for “sequence marked Knaster”) we will denote the
class of all triples (θ, λ, χ) of cardinals such that θ < λ are regular
and there is a sequence 〈(Bα, ȳα) : α < χ〉 of λ–marked Boolean
algebras such that (for α < χ) the algebras Bα have the θ–Knaster
property, ȳα = 〈yαi : i < λ〉 and

if n < ω, α0 < . . . < αn−1 < χ and βε,` < λ for ε < λ,
` < n are such that (∀ε1 < ε2 < λ)(∀` < n)(βε1,` <
βε2,`)
then there are ε1 < ε2 < λ such that

` < n ⇒ Bα` |= “yα`βε1,`
∩ yα`βε2,` = 0”.

Remark 6.2. (1) On some closure properties of Kθwmk
def
= {λ : (θ, λ) ∈

Kwmk} under pcf see 3.12: if λi ∈ Kθwmk (for i < δ), λi > max pcf{λj :
j < i} and λ ∈ pcf{λi : i < δ} and (∀α < θ)(|α||δ| < θ) then
λ ∈ Kθwmk.

(2) We can replace θ by a set Θ of such cardinals, no real difference.
And thus we may consider the class K∗wmk of all tuples (Θ, λ, χ, J)
such that there exists a (λ, χ)–well marked Boolean algebra (B, ȳ, J)
with

(∀θ ∈ Θ)(B satisfies the θ–Knaster property).
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Proposition 6.3. Assume that µ is a strong limit singular cardinal, ℵ0 =
cf(µ) < µ and λ = 2µ = µ+.

(a) If (∀α < θ)(|α|cf(µ) < θ = cf(θ) < λ),
then (θ, λ) ∈ Kwmk. Moreover (θ, λ, 2λ) ∈ Ksmk.

(b) If cf(µ) < θ = cf(θ) < µ and {α < λ : cf(α) = θ} ∈ I[λ],
then (θ, λ) ∈ Kwmk. Moreover (θ, λ, 2λ) ∈ Ksmk.

Proof. This is similar to previous proofs and the first parts of 6.3(a), (b)
follow from what we have done already: (a) is an obvious modification of
3.11; (b) is similar, but based on 5.13, 5.14 (and 2.8, 3.7) (see below). What
we actually have to prove are the “moreover” parts. We will sketch the proof
of it for clause (b) only, modifying the proof of 4.4.

As in 4.4 we choose a function h : cf(µ) −→ ω such that for each n ∈ ω
the preimage h−1[{n}] is unbounded (in cf(µ)). Next we take an increasing
sequence 〈µi : i < cf(µ)〉 of regular cardinals such that µ =

∑
i<δ

µi. Finally

(like in 4.4) we construct λi, χi, (Bi, ȳi) and Ii such that for i < cf(µ):

(1) λi, χi < µ are regular cardinals,
(2) λi > χi ≥

∏
j<i

λj + µi, χ0 > θ + µ0,

(3) Ii is a χ+
i -complete ideal on λi,

(4) (Bi, ȳi) is a λi-marked Boolean algebra such that
if n = h(i) and the set Y ⊆ (λi)

n+1 is such that

(∃Iiγ0) . . . (∃Iiγn)(〈γ0, . . . , γn〉 ∈ Y ),

then for some γ′`, γ
′′
` < λi (for ` ≤ n) we have

〈γ′` : ` ≤ n〉, 〈γ′′` : ` ≤ n〉 ∈ Y and for all ` ≤ n

Bi |= yiγ′` ∩ y
i
γ′′`

= 0,

(5) each algebra Bi satisfies the θ–Knaster condition,
(6) for ξ < λi the set [ξ, λi) is not in the ideal Ii.

Note that the last requirement is new here. Though we cannot demand that
the ideals Ii extend Ibd

λi
, the condition (6) above is satisfied in our standard

construction. Note that the ideal from 3.1 has this property if λ there is
regular. Moreover it is preserved when the (finite) products of ideals (as in
4.2) are considered. Also, if I is an ideal on λ, A0 ∈ I is such that |λ \ A0|
is minimal and A1 ∈ I+ is such that |A1| is minimal then we can use either
I�A0 or I�A1. All relevant information is preserved then (in the first case
the condition (6) holds in the second Jbd

λ ⊆ I – under suitable renaming).
Now we put T =

⋃
i<δ

∏
j<i

λj, Bη = Blg(η), ȳη = ȳlg(η), Iη = Ilg(η). Applying

2.8 we find a stronger Jbd
δ –cofinal sequence η̄ = 〈ηα : α < λ〉 for (T, λ̄, Ī).

Due to the requirement (6) above we may additionally demand that η̄ is

Paper Sh:575, version 2005-02-03 11. See https://shelah.logic.at/papers/575/ for possible updates.



CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 41

<Jbd
cf(µ)

–increasing cofinal in
∏

i<cf(µ)

λi/J
bd
cf(µ). Let 〈Bξ : ξ < 2λ〉 be a sequence

of pairwise almost disjoint elements of [λ]λ (i.e., |Bξ ∩ Bζ | < λ for distinct
ξ, ζ < 2λ). For each ξ < 2λ we may apply 5.14 (the version of (b)(α)) to
the sequence 〈ηα : α ∈ Bξ〉 and we find Aξ ∈ [Bξ]

λ such that each sequence
〈ηα : α ∈ Aξ〉 is θ–hereditary free. Let

B∗ξ = Bred(T, λ̄, 〈ηα : α ∈ Aξ〉, 〈(Bη, ȳη) : η ∈ T 〉), x̄ξ = 〈xred
α : α ∈ Aξ〉.

Of course, each B∗ξ is a subalgebra of Bred(T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) (gen-
erated by x̄ξ). By 5.13 and 3.7 we know that the marked Boolean algebras
(B∗ξ , x̄ξ) are (θ, notλ)–Knaster. To show that they witness (θ, λ, 2λ) ∈ Ksmk

suppose that n < ω, ξ0, . . . , ξn−1 < 2λ, βε,` < λ (for ε < λ, ` < n) are such
that

(∀ε1 < ε2 < λ)(∀` < n)(βε1,` < βε2,`),

and of course {βε,` : ε < λ} ⊆ Aξ` . Since Aξ` are almost disjoint we may
assume that

(∀ε1, ε2 < λ)(∀`1 < `2 < n)(βε1,`1 6= βε2,`2).

Further we may assume that we have i∗ < cf(µ) such that for each ε < λ
the sequences ηβε,`�i

∗ for ` < n are pairwise distinct.

By the choice of η̄, T , λ̄ etc we may apply 4.3.1 and conclude that for all
sufficiently large ε < λ the set

Zε = {i < cf(µ) : ¬(∃Iηβε,0 �i
γ0) . . . (∃Iηβε,n−1

�i
γn−1)(∃λζ)(∀` < n)

(ηβε,`�(i+ 1) = (ηβε,`�i)
_〈γ`〉)}

is in the ideal Jbd
cf(µ). Take one such ε. Choosing i ∈ cf(µ) \ Zε, i > i∗ such

that h(i) = n we may follow exactly as in the last part of the proof of 4.3
and we find ε0, ε1 < λ such that for each ` < n

ηβε0,`�i = ηβε1,`�i, but

Bηβε0,` �i |= yηβε0,` �(i+1) ∩ yηβε1,` �(i+1) = 0,

what implies that

(∀` < n)(B∗ξ` |= xred
βε0,`
∩ xred

βε1,`
= 0).

�

Proposition 6.4. Assume that

(a) 〈λi : i < δ〉 is an increasing sequence of regular cardinals such that
δ < λ0, λi > max pcf{λj : j < i} (the last is our natural assump-
tion),

(b) ℵ0 < θ = cf(θ) <
⋃
i<δ

λi (naturally we assume just cf(θ) = θ < λ0),

(c) λ = max pcf{λi : i < δ},
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(d) (θ, λi,max pcf{λj : j < i}) ∈ Ksmk,
(e) for each τ ∈ {λ} ∪

⋃
α<δ

pcf{λi : i < α} we have

{ξ < τ : cf(ξ) = θ} ∈ I[τ ],

or at least
for some f̄ τ = 〈f τε : ε < τ〉, <J=τ–increasing cofinal in∏
i<α

λi/J=τ we have:

γ < τ & cf(γ) = θ ⇒ f τγ is good in f̄ τ

(see [She94b], [She94a, §1 and 1.6(1)], and then Magidor and Shelah
[MS94]),

(f) |pcf{λi : i < δ}| < θ or at least for each α < δ we have |pcf{λi : i <
α}| < θ.

Then (θ, λ) ∈ Kwmk. Moreover (θ, λ, χ) ∈ Ksmk provided there is an almost
disjoint family of size χ in [λ]λ. We may get algebras Bred, Bgreen as in main
constructions such that

Bred |= θ-Knaster, Bgreen |= λ-cc and Bred ∗ Bgreen |= ¬λ-cc.

Remark 6.4.A: Continues also the proof of [She94c, 3.5].

Proof. The main difficulty of the proof will be to construct a hereditary
θ–free <J<λ–increasing sequence η̄ = 〈ηα : α < λ〉 ⊆

∏
i<δ

λi. This is done in

the claim below. For the notation used there let us note that if α ≤ δ is a
limit ordinal, τ ∈ pcf{λi : i < α} then J=τ [{λi : i < α}] = Jατ is the ideal
on α generated by

J<τ [{λi : i < α}] ∪ {α \ bτ [{λi : i < α}]}.
So in particular tcf(

∏
i<α

λi/J
α
τ ) = τ .

Claim 6.4.1. There exists a tree T ⊆
⋃
i<δ

∏
j<i

λj such that limδ(T ) is θ–

hereditary free (and <J<λ–cofinal). Moreover for each α < δ the size of Tα
is ≤ max pcf{λi : i < α}.
Proof of the claim. For a limit ordinal α ≤ δ and τ ∈ pcf{λi : i ≤ α} (if
α = δ then τ = λ) choose a <Jατ –increasing sequence f̄α,τ = 〈fα,τζ : ζ <
τ〉 ⊆

∏
i<α

λi cofinal in
∏
i<α

λi/J
α
τ and such that

(⊗̃) if ζ < τ , cf(ζ) = θ, then for some unbounded set Yζ ⊆ ζ (for
simplicity consisting of successor ordinals) and a sequence s̄τ = 〈sτξ :
ξ ∈ Yζ〉 ⊆ Jατ we have

[ξ1, ξ2 ∈ Yζ & ξ1 < ξ2 & i ∈ α \ (sτξ1 ∪ s
τ
ξ2

)] ⇒ fα,τξ1
(i) < fα,τξ2

(i).
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[Why we can demand (⊗̃)? If in the assumption (e) the first part is satisfied
then we follow similarly to the proof of 5.14, compare [She94a, 1.5A, 1.6, pp
51–52]. If we are in the case of “at least” then this is exactly the meaning of
goodness.] Further we may demand that the sequence f̄α,τ is bcontinuous:

(⊕̃) if |δ| < cf(ζ) < λ0, ζ < τ , then

fα,τζ (i) = min{
⋃
ξ∈C

fα,τξ (i) : C is a club of ζ}

[compare the proof of [She94b, 3.4, pp 25–26]].
For a limit ordinal α < δ we define

T 0
α = {f∈

∏
i<α

λi : (a) f = max{fα,τ`ζ`
: ` < n} for some

n < ω, τ` ∈ pcf{λi : i < α}, and ζ` < τ`,
(b) for every τ ∈ pcf{λi : i < α},

if τ = λ or α < δ then
there is ζf (τ) < τ such that
fα,τζf (τ) ≤ f & fα,τζf (τ) = f mod Jατ }.

(Note that if α = δ then there is only one value of τ`, τ which we consider
here: λ.) Let T ′ ⊆

⋃
i≤δ

∏
j<i

λj be a tree such that for γ ≤ δ:

T ′γ = {f ∈
∏
i<γ

λi : f�α ∈ T 0
α for each limit α ≤ γ}.

Let

A = {ζ < λ : there is f ∈
∏
i≤δ

λi such that

f δ,λζ ≤ f & f δ,λζ = f mod Jαλ & (∀i ≤ δ)(f�i ∈ T ′α)]},

and for each ζ ∈ A let f ∗ζ be a function witnessing it. Now, let T ⊆
⋃
i≤δ

∏
j<i

λj

be a tree such that Tδ = {f ∗ζ : ζ ∈ A}.
By the definition, T is a tree, but maybe it does not have enough levels?

Let χ be a large enough regular cardinal. Take an increasing continuous
sequence 〈Ni : i ≤ θ〉 of elementary submodels of (H(χ),∈, <∗) such that

|Ni| = Υ = θ + |pcf{λα : α < δ}| < λ0, Υ + 1 ⊆ Ni ∈ Ni+1,
and
all relevant things are in N0.

We define f ∗ ∈
∏
α<δ

λα by

f ∗(α) = sup(
⋃
i<θ

Ni ∩ λα).
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Similarly as in [She94a, pp 63–65], one proves that f ∗�α ∈ T 0
α for each limit

α ≤ δ. Hence for some ζ we have f ∗ = f δ,λζ mod Jδλ and thus ζ ∈ A.
Consequently A is unbounded in λ.

By induction on α ≤ δ we prove that

(}̃) if fζ ∈ Tα (for ζ < θ) are pairwise distinct,
then there are Z ∈ [θ]θ and j < α such that

(∀ζ0, ζ1 ∈ Z)(ζ0 6= ζ1 ⇒ [fζ0�j = fζ1�j & fζ0(j) 6= fζ1(j)]).

If α is a non-limit ordinal then this is trivial. So suppose that α is limit,
α < δ. Then for some τζ,` ∈ pcf{λi : i < α}, ξζ,` < τζ,`, nζ < ω (for ζ < θ,
` < nζ) we have

fζ = max{fα,τζ,`ξζ,`
: ` < nζ}.

As θ > |pcf{λβ : β < α}| we may assume that nζ = n∗, τζ,` = τ` and for each
` < n∗ the sequence 〈ξζ,` : ζ < θ〉 is either constant or strictly increasing.
Now, the second case has to occur for some ` and we may follow similarly
to 5.14.1 and then apply the inductive hypothesis. We are left with the case
α = δ. So let fζ = f ∗βζ for ζ < δ and we continue as before (with λ for τ`).

This ends the proof of the claim (note that the arguments showing that
all the T 0

α are not empty prove actually that the tree T has enough branches
to satisfy our additional requirements). �

Now let T be a tree is in the claim above. Let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T )
be the enumeration of {f ∗ζ : ζ ∈ A} such that η̄ is <J<λ–increasing cofinal in∏
i<δ

λi/J<λ. By the assumption (d) for each η ∈ T we find a marked Boolean

algebra (Bη, ȳη) such that for every i < δ the sequence 〈(Bη, ȳη) : η ∈ Ti〉
witnesses that (θ, λi, |Ti|) ∈ Ksmk. These parameters determine a (δ, µ, λ)–
constructor C, so we have the respective Boolean algebra Bred(C) (and its
counterpart Bgreen(C)). To show that they have the required properties we
follow exactly the proof that (θ, λ, χ) ∈ Ksmk, so we will present this proof
only.

First note that by 5.13 the algebra Bred(C) has the θ–Knaster property.
Now, let 〈Aζ : ζ < χ〉 ⊆ [λ]λ be such that

ζ1 < ζ2 < χ ⇒ |Aζ1 ∩ Aζ2 | < λ.

Let x̄ζ = 〈xred
ξ : ξ ∈ Aζ〉 and let Bζ be the subalgebra of Bred(C) generated

by x̄ζ . We want to show that the sequence 〈(Bζ , x̄ζ) : ζ < χ〉 witnesses
(θ, λ, χ) ∈ Ksmk. For this suppose that ζ0 < . . . < ζn−1 < χ, n < ω and
βε,` ∈ Aζ,` are increasing with ε (for ε < λ, ` < n) and without loss of
generality with no repetition. We may assume that

(∀` < n)(∀ε < λ)(βε,` /∈
⋃
m6=`

Aζm).
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Further we may assume that for some i∗ < δ and pairwise distinct η` ∈ Ti∗
(for ` < n) we have

(∀ε < λ)(∀` < n)(ηβε,`�i
∗ = η`).

Now we take i ∈ [i∗, δ) such that

(∀γ < λi)(∃λε < λ)(∀` < n)(ηβε,`(i) > γ)

(remember that each 〈ηβε,` : ε < λ〉 is <J<λ–cofinal). Since |Ti| < λi we can
find ν0, . . . , νn−1 ∈ Ti such that η` E ν` and

(∀γ < λi)(∃λε < λ)(∀` < n)(ηβε,`�i = ν` & ηβε,`(i) > γ).

Consequently, we may choose a sequence 〈〈γξ,` : ` < n〉 : ξ < λi〉 ⊆ λi such
that ξ < γξ,` and

(∀ξ < λi)(∃λε < λ)(∀` < n)(ηβε,`�(i+ 1) = ν`
_〈γξ,`〉).

Now we use the choice of (Bν` , ȳν`) (witnessing (θ, λi, |Ti|) ∈ Ksmk) and we
find ξ1 < ξ2 < λi such that

(∀` < n)(Bν` |= yν`γξ1,`
∩ yν`γξ2,` = 0),

which allows us to find ε1 < ε2 < λ such that for each ` < n the intersection
xβε1,` ∩ xβε2,` is 0. �

Conclusion 6.5. If 〈µi : i ≤ κ〉 is a strictly increasing continuous sequence of
strong limit singular cardinals such that κ < µ0, 2µi = µ+

i , κ < θ = cf(θ) <
µ0 and

{α < µ+
i : cf(α) = θ} ∈ I[µ+

i ]

then (θ, µ+
κ ) ∈ Kwmk and we may construct the respective Boolean algebras

Bred, Bgreen.

Proposition 6.6. Suppose that we have Boolean algebras Bred, Bgreen such
that

• Bred satisfies the θ–Knaster condition,
• for each n < ω the free product (Bgreen)n satisfies the λ–cc,
• the free product Bred ∗ Bgreen fails the λ-cc.

Then (θ, λ, χ) ∈ Ksmk, where χ = λ+ (or even if χ is such that there is an
almost disjoint family A ⊆ [λ]λ of size χ).

Proof. We have yα ∈ (Bred)+ and zα ∈ (Bgreen)+ for α < λ such that if
α < β < λ then

either Bred |= yα ∩ yβ = 0 or Bgreen |= zα ∩ zβ = 0.

Let Aζ ∈ [λ]λ (for ζ < χ) be pairwise almost disjoint sets. We want to show
that the sequence

〈(Bred, ȳ�Aζ) : ζ < χ〉
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is a witness for (θ, λ, χ) ∈ Ksmk. So we are given ζ0 < ζ1 < . . . < ζn−1 < χ
and sequences 〈αε,` : ε < λ〉 ⊆ Aζ` . Then, for some ε∗ < λ we have

ε∗ ≤ ε < λ ⇒ αε,` /∈
⋃
m6=`

Aζ,m.

We should find ε1 < ε2 such that for all ` < n

Bred |= yαε1,` ∩ yαε2,` = 0.

For this it is enough to find ε∗ < ε1 < ε2 such that for ` < n

Bgreen |= zαε1,` ∩ zαε2,` 6= 0.

But this we easily get from the fact that the free product (Bgreen)n satisfies
the λ-cc. �

Comment 6.7. (1) The proofs that the algebra Bgreen satisfies the λ-cc
(see 4.3, 6.4) give that actually for each n < ω the product (Bgreen)n

satisfies λ-cc. So it is reasonable to add it (though not needed orig-
inally).

(2) The “η̄ is (strong-) J-cofinal for (T, λ̄, Ī)” has easy consequences for
the existence of colourings.

Remark 6.8. For µ strong limit singular we may sometimes get a cofinal
sequence of length λ ∈ (µ, 2µ] without 2µ = µ+. By [She96, §5],
if:

(a) Ii is a χi–complete, |Ii| = τi, χi regular,
(b) χi ≤ τi ≤ (χi)

+n∗ , n∗ < ω,
(c) tcf(

∏
i<δ

(χi)
+`/J) = λ for each ` ≤ n∗,

then:

(α) there is a cofinal sequence in
∏
i<δ

(P(λi)/Ii)/J , because

(β) it has the true cofinality.

So if for arbitrarily large χ, 2χ = χ+, 2χ
+

= χ++ then we have the ideal
we want and maybe the pcf condition holds. Thus, combining this and 6.9
below, we get that there may be an example of our kind not because of GCH
reasons, but still requiring some cardinal arithmetic assumptions.

Proposition 6.9. Suppose that 〈λi : i < δ〉 is a strictly increasing sequence
of regular cardinals, Ii is a (

∏
j<i

λj)
+–complete ideal on λi (so

∏
j<i

λj < λi)

and (Bi, ȳi, Ii) is a λi–well marked Boolean algebra (for i < δ).

(1) Assume that
∏
i<δ

(Ii,⊆)/J has true cofinality λ. Then there exists a

(θ, notλ)–Knaster marked Boolean algebra.
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(2) Suppose in addition that h : δ −→ ω is a function such that

(∀n < ω)(h−1[{n}] ∈ J+)

and I
[h(i)]
i (for i < δ) are the product ideals on (λi)

n:

I
[h(i)]
i

def
= {B⊆(λi)

n : ¬(∃Iiγ0) . . . (∃Iiγh(i)−1)(〈γ` : ` < h(i)〉 ∈ B).

Assume that
λ = tcf(

∏
i<δ

(I
[h(i)]
i ,⊆)/J)

and that the (Bi, ȳi, Ii) satisfy the following requirement:
(∗̃)h(i) if B ⊆ (dom(ȳi))

h(i) is such that

(∃Iiγ0) . . . (∃Iiγh(i))(〈γ` : ` ≤ h(i)〉 ∈ B),

then there are γ′`, γ
′′
` < λi (for ` ≤ h(i)) such that for each `

Bi |= yi,γ′` ∩ yi,γ′′` = 0.

Then we can conclude that ((2|δ|)+, λ, λ+) ∈ Ksmk and we have a pair
of algebras (Bred,Bgreen) as in main theorem 4.4.

Proof. The main point here is that with our assumptions in hands we may
construct a sequence 〈ηα : α < λ〉 ⊆

∏
i<δ

λi which is quite stronger J–cofinal:

it satisfies the requirement of 2.2(6)(b) weakened to the demand that the
set there is not in the dual filter J c. Of course this is still enough to carry
out our proofs and we may use such a sequence to build the right examples.

1). Let 〈〈Aαi : i < δ〉 : α < λ〉 witness the true cofinality. By induction on
α < λ choose γα < λ and ηα ∈

∏
i<α

λi such that

• 〈{ηβ(i)} : i < δ〉 ∈
∏
i<δ

Ii,

• if β < α then γβ < γα and (∀J i)(ηβ(i) ∈ Aγαi ), and
• ηα(i) /∈ Aγαi .

For α = 0 or α limit, first choose γα = sup{γα1 + 1 : α1 < α} and then
choose ηα(i) by induction on i.
For α = α1 + 1 first note that

〈{ηα1(i)} : i < δ〉 ∈
∏
i<δ

Ii.

Hence for some γ0
α < λ we have

(∀J i)(ηα1(i) ∈ A
γα
i ).

Let γα = max{γα1 , γ
0
α}. Now choose ηα(i) by induction on i.
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As Ii is |Ti|+–complete, clearly 〈ηα : α < λ〉 is J–cofinal for (T, J, Ī) and
3.7, 3.8 give the conclusion.

2). The construction of η̄ is in a sense similar to the one in the proof of
2.8, but we use our cofinality assumptions. We have a cofinal sequence in∏

i<δ(I
[h(i)]
i ,⊆)/J :

〈〈Aαi : i < δ〉 : α < λ〉.
For each Aαi we have “Skolem functions” fαi,` for ` < h(i) (like in the proofs
of 4.3.1, 5.4).

We define ηα by induction on α < λ. In the exclusion list we put all
substitutions by ηγ0�i, . . . , ηγ`−1

�i for γk < α to fαi,`: each time we obtain a

set in the ideal Ii and a member Ā of
∏
i<δ

Ii such that if (∀J i)(η(i) /∈ Ai),

η ∈
∏
i<δ

λi then η satisfies the demand. Eventually we have |α|<ω such

elements of
∏
i<δ

Ii. Let them be {B̄α,ξ : ξ ≤ |α|+ ℵ0}. Then for some γα

(∀ξ < |α|+ ℵ0)(∀J i < δ)(Bα,ξ
i ⊆ Aγαi ),

and similarly
(∀β < α)(∀J i < δ)(ηβ(i) ∈ Aαii ).

Choose ηα ∈
∏
i<δ

(λi \ Aγαi ). �

Remark 6.10. One of the main tools used in this section are (variants of)
the following observation:

if (B, ȳ) is a λ-marked Boolean algebra such that B is θ–
Knaster and if ε(α, `) < λ (for α < λ, ` < n) are pairwise
distinct then for some α < β < λ, for each ` < n we have
B |= yε(α,`) ∩ yε(β,`) = 0
then (θ, λ, λ+) ∈ Ksmk.

Concluding Remarks 6.11. If µ is a strong limit singular cardinal, cf(µ) ≤
θ = cf(θ) < µ then, by the methods of [She01], one may get consistency of

if an algebra B satisfies the θ–cc
then it satisfies the µ+-Knaster condition.

One may formulate the following question now:

Question (mostly solved) 6.12. Suppose that B is a Boolean algebra
satisfying the θ–cc and λ is a regular cardinal between µ+ and (2µ)+.

Does B satisfy the λ-Knaster condition?

There a reasonable amount of information on consistency of the negative
answer in the next section, though 6.12 is not fully answered there. But a
real problem is the following.
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Problem 6.13. Assume λ = µ+, cf(µ) = θ and µ is a strong limit cardinal.
Suppose that an algebra B0 satisfies the λ–cc and an algebra B1 satisfies the
θ+-cc.

Does the free product B0 ∗ B1 satisfy the λ-cc? (Is this consistent? See
5.15).

Problem 6.14. Is it consistent that

each Boolean algebra with the ℵ1–Knaster property has the
λ–Knaster property for every regular (uncountable) cardinal
λ?

7. Some consistency results

We had seen that without inner models with large cardinals we have a
complete picture, e.g.:

(ℵ) if θ = cf(θ) > ℵ0, B is a Boolean algebra satisfying the θ–cc and λ
is a regular cardinal such that

(∀τ < λ)(τ<θ < θ),

then the algebra B satisfies the λ-Knaster condition.
(i) if θ = cf(θ) > ℵ0, θ < µ = µ<µ < λ = cf(λ) < χ = χλ,

then there is a µ+-cc µ-complete forcing notion P of size χ such that

P “the θ–cc implies the λ–Knaster property”.

Moreover,
(i)+ if µ = µ<θ < λ = cf(λ) ≤ 2µ then the θ–cc implies the λ–Knaster

property.
(ג) if θ = cf(θ) < µ, µ is a strong limit singular cardinal, cf(µ) = θ,

then the θ+–cc does not imply the µ+–Knaster property (and even
we have the product example).

In ,(ג) if we allow (2θ)-cc we may get even better conclusion. In this section
we want to show, under a large cardinals hypothesis, the consistency of
failure.

Proposition 7.1. Assume that κ is a supercompact cardinal, κ < λ = cf(λ).
Let B be a Boolean algebra which does not have the λ–Knaster property.
Then

(∃θ)(ℵ0 < θ = cf(θ) < κ & B does not have the θ–Knaster property).

Proof. Since κ is supercompact, for every second order formula ψ:

if M |= ψ
then for some N ≺M , |N | < κ, N |= ψ

(see Kanamori and Magidor [KM78]). �
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Proposition 7.2. (1) If ℵ0 < λ0 < λ1 are regular cardinals such that
(∗)λ0,λ1 for every x ∈ H(λ+

1 ) there is N ≺ (H(λ+
1 ),∈) such that x ∈ N

and N ∼= (H(λ+
0 ),∈),

then if a Boolean algebra B has the λ0–Knaster property then it has
λ1–Knaster property (and B |= λ0–cc implies B |= λ1–cc).

(2) The condition (∗)λ0,λ1 above holds if for some κ0, κ1, κ0 < λ0, κ1 <
λ1 we have:
(⊕) there is an elementary embedding j : V −→M with the critical

point κ0 and such that j(κ0) = κ1, j(λ0) = λ1 and Mλ1 ⊆M .
(3) If κ0 is a 2-huge cardinal (or actually less) and, e.g., λ0 = κ+ω+1

0

then for some λ1 = κ+ω+1
1 the condition (⊕) above holds (we can

assume GCH).

Proof. Just check. �

Proposition 7.3. Assume that

V |= “ GCH + there is 2-huge cardinal > θ = cf(θ) ”

(can think of θ = ℵ0). Then there is a θ–complete forcing notion P such
that in VP:

(a) GCH holds,
(b) if a Boolean algebra B has the θ+–Knaster property then it has the

θ+θ+1–Knaster property
(note that if ℵθ > θ then θ+θ+1 = ℵθ+1).

Proof. Similar to Levinski, Magidor and Shelah [LMS90]. �

Chasing arrows what we use is

Proposition 7.4. If V |=GCH (for simplicity), θ = cf(θ) = cf(µ) < µ,
a Boolean algebra B does not satisfy the µ+–Knaster condition and Q =
Levy(θ, µ)
then VQ |=“B does not have the θ+–Knaster property”.

8. More on getting the Knaster property

Our aim here is to get a ZFC result (under reasonable cardinal arithmetic
assumptions) which implies that our looking for (κ, notλ)–Knaster marked
Boolean algebras near strong limit singular is natural. Bellow we discuss the
relevant background. The proof relays on pcf theory (but only by quoting a
simply stated theorem) and seems to be a good example of the applicability
of pcf.

Theorem 8.1. Assume µ = µ<iω .

(1) If a Boolean algebra B of cardinality ≤ 2µ satisfies the ℵ1–cc then B
is µ-linked (see below).
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(2) If B is a Boolean algebra satisfying the ℵ1–cc then B has the λ-
Knaster property for every regular cardinal λ ∈ (µ, 2µ].

Where,

Definition 8.2. (1) A Boolean algebra B is µ-linked if B \ {0} is the
union of ≤ µ sets of pairwise compatible elements.

(2) A Boolean algebra B is µ-centered if B \ {0} is the union of ≤ µ
filters.

Of course we can replace the ℵ1–cc, iω by the κ–cc, iω(κ) (see more
later). The proof is self contained except relayence on a theorem quoted
from [She00].

Let us review some background. By [She80a, 3.1], if B is a κ-cc Boolean
algebra of cardinality µ+ and µ = µ<κ then B is µ-centered. The proof
did not work for B of cardinality µ++ even if 2µ ≥ µ++ by [She81], point
being we consider three elements. But if µ = µ<µ < λ<λ, for some µ+–cc
µ-complete forcing notion P of cardinality λ, in VP:

if B is a µ–cc Boolean algebra of cardinality < λ then B is
µ-centered

(follows from an appropriate axiom). Hajnal, Juhasz and Szentmiklossy
[HJS] continue this restricting themselves to µ-linked. Then proof can be
carried for µ++, and they continue by induction. However as in not few
cases, the problem was for λ+, when cf(λ) = ℵ0 so they assume

(⊗) if λ ∈ (µ, 2µ), cf(λ) = ℵ0 then λ = λℵ0 and �λ
(on the square see Jensen [Jen72]). This implies that if we start with V = L
and force, then the assumption (⊗) holds, so it is a reasonable assumption.
Also they prove the consistency of the failure of the conclusion when ⊗
fails relaying on Hajnal, Juhasz and Shelah [HJS86] (on a set system +
graph constructed there) and on colouring of graphs (see [HJS, §2]), possibly
2ℵ0 = ℵ1, 2ℵ1 = ℵω+1, |B| = 2ℵ1 , B satisfies the ℵ1–cc but is not ℵ1-linked,
only ℵ2-linked.

This gives the impression of essentially closing the issue, and so I would
have certainly thought some years ago, but this is not the case, exemplifying
the danger of looking at specific cases. In fact, as we shall note in the end,
their consistency result is best possible under our knowledge of relevant
forcing methods. They use [HJS86] to have “many very disjoint sets”(i.e.,
〈Xα : α ∈ S〉, S ⊆ {δ < ℵω+1 : cf(δ) = ℵ1}, Xα ⊆ α = sup(Xα), and
α 6= β ⇒ Xα ∩Xβ finite).

On pcf see [She94c]. Now, [She00] has half jokingly a strong claim of
proving GCH under reasonable reinterpretation. In particular [She00] says
there cannot be many strongly almost disjoint quite large sets, so this blocks
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reasonable extensions of [HJS]. Now the main theorem of [She00] enables
us to carry the induction on λ ∈ (µ, 2µ] as in [She80a, 3.1], [HJS, 3.x].

Proposition 8.3. Suppose that:

(a) λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0,
(b) there are a club E∗? of λ and a sequence P̄ = 〈Pα : α ∈ E〉 (such

that |α| divides α whenever α ∈ E and λ = sup(acc(E))) such that
(i) Pα ⊆ [α]<κ, |Pα| ≤ |α| and P̄ is increasing continuous,

(ii) if X ⊆ λ has order type θ, then for some increasing 〈γε : ε < κ〉
we have γε ∈ X and for each ε < κ, for some ξ ∈ (ε, κ) and
α ≤ min(E \ γξ) we have {γζ : ζ < ε} ∈ Pα,

(c) B is a Boolean algebra satisfying the κ–cc, |B| = λ.

Then we can find a Boolean algebra B′ and a sequence 〈B′α : α ∈ E〉 (recall
that Pα increases with α) of subalgebras of B′ such that

(α) B ⊆ B′ ⊆ Bcom (Bcom is the completion of B),
(β) B′ =

⋃
α∈E

B′α, |B′α| ≤ |α|+ ℵ0 and the sequence 〈B′α : α ∈ E〉 increas-

ing continuous in α,
(γ) if α ∈ acc(E), x ∈ B′ \ {0} then for some Y ⊆ B′α \ {0}, |Y | < θ we

have:
if y ∈ Y then y ∩ x = 0B′, and
if z ∈ B′α is such that z ∩ x = 0B′ then z ≤ sup(Y ′) ∈ B′α for
some Y ′ ∈ [Y ]<κ,

(δ) if either (∗)1 or (∗)2 (see below) holds then we can add
Y generates the ideal {z ∈ B′α : z ∩ x = 0B′},

where
(∗)1 (∀ε < θ)(|ε|<κ < θ),
(∗)2 in clause (b) of the assumption we add:

for every X ⊆ α, |X| < |α| for some card τ , τ<κ < θ and some
function h : X → τ we have: if Y ⊆ X, h � Y is constant then
Y ∈ Pα.

Proof. Let χ be a large enough regular cardinal. Let B = {xε : ε < λ},
let Bcom be the completion of B. We choose by induction on α ∈ E an
elementary submodel Nα of (H(χ),∈, <∗χ) of cardinality |α| including {β :

β < α}, increasing continuous in α, such that B, 〈xε : ε < λ〉, Bcom, P̄ , λ,
θ, κ belong to N0 and 〈Nβ : β ∈ E ∩ α〉 ∈ Nα for every α ∈ nacc|E|

Note: if α ∈ nacc(E) then α ∈ Nα, and hence Pα ⊆ Nα.
Let

B′α
def
= Nα ∩ Bcom, B′ =

⋃
α∈E

B′α.

Paper Sh:575, version 2005-02-03 11. See https://shelah.logic.at/papers/575/ for possible updates.



CELLULARITY OF FREE PRODUCTS OF BOOLEAN ALGEBRAS 53

We define by induction on α ∈ E a one-to-one function gα from B′α onto α
such that

β ∈ α ∩ E ⇒ gβ ⊆ gα, and gα is the <∗χ -first such g,

so gα ∈ Nmin(E\(α+1)). Let g =
⋃
α∈E

gα. Thus g is a one-to-one function from

B′ onto λ. In the conclusion clauses (α), (β) should be clear and let us prove
clause (γ). So let α ∈ E, x ∈ B′ \ {0}. We define J = {z ∈ B′α : B′ |=
“z ∩ x = 0”}. Then J is an ideal of B′α. We now try to choose by induction
on ε < θ, elements yε ∈ J such that

(i) yε is a member of J \ {0B},
(ii) there is no u ∈ [ε]<κ such that yα ≤ sup

ζ∈u
yζ ∈ B′α (sup - in the

complete Boolean algebra Bcom),
(iii) under (i) + (ii), g(yε) (< λ) is minimal (hence under (i) + (ii),

βε
def
= min{β ≤ α : yε ∈ B′β} is minimal).

If we are stuck for some ε < θ, then for every y ∈ J the condition (ii) fails
(note that (iii) does not matter at this point), i.e., there is a subset uy of ε
of card < κ such that Bcom |= y ≤ supyζζ ∈ u. So 〈yζ : ζ < ε} is as required
in clause (γ). So suppose yε is defined for ε < θ. Clearly ζ < ε ⇒ yζ 6= yε
(use u = {ζ} ∈ [εγ < κ],) ??sograyym??, also ζ < ε < 0?? ⇒ g(yζ) ≤ g(yε)
as yε satisfies the demand (i)+(ii) for ζ, so by (iii) we get the inequality
together.

ζ < ε ⇒ g(yζ) < g(yε),

and hence ζ < ε < θ ⇒ βζ ≤ βε. Now apply clause (b)(ii) of the
assumption to the set X = {gα(yε) : ε < θ} to get a contradiction. ??A
subset u ∈ [θ]κ of order type κ such that for every ε ∈ u for some ξ ∈
u\ (ε+ 1), we have {g(yζ) : ζ < ε} ∈ Nmin(E \ (g(yξ) + 1) hence {g(yζ) : ζ <
ε} ∈ Nα. But α ∈ acc(ε) hence for some β ∈ E ∩ α{gα(yζ) : ζ < ε} ∈ Nβ,
but g�Nβ ∈ Nα and g is 1-to-1, hence {yζ : ζ < ε} ∈ Nβ. This implies
that zε := supBcom{yζ : ζ < ε} belong to (Bcom and)?? Nα hence to B′α.
Trivially ε1 < ε2 ∈ uκ ⇒ Bcomzε1 ≤ zε2 ∧ yε1 ≤ zε2 but by the choice
of yε1 ,Bcom |= gε1 � zε1 hence 〈zε : ε ∈ u〉 is strictly increasing in Bcom

contradicting to Bcom |= κ-cc.
Clause (δ) follows by (γ). �

Proposition 8.4. Suppose that

(a) λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0, and µ = µ<θ ≤ λ ≤ 2µ, and
(∀α < θ)[|α|<κ < θ],

(b) as in 8.3 and either (∗)1 or (∗)2 of clause (δ) of 8.3,
(c) B is a κ-cc Boolean algebra of cardinality λ,
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(d) every subalgebra B′ ⊆ Bcom of cardinality < λ is µ-linked (see defini-
tion 8.2(1)).

Then B is µ-linked.

Proof. Let 〈B′α : α ∈ E〉 be as in the conclusion of 8.3 and let E ′ = acc(E).
Without loss of generality we may assume that the set of elements B′α is α.
Let for α ∈ E, hα : B′α \ {0} → µ be such that:

hα(x1) = hα(x2) ⇒ x1 ∩ x2 6= 0B.

For each x ∈ B′ \ B′min(E′) let α(x) = max{α ∈ E ′ : x /∈ B′α} (well defined as

B′ =
⋃
α∈E′

B′α and 〈B′α : α ∈ E ′〉 is increasing continuous), and let Yx,α ⊆ B′α
be such that |Yx,α| < θ and

Yx,α ⊆ Jx,α
def
= {y ∈ B′α : y ∩ x = 0B} and

Yx is cofinal in Jx (Yx exists by 8.3, see clause (δ) and our present assumption
(b)).

For x ∈ B′ we define a pair (unx, Y
n
x ) ??soger?? by induction on n < ω

as follows: u0
x = {0, α(x)min(E ′ \ (α(x) + 1))} and Y 0

x the subalgebra of
B′ generated by {x}, and un+1

x = unx ∪
⋃
{u0

y : y ∈ Y n
x } and Y n+1

x be the
subalgebra of B′ generated by

Y n
x ∪

⋃
{Yy,α : y1 ∈ Y n

x and α ∈ unx}.

Finally let Y ω
x =

⋃
n<ω

Y n
x . As θ is regular, |Y n

x | < θ and as in addition

θ is uncountable, |Y ω
x | < θ. Let uωx := {α(y) : y ∈ Y ω

x } clearly it is
equal to ∪{unx : n < ω}. We can find Aζ ⊆ B′ \ {0} for ζ < µ such
that B′ \ {0} =

⋃
ζ<µ

Aζ and

(~̃) if x1, x2 ∈ Aζ , then there are one-to-one functions f : Y ω
x1

onto−→ Y ω
x2

and g : uωx1
onto−→ uωx2 such that:

(i) f preserve the order,
(ii) g is an isomorphism from the Boolean subalgebra Y ω

x1
of B′ onto

the Boolean subalgebra Y ω
x2

of B′
(iii) f(x1) = x2 and if y ∈ Y ω

x1
then g(α(y)) = α(f(y)),

(iv) if α ∈ ux1 and y ∈ B′α ∩ Y ω
x1

then hα(x1) = hg(α)(f(x1)),
(v) g is the identity on uωx1 ∩ u

ω
x2

,
(vii) f is the identity on Y ω

x1
∩ Y ω

x2
.

(Why? By [EK65] or use 〈ηx : x ∈ B′〉, ηx ∈ µ2 with no repetitions.)
As B is a Boolean subalgebra of B′, it is enough to prove:

� x1, x2 ∈ Aζ ⇒ x1 ∩ x2 6= 0B.
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Let D1 be an ultrafilter of Y ω
x1

to which x1 belongs, D2 =: {f(y) : y ∈ Y ω
x2
}

(so D2 is an ultrafilter on Y ω
x2

to which x2 belongs). It suffices to prove
that for each α ∈ E ′, (D1 ∩ Bα) ∪ (D2 ∩ Bα) generate non trivial filters on
Bα. We do it by induction on α (note if α ≤ β this holds for α provided
it holds for β). If α ∈ uωx1 ∩ u

ω
x2

use clause (iii) of (~̃) – note that this
includes the case when α = 0. For α ∈ acc(E ′) it follows by the finiteness
of the condition. In the remaining case β = sup(E ′ ∩ α) < α. Now if
Y ω
x1
∩ B′α ⊆ B′β, Y ω

x2
∩ B′α ⊆ B′β this is trivial. So by symmetry we may

assume that α ∈ uωx1 \ u
ω
x2

and use the definition of Yy for y ∈ Bα ∩Y ω
x1
\Bβ.

So we can assume that this fails hence it follows that there is ` ∈ {1, 2}
and y` ∈ Y ω

x`
such that α(y) = β, hence β ∈ uωx1 ∪ u

ω
x`

. Now if there is also
yε−` ∈ Y ω

xε−`
such that α(yε−`) = β, then α ∈ uωx1 ∩ u

ω
x2

hence g(α) = α (by

clause (v) of ~) and by clause (iv) of ~ and the choice of hα we are done.
So we are left with the case that yωx2 ∩ B

′
α ⊆ B′β. It is enough toe show that

if z` ∈ D` ∩ B′α, zz−` ∈ D` ∩ B′β then B′ |=“z1 ∩ z2 > 0”. If this fails then
zz−` ∈ Iz`,α hence for some y′ ∈ Yz`,α ,B′ |= zz,` ≤ y′, but y′ ∈ Yz`,α ⊆ yωx2
easy contradiction 0. �

Proposition 8.5. Assume µ = µ<iω(κ). Then for every λ ∈ (µ, 2µ] of
cofinality > µ, for every large enough regular θ < iω(κ) clause (b) of 8.3
holds.

Proof. By [She00], for every τ ∈ [µ, λ) for some θτ < iω(κ), we have:

(�̃) there is P = Pτ ⊆ [τ ]<iω(κ) closed under subsets such that |P| ≤ τ
and every X ∈ [τ ]<iω(κ) is the union of < θτ members of members
of Pτ .

Now, as cf(λ) > µ for some n < ω, the set

Θ = {τ : µ < τ < λ, θτ ≤ in(κ)}

is an unbounded subset of Card ∩ (µ, λ). Let θ ≥ (in+8(κ)) be regular.
Choose a club E of λ such that α ∈ nacc(E) ⇒ |α| ∈ Θ and choose
Pα ⊆ [α]<κ of cardinality ≤ |α| increasing continuous with α ∈ E, such that
for α ∈ nacc(E), for every X ∈ [α]θ, for some h : X −→ in(κ), if Y ⊆ X,
|Y | < κ and h � Y constant then Y ∈ Pα.

Now suppose X ⊆ λ, otp(X) = θ, so let X = {γε : ε < θ}, βε increasing
with ε; let βε = min{α ∈ E : γε < β}, so ζ < ε ⇒ βζ ≤ βε and
βε ∈ nacc(E), and there is hε : {ζ : ζ < ε} → in(κ) such that for every
j < in(κ),

u ∈ [ε]<κ & (h � u constant) ⇒ {γζ : ζ ∈ u} ∈ Pβε .

Applying the Erdös–Rado theorem (i.e., θ → (in(κ)+)2
in(κ)) we get the

desired result (the proof is an overkill). �
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Main Conclusion 8.6. Suppose that κ is a regular uncountable cardinal,
µ = µiω(κ) and B is a Boolean algebra satisfying the κ-cc.

(1) If |B| ≤ 2µ then B is µ-linked.
(2) If λ is regular ∈ (µ, 2µ] then B satisfies the λ-Knaster condition.

Proof. 1) We prove this by induction on λ = |B|. If |B| ≤ µ this is trivial
and if cf(|B|) ≤ µ this follows easily by the induction hypothesis. In other
cases by 8.5, for some θ∗ < iω(κ) for every regular θ ∈ (θ∗,iω(κ)), clause
(b) of 8.3 holds. Choose θ = (θℵ0)++, so for this θ both clause (b) of 8.3 and
(∗)1 of clause (δ) of 8.3 hold. Thus by claim 8.4 we can prove the desired
conclusion for λ = |B|.

2) Follows from part 1). �

Proposition 8.7. (1) In 8.6 we can replace the assumption µ = µiω(κ)

by µ = µ<τ if
⊗ for every λ ∈ (µ, 2µ) of cardinality > µ for some θ = cf(θ) ≥ κ

we have: clause (b) of 8.3 and (∗)2 of clause (δ) of 8.3 hold.
(2) If λ∗ ∈ (µ, 2λ) and we want to have the conclusion of 8.6(1) with
|B| = λ∗ and 8.6(2) for λ∗-Knaster only then it suffice to restrict
ourselves in ⊗ to λ ≤ λ∗.

Proposition 8.8. In 8.3, if (∀ε < θ)[|ε|<κ < θ] then we can weaken clause
(ii) of assumption (b) to

(ii)′ if X ⊆ λ has order type θ then for some 〈γε : ε < κ〉 we have: γε ∈ X
and

(∀ε < κ)(∃γ ∈ X)(∃α ≤ min(E \ γ))({γζ : ζ < ε} ∈ Pα).

Proof. Let X = {jε : ε < θ} strictly increasing with ε, and let βε = min(E \
(jε + 1)), so ζ < ε ⇒ βζ ≤ βε. Let

e
def
= {ε < θ : ε is a limit ordinal and

if ε1 < ε and u ∈ [ε1]<κ and {jξ : ξ ∈ u] ∈
⋃
ζ<θ

Pβζ
then {jε : ε ∈ u} ∈

⋃
ζ<ε

Pβε}.

Now, e is a club of θ as (θ is regular and) (∀ε < θ)[|ε|<κ < θ]. So we can
apply clause (ii)′ to X ′ =: {jε : ε ∈ e}, and get a subset {γε : ε < κ} as
there, it is as required in clause (ii). �

Proposition 8.9. (1) Assume λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0. Then
a sufficient condition for clause (b)+(δ)(∗)1 of claim 8.3 is

(⊗̃) (a) λ > θ = cf(θ),
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(b) for arbitrarily large α < λ for some regular τ < θ and λ′ < λ,
for every a ⊆ Reg ∩ |α| \ θ for some 〈bε : ε < ε∗ < τ〉 we have
a =

⋃
ε<ε∗

bε and [bε]
<κ ⊆ J≤λ′ [a] for every ε < ε∗,

(c) (∀ε < θ)[|ε|<κ < θ] or for every λ′ ∈ [µ, λ], �{δ<λ′:cf(δ)=θ}.
(2) Assume µ > θ ≥ κ = cf(κ) > ℵ0, a sufficient condition for clause

(b) of 8.3 to hold is:
for every λ ∈ [µ, 2µ] of cofinality > µ, for some θ′ ≤ θ,
⊗1 holds (with θ′ instead θ).

Proof. 1) By [She96], [She93a, 2.6], or [She02].
2) Follows. �

Remark 8.10. So it is still possible that (assuming CH for simplicity)

⊗ if µ = µℵ1 , B is a c.c.c. Boolean algebra, |B| ≤ 2µ then B is µ-linked.

On the required assumption see [She93b, Hyp. 6.1(x)].
Note that the assumptions of the form λ ∈ I[λ] if added save us a little
on pcf hyp. (we mention it only in 8.x). But if we are interested in the
[κ–cc ⇒ λ-Knaster], it can be waived.
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