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Abstract. We answer a variant of a question of Rödl and Voigt by showing that,
for a given infinite cardinal λ, there is a graph G of cardinality κ = (2λ)+ such
that for any colouring of the edges of G with λ colours, there is an induced copy
of the κ-tree in G in the set theoretic sense with all edges having the same colour.
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1. Introduction

G = (V,E) is a graph with vertex set V and edge set E, where E ⊆ [V ]2. The graph
H = (W,F ) is a subgraph of G if W ⊆ V and F ⊆ E, it is an induced subgraph if
F = E ∩ [W ]2. If λ is a cardinal, the partition relation

G → (H)2λ, (1)

means that if c : E → λ is any colouring of the edges of G with λ colours, then
there is an induced copy of H in G in which all the edges have the same colour.
There is a related notion G → (H)1λ, for vertex colourings of graphs. However,
there is an essential difference since, for any given graph H and any λ, there is
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some G such that G → (H)1λ holds. This is not true for edge-colourings; Hajnal
and Komjath [] proved the consistency of a negative answer, and Shelah [] proved
that a positive answer is also consistent. It is therefore of some interest to have
instances of graphs H such that (1) holds for some G, and then, of course, one can
ask for the smallest such G.

Rödl and Voigt [] (see also []) proved a result of this kind by showing that for
any infinite cardinal λ and a suitably large κ, there is a graph Gκ of cardinality κ
such that

Gκ → (Tκ)2λ (2)

holds, where Tκ is the tree in which every vertex has degree κ (see below). More
precisely, ‘suitably large’ means that the ordinary partition relation

cf(κ)→ (ω)3λ

holds so that, by [], κ ≥ (22
λ

)+; in fact, they showed in this case that the ubiquitous
shift-graph on κ works. Rödl and Voigt [] then asked, what is the smallest cardinal κ
such that (2) holds? It is easily seen that (2) is false if κ ≤ 2λ, and they conjectured
that it holds (for some suitable graph Gκ) if κ = (2λ)+. In this paper we prove that
(2) holds with Tκ replaced by T (κ), a related graph which we call the transitive
κ-tree defined in the next section.

2. Preliminaries

For an infinite cardinal κ we denote by <ωκ the set of all increasing finite sequences
of ordinals in κ. The length of an element s = 〈s0, . . . , sn−1〉 ∈ <ωκ is denoted by
`n(s) = n. Also, we define

max(s) =

{
−1 if s = 〈〉, the empty sequence,
s`n(s)−1 if `n(s) > 0.

If s = 〈s0, . . . , sn−1〉 and t = 〈t0, . . . , tm−1〉 are two elements of <ωκ, we write s� t
to denote the fact that s is a proper initial segment of t, that is n < m and si = ti
for i < n, and in this case we write s = t|n. We also write s = t∗ if m = n+ 1 and
s � t. If s, t are distinct and �-incomparable we write s ⊥ t. The κ-tree of height
ω is the graph Tκ on <ωκ with edge set

Eκ = {{s, t} : s, t ∈ <ωκ ∧ s = t∗}.

We shall also consider a related graph, the transitive κ-tree of height ω, which is
the graph T (κ) on <ωκ with edge set

Fκ = {{s, t} : s, t ∈ <ωκ ∧ s� t}.

We shall prove the following theorem.

Paper Sh:578, version 1997-08-27 11. See https://shelah.logic.at/papers/578/ for possible updates.



A TREE-ARROWING GRAPH 3

Theorem 2.1. Let λ be an infinite cardinal, and let κ = (2λ)+. Then there is a
graph Gκ of cardinality κ such that

Gκ → (T )2λ,

where T is T (κ).

Remark. Instead of κ = (2λ)+, it is enough that κ be any regular cardinal such
that |α|λ < κ holds for all α < κ. The same proof works.

The construction of a suitable Gκ depends upon the following (slightly weaker
version of a) theorem of Shelah [] (or more [, 3.5]):

(•) Let λ be an infinite cardinal, κ = (2λ)+, S = {α < κ : cf(α) = λ+}. Then
there are a sequence C = 〈Cδ : δ ∈ S〉 and a sequence h∗ = 〈h∗δ : δ ∈ S〉 such
that Cδ is a club in δ having order type λ+, h∗δ : Cδ → 2 and such that, for
any club K in κ, there is a stationary subset BK of S ∩K such that for each
δ ∈ BK and each i < 2, min(Cδ) ∈ K and the set

DK(δ, i) = {α ∈ Cδ ∩K : h∗δ(α) = i ∧min(Cδ \ (α+ 1)) ∈ K}

is cofinal in δ.

Remarks. 1. The result is also true if 2, the range of each h∗δ , is replaced by λ;
also, if κ = λ++, we can also require that DK(δ, i) be a stationary subset of δ for
each δ ∈ BK and i < λ (see []).

2. If 2λ > λ+, then the following stronger assertion is true (see Shelah []):
(••)There is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that Cδ is a club in δ having order
type λ+ and, for any club K in κ and any stationary subset S′ ⊆ S, there is a
stationary subset BK ⊆ S′ ∩ K such that Cδ ⊆ K for each δ ∈ BK . Using this
result instead of (•), the proof of Theorem 2.1 for the case when 2λ > λ+ may be
slightly simplified.

We will prove that Theorem 2.1 holds with the graph Gκ = (κ, E), where

E = {{α, β} : β ∈ S ∧min(Cβ) < α < β ∧ h∗β(sup(α ∩ Cβ)) = 0},

and the Cβ and h∗β are as described in (•).

3. The case T = T (κ)

We prove the result for the case of the transitive tree T (κ).

Proof: Let c : E → λ be any λ-colouring of the edges of Gκ. For each ζ ∈ λ
consider the following two-person game Gζ . The game has ω moves. At the n-th
stage the first player P1 chooses ordinals αn, βn, and then the second player P2

chooses two ordinals γn, δn so that

αn < βn < γn < δn < κ, (3)

δm < αn (m < n). (4)
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The player P2 is declared the winner in a play of the game if he succeeds in choosing
the γn so that

{γm, γn} ∈ E , c({γm, γn}) = ζ (m < n < ω), (5)

and
{ξ, γn} /∈ E for ξ ∈ (αm, βm) and m ≤ n < ω. (6)

(As usual, (α, β) denotes the open interval {ξ : α < ξ < β} and [α, β] is the
corresponding closed interval.)

The proof of the theorem depends upon the following two facts:
Fact A: For some ζ < λ, P2 has a winning strategy for the game Gζ .

Fact B: If P2 can win Gζ , then the graph Gκ contains an induced copy of T (κ)
with all edges coloured ζ.

Proof of Fact B. We assume that ζ < λ and that the second player P2 has a
winning strategy σζ for the game Gζ . We shall define ordinals αs, βs, γs, δs for s a
vertex of T (κ) so that the following conditions are satisfied:

(a) For each s the sequence

〈(αs|i, βs|i, γs|i, δs|i) : i < `n(s)〉

consists of the first 2`n(s) moves in a proper play of the game Gζ in which P2 uses
the winning strategy σζ .

(b) γs 6= γt if s 6= t.

(c) If s ⊥ t, then {γs, γt} /∈ E .

Since (5) holds, these conditions imply that the map s 7→ γs is an embedding
of the tree T (κ) into the graph Gκ and all the edges of the image have colour ζ.

In fact, we shall choose the αs, βs, γs, δs so that (a) holds and so that the
following condition is satisfied:

(d) For any vertices s, t of T (κ), if s ⊥ t, then

EITHER (i) [γs, δs] ⊂
⋃
i≤`n(t)(αt|i, βt|i),

OR (ii) [γt, δt] ⊂
⋃
i≤`n(s)(αs|i, βs|i).

The conditions (a) and (d), and the fact that P2 is using the winning strategy σζ ,
ensure that (b) and (c) also hold.

We define αs, βs, γs, δs by induction on max(s). Let α〈〉 = 0, β〈〉 = 1, and then
let (γ〈〉, δ〈〉) be P2’s response in the game Gζ using his winning strategy σζ . Now let
0 ≤ ξ < κ, and suppose that we have suitably defined αs, βs, γs, δs for all vertices
s of T (κ) such that max(s) < ξ. We need to define these when max(s) = ξ.
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Let 〈ti : i < θ(ξ)〉 be an enumeration of all the nodes s of T (κ) with max(s) = ξ.
Then 1 ≤ θ(ξ) ≤ 2λ < κ. Now inductively choose the αti , βti , γti , δti for i < θ(ξ)
so that

αti = δ(ti)∗ + 1,

and if i = 0, βti = αi0 + 1 and if i > 0

βti = sup{δs + 2 : max(s) < ξ or s = tj for some j < i}.

The corresponding pairs (γti , δti) are determined by the strategy σζ . With these
choices it is easily seen that (a) continues to hold; we have to check that (d) also
holds when s ⊥ t and max(s) = ξ or max(t) = ξ.

If max(s) = max(t) = ξ, then s = ti and t = tj , where say i < j. Then

αt = δt∗ + 1 < βs < γs < δs < βt,

and so (d)(i) holds.

Suppose max(s) < ξ = max(t). Then by the induction hypothesis, either (i) or
(ii) of (d) holds when we replace t by t∗. Suppose first that (d)(i) holds. Then for
some m ≤ `n(t∗) we have that

αt∗|m < γs < δs < βt∗|m.

It follows that (d)(i) also holds for s and t since t|m = t∗|m. Now suppose that
(d)(ii) holds so that, for some m ≤ `n(s),

αs|m < γt∗ < δt∗ < βs|m.

Then, by the definitions of αt and βt, it follows that

αt = δt∗ + 1 ≤ βs < γs < δs < βt,

so that again (d)(i) holds for s and t. Similarly, if max(t) < ξ = max(s).

Proof of Fact A. We have to show that P2 wins the game Gζ for some ζ < λ.
Suppose for a contradiction that this is false. Since the games are open and hence
determined, it follows that P1 has a winning strategy, say τζ , for the game Gζ for
every ζ < λ.

For convenience we write c({α, β}) = −1 if {α, β} /∈ E , so that c is defined
on all pairs {α, β} ∈ [κ]2. For each bounded subset X ⊆ κ define an equivalence
relation eX on S \ (sup(X) + 1) so that β eX γ holds if and only if

(i) β, γ ∈ S and sup(X) < β, γ < κ;

(ii) c({α, β}) = c({α, γ}) for all α ∈ X;

(iii) X ∩ Cβ = X ∩ Cγ , (iv) for α ∈ X, α ≤ min(Cβ) ⇔ α ≤ min(Cγ),
tp(α ∩ Cβ) = tp(α ∩ Cγ) and h∗β(sup(α ∩ Cβ)) = h∗γ(sup(α ∩ Cγ)) (for
α > min(Cβ)).
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Note that the equivalence relation eX has at most (λ+)|X| ≤ 2λ|X| classes. Also,
if Y ⊆ X, then β eX γ ⇒ β eY γ.

Since κ = (2λ)+, there is a continuous increasing sequence of ordinals
〈ρη : η < κ〉 in κ such that the following two conditions hold:

(o) If X ⊆ ρη, |X| ≤ λ and ρη < β < κ, then there is some γ ∈ (ρη, ρη+1)
such that βeXγ

(oo) ρη is closed under τζ for all ζ < λ. In other words, if at the n-th stage of a
play in the game Gζ , player P2 chooses γn < δn < ρη, then P1’s response
using τζ is to choose αn+1, βn+1 so that δn < αn+1 < βn+1 < ρη.

Since K = {ρη : η < κ} is a club in κ, there is some δ ∈ S such that min(Cδ) ∈
K and, for ε ∈ {0, 1},

Aε = {α ∈ Cδ ∩K : h∗δ(α) = ε ∧min(Cδ \ (α+ 1)) ∈ K}

is an unbounded subset of δ. Let Cδ = {iσ : σ < λ+}, where i0 < i1 < · · · .

We claim that the following assertion holds for some ζ < λ.

(∗)ζ : If X ⊆ δ, |X| ≤ λ, then there are σ < λ+ and γ such that (a) sup(X) <
iσ < γ < iσ+1, (b) iσ ∈ A0, (c) γ eX δ, and (d) c(γ, δ) = ζ.

For suppose the claim is false. Then, for each ζ < λ there is a counter-example
Xζ . Let X =

⋃
{Xζ : ζ < λ}. Then X ⊆ δ and |X| ≤ λ and so, for some α ∈ A0,

sup(X) < α < δ. There are η < κ and σ < λ+ such that α = ρη = iσ, and
therefore, by the choice of ρη+1, there is γ such that ρη < γ < ρη+1 and γeXδ.
Since α = iσ ∈ A0, iσ+1 = min(Cδ \ (α + 1)) ∈ K. So ρη+1 ≤ iσ+1. Therefore,
sup(Cδ ∩ γ) = iσ, and since α = iσ ∈ A0, we have that h∗δ(sup(Cδ ∩ γ)) = 0.
Therefore, {γ, δ} is an edge of G and there is some ζ ∈ λ such that c(γ, δ) = ζ.
But this contradicts the choice of Xζ ⊆ X, and hence (∗)ζ holds for some ζ < λ.

By induction on n < ω we now choose ordinals αn, βn, γn, δn in δ and σ(n) < λ+

so that the following conditions are satisfied:

A: 〈(αm, βm, γm, δm) : m ≤ n〉 is an intial segment of a play in the game Gζ in
which P1 uses the winning strategy τζ .

B: α0, β0 < min(Cδ).

C: γn = min{γ : γ > iσ(2n) ∧ γ eXn δ ∧ c(γ, δ) = ζ}, where

Xn =
⋃
{{α`, β`, γ`, δ`} : ` < n} ∪ {αn, βn} ∪

⋃
{{iσ(`), iσ(`)+1} : ` < 2n}.

D: δn = iσ(2n+1).

E: For n > 0, [αn, βn] ⊆ (δn−1, iσ(2n−1)+1).

F: iσ(n) belongs to A0 or A1 according as n is even or odd and σ(n)+1 < σ(n+1).

We have to prove that it is possible to choose the αn etc., so that these condi-
tions are satisfied. Clearly (B) holds since, by (oo), the first moves by P1 using the
stategy τζ are α0 < β0 < ρ0 and ρ0 ≤ min(Cδ) ∈ K. By (∗)ζ , there are σ(0) < λ+
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and γ such that iσ(0) ∈ A0, iσ(0) < γ < iσ(0)+1, γ eX0
δ, where X0 = {α0, β0}

and c(γ, δ) = ζ; let γ0 be the least such γ. Now let σ(1) > σ(0) + 1 be minimal
so that iσ(1) ∈ A1, and put δ0 = iσ(1). Now suppose that n > 0 and that the
αm, βm, γm, δm, σ(2m) and σ(2m + 1) have been suitably defined for all m < n.
Let ρ ∈ K be minimal such that ρ > δn−1. P1 chooses αn, βn using the strategy
τζ so that δn−1 < αn < βn < ρ. Since δn−1 = iσ(2n−1) ∈ A1, it follows that
iσ(2n−1)+1 ∈ K and hence ρ ≤ iσ(2n−1)+1. Now by (∗)ζ , there are σ(2n) and γ so
that iσ(2n) ∈ A0,

iσ(2n) < γ < iσ(2n)+1, γ eXn δ (whereXn is as described in (C)), and c(γ, δ) = ζ;
let γn be the least such γ. Note that, since iσ(2n) ∈ A0, iσ(2n)+1 = min(Cδ \ (iσ(2n)+
1)) ∈ K. Finally, choose a minimal ordinal σ(2n + 1) > σ(2n) + 1 so that
δn = iσ(2n+1) ∈ A1. This completes the definition of the αn etc., so that (A)-
(F) hold.

By (C) it follows that c(γn, δ) = ζ for all n < ω, and hence c(γm, γn) = ζ
holds for all m < n < ω since γm ∈ Xn and γn eXn δ. There is no edge of Gκ
from δ to (α0, β0) since β0 < min(Cδ). Since γn eXn δ and β0 ∈ Xn, it follows
that β0 < min(Cγn) also, and so there is no edge from γn to (α0, β0) either.
By the construction, for 0 < m < ω, iσ(2m−1) < αm < βm < iσ(2m−1)+1, and
hence Cδ ∩ (αm, βm) = ∅. Therefore, for any ξ ∈ (αm, βm), h∗δ(sup(ξ ∩ Cδ)) =
h∗δ(iσ(2m−1)) = 1 by (F), and so there is no edge of G from δ to (αm, βm). If
0 < m < n < ω, then γn eXn δ and therefore ,

tp(αm ∩ Cγn) = tp(αm ∩ Cδ) = tp(βm ∩ Cδ) = tp(βm ∩ Cγn).

Therefore, for any ξ ∈ (αm, βm), it follows that

h∗γn(sup(ξ ∩ Cγn)) = h∗γn(sup(αm ∩ Cγn)) = h∗δ(sup(αm ∩ Cδ)) = 1

and so there are no edges of G from γn to (αm, βm) either.

Thus we have produced a play in the game Gζ in which P1 uses the strategy
τζ but the second player P2 wins! This contradicts the assumption that σζ is a
winning strategy for the first player, and completes the proof.
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. . P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc.
62 (1956) 427-489.

. . A. Hajnal and P. Komjath, Embedding graphs into colored graphs, Trans. Amer.
Math. Soc. 307 (1988), 395–409; Corrigendum: 332 (1992), 475.

. . P. Komjath and E.C. Milner, On a conjecture of Rödl and Voigt. J. Combin. Theory,
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