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Abstract

The existence of an ℵω+1-Dowker space is proved in ZFC using pcf
theory.

1 Introduction

A Dowker space is a normal Hausdorff topological space whose product with
the unit interval is not normal. The problem of existence of such spaces was
raised by Dowker in 1951. Dowker characterized Dowker spaces as normal
Hausdorff and not countably paracompact (see below).
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Exactly two Dowker spaces were constructed in ZFC so far. The existence
of a Dowker space in ZFC was first proved by M. E. Rudin in 1971 [5], and
her space was the only known Dowker space in ZFC for over two decades.
Rudin’s space is a subspace of

∏
n≥1(ℵn + 1) and has cardinality ℵℵ0ω . The

problem of finding a Dowker space of smaller cardinality in ZFC was referred
to as the “small dowker space problem”.

Z. T. Balogh constructed recently [1] a dowker space in ZFC whose car-
dinality is 2ℵ0 .

While both Rudin’s and Balogh’s spaces are constructed in ZFC, their
respective cardinalities are not decided in ZFC, as is well known by the
independence results of Cohen and Easton: both 2ℵ0 and ℵℵ0ω have no bound
in ZFC, (and may be equal to each other).

The problem of which is the first ℵα in which ZFC proves the existence of
a Dowker space remains thus unanswered by Rudin’s and Balogh’s results.

In this paper we prove that there is a Dowker space of cardinality ℵω+1.
A non-exponential bound is thus provided for the cardinality of the smallest
ZFC Dowker space. We do this by exhibiting a Dowker subspace of Rudin’s
space of that cardinality. Our construction avoids the exponent which ap-
pears in the cardinality of Rudin’s space by working with only a fraction of
ℵℵ0ω . It remains open whether ℵω+1 is the first cardinal at which there is a
ZFC Dowker space.

We shall describe shortly the cardinal arithmetic developments which
enable this result. The next three paragraphs are not necessary for under-
standing the proof.

In the last decade there has been a considerable advance in understanding
of the infinite exponents of singular cardinals, in particular the exponent ℵℵ0ω .
This exponent is the product of two factors: 2ℵ0 × cf 〈[ℵω]ℵ0 ,⊆〉. The second
factor, the cofinality of the partial ordering of inclusion over all countable
subsets of ℵω, is the least number of countable subsets of ℵω needed to cover
every countable subset of ℵω; the first factor is the number of subsets of a
single countable set. Since ℵℵ0ω is the number of countable subsets of ℵω, the
equality ℵω = 2ℵ0 × cf 〈[ℵω]ℵ0〉 is clear.

While for 2ℵ0 it is consistent with ZFC to equal any cardinal of uncount-
able cofinality, the second author’s work on Cardinal Arithmetic provides a
ZFC bound of ℵω4 on the factor cf 〈[ℵω]ℵ0 ,⊆〉.

This is done by approximating cf 〈[ℵω]ℵ0 ,⊆〉 by an interval of regular
cardinals, whose first element is ℵω+1 and whose last element is cf 〈[ℵω]ℵ0 ,⊆〉,
and so that every regular cardinal λ in this interval is the true cofinality of a
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reduced product
∏
Bλ/J<λ of a set Bλ ⊆ {ℵn : n < ω} modulo an ideal J<λ

over ω. The theory of reduced products of small sets of regular cardinals,
known now as pcf theory1, is used to put a bound of ω4 on the length of this
interval.

Back to topology now, it turns out that the pcf approximations to ℵℵ0ω are
concrete enough to “commute” with Rudin’s construction of a Dowker space.
Rudin define a topology on a subspace of the functions space

∏
n>1(ℵn + 1).

What is gotten by restricting Rudin’s definition to the first approximation
of ℵℵ0ω is a closed and cofinal Dowker subspace X of the Rudin space XR

of cardinality ℵω+1. The fact that X is Dowker follows readily from the
closure and cofinality of X in XR, and Rudin’s proof that XR is Dowker.
The proof presented here is, however, self contained and does not use the
fact XR is Dowker, mostly because proving that X is collectionwise normal
is essentially the same as showing that X is closed in XR. The reader who is
fluent with the proof in [5] can be content with reading Case 2.2 in the proof
of collectionwise normality and Claim 20 below.

Hardly any background is needed to state the pcf theorem we are using
here. However, an interested reader can find presentations of pcf theory in
either [2], the second author’s [6] or the first author’s [4]. The pcf theorem
used here is covered in detail in each of those three sources.

Acknowledgements The first author wishes to thank J. Baumgartner, for
inviting him to the 11th Summer Conference on General Topology and Ap-
plications in Maine in the summer of 95, Z. T. Balogh, for both presenting
the small Dowker space problem in that meeting and for very pleasant and il-
luminating conversations that followed, and P. Szeptycki, for suggesting that
the subspaces we construct may actually be closed.

2 Notation and pcf

In this section we present a few simple definitions needed to state the pcf
theorem used in proving the existence of an ℵω+1-Dowker space.

Suppose B ⊆ ω is a subset of the natural numbers.

Definition 1. 1.
∏

n∈B ℵn = {f : domf = B ∧ f(n) < ℵn for n ∈ B}

2.
∏

n∈B(ℵn + 1) = {f : domf = B ∧ f(n) ≤ ℵn for n ∈ B}
1pcf means possible cofinalities
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3. for f, g ∈
∏

n∈B(ℵn + 1) let:

(a) f < g iff ∀n ∈ B [f(n) < g(n)]

(b) f ≤ g iff ∀n ∈ B [f(n) ≤ g(n)]

(c) f ≤∗ g iff {n : f(n) > g(n)} is finite

(d) f <∗ g iff {n : f(n) ≥ g(n)} is finite

(e) f =∗ g iff {n : f(n) 6= g(n)} is finite

4. A sequence 〈fα : α < λ〉 of functions in
∏

n∈B ℵn is increasing in <
(≤, <∗,≤∗) iff α < β < λ⇒ fα < fβ (fα ≤ fβ, fα <

∗ fβ, fα ≤∗ fβ)

5. g ∈
∏

n∈B(ℵn + 1) is an upper bound of {fα : α < δ} ⊆
∏

n∈B ℵn if
and only if fα ≤∗ g for all α < δ

6. g ∈
∏

n∈B(ℵn + 1) is a least upper bound of {fα : α < δ} ⊆
∏

n∈B ℵn
if and only if g is an upper bound of {fα : α < δ} ⊆

∏
n∈B ℵn and if g′

is an upper bound of {fα : α < δ} then g ≤∗ g

Theorem 1. (Shelah) There is a set B = Bℵω+1 ⊆ ω and a sequence f =
〈fα : α < ℵω+1〉 of functions in

∏
n∈B ℵn such that:

• f is increasing in <∗

• f is cofinal: for every f ∈
∏

n∈B ℵn there is α < ℵω+1 so that f <∗ fα

A sequence as in the theorem above will be referred to as an “ℵω+1-scale”.
By Theorem 1 we can find B ⊆ ω and an ℵω+1-scale g = 〈gα : α < ℵω+1〉

in
∏

n∈B ℵn. The set B is clearly infinite. Removing from every gα ∈ g a
fixed finite set of coordinates does not matter, so we assume without loss
of generality that 0, 1 /∈ B. For notational simplicity we pretend that B =
ω − {0, 1}; if this is not the case, we need to replace ℵn in what follows by
the n-th element of B. We sum up our assumptions in the following:

Claim 2. We can assume without loss of generality that there is an ℵω+1-
scale g = 〈gα : α < ℵω+1〉 in

∏
n>1 ℵn.

Claim 3. There is an ℵω+1-scale f = 〈fα : α < ℵω+1〉 in
∏

n>1 ℵn so that

for every δ < ℵω+1, if cf δ > ℵ0 and a least upper bound of f�δ exists, then
fδ is a least upper bound of f�δ.
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Proof. Fix an ℵω+1-scale g = 〈gα : α < ℵω+1〉 in
∏

n>1 ℵn as guranteed by
Claim 2. Define fα by induction on α < ℵω+1 as follows: If α is successor or
limit of countable cofinality let fα be gβ for the first β ∈ (α,ℵω+1) for which
gβ >

∗ fβ for all β < α. If cfα > ℵ0 then let gα be a least upper bound to
f�δ := 〈fβ : β < α〉, if such least upper bound exists; else, define fα as in
the previous cases.

The sequence f = 〈fα : α < ℵω+1〉 is increasing cofinal in
∏

n>1 ℵn and
by its definition satisfies the required condition.

Claim 4. Suppose θ is regular uncountable and 〈α(ζ) : ζ < θ〉 is strictly
increasing with sup{α(ζ) : ζ < θ} = δ < ℵω+1. Suppose 〈gζ : ζ < θ〉
is a sequence of functions in

∏
n>1 ℵn which is increasing in <, and that

gζ =∗ fα(ζ) for every ζ < θ. Then

• g := sup{gζ : ζ < θ〉 is a least upper bound of f�δ

• cf g(n) = θ for all n > 1

• g =∗ fδ

Proof of Claim. Let g := sup{gζ : ζ < θ}. Since 〈gζ : ζ < θ〉 is increasing in
<, necessarily cf g(n) = θ for all n > 1.

Suppose that γ < δ is arbitrary. There exists ζ < θ such that γ < α(ζ)
and thus fγ <

∗ fα(ζ) =∗ gζ ≤ g. Thus g is an upper bound or f�δ.
To show that g is a least upper bound suppose that g′ ∈

∏
n>1 ℵn is an

upper bound of f�δ. Let X := {n < ω : g′(n) < g(n)}. For every n ∈ X
find ζ(n) < θ such that gζ(n)(n) > g′(n). Such ζ(n) can be found because
g = sup{gζ : ζ < θ}. Let ζ∗ := sup{ζ(n) : n > 1}. Since cf θ > ℵ0, ζ∗ < θ.
Since 〈gζ : ζ < θ〉 is increasing in <, it holds that fζ(∗) ≥ fζ(n)(n) > g′(n) for

every n ∈ X . But g′ is an upper bound of f�δ, so fζ(∗) ≤∗ g′ and X is finite.

By the definition of f we conclude that fδ is a least upper bound of f�δ.
Since both g and fδ are least upper bounds of f�δ it follows that g =∗ fδ.

3 The Space

Theorem 2. There is a Dowker space of cardinality ℵω+1.

Problem 5. Is ℵω+1 the first cardinal in which one can prove the existence
of a Dowker space in ZFC?
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Proof of the Theorem. Let f = 〈fα : α < ℵω+1〉 be as provided by Claim 3.
We use this scale to extract a closed Dowker subspace of cardinality ℵω+1

from Rudin’s space.

Definition 6. Let XR = {h ∈
∏

n>1(ℵn + 1) : ∃m∀n [ℵ0 < cfh(n) < ℵm]}.

The space is XR is the Rudin space from [5], and is Dowker with the
topology defined by letting, for every f < g in

∏
n>1(ℵn + 1),

(f, g] := {h ∈ XR : f < h ≤ g} (1)

be a basic open set (see [5]).
It is straightforward to verify that (1) this gives a Hausdorff topology on

XR.

Definition 7. 1. For α < ℵω+1 let Fα = {h ∈ XR : h =∗ fα}

2. let X = {h : ∃α < ℵω+1[h ∈ Fα and cfh(n) is constant on a co-finite
subset of ω]}

Since for every function fα ∈ f the set Fα has cardinality ℵω+1 we see
that |X| = ℵω+1.

Observe next that since every h ∈ X is =∗ to some function fα ∈ f and
f is totally ordered by <∗, the space X is totally quasi ordered by <∗:

∀h, k ∈ X [h <∗ k ∨ k <∗ h ∨ h =∗ k] (2)

We put on X the induced topology from Rudin’s space XR above.
Claim 4 translates to a property of the space X:

Claim 8. If θ has uncountable cofinality, 〈hζ : ζ < θ〉 is a sequence of
elements of X which is increasing in < and h = sup〈hζ : ζ < θ〉, then
h ∈ X, and h is in the closure of every cofinal subsequence of 〈hα : ζ < θ〉.

Proof. For every ζ < θ there is a unique α(ζ) < ℵω+1 for which hζ =∗ fα(ζ).
Since 〈hζ : ζ < θ〉 is increasing in <, the sequence 〈α(ζ) : ζ < θ〉 is strictly
increasing. Let δ = sup{α(ζ) : ζ < θ}. Clearly, cf δ = θ. By Claim 4 the
function h = sup{hζ : ζ < θ〉 is a least upper bound of f�δ, and therefore
g =∗ fδ. Furthermore, cfh(n) = θ for all n < ω and is therefore constant and
greater than ℵ0. Thus h ∈ X.

Let (f, h] be a basic open set containing h. For every n < ω there is
some ζ(n) < θ for which hζ(n) > f(n). Since cf θ > ℵ0, it follows that
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ζ := sup{ζ(n) : n < ω} < θ. If ζ < ξ < θ then because hξ > hζ(n) for all n
we conclude that hζ ∈ (f, h]. This proves that an end segment of 〈hζ : ζ < θ〉
is contained in (f, h].

Claim 9. If Un ⊆ X is open for n < ω then
⋂
n Un is open.

Proof. Suppose that h ∈
⋂
n Un and for every n let (fn, h] ⊆ Un be basic

open. Then f := sup{fn : n < ω} < t because cf t(n) > ℵ0 for all n and thus
(f, h] ⊆

⋂
n Un.

We show next that X is Dowker.
Recall that a normal Hausdorff space is countably paracompact iff for every

decreasing sequence 〈Dn : n < ω〉 of closed sets such that
⋂
Dn = ∅ there

are open sets Un ⊇ Dn with
⋂
Un = ∅.

Let Dn = {f ∈ X : ∃m ≥ n [f(m) = ℵm]}. It is straightforward that Dn

is closed and that
⋂
nDn = ∅.

Claim 10. X is collectionwise normal.

Claim 11. If Un ⊆ X is open, and Dn ⊆ Un for all n, then
⋂
Un is not

empty.

Proof of Claim 10. We prove that X is collectionwise normal in the same
fashion Rudin proves collectionwise normality of XR in [5].

Suppose thatH is a disjoint collection of closed subsets ofX with cl
⋃
J =⋃

J for every subcollection J ⊆ H. We need to find a disjoint collection C
of open sets that separates H, namely for all D ∈ H there exists U ∈ C such
that D ⊆ U .

ßLet H =
⋃
H and for every U ⊆ X let tU denote supU . ß

Define by induction on α < ω1 an increasing continuous sequence of trees
T (α) with tree order being reverse inclusion such that:

1. U ∈ T (α)⇒ U is an open subset of X and X ⊆
⋃
T (0)

2. If U ∈ T (α) then U =
⋃
{V : V ∈ T (α) ∧ V ⊆ U}

3. If B is a branch of T (α) then
⋂
B ∈ T (α + 1)

4. If U ∈
⋃
β<α T (β) then U is a leaf of T (α) if and only if U meets at

most one member of H.

5. If U, V ∈ T (α) and V ⊆ U then either V is a leaf or tV 6= tU
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Suppose first that the inductive definition is carried out for all α < ω1.
Let T =

⋃
α<ω1

T (α). The function U 7→ tU is decreasing along branches
of T and therefore every branch of T is countable. Thus every branch of T
terminates at a leaf, which meets at most one member of H. For every h ∈ T
the set B(h) := {U ∈ T : h ∈ U} is a branch of T , and therefore every h ∈
belongs to a leaf U(h) ∈ T . Thus C = {U : U ∈ T is a leaf } is an open
disjoint cover of H with the property that every U ∈ C meets at most one
member of H. Letting UD =

⋃
{U ∈ C : D ∩ U 6= ∅} for each D ∈ H it is

immediate to verify that {UD : D ∈ H} separates H.
Let us define T (α) by induction on α < ω1. Let T (0) = {X}. If

α < ω1 is limit, let T (α)
⋃
β<α T (β) and let T (α + 1) = T (α) ∪ {

⋃
B :

B is a branch of T (α)}. By Lemma 9 every U ∈ T (α + 1) for limit α < ω1

is open and the remaining conditions are easy to verify as well.
We are left with the case α = β + 1 and β is successor. For every leaf U

of T (β) we define the set of immediate successors of U in T (α). Let U be a
leaf of T (β) and let t = tU .

Case 0: U meets at most one member of H. In this case let U have an
empty set of successors in T (α), and is a leaf of T (α).

Case 1: There is some n such that cf t(n) ≤ ℵ0. Since for every h ∈ V we
have cfh(n) ≥ ℵ0 the case that τ(n) is a successor ordinal or 0 is impossible,
thus cf t(n) = ω0 and we can fix an increasing cofinal sequence ζn in t(n) with
ζ(0) = 0. Let Un = {h ∈ U : h(n) ∈ (ζn, ζn+1]}. This is a disjoint collection
of open subsets of V and since h(n) 6= t(n) for all h ∈ V the union of this
collection is U . Let {Un : n < ω} be the set of immediate successors of U in
T (α).

Case 2: cf t(n) > ℵ0 for all n > 1. In this case we prove:

Claim 12. There is some function f < t such that U ∩ (f, t] meets at most
one member of H.

Once the claim is satisfied by some f < t we proceed to define UM for
every M ⊆ ω as follows: UM = {h ∈ U : h�M ≤ f�M ∧ h�(ω − M) >
f�(ω−M)}. Each UM is obviously open, {UM : M ⊆ ω} is disjoint,

⋃
{UM :

M ⊆ ω} = U and if tUM = tu then M = ∅ and UM ⊆ (f, t] and thus meets
at most one member of H. Let {UM : M ⊆ ω} be the immediate successors
of U in T (α).
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Let us prove the claim then. Suppose the claim does not hold. Then
for every f < t in

∏
n>1 ℵn + 1 there are h, k ∈ (f, t] which belong to two

different members of H.
Let us say that a set A ⊆ X is dense below t if for every f < t there is

h ∈ X ∩ (f, t].

Case 2.1 The number of sets D ∈ H for which D ∩ U is dense below t is
≤ 1.

In this case we define a sequence 〈hζ : ζ < ω1〉, a sequence 〈Dζ : ζ < ω1〉
and a sequence 〈fζ : ζ < ω1〉 by induction on ζ < ω1 as follows: Find hζ < t
such that hζ > sup{ξ < ζ : fξ} and hζ ∈ D for some D ∈ H which is not
dense below t. This is possible because sup{fξ : ξ < ζ} < t by the assumption
on t in the present case, and because there are at least two members of H
that meet U ∩ (supξ<ζ fξ, t], but at most one which is dense below t.

Let Dζ be the unique D ∈ H to which hζ belongs and let fζ < t be large
enough so that (fζ , t] ∩ U ∩Dζ is empty.

Since 〈hζ : ζ < ω1〉 is clearly increasing in <, the function h = supζ<ω1
hζ

belongs to cl {hζ : ζ < ω1} ⊆ cl
⋃
ζ<ω1

Dζ by Claim 8. But h /∈ Dζ for every
ζ < ω1 because h > fζ . This contradicts the fact that

⋃
ζ<ω1

Dζ is closed, by
the assumption on H.

Case 2.2: There are two different sets, D1 and D2 in H, such that D1 ∩ U
and D2 ∩ U are dense below t.

In this case it is convenient to use the following:

Definition 13. For functions f, g on ω let E(f, g) := {n < ω : f(n) = g(n)}.

Definition 14. For i ∈ {1, 2} let us define

Wi =
{
w ⊆ ω : ∀f < t∃h ∈ (Di ∩ U)

[
h ∈ (f, t] ∧ E(h, t) = w

]}
Fact 15. If w ∈Wi then w is finite or w is co-finite.

Proof. Suppose w ∈ Wi is infinite and co-infinite. Find h ∈ Di such that
E(h, t) = w. By the definition of Wi find k ∈ Di ∩ U such that E(k, t) = w
and h�(ω − w) < k�(ω − w). This is contradicts the trichotomy (2) because
neither k =∗ h, nor k <∗ h nor h <∗ k.

Fact 16. Wi 6= ∅ for i ∈ {1, 2}.
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Proof. Suppose that for every w ⊆ ω which is finite or co-finite, w /∈ Wi.
This is equivalent to assuming Wi is empty by the previous fact. Then for
every w finite or co-finite there is some fw < t such that h ∈ Di∩U∩(fw, t]⇒
E(h, t) 6= w. Let f = sup{fw : w ⊆ ω ∧ min{|w|, |(ω − w)| < ℵ0}. Since
cf t(n) is uncountable for all n, it follows that f < t.

Since Di∩U is dense below t, we can find h ∈ (f, t]∩Di. Since h > f ≥ fw
for all w finite or co-finite, we conclude that E(h, t) is infinite and co-infinite.
Find k ∈ Di ∩ U such that k > max{h, f}.

This is again contradictory, because h�(ω−w) < k�(ω−w) while k�w ≤
t�w = h�w, and both sets are infinite, thus violating the trichotomy (2).

Fact 17. W1 ∩W2 = ∅.

Proof. Suppose to the contrary that w ∈W1 ∩W2.
By induction on ζ < ω1 define a sequence of functions hζ ∈ U so that:

1. E(hζ , t) = w

2. ξ < ζ ⇒ hξ�(ω − w) < hζ�(ω − w)

3. if ζ is odd then hζ ∈ D1 and if ζ is even then hζ ∈ D2.

This is possible by w ∈W1 ∩W2 and because cf t(n) > ℵ0 for all n, and
thus sup{hξ : ξ < ζ} is bounded below t on (ω − w) for all ζ < ω1.

If w is finite, then by Claim 8 the function h := sup{hζ : ζ < ω1} belongs
to X and to the closure of both D1 and D2. If w is co-finite and f < h, it is
straightforward to find ζ < ω1 such that f < fζ < fζ+1, showing again that
h is in the closure of both D1 and D2, which is of course contradictory.

We need one more fact before we derive a contradiction:

Fact 18. Fix i ∈ {1, 2} and suppose that v ∈ Wi. If w 6= ω and m is the
least for which ∃n ∈ (ω − w) [cf t(n) = ℵn] then v ∪ {n ∈ (ω − w) : cft(n) =
ℵm} ∈Wi.

Proof. Denote u := {n ∈ (ω − v) : cf t(n) = ℵm} for m as above. By
induction on ζ < ωn find functions hζ ∈ Di ∩ U with E(hζ , t) = v which
are strictly increasing on u with sup{hζ(n) : ζ < ωn} = t(n) for all n ∈ u.
Again, if u is infinite use Claim 8 and otherwise the definition of X to show
that h := sup{hζ : ζ < ωn} ∈ Di. It is clear that E(h, t) = v ∪ u.
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We obtain contradiction by proving:

Fact 19. W1 ∩W2 is not empty.

Proof. Choose wi ∈Wi. If wi is finite then the set {cf t(n) : n ∈ wi} is finite,
and if wi is co-finite then by the definition of X the set {cf t(n) : n ∈ wi} is
finite as well.

Let m be the least in ω − ({cf t(n) : n ∈ w1} ∪ {cf t(n) : n ∈ w2}). By
iterated use of the previous fact we obtain that {n ∈ ω : cf t(n) < ℵm} ∈
W1 ∩W2.

Fact 17 and Fact 19 provide the desired contradiction. Thus Case 2 and
the proof of collectionwise normality are done.

Claim 20. X is a closed subspace of XR.

Proof. Suppose t ∈ XR and for every f < t there is h ∈ X ∩ (f, t]. Define

W =
{
w ⊆ ω : ∀f < t∃h ∈ X

[
E(h, t) = w ∧ h ∈ (f, t]

]
}

As X is closed (in X) and dense below t, all the facts we proved in case
2.2 of the proof of collectionwise normality apply for W substituted for Wi.
Since t ∈ XR, the set {cf t(n) : n < ω} is finite. Finitely many iterations of
Fact 18 produce h ∈ X with E(t, h) = ω − {0, 1}. Thus t ∈ X.

Discussion. Collectionwise normality of X follows, of course, from col-
lectionwise normality in XR and the closure of X in XR. However, since
proving that X is closed is basically the same as the case 2.2 in the proof of
collectionwise normality of X, we chose to present it directly.

We prove now that X is not countably paracompact. The truth of the
matter is that this follows trivially from the analogous property in XR: the
definition of Dn above is absolute between X and XR and Rudin’s proof
in [5] shows that if Dn ⊆ Un and Un is open for all n then there is some
f ∈

∏
n>1 ℵn such that h ∈

⋂
n Un for all h > f in XR. Since for every such

f there is h ∈ X with h > f , we see that
⋂
Un ∩X is not empty.

For the sake of completeness, though (but not less, for the reader’s amuse-
ment) we shall prove this property directly forX using elementary submodels.
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Proof of Claim 11. We suppose that Un ⊇ Dn is open, where Dn = {h ∈ X :
∃m ≥ n[h(m) = ℵm]}. We need to prove that

⋂
n Un is not empty.

We shall prove that there is some f ∈
∏

n>1 ℵn such that every h > f in
X belongs to this intersection.

It suffices to show that for each n separately there is some fn ∈
∏

n>1 ℵn
such that h > fn ⇒ f ∈ Un, because then f = sup{fn : n < ω} is as required.

Suppose to the contrary that m is fixed and for every function f ∈∏
n>1 ℵn there is some function hf > f in X − Um.
For a given f , let gf = sup{hf ′ : (m,ω) ⊆ E(f ′, f)}.
Let 〈Mζ : ζ ≤ ω1〉 be an elementary chain of submodels of H(θ) for large

enough regular θ so that:

• f , X and the functions f 7→ hf and f 7→ gf belong to M0

• Mζ has cardinality ℵ1 and 〈Mξ : ξ < ζ〉 ∈Mζ+1 for all ζ.

For every ζ let χζ(n) := sup(Mζ ∩ ℵn) for all n > 1. Since |Mζ | = ℵ1, it
follows that χζ(n) < ℵn for all n and hence χζ ∈

∏
n>1 ℵn.

Since χζ ∈Mξ for all ζ < ξ < ω1, by elementarity also hχζ and gχζ belong
to Mξ under the same assumptions. Similarly, fα(ζ) ∈ Mξ for ζ < χ < ω1,
where α(ζ) is the first below ℵω+1 for which χζ ≤∗ fα(ζ).

By Claim 8, χω1 ∈ X. Let χ′ = {〈n,ℵn〉 : n ≤ m} ∪ χω1�(m,ω). So
χ′ ∈ Dn ⊆ Un and therefore (f, χ′] ⊆ Un for some f < χ′.

Find some ζ < ω1 such that f�(m,ω) < χζ . Let now f ′ = f�(m + 1) ∪
χζ�(m,ω). By the definition of gχζ we see that f ′ < hf ′�(m,ω) ≤ gχζ�(m,ω)
and, of course, hf ′ /∈ Um. This contradicts h ∈ (f, χ′] ⊆ Um.
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