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Abstract. In this paper we present two consistency results concerning the

existence of large strong measure zero and strongly meager sets.

1. Introduction

Let M denote the collection of all meager subsets of 2ω and let N be the col-
lection of all subsets of 2ω that have measure zero with respect to the standard
product measure on 2ω.

Definition 1.1. Suppose that X ⊆ 2ω and let + denote the componentwise addition
modulo 2. We say that X is strongly meager if for every H ∈ N , X +H = {x+h :
x ∈ X,h ∈ H} 6= 2ω.

We say that X is a strong measure zero set if for every F ∈M, X+F 6= 2ω. Let
SM denote the collection of strongly meager sets and let SN denote the collection
of strong measure zero sets.

For a family of sets J ⊆ P (R) let
cov(J ) = min {|A| : A ⊆ J and

⋃
A = 2ω}.

non(J ) = min {|X| : X 6∈ J }.

Strong measure zero sets are usually defined as those subsets X of 2ω such that
for every sequence of positive reals {εn : n ∈ ω} there exists a sequence of basic
open sets {In : n ∈ ω} with diameter of In smaller than εn and X ⊆

⋃
n In. The

Galvin-Mycielski-Solovay theorem ([4]) guarantees that both definitions are yield
the same families of sets.

Recall the following well–known facts. Any of the following sentences is consis-
tent with ZFC,

(1) SN = [2ω]≤ℵ0 , (Laver [7])
(2) SN = [2ω]≤ℵ1 , (Corazza [3], Goldstern-Judah-Shelah [5])
(3) SM = [2ω]≤ℵ0 . (Carlson, [2])
(4) non(SN ) = d = 2ℵ0 > ℵ1, cov(M) = ℵ1 and there exists a strong measure

zero set of size 2ℵ0 . (Goldstern-Judah-Shelah [5])

The proofs of the above results as well as all other results quoted in this paper can
be also found in [1].

In this paper we will show that the following statements are consistent with ZFC:

• for any regular κ > ℵ0, SM = [2ω]<κ,
• SM is an ideal and add(SM) ≥ add(M),
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2 TOMEK BARTOSZYŃSKI AND SAHARON SHELAH

• non(SN ) = 2ℵ0 > ℵ1, d = ℵ1 and there is a strong measure zero set of size
2ℵ0 .

2. SM may have large additivity

In this section we will show that SM can be an ideal with large additivity. Let

m = min{γ : MAγ fails}.

We will show that SM = [2ω]<m is consistent with ZFC, provided m is regular. In
particular, the model that we construct will satisfy add(SM) = add(M).

Note that if SM = [2ω]<m then 2ℵ0 > m, since Martin’s Axiom implies the
existence of a strongly meager set of size 2ℵ0 . Our construction is a generalization
of the construction from [2].

To witness that a set is not strongly meager we need a measure zero set. The
following theorem is crucial.

Theorem 2.1 (Lorentz). There exists a function K ∈ ωR such that for every ε > 0,
if A ∈ [2ω]≥K(ε) then for all except finitely many k ∈ ω there exists C ⊆ 2k such
that

(1) |C| · 2−k ≤ ε,
(2) (A�k) + C = 2k.

Proof Proof of this lemma can be found in [8] or [1]. �

Definition 2.2. For each n ∈ ω let {Cnm : n,m ∈ ω} be an enumeration of all
clopen sets in 2ω of measure ≤ 2−n. For a real r ∈ ωω and n ∈ ω define an open
set

Hr
n =

⋃
m>n

Cmr(m).

It is clear that Hr
n is an open set of measure not exceeding 2−n. In particular,

Hr =
⋂
n∈ωH

r
n is a Borel measure zero set of type Gδ.

Theorem 2.3. Let κ > ℵ0 be a regular cardinal. It is consistent with ZFC that
MA<κ + SM = [2ω]<κ holds. In particular, it is consistent that SM is an ideal
and add(SM) = add(M) > ℵ1.

Proof Fix κ such that cf(κ) = κ > ℵ0. Let λ > κ be a regular cardinal such
that λ<λ = λ. Start with a model V |= ZFC + 2ℵ0 = λ.

Suppose that P is a forcing notion of size < κ. We can assume that there is
γ < κ such that P = γ and ≤,⊥⊆ γ × γ.

Let {Pα, Q̇α : α < λ} be a finite support iteration such that for each α < λ,

(1) α Q̇α ' C, if α is limit,

(2) there is γ = γα such that α Q̇α ' (γ,≤,⊥) is a ccc forcing notion.

By passing to a dense subset we can assume that if p ∈ Pλ then p : dom(p) −→ κ,
where dom(p) is a finite subset of λ.

By bookkeeping we can guarantee that VPλ |= MA<κ. In particular, VPλ |=
[2ω]<κ ⊆ SM.

It remains to show that no set of size κ is strongly meager.
Suppose that X ⊆ VPλ ∩ 2ω is a set of size κ. Find limit ordinal α < λ such

that X ⊆ 2ω ∩VPα . As usual we can assume that α = 0. Let c be the Cohen real
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added at the step α = 0. We will show that VPλ |= X +Hc = 2ω, which will end
the proof.

Suppose that the above assertion is false. Let p ∈ Pλ and let ż be a Pλ-name
for a real such that

p λ ż 6∈ X +H ċ.

Let X = {xξ : ξ < κ} and for each ξ find pξ ≥ p and nξ ∈ ω such that

pξ λ ż 6∈ xξ +H ċ
nξ
.

Let Y ⊆ κ be a set of size κ such that

(1) nξ = ñ for ξ ∈ Y ,

(2) {dom(pξ) : ξ ∈ Y } form a ∆-system with root ∆̃,

(3) pξ�∆̃ = p̃, for ξ ∈ Y ,
(4) pξ(0) = s̃, with |s̃| = ` > ñ, for ξ ∈ Y .

Fix a subset X ′ = {xξj : j < K(2−`)} ⊆ Y and let m̃ ∈ ω be such that

C`m̃ +X ′ = 2ω.
Define condition p? as

p?(β) =

{
pξj if α 6= β & β ∈ dom(pξj ), j < K(2−`)
s̃_m̃ if α = β

for β < λ.

On one hand p? λ C`m̃ ⊆ H ċ
ñ, so p? λ X ′ + H ċ

ñ = 2ω. On the other hand,
p? ≥ pξj , j ≤ K(2−`), so p? λ ż 6∈ X ′ +H ċ

ñ. Contradiction.

To finish the proof we show that VPλ |= add(M) = κ. First note that MA<κ

implies that add(M) ≥ κ in VPλ . The other inequality is a consequence of the
general theory. Recall that (see [1])

(1) add(M) = min{cov(M), b}
Suppose that F ⊂ ωω is an unbounded family of size ≥ κ.

2. if P is a forcing notion of cardinality < κ then F remains unbounded in
VP .

3. if {Pα,Qα : α < λ} is a finite support iteration such that α |Qα| < κ then
VPλ |= F is unbounded..

From the results quoted above follows that add(M) ≤ b ≤ κ in VPλ , which ends
the proof. �

3. Strong measure zero sets

In this section we will discuss models with strong measure zero sets of size 2ℵ0 .
We start with the definition of forcing that will be used in our construction.

Definition 3.1. The infinitely equal forcing notion EE is defined as follows: p ∈
EE if the following conditions are satisfied:

(1) p : dom(p) −→ 2<ω,
(2) dom(p) ⊆ ω, |ω \ dom(p)| = ℵ0,
(3) p(n) ∈ 2n for all n ∈ dom(p).

For p, q ∈ EE and n ∈ ω we define:

(1) p ≥ q ⇐⇒ p ⊇ q, and
(2) p ≥n q ⇐⇒ p ≥ q and the first n elements of ω \ dom(p) and ω \ dom(q)

are the same.
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It is easy to see (see [1]) that EE is proper (satisfies axiom A), and strongly ωω

bounding, that is if p  τ ∈ ω and n ∈ ω then there is q ≥n p and a finite set F ⊆ ω
such that q  τ ∈ F .

In [5] it is shown that a countable support iteration of EE and rational perfect
set forcing produces a model where there is a strong measure zero set of size 2ℵ0 .
In particular, one can construct (consistently) a strong measure zero of size 2ℵ0

without Cohen reals. The remaining question is whether such a construction can
be carried out without unbounded reals.

Theorem 3.2 ([5]). Suppose that {Pα, Q̇α : α < ω2} is a countable support itera-
tion of proper, strongly ωω-bounding forcing notions. Then

VPω2 |= SN ⊆ [R]≤ℵ1 . �

The theorem above shows that using countable support iteration we cannot
build a model with a strong measure zero set of size > d. Since countable support
iteration seems to be the universal method for constructing models with 2ℵ0 = ℵ2

the above result seems to indicate that a strong measure zero set of size > d cannot
be constructed at all. Strangely it is not the case.

Theorem 3.3. It is consistent that non(SN ) = 2ℵ0 > d = ℵ1 and there are strong
measure zero sets of size 2ℵ0 .

Proof Suppose that V |= CH and κ = κℵ0 > ℵ1. Let P be a countable
support product of κ copies of EE. The following facts are well-known (see [6])

(1) P is proper,
(2) P satisfies ℵ2-cc,
(3) P is ωω-bounding,
(4) for f ∈ V[G] ∩ ωω there exists a countable set A ⊆ κ, A ∈ V such that

f ∈ V[G�A].

It follows from (3) that VP |= d = ℵ1. Moreover, (1) and (2) imply that 2ℵ0 = κ
in VP .

For a set X ⊆ 2ω ∩VP let supp(X) ⊆ κ be a set such that X ∈ V[G�supp(X)].
Note that supp(X) is not determined uniquely, but we can always choose it so that
|supp(X)| = |X|+ ℵ0.

Lemma 3.4. Suppose that X ⊆ 2ω ∩VP and supp(X) 6= κ. Then VP |= X ∈ SN

Note that this lemma finishes the proof. Clearly the assumptions of the lemma
are met for all sets of size < κ and also for many sets of size κ.

Proof We will use the following characterization (see [1]):

Lemma 3.5. The following conditions are equivalent.

(1) X ⊆ 2ω has strong measure zero.
(2) For every f ∈ ωω there exists g ∈ (2<ω)ω such that g(n) ∈ 2f(n) for all n

and
∀x ∈ X ∃n x�f(n) = g(n). �

Suppose that X ⊆ VP ∩ 2ω is given and supp(X) 6= κ. Let α? ∈ κ \ supp(X).
We will check condition (2) of the previous lemma.

Fix f ∈ VP ∩ωω. Since P is ωω-bounding we can assume that f ∈ V. Consider
a condition p ∈ P. Fix {kn : n ∈ ω} such that kn ≥ f(n) and kn 6∈ dom(p(α?)) for
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n ∈ ω. Let pf ≥ p be any condition such that ω \ {kn : n ∈ ω} ⊆ dom(pf (α?)). We
will check that

pf P ∀x ∈ X ∃n x�f(n) = Ġ(α?)(kn)�f(n),

where Ġ is the canonical name for the generic object. Take x ∈ X and r ≥ pf .
Find n such that kn 6∈ dom

(
r(α?)

)
. Let r′ ≥ r and s be such that

(1) supp(r′) ⊆ supp(X)
(2) r′ ≥ r�supp(X),
(3) r′ P x�kn = s.

Let

r′′(β) =

{
r′(β) if β 6= α?

r′(α?) ∪ {(kn, s)} if β = α?
.

It is easy to see that r′′  x�f(n) = Ġ(α?)(kn)�f(n). Since f and x were arbitrary
we are done. �
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